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Fluid models have become a standard tool for demonstrating stabil-
ity for queueing networks. It is presently not known, however, when the
stability of a fluid model follows from that of the corresponding queueing
network. We present an example of a queueing network where such sta-
bility does not, in fact, follow. This example also shows that the behavior
of the fluid limits and the fluid model solutions for the same queueing
network can differ considerably from one another.

1. Introduction. There has recently been considerable interest in the
qualitative behavior of open multiclass queueing networks. An important
question in this context is whether a given queueing network is stable, that is,
its underlying Markov process is positive recurrent. Various examples have
shown that there is no general criterion for this behavior [see, e.g., Bram-
son (1994), Lu and Kumar (1991), Rybko and Stolyar (1992) and Seidman
(1994)]. One therefore needs to examine such networks on a case-by-case
basis.

The standard approach for investigating the stability of a queueing network
is the analysis of the associated fluid limits. These are the different “limits” one
obtains by shrinking the weight of individual customers and time proportion-
ally. The fluid limits will satisfy fluid model equations, which correspond to the
deterministic analog of the queueing network under consideration. Typically,
one attempts to show that solutions of the fluid model equations are stable,
that is, their queue lengths are 0 by a fixed time. The stability of the queueing
network then follows from the stability of these solutions [Dai (1995)].

The importance of fluid limits and fluid model equations in showing the
stability of queueing networks has led to questions about the converse direc-
tion. Namely, does the stability of the fluid limits or of the fluid model follow
from that of the associated queueing network? Little is known in this direc-
tion, with the only results stating, in effect, that when the fluid limits all have
a uniformly positive drift, then the queueing network itself is unstable [Dai
(1996), Meyn (1995)].

We present here a family of queueing networks that are stable, but whose
fluid models are unstable, that is, there exists an unstable solution of the
fluid model equations. What occurs, in essence, is that the random oscillations
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appearing in the queueing network prevent its fluid limits from becoming
trapped among certain unstable solutions of the associated fluid model that
grow linearly in time. Our example consists of networks which can be thought
of as “almost” being reentrant lines consisting of three stations, each with two
classes, and an assigned priority. The actual networks are formed by replacing
the middle station by a family of identical two-class stations that lie in parallel
with one another. All of the service and interarrival times of the networks are
exponentially distributed.

It is routine to show that the fluid models associated with the above queue-
ing networks are unstable. It is, however, more difficult to show that the net-
works themselves are stable. One needs to do detailed bookkeeping following
the evolution of the process, in order to show that the fluid limits are eventu-
ally 0 at the above middle stations. The fluid models one obtains by deleting
these stations are last-buffer-first-served, and are easily shown to be stable.
Applying a variant of the stability result in Dai (1995), this leads to the de-
sired stability for the original queueing networks. The reasoning employed
here also shows that the fluid limits associated with the original networks are
asymptotically stable. (This property is slightly weaker than stability and is
easier to work with in our setting.) Thus, the fluid limits and the fluid models
for these networks also differ in behavior.

The paper is organized as follows. In Section 2, we introduce terminology for
the queueing networks and fluid models, and present our results. Theorem 1
states that the queueing networks we consider are stable, and Theorem 2
shows that the associated fluid models are not. Theorem 2 is demonstrated in
Section 3. The proof of Theorem 1 constitutes the remaining seven sections
of the paper. In Section 4, the problem is rephrased, in Theorem 3, in terms
of the asymptotic stability of fluid limits. An outline of the following sections
is then given. In Section 5, certain large deviation bounds are given. Sections
6–9 are devoted to deriving upper bounds on the number of customers at the
middle stations of the queueing network, which were alluded to earlier. In
Sections 6 and 7, bounds are given on the growth of the number of customers
at the classes having higher priority; in Section 8, bounds are given at the
classes having lower priority. Using the strict subcriticality of these stations,
it is shown in Section 9 that their classes frequently empty in a “coordinated”
manner. Section 10 employs the results from these sections to show that the
fluid limits at these stations are eventually 0. Using known results on last-
buffer-first-served networks, Theorem 3 is then demonstrated.

2. Terminology, results and basic ideas. The queueing networks that
we will investigate consist of L+ 2 stations, with each station possessing two
classes (or buffers). We will distinguish classes at a given station by the letters
a and b; since L of the stations will perform a similar role, we designate the
stations in the network by 1, 2, �3�1�, �3�2�� � � � � �3�L�. For a given class at a
station, we write, for example, �3�2� a�. Customers at the class a at a station
will be assumed to always have priority over customers at the class b at the
same station, and will preempt service at b upon arrival.
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All of the service and interarrival times for the queueing network will be as-
sumed to be exponentially distributed and mutually independent. Customers
are assumed to enter the network at rate 1 at class �1� b�, and are assumed
to move through the network until leaving it after visiting class �1� a�, by the
following routes:

�2�1� → �1� b� → �2� b� → �3� l� a� → �3� l� b� → �2� a� → �1� a� →�

where l = 1� � � � �L. Thus, the routing is deterministic, with the exception
of the choice following departure from �2� b�; in this case, we assume that
a customer randomly chooses each of the classes �3� l� a�, l = 1� � � � �L, with
equal probability. The mean service times mk at the different classes k are
given by:

�2�2�
m1� a =

3
4
� m1� b = γ� m2� a = γ� m2� b =

3
4
�

m3� l� a =
3
4
L� m3� l� b =

γ

L
�

where we assume that γ ∈ �0�1/8�. Thus, upon entering the network, each
customer first enters the “quick” class �1� b�, followed by the “slow” classes
�2� b� and �3� l� a�, the “quick” classes �3� l� b� and �2� a�, and the “slow class”
�1� a�, before departing. Throughout the paper, γ will be assumed to be fixed,
whereas L will be allowed to vary. As above, we will use the index k to denote
class level quantities; j will be used to denote station level quantities.

The total arrival rate λk for each class at each of the first two stations is
1, and is 1/L for the classes at the stations �3� l�, l = 1� � � � �L. The traffic
intensity ρj at a station j is given by ρj =

∑
k∈� �j� mkλk, where � �j� denotes

the set of classes belonging to the station. Here, it is easy to see that

�2�3� ρ1 = ρ2 = 3
4
+ γ� ρ3� l =

3
4
+ γ

L2
�

Consequently, ρj < 1 holds for all j, that is, the queueing network is strictly
subcritical. When ρj < 1 holds at a given j, that station is also said to be
strictly subcritical.

We will use Z�t� to denote the underlying right continuous Markov process
of the queueing network. Its state space can be chosen to be the subset of �K,
K = 2�L+ 2�, with nonnegative coordinates. Its transition rates µk are given
by the reciprocals of the means mk in (2.2). Since the sample paths are piece-
wise constant, Z�t� is strong Markov. We will use Zj�t� to denote the number
of customers at the station j, and Zk�t� to denote the number of customers at
the class k, writing, for example, Z2� a�t�. We will set Z3�t� =

∑L
l=1Z3� l, and

define Z3� a�t� and Z3� b�t� analogously. The total number of customers in the
system at time t will be denoted by �Z�t��. We let T�t� = �T1�t�� � � � �TK�t�� de-
note the continuous process of cumulative service times associated with Z�t�,
and write Tj�t� =

∑
k∈� �j�Tk�t� for the cumulative service time at a station j.
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In this paper, we demonstrate two main results about the behavior of the
network in (2.1), (2.2). The first is given by Theorem 1, which says that, for
large L, the network is stable.

Theorem 1. For sufficiently large L, the Markov process Z�t� of the queue-
ing network given in (2.1), (2.2) is positive recurrent.

Since all states of Z�t� communicate, it follows from the theorem that the
process has a unique equilibrium π. Using the machinery from Dai and Meyn
(1995), one can show that π possesses all moments. (More detail will be given
later.)

Most of the work in this paper consists of demonstrating Theorem 1. The
main step will be to show that the corresponding fluid limits are asymptotically
stable. (The collection of fluid limits will also be referred to as the “fluid limit
model.”) A summary of the reasoning employed for Theorem 1, together with
the relevant terminology, is given in Section 4. The details for the individual
parts comprise Sections 5–10.

Our interest in the queueing network (2.1), (2.2) stems from the fact that
although it is stable, the corresponding fluid model is not. The queueing net-
work thus exhibits “borderline” behavior. Before discussing the fluid model, we
make several observations which will hopefully help to motivate the choice of
the network.

Understanding the queueing network. We first observe what happens when
one “collapses” the stations �3� l�, l = 1� � � � �L, into a single station 3. The
corresponding network is then a reentrant line, with entrance rate 1, where
all customers follow the route

�2�4� → �1� b� → �2� b� → �3� a� → �3� b� → �2� a� → �1� a� →�
and where the mean service times are the same as in (2.2), except that

�2�5� m3� a =
3
4
� m3� b =

γ

L2
�

The traffic intensities ρj are therefore the same as in (2.3).
Superficially, the behavior for this collapsed network is the same as that

for the original network, and it is simpler to think in terms of it instead.
The main difference is that it is easier for one of the classes �3� l� a� in the
original network to become empty than it is for �3� a� in the collapsed network.
When either occurs, the effects we are seeking are the same. When �3� a�, for
instance, is empty, this allows service at the lower priority class �3� b�, from
which customers pass to �2� a� (which was likely empty). Service there will
then interrupt service at the lower priority class �2� b�, and hence delay the
creation of new �3� a� customers. Since �3� b� customers will continue to be
served until �3� a� is again occupied, all of the �3� b� customers are likely to
be served before then. This behavior serves to prevent the build up of �3� b�
customers in the network. It is important for the analysis of either network.
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Dealing now with the collapsed network in (2.4), (2.5), we note that the
neighboring classes �2� b� and �3� a� have the same mean service time 3/4. This
implies that the number of customers in �3� a� is dominated by a continuous
time symmetric random walk with reflection at 0. (The comparison becomes
one-sided when there is no service at �2� b�, either because �2� b� is empty or
there are customers at �2� a�.) So, the number of customers there, when scaled
diffusively, can be compared with a reflecting Brownian motion. This implies
that the number of customers at �3� a� can only grow sublinearly.

We would also like to obtain upper bounds on the time required for the class
�3� a� to become empty, and then employ these, in conjunction with the behav-
ior mentioned two paragraphs above, to obtain sublinear upper bounds on the
number of customers at the class �3� b�. Although we are not able to obtain
these bounds for the collapsed network, the better bounds that one has, on
when the classes �3� l� a� in the original network empty, suffice. Consequently,
the total number of customers at the stations �3� l�� l = 1� � � � �L, only grows
sublinearly.

Since all of the stations in the original network are strictly subcritical,
they will each eventually empty (although not simultaneously). The sublinear
growth of the number of customers at the stations �3� l�, l = 1� � � � �L, will
allow us to omit these stations entirely from the network without changing
its basic behavior. This reduction produces the network with entrance rate 1,
where all customers follow the route

�2�6� → �1� b� → �2� b� → �2� a� → �1� a� →
and where the mean service times are

�2�7� m1� a =m2� b = 3
4 � m1� b =m2� a = γ�

with γ ∈ �0�1/8�. This network is last-buffer-first-served, and is known to be
stable [Dai and Weiss (1995)]. This same behavior, we claim, is maintained by
the original network.

It is helpful to tinker a bit more with the networks we have considered
above to see how stability may also fail. It is the role of station 2 to induce
the above random walk-like fluctuations at �3� a� for both the original and the
collapsed networks. Removing station 2 from the collapsed network produces
the network with entrance rate 1 and route

�2�8� → �1� b� → �3� a� → �3� b� → �1� a� → �

The mean service times are, as before,

�2�9� m1� a =m3� a =
3
4
� m1� b = γ� m3� b =

γ

L2
�

This is a variant of the well-known Lu–Kumar network. The rates of service
we have chosen here for the different classes ensures that the queueing net-
work given by (2.8), (2.9) will be unstable [Dai and Weiss (1996)]. So, the orig-
inal network given by (2.1), (2.2) can be thought of as a Lu–Kumar network
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with additional stations which stabilize the network due to the introduction
of random fluctuations.

The fluid model for (2.1), (2.2). We will contrast the stability of the original
network in (2.1), (2.2) with the instability of the corresponding fluid model.
First, we recall the basics of fluid models. For this, we employ the notation in
Dai (1995).

Fluid models are the continuous, deterministic analogs of queueing net-
works. Here, the notion of customers is replaced by that of mass, which is to
be thought of as circulating around the system. Equations are given which
tie together the evolution of relevant quantities, such as the vector of queue
lengths Z̄�t� = �Z̄1�t�� � � � � Z̄K�t��, t ≥ 0, of the different classes, and the
vector of cumulative service times T̄�t� = �T̄1�t�� � � � � T̄K�t��, t ≥ 0. We find
it convenient to set Z̄j�t� = ∑

k∈� �j� Z̄k�t� and T̄j�t� = ∑
k∈� �j� T̄k�t�. In ac-

cordance with the corresponding queueing network quantities, one stipulates
that Z̄k�t� ≥ 0, k = 1� � � � �K, always holds, and that T̄�0� = 0, with T̄k�t�,
k = 1� � � � �K, and t− T̄j�t�, j = 1� � � � � J, being nondecreasing. We employ the
notation Z̄+

k �t� to denote the sum of the queue lengths at all classes at the
station to which k belongs, which have priority at least as great as k. That is,
in our setting,

Z̄+
j� a�t� = Z̄j� a�t��
Z̄+
j� b�t� = Z̄j� a�t� + Z̄j� b�t��

The quantities T̄+
k �t� are defined analogously.

To formulate the fluid model equations (2.10), (2.11) below, we will also
find it convenient to use notation which is standard for networks with general
routing. The K×K matrix P denotes the transition matrix between classes.
In our case, at all classes k1 except for k1 = �2� b�, Pk1� k2

is 1 or 0, depending
on whether or not class k2 immediately succeeds k1 according to the route
given in (2.1). For k1 = �2� b�, Pk1� k2

= 1/L for k2 = �3� l� a�, l = 1� � � � �L, and
Pk1� k2

= 0 for other k2. Denote by Pt the transpose of P. Let α = �α1� � � � � αc�
be the vector with αk = 1 for k = �1� b� and αk = 0 elsewhere; α gives the rate
of exogeneous arrivals into the system. Also, M denotes the K ×K matrix
with diagonal entries equal to the mean service times given in (2.2) and other
entries equal to 0.

Using the above notation, the fluid model equations corresponding to the
network given in (2.1), (2.2) are

Z̄�t� = z̄+ αt+ �P− I�tM−1T̄�t��(2.10)

t− T̄+
k �t� can only increase when Z̄+

k �t� = 0� k = 1� � � � �K�(2.11)

where z̄ = Z̄�0�. [Here, α, T̄�t� and Z̄�t� are written as column vectors.] So-
lutions �T̄�t�� Z̄�t�� of (2.10), (2.11) are fluid model solutions. Equation (2.10)
gives the effect of arrivals and departures at a class upon the queue length
there. Since T̄�t� is continuous, the continuity of Z̄�t� follows from (2.10).
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Equation (2.11) incorporates the priority scheme for service at each station,
with each nonempty class only receiving service when none of the higher-
priority classes at the station is occupied. It can be rewritten as

�2�11′�
∫ ∞

0
Z̄+
k �t�d�t− T̄+

k �t�� = 0� k = 1� � � � �K�

One says that a fluid model is stable if, for a given δ > 0 and all solutions of
the fluid model equations with �z̄� = 1, one has Z̄�t� = 0 for t ≥ δ. (As before,
� · � denotes the sum of the coordinates.) The above fluid model equations scale,
so this is equivalent to Z̄�t� = 0 always holding for t ≥ δ�z̄�� An important
result is that if a fluid model is stable, then the associated queueing network
is stable [Dai (1995) and Stolyar (1994)]. Theorem 1 and Theorem 2, which is
given below, imply that the converse is not true. In fact, there exists a solution
of (2.10), (2.11), with z̄ = 0, such that �Z̄�t�� increases linearly to infinity.

Theorem 2. Fix L. There exists a solution �T̄�t�� Z̄�t�� of the fluid model
equations (2.10), (2.11), corresponding to the queueing network given in (2.1),
(2.2), with z̄ = 0 and

�2�12� lim inf
t→∞

�Z̄�t��/t = 1/3�

We will demonstrate Theorem 2 in the next section by explicitly construct-
ing a solution �T̄�t�� Z̄�t�� of (2.10), (2.11) which satisfies (2.12). The argument
is straightforward and consists of following the flow of mass over a given time
interval, which is then pieced together with scaled versions of this flow over
other intervals. We note that the presence of a multitude of 3-stations plays
no role in the construction of our example, which is also (after a minor change
in notation) a solution of the fluid model equations associated with the col-
lapsed network given by (2.4), (2.5). Also, note that for the collapsed network,
m2� b = m3� a and m2� a < m1� a. For our example, the presence of station 2,
therefore, does not slow down the flow of mass into the succeeding classes
�3� a� and �1� a�. [This is automatic for �1� a�, but not for �3� a�.] Removal of
station 2 from the collapsed network produces the network in (2.8), (2.9). As
mentioned there, this last network is an unstable Lu–Kumar network. Viewed
in this light, the behavior given in Theorem 2 is not too surprising.

We conclude this section with several comments about the relationships
between the mean service times of the different classes of the network in
(2.1), (2.2). To obtain the behavior exhibited by our example, one requires that
m3� l� a = Lm2� b; the same value is assigned to m1� a for simplicity. One needs
the means at the classes �1� b� and �2� a� to be smaller and that at �3� l� b�
to be much smaller. The value γ is chosen small enough so that all of the
stations are strictly subcritical. Moreover, the means at �1� a� and �3� l� a�
need to satisfy m1� a + m3� l� a/L > 1, so that the corresponding Lu–Kumar
network in (2.8), (2.9) is unstable.



A STABLE QUEUEING NETWORK 825

3. Instability of the fluid model. Here, we demonstrate the instabil-
ity of the fluid model given in Theorem 2. We will show, in particular, that
lim inf t→∞ �Z̄�t��/t = 1/3 for a given solution of the fluid model equations
(2.10), (2.11), whose parameters correspond to those for the queueing network
in (2.1), (2.2). Our reasoning proceeds in two steps. We first, as in Proposition
3.1, construct a solution �T̄�t�� Z̄�t�� of the fluid model equations on �0�6� with
z̄ = �Z̄�0�� = 1 and �Z̄�6�� = 3, where all the mass at t = 0 and t = 6 is concen-
trated at class �1� b�. We then piece together scaled versions of this solution so
that the resulting solution is defined over �0�∞�, and grows linearly starting
at z̄ = 0.

We construct the function �T̄�t�� Z̄�t��, t ∈ �0�6�, piecewise over the time
intervals with endpoints 0, γ/�1−γ�� 3, 3+�4γ/L2�, 3+4γ and 6. We assume
that T̄′�t� is constant over each of these intervals, proceeding as follows:

T̄′
1� b�t� =


1� for t ∈ �0� γ/�1 − γ��,
γ� for t ∈ �γ/�1 − γ��3�,
0� for t ∈ �3�6�,

T̄′
2� b�t� = T̄′

3� l� a�t� =
{

1� for t ∈ �0�3�,
0� for t ∈ �3�6�,

T̄′
3� l� b�t� =

{
1� for t ∈ �3�3 + 4γ/L2�,
0� otherwise,

(3.1)

T̄′
2� a�t� =

{
1 for t ∈ �3�3 + 4γ�,
0� otherwise,

T̄′
1� a�t� =

{
1� for t ∈ �3�6�,
0� for t ∈ �0�3�.

Integration then, of course, gives T̄�t�. We assume that Z̄�t� is linear over
segments consisting of one or more of these time intervals, with values at the
endpoints of the segments given by

Z̄1� b�0� = 1� Z̄1� b�γ/�1 − γ�� = Z̄1� b�3� = 0� Z̄1� b�6� = 3�

Z̄2� b�0� = 0� Z̄2� b�γ/�1 − γ�� = �3 − 4γ�/3�1 − γ��
Z̄2� b�3� = Z̄2� b�6� = 0�

Z̄3� l� a�0� = Z̄3� l� a�6� = 0�
(3.2)

Z̄3� l� b�0� = 0� Z̄3� l� b�3� = 4/L� Z̄3� l� b�3 + 4γ/L2� = Z̄3� l� b�6� = 0�

Z̄2� a�0� = Z̄2� a�3� = 0� Z̄2� a�3 + 4γ/L2� = 4 − 4/L2�

Z̄2� a�3 + 4γ� = Z̄2� a�6� = 0�

Z̄1� a�0� = Z̄1� a�3� = 0� Z̄1� a�3 + 4γ� = 4 − 16γ/3� Z̄1� a�6� = 0�
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One can interpret the behavior of �T̄�t�� Z̄�t�� as follows, dividing time into
the intervals �0�3� and �3�6�. Initially, only the class �1� b� is occupied. Over
times in �0�3�, this mass and that entering the network flow from �1� b� to
�2� b�, to �3� l� a�, l = 1� � � � �L, and then to �3� l� b�. The mass in �1� b� quickly
“drains out” by t = γ/�1 − γ�, after which �1� b� continues to process, but at
a slower rate. Mass at �2� b� and �3� l� a� continues to be processed at the
maximal rate until t = 3. The amount of mass at �2� b� rises quickly until t =
γ/�1−γ�, after which it gradually drains out until the class is empty at t = 3.
The classes �3� l� a� remain empty the entire time since µ2� b =

∑L
l=1 µ3� l� a =

4/3. Over �0�3�, none of the classes �3� l� b�, �2� a� or �1� a� receives service:
�2� a� and �1� a� because no mass has gotten that far yet, and �3� l� b� because
the classes �3� l� a� are being served at maximal capacity.

At t = 3, the behavior of the system changes. Since there is no mass in
�1� b�∪�2� b�∪�3� a�, mass will be processed at the classes �3� l� b�, upon which
it goes to �2� a�. Since this class has priority at the second station, mass there
will be processed and will be passed to class �1� a�, where processing also
immediately begins. The processing of mass at �1� a� and �2� a� immediately
causes that at �1� b� and �2� b� to stop. Since Lµ3� l� b > µ2� a > µ1� a and there
is, at t = 3, no mass at �2� b� and �3� a�, these classes will remain empty until
the mass at �1� a� drains out. This occurs at t = 6. [The quicker serving classes
�3� l� b� and �2� a� empty at t = 3 + 4γ/L2 and t = 3 + 4γ, respectively.] So, at
t = 6, the network is empty except at �1� b�; over the period �3�6�, three units
of mass have accumulated there.

We note that the evolution of �T̄�t�� Z̄�t�� can also be analyzed for the vari-
ant of the network one obtains by formally setting γ = 0, which corresponds
to instantaneous service at the classes �1� b�, �3� l� b� and �2� a�. As in Lu and
Kumar (1991), this type of idealization simplifies the bookkeeping involved.
Here, Z̄�t� is piecewise linear over �0�3� and �3�6�. It is discontinuous at t = 0
and t = 3, with all of the mass at �1� b� simultaneously flowing to �2� b� (at
t = 0), and all of the mass at �3� l� b� simultaneously flowing to �2� a�, and
then to �1� a� (at t = 3).

One can check that, over each of the five subintervals of �0�6� on which
T̄′�t� and Z̄′�t� are constant, the pair �T̄�t�� Z̄�t��, for γ > 0, solves the fluid
model equations (2.10), (2.11). The reasoning is in each case obvious, but takes
a little time because of the number of cases involved. We therefore obtain the
following proposition.

Proposition 3.1. The pair �T̄�t�� Z̄�t��, defined in (3.1), (3.2), is a solution
of the fluid model equations (2.10), (2.11) over t ∈ �0�6�.

We point out that, in the above construction of �T̄�t�� Z̄�t��, the behavior at
all of the stations �3� l� is identical. By collapsing these stations into a single
station 3 as in (2.4), (2.5), it is therefore simple to modify the above pair at
�3� l� so that it becomes a fluid model solution for this collapsed network.

By piecing together scaled versions of the above function �T̄�t�� Z̄�t��, one
may extend it to a solution of (2.10), (2.11) over t ∈ �0�∞�. Specifically, for
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i ∈ � and t ∈ �3i+1�3i+2�, set

�3�3� T̃�t� = 3i
(
T̄�3−it− 3� +U)

� Z̃�t� = 3iZ̄�3−it− 3��
where U is the constant with components

�3�4� U1� b = U2� a = 2γ� U2� b = U3� l� a = U1� a =
3
2
� U3� l� b =

2γ
L2
�

and set T̃�0� = Z̃�0� = 0. It is straightforward to check that, over �3i+1�3i+2�,
i ∈ �, Z̃�t� remains a solution of (2.10), (2.11), since the effect of the scal-
ing terms 3i and 3−i cancel each other out, and since the translation terms
are harmless. [i = 0 corresponds to �T̄�t�� Z̄�t��, after a time shift.] By (3.2),
Z̄�6� = 3Z̄�0�. Therefore, Z̃�t� is consistently defined at the endpoints 3i. One
can check that T̃�3i� is also consistently defined by integrating T̃′�t� in (3.1)
over �0�6�. Faster, though, is to note that, over �0�6�, four units of mass have
been processed at each class (lumping �3� l�, l = 1� � � � �L, together). One then
multiplies this by the service times mk. [Also, note that Uk = T̄k�6�/2 for
each k.] One thus obtains that �T̃�t�� Z̃�t�� is a solution of (2.10), (2.11) over
�0�∞�. Since

lim
t→0
T̃�t� = 0� lim

t→0
Z̃�t� = 0�

�T̃�t�� Z̃�t�� is continuous at 0, which implies that �T̃�t�� Z̃�t�� is, in fact, a
solution over �0�∞�, as desired.

It follows from �Z̃�3�� = �Z̄�0�� = 1 and (3.3), that

�3�5� lim sup
t→∞

�Z̃�t��/t ≥ 1/3�

So �T̃�t�� Z̃�t�� is an unstable solution of the fluid model equations (2.10),
(2.11). One can, in fact, check, by using (3.2), that the infimum is taken along
the sequence 3i as i→ ∞, and so

�3�6� lim inf
t→∞

∣∣Z̃�t�∣∣/t = 1/3�

Setting Z̄�t� = Z̃�t� in (2.12), this implies Theorem 2.

4. Outline of Theorem 1. We wish to show that the queueing network
given in Theorem 1 is stable, that is, its underlying Markov process Z�t� is
positive recurrent. The remaining sections of the paper are devoted to this.
The purpose of the present section is to rephrase the problem in terms of fluid
limits and to summarize the procedure in Sections 5–10.

Fluid limits are a standard tool in showing the stability of queueing net-
works. Employed in Rybko and Stolyar (1992), they were systematized in
Dai (1995) and Stolyar (1994). A fluid limit of the queueing network pair
�T�t��Z�t�� is defined, in our setting, to be any limit

�4�1� (
T̄�t�� Z̄�t�) = lim

n→∞
1

�zn�
(
Tzn�t�zn���Zzn�t�zn��

)
�
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for any sequence zn with �zn� → ∞, and any ω, which satisfies the fluid
model equations (2.10), (2.11). [Z�0� = zn; as before, � · � denotes the sum
norm.] Convergence is required to be uniform on compact sets of t (u.o.c.).
One automatically has �Z̄�0�� = 1. The fluid limit model is said to be stable
when all fluid limits satisfy Z̄�t� = 0 for t ≥ δ, for some δ > 0.

Here, we employ a somewhat weaker version of fluid limits, which is more
natural in our setting. We define a fluid limit on Hz, for events Hz with
lim�z�→∞P�Hz� = 1, to be any fluid limit in (4.1), for which ω ∈Hzn for all n.
The fluid limit model is asymptotically stable if there exist such Hz, so that
the condition Z̄�t� = 0 for t ≥ δ, δ > 0, holds for all fluid limits on Hz. This
modification adds a degree of flexibility to the use of fluid limits. In our case,
it will allow us to exclude the “bad” events where Z3�t�/t does not remain
small, after an initial adjustment period.

In order to employ the limits in (4.1), we need to know that they are fluid
limits (i.e., that they satisfy the fluid model equations) on a set of probabil-
ity 1. There is a standard framework for this. Let G denote the event where
the strong law of large numbers holds, in each case, for the sums of the inter-
arrival times, the service times at each class, and the routing vectors of the
network. The interarrival and service times consist of independent exponen-
tial random variables; the routing vectors are deterministic except following
departures from class �2� b�, at which point each of the L classes �3� l� a� is
chosen with equal probability, independently of past choices. So, the strong law
holds almost surely for the corresponding sums, that is, P�G� = 1. Consider
now �Tzn�t��Zzn�t�� along any sequence zn, with �zn� → ∞ as n→ ∞. We will
require that, on G, each such sequence possess a subsequence zin (depending
on ω) on which convergence is u.o.c. and where

�4�2� lim
n→∞

1
�zin �

(
Tzin �t�zin ���Zzin �t�zin ��

)
is a fluid limit.

As mentioned at the beginning of the section, we wish to rephrase Theo-
rem 1 in terms of fluid limits. The following result enables us to do this. It
is a special case of Theorem 3′ in Bramson (1998), which is a modification of
Theorem 4.3 in Dai (1995). (In Theorem 4.3, the fluid limit model is assumed
to be stable; in Theorem 3′, it is assumed to be asymptotically stable.)

Theorem 3. Suppose that for a given L, (i) the fluid limit model corre-
sponding to the queueing network in (2.1), (2.2) is asymptotically stable and
that (ii) (4.2) holds. Then, the queueing network is stable.

Once we verify conditions (i) and (ii) for the queueing networks in (2.1), (2.2)
and large enough L, Theorem 1 will follow immediately from Theorem 3. As
we will explain shortly, all of the work is concentrated in checking condition (i).

We point out here that the conclusion in Theorem 3 can be strengthened.
Namely, under (i) and (ii), the equilibrium distribution of the queueing net-
work, in fact, has all positive moments. This would follow immediately from
Theorem 4.1 of Dai and Meyn (1995), if in place of (i), one had the assumption
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that (i′) the fluid model corresponding to the network in (2.1), (2.2) is stable.
One can check, though, that the proof of Theorem 4.1 follows as before, if one
instead assumes (i), because either version suffices for Proposition 5.1 in Dai
and Meyn (1995). The remaining parts of the argument are more general and
build on the proposition (personal communication from J. Dai).

The verification of condition (ii) in Theorem 1, for the queueing network
in (2.1), (2.2) and any L, is fairly standard. It involves repeated application
of the strong law of large numbers, and use of the uniform convergence of
�1/�zin ��Tzin �t�zin �� and �1/�zin ��Zzin �t�zin �� over bounded t. Condition (ii), for
related networks, is shown in the proof of Theorem 4.1 in Dai (1995) and
is summarized below Theorem 5 in Bramson (1998). The present setting is
actually somewhat simpler; we are able to omit residual times here, since all
of the times are exponentially distributed.

We now summarize the reasoning we employ to verify condition (i) of Theo-
rem 3. The reasoning involves a number of steps and occupies the remainder
of the paper. The goal is to show that, for large enough L, the fluid limit model
corresponding to the network in (2.1), (2.2) is asymptotically stable. As was
shown in Section 3, the fluid model corresponding to the network is not stable.
The difference in behavior for the two cases is due to the fluctuations which
are present for the queueing network, but not for the fluid model. In order to
understand the fluid limit model, we analyze their effect.

The crucial behavior in the queueing network occurs at the classes �3� l� a�,
l = 1� � � � �L. The main point here is that, for large L, it is much more likely for
Z3� a�t� to decrease by a factor of 2 rather than increase by this factor, when
Z3� a�t� is large. Appropriate bounds for this are given in Propositions 6.1
and 6.3. The basic idea is as follows. One chooses L to be large in order to
increase the probability that some (random) class �3� l0� a� becomes empty
before Z3� a�t� doubles. Once the former occurs, service begins at �3� l0� b�.
The customers who have been served at �3� l0� b� immediately begin service
at the high priority class �2� a�. This, in turn, prevents customers at �2� b�
from being served until �2� a� is empty. Without this interference from �2� a�,
the service rate at �2� b� is the same as the combined service rate at �3� l� a�,
l = 1� � � � �L, which is 4/3. This interference, however, creates idle periods for
�2� b�, which, in effect, cause it to have a slower service rate than at �3� a�. As
a consequence, Z3� a�t� will typically decrease by a fixed factor, say 2, before it
increases by the same factor. (In fact, for each l, Z3� l� a�t� = 0 will likely occur
over this time span, although not necessarily at a common time.)

In Section 5, basic large deviation bounds are given which apply in this set-
ting. Together with Propositions 6.1 and 6.3, they imply Proposition 6.4, which
states that, under “small” Z3� a�0�, Z3� a�t� will typically remain comparatively
small for an extended period of time. Since the proof of Proposition 6.3 is rather
long, it is carried out in Section 7.

In Section 8, it is shown that, under “small” Z3� a�0� and Z3� l� b�0�, for a
given l, Z3� l� b�t� will also typically remain small for an extended period of
time. The main result here is Proposition 8.2. It relies on bounds on the incre-
mental growth of Z3� l� b�t�, for given l, from Proposition 8.1 and its corollary,
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and on the bounds from Section 5. Less work is required here than for Propo-
sition 6.4, since one already has upper bounds on the size of Z3� a�t� over this
time span.

For the bounds on Z3� a�t� and Z3� l� b�t� in Sections 6 and 8, Z3� a�0� and
Z3� l� b�0� were assumed to be small. To be able to apply these bounds for
general initial data, one needs to be able to restartZ�t� where these values are
small. It is shown in Section 9 that such stopping times exist. Work is required
to show this for Z3� a�t�, since similar behavior is required simultaneously at
all classes �3� l� a�. The basic point is that when customers at �2� b� are not
being served, this is felt simultaneously at �3� l� a� for all l. It is considerably
easier to analyze Z3� l� b�t�, since we only require a bound for a given l at a
specific time, and since �3� l� is strictly subcritical. These results for Z3� a�t�
and Z3� l� b�t� are given in Propositions 9.3 and 9.4.

In Section 10, we demonstrate (i) of Theorem 3. Employing Propositions
6.4, 8.2, 9.3 and 9.4, we show, in Proposition 10.1, that for appropriate sets
Hz, with P�Hz� → 1 as �z� → ∞, all fluid limits Z̄�t� on Hz satisfy Z̄3�t� = 0
for t ≥ t0 and appropriate t0. One can therefore, in effect, omit station 3
from the system when analyzing the behavior of the fluid limits. This reduces
the system to the two-station, four-class network in (2.6), (2.7), where the
discipline is last-buffer-first-served. Such networks are known to be stable
[Dai and Weiss (1996)]. This enables us to show, in Proposition 10.3, that, for
large L, our fluid limit model is asymptotically stable, and so (i) of Theorem 3
holds.

5. Large deviation bounds. Here, we present some large deviation
bounds that will be used in Sections 6–9. The main results, Proposition 5.1
and its corollary, state that the value of a Markov process will typically re-
main small for an extended period of time if the process satisfies appropriate
negative drift conditions.

First, we recall several elementary large deviation estimates involving ex-
ponential and Bernoulli random variables, and symmetric random walks. Let
Y1�Y2� � � � be i.i.d. mean-1 exponential random variables, with Sn = Y1+· · ·+
Yn. Then, for each θ > 0, there exists a c > 0, so that for large n,

�5�1� P

(
1
n
�Sn − n� ≥ θ

)
≤ e−cn�

The bound (5.1) can be demonstrated in the usual way by applying Markov’s
inequality to the moment generating functions of Sn. Note that (5.1) imme-
diately extends to exponential distributions with other means, after scaling.
Corresponding large deviation bounds for Poisson random variables also follow
from (5.1).

If Y1� Y2� � � � are replaced by i.i.d. mean-m Bernoulli random variables,
then the analog for binomial distributions,

�5�2� P

(
1
n
�Sn −mn� ≥ θ

)
≤ e−cn�
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holds for each θ > 0 and m, and appropriate c > 0. By adding up the excep-
tional probabilities, (5.2) also gives an upper bound on the probability that any
of the components of a normalized multinomial distribution differs by more
than θ from its mean. Let Xt denote a rate-1 symmetric nearest neighbor
random walk on �, with X0 = 0. Application of the moment generating func-
tions of Xt, together with the reflection principle, also implies that for each
β ∈ (

1/2�1
]

and θ > 0,

�5�3� P
(

sup
s≤t
Xs ≥ θtβ

)
≤ exp

{−ct2β−1}
for appropriate c > 0 and large t. The bound in (5.1) will be applied to the cu-
mulative service times required by customers in specific classes of our queue-
ing network over given stretches of time. The bound in (5.2) will be applied to
the proportion of time the different classes �3� l� a�, l = 1� � � � �L, are selected
by customers departing from �2� b�. We will apply (5.3) in Proposition 9.1.

Let W�n�, n = 0�1�2� � � �, be a Markov chain with countable state space � .
For i ∈ � , �i� denotes a map into �0�∞�. Set �ν = �i� �i� ≥ ν�. Let hi� i′ =
�i′�−�i�, for i� i′ ∈ � , and let pi� i′ be the transition probability ofW�n� from
i to i′. We assume that the upward jump size is uniformly bounded, with

�5�4� pi� i′ = 0 for hi� i′ > Q1�

for appropriate Q1. We also assume that for given Q2 > 0 and η > 0,

�5�5� ∑
�

pi� i′ ≤ η for all i ∈ �ν�

where � = �i′� hi� i′ > −Q2�. The latter condition says that if η is small,
W�n� decreases most of the time by at least Q2, when �W�n�� ≥ ν. [For small
η, conditions (5.4) and (5.5) can be thought of as a strong variant of Foster’s
criterion.]

In Lemma 5.1, we give upper bounds on �W�n��, when η > 0 is sufficiently
small, for fixed Q1 and Q2. The estimates follow by applying Chebyshev’s
inequality to the moment generating functions of W�n�.

Lemma 5.1. Assume that the Markov chain W�n� satisfies (5.4) and (5.5)
for given Q1� Q2 and ν, and that �W�0�� ≤ N, with N ≥ ν. For fixed r > 0
and small enough η > 0 (depending on Q1�Q2 and r),

�5�6� P
(�W�n�� ≥M+N for some n ≤ eMr) ≤ e−Mr

holds for large enough M (depending on Q1).

Proof. LetU�n� = exp�r��W�n��−N��−cn, where c = exp�Q1r� > 0. For
small enough η > 0 (depending onQ1�Q2 and r), �U�n�� is a supermartingale
with respect to the σ-algebra �n generated by �W�1�� � � � �W�n��. To see this,
note that for W�n� = i,

�5�7� E[
U�n+1� � �n

]−U�n�= exp
{
r��i�−N�}(∑

i′
pi� i′ exp

{
rhi� i′

}−1
)
− c�
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By (5.4) and (5.5), for all i ∈ �ν,

�5�8� ∑
i′
pi� i′ exp

{
rhi� i′

}− 1 ≤ η exp�Q1r� + �1 − η� exp�−Q2r� − 1�

This is negative for small enough η, and so the same holds for (5.7). For i �∈ �ν,
exp�r��i� −N�� < 1, and so, because of the choice of c, (5.7) is negative in
this case as well. Therefore, �U�n�� is a supermartingale.

Let T = min�n� �W�n�� ≥ M +N� ∧ �eMr/2c�, for a given M, where �x�
denotes the integer part of x. Then, by the optional sampling theorem,

�5�9� E�U�T�� ≤ U�0� ≤ 1�

On the event where �W�T�� ≥ M +N, one has U�T� ≥ eMr/2. So, by (5.9)
and Chebyshev’s inequality,

P
(�W�n�� ≥M+N for some n ≤ eMr/2c) ≤ 2e−Mr

holds for allM. By decreasing r by 1 so as to absorb the coefficients, we obtain
(5.6). ✷

We will apply Lemma 5.1 in the following setting. Let Y�t�, t ≥ 0, be a
Markov process on a countable state space � . Define � · � and �ν as before.
Assume that Y�t� has jump rates that are bounded above by 7, 7 > 0, and
that the size of any upward jump is bounded above by J. For given R1 and
R2, with R1� R2 > 0, let qi�R1�R2� denote the probability that, starting from
i, �Y�t�� − �i� first exits the interval �−R2�R1� on the right. The amount R1
is “overshot” upon exiting on the right is bounded by J, which will later be
assumed to be small relative to R1. Also, we assume that

�5�10� qi�R1�R2� ≤ η for all i ∈ �ν�

for given ν and η.
Proposition 5.1 gives upper bounds on �Y�t��. It will be employed in Propo-

sition 8.2.

Proposition 5.1. Assume that the Markov process Y�t� is chosen as above,
for given 7, ν, J, R1 and R2, and that �Y�0�� ≤N, withN ≥ ν. For fixed r > 0
and small enough η > 0 (depending on J, R1, R2 and r),

�5�11� P
(�Y�t�� ≥M+N for some t ≤ eMr) ≤ e−Mr

holds for large enough M (depending on 7, J and R1).

Proof. Let W�n� denote the embedded Markov chain on � formed by
stopping Y�t� each time �Y�t�� increases by at least R1 or decreases by at
leastR2 from the previous stopped state,W�n−1�. Let τ�n� denote the random
time at which the nth such stopped state occurs. The size of each upward jump
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of �W�n�� is at most R1 +J and that of each downward jump is at least R2.
Setting Q1 = R1 +J and Q2 = R2, it follows from (5.6) that

�5�12�
P
(�Y�τ�n��� ≥M+N for some n ≤ eMr)

= P(�W�n�� ≥M+N for some n ≤ eMr) ≤ e−Mr
holds for large enough M, if �W�0�� ≤N, with N ≥ ν.

It follows from (5.1) that, for appropriate c > 0 and large n,

P
(
τ�n� ≤ n/27) ≤ e−cn�

Together with (5.12), this implies that

P
(�Y�t�� ≥M+N for some t ≤ exp�Mr�/27) ≤ exp�−Mr� + exp�−ceMr�

for large M. Decreasing r by 1 so as to absorb 7 implies (5.11). ✷

We will also employ the following variant of the process Y�t� in Proposi-
tion 5.1. As before,Y�t� is a Markov process on a countable state space � , with
jump rates bounded above by 7 > 0, and the size of upward jumps bounded
above by J. For given R1�R2 > 1, we now let qi�R1�R2� denote the proba-
bility, starting from i, with �i� ≥ 1, that �Y�t��/�i� first exits the interval
�1/R2�R1� on the right. As before, we assume that (5.10) holds, but for this
new choice of qi�R1�R2� and with ν ≥ 1.

Setting �i�′ = �log �i�� ∨ 0, the conditions of Proposition 5.1 are satisfied,
for new choices of ν, J, R1 and R2. We therefore obtain the following multi-
plicative variant of Proposition 5.1. It will be employed in Proposition 6.4.

Corollary 5.1. Assume that the Markov process Y�t� is chosen as above,
for given 7, ν, J, R1 and R2, and that �Y�0�� ≤N, withN ≥ ν. For fixed r > 0
and small enough η > 0 (depending on J, R1, R2 and r),

�5�13� P
(�Y�t�� ≥MN for some t ≤Mr

) ≤M−r

holds for large enough M (depending on 7, J and R1).

6. Bounds on the classes (3, a). In this section, we obtain upper bounds
on the total number of customers at �3� a�, the union of the classes �3� l� a�,
l = 1� � � � �L. We show, in Proposition 6.4, that if the number of customers
at �3� a� is initially small on the appropriate scale and L is large, then the
total number of customers at �3� a� will remain comparatively small for a long
period of time. These estimates are employed in Section 10 to show that, for
the corresponding fluid limits, the amount of mass at �3� a� remains 0 for all
time, for fluid limits starting with no mass there. These estimates are also
needed, in Section 8, to obtain upper bounds on the number of customers at
�3� b�.

Our approach in deriving Proposition 6.4 will be to show that, for large L,
the number of customers at �3� a�, Z3� a�t�, satisfies the assumptions of the
corollary to Proposition 5.1. This involves showing that when Z3� a�t� is large
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enough, Z3� a�t� will typically decrease by a factor of 2 before it increases by
this factor. Propositions 6.1 and 6.3 contain the bounds required for this.

Proposition 6.1 gives upper bounds on the probability of Z3� a�t� doubling by
an appropriate time, together with partial bounds on it decreasing by a factor
of 2 by then. In order to complete the latter direction, one needs to show that
each class �3� l� a�, l = 1� � � � �L, will, with high probability, be empty at some
time before then. Proposition 6.3 supplies this bound. One of the main steps is
given in Proposition 6.2, which deals with the likelihood of a class �3� l� b�, for
a chosen l, continuing to serve all of its customers once it has started, without
being interrupted by the class �3� l� a�. The proof of Proposition 6.3 itself is
rather long; we only summarize it here, deferring the proof to Section 7.

In order to derive Proposition 6.1, we first show Lemmas 6.1 and 6.2.
Lemma 6.1 gives elementary upper bounds on the probability of an L-dimen-
sional Brownian motion doubling in size by an appropriate time, and lower
bounds on the probability of individual coordinates hitting 0. Lemma 6.2 mod-
ifies these bounds to symmetric random walks. In Proposition 6.1, the bounds
on these symmetric random walks are applied to Z3� a�t�.

Lemma 6.1 is an elementary result on L-dimensional Brownian motion
B�s� = �B1�s�, � � � �BL�s��, whose components have variances s/L2 and no
drift. For s1 > 0, we let HB�s1� denote the event on which at least one com-
ponent Bl�s� hits 0 on �s1/4� s1/2�. As always, � · � denotes the sum norm.

Lemma 6.1. Assume that �B�0�� ≤ 1. For a given η > 0, and s1 > 0 suffi-
ciently small, not depending on L,

�6�1� P
(
sup
s≤s1

�B�s�� ≥ 2
)
≤ η�

For large enough L,

�6�2� P
(
Hc
B�s1�

) ≤ η�
Proof. For each l, l = 1� � � � �L, �Bl�s1� −Bl�0�� has mean

√
2s1/π/L. So,

�B�s1� −B�0�� has mean
√

2s1/π, and, by Chebyshev’s inequality,

P
(�B�s1� −B�0�� ≥ 1

) ≤ η/2
for s1 ≤ πη2/8. Stop the process B�s� −B�0� as soon as �B�s� −B�0�� = 1. By
reflectingB�s�−B�0� across the corresponding face of the diamond �x−B�0�� =
1, it follows that the probability that �B�s1�−B�0�� ≥ 1 is at least one half the
probability that �B�s� −B�0�� = 1 at some s ≤ s1. Consequently,

P
(

sup
s≤s1

�B�s� −B�0�� ≥ 1
)
≤ η�

This implies (6.1).
Note that �Bl�0�� ≤ 2/L must hold for at least half of the indices. For each

such index, the probability of the corresponding Brownian motion hitting 0
over �s1/4� s1/2� is the same as standard Brownian motion, with initial value
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in �−2�2�, hitting 0 over the same interval, which is bounded away from 0.
Since Bl�s�, l = 1� � � � �L, are independent, (6.2) follows immediately, for fixed
s1 > 0 and large enough L. ✷

LetR1�t�� � � � �RL�t� be a family of i.i.d. symmetric nearest neighbor contin-
uous time random walks on �, each with jump rate 1/L2, and let R�t� denote
the corresponding vector. For t1 > 0, let HR�t1� denote the event on which at
least one component Rl�t� hits 0 over �t1/4� t1/2�. Lemma 6.2 is the analog
of Lemma 6.1, but with these random walks replacing the above Brownian
motions. Here and later on in Sections 6 and 7, s1 will be small but fixed (af-
ter the choice of η), L large but fixed (after the choice of s1), and N will be
sufficiently large.

Lemma 6.2. For a given η > 0, let s1 > 0 be sufficiently small and L
(depending on s1) be sufficiently large. Assume that �R�0�� ≤ N, where N is
sufficiently large. Then,

�6�3� P
(

sup
t≤N2s1

�R�t�� ≥ 2N
)
≤ η

and

�6�4� P
(
Hc
R�N2s1�

) ≤ η�
We summarize the reasoning behind the lemma. It follows from a standard

form of the invariance principle that R�N2s�/N converges in distribution, in
the Skorokhod topology on �0� s1�, to B�s�, if the initial data converge [see,
e.g., Billingsley (1968) or Ethier and Kurtz (1986)]. The set of paths in (6.1)
is closed. So, (6.3) follows from (6.1). The time for a Brownian motion to hit 0
is a.s. continuous and has probability 0 of occurring at any specific time. One
can therefore check that (6.4) follows from (6.2).

We can apply Lemma 6.2 to the number of customersZ3� l� a�t� in the classes
�3� l� a�, l = 1� � � � �L, by means of an elementary comparison. Recall that
customers in the classes �3� l� a� are served at rate 4/3L for each l. Also,
recall that customers, in the class �2� b� leading to �3� a�, are served at rate
4/3, after which a customer chooses one of the L classes �3� l� a� with equal
probability. Either because �2� b� is empty or the higher priority class �2� a� is
not, service at �2� b� may be suppressed. Using “ghost” service times in these
instances, it is easy to couple the L-tuple �Z3�1� a�t�� � � � �Z3�L� a�t�� pathwise
to �R1�t�� � � � �RL�t�� so that, for all l and t,

�6�5� Z3� l� a�t� ≤
∣∣∣∣Rl(8

3
Lt

)∣∣∣∣� with Z3� l� a�0� = Rl�0��

always holds. Denote by H3� a�t1� the event on which at least one component
Z3� l� a�t� hits 0 over �t1/4� t1/2�, and by τa the first time by which all of the
components have hit 0, that is,

τa = max
l

inf
{
t� Z3� l� a�t� = 0

}
�
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In Proposition 6.1, the bounds (6.6) and (6.8) correspond to (6.3) and (6.4) in
Lemma 6.2, and the bound (6.7) is a modification of (6.3). For the remainder
of this section and in Section 7, we will set t1 =N2s1/L.

Proposition 6.1. For a given η > 0, let s1 > 0 be sufficiently small and L
(depending on s1) be sufficiently large. Assume that Z3� a�0� ≤ N, where N is
sufficiently large. Then,

P
(

sup
t≤t1
Z3� a�t� ≥ 2N

)
≤ η�(6.6)

P
(

sup
t∈�τa� t1�

Z3� a�t� ≥N/2
) ≤ η(6.7)

and

P�Hc
3� a�t1�� ≤ η�(6.8)

Proof. The bounds in (6.6) and (6.8) follow immediately from (6.3) and
(6.4), and the comparison in (6.5), after reducing s1 by the factor 8/3. In order
to obtain (6.7), let Z̃�t� denote the process obtained from Ẑ�t� = �Z3�1� a�t�� � � � �
Z3�L� a�t�� by redefining the motion in each coordinate to be a symmetric near-
est neighbor random walk with jump rate 8/3L after that coordinate first
hits 0. One can couple the two processes Z̃�t� and Ẑ�t� so that

�6�9� Z3� a�t� =
∣∣Ẑ�t�∣∣ ≤ �Z̃�t���

Let R̃�t� = R��8/3�Lt� denote the scaled process of random walks with R̃�0� =
R�0� = 0 and rate 8/3L in each coordinate. Since Z̃l�t� = 0 ≤ �R̃l�t�� when
Z̃l�t� hits 0, one can also couple these processes so that

�6�10� ∣∣Z̃�t�∣∣ ≤ ∣∣R̃�t�∣∣ for t ≥ τa.
The bound (6.7) then follows from (6.3) and (6.9), (6.10), after increasingN by
a factor of 4 and decreasing s1 by a factor of 32/3. ✷

In Proposition 6.1, (6.6) provides an upper bound on the probability of
Z3� a�t� doubling by time t1. If we knew that τa ≤ t1 typically holds, then
(6.7) would show that Z3� a�t1� < N/2 also typically holds. By (6.8), we know
that at least one class �3� l� a� will typically be empty by then; for τa ≤ t1,
we need to show that this is true for all L such classes. This result is shown
in Proposition 6.3. The basic idea is that once customers from a class �3� l� b�
are being served, the class �2� a� will receive a supply of customers, which
prevents service at �2� b�. This, in turn, gives all of the other classes �3� l� a�
the chance to become empty, and hence for τa to occur.

As a first step in this direction, we demonstrate Proposition 6.2. The result
states, in essence, that once service begins at some class �3� l� b�, customers
are prevented from entering the corresponding class �3� l� a� from �2� b� until
�3� l� b� is empty. More precisely, let σ denote the first time t, t ≥ t1/4, at which
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Z3� l� a�t� = 0 holds for some l, which we denote by l0. We writeF1 for the event
where (i) σ ≤ t1/2 and (ii) the first time after σ , at which Z3� l0� a�t� > 0, is
greater than the first time after σ , at which Z3� l0� b�t� = 0. The basic idea of
the proof is to show that, off of a set of small probability [because of the choice
ofm3� l� b in (2.2)], once σ occurs,Z2� a�t� dominates a birth–death process until
Z3� l0� b�t� = 0. A related comparison is used in Proposition 8.1.

Proposition 6.2. For a given η > 0, let s1 > 0 be sufficiently small, and L
(depending on s1) be sufficiently large. Assume that Z3� a�0� ≤ N, where N is
sufficiently large. Then,

�6�11� P�Fc1� ≤ η�

Proof. We first observe that Z2� a�t� can be compared to a birth–death
process on �0� 1� 2� � � ��, with birth rate L/γ and death rate 1/γ, and both
processes starting from the same initial state. To see this, recall that customers
in the class �2� a� are served at rate 1/γ. Also, recall that customers in each
class �3� l� b� are served at rate L/γ, after which they enter the class �2� a�,
with service being continued at a class �3� l� b� as long as (a) �3� l� a� is empty
and (b) �3� l� b� is not. So, Z2� a�t� dominates a copy of the above birth–death
process up until the time either (a) or (b) fails for a specified l. Moreover, no
customer in �2� b� can be served as long as (a′) Z2� a�t� > 0, in which case
�3� l� a� remains empty. So, condition (a′) can be substituted for (a) if �3� l� a�
is initially empty.

Assume now that the event H3� a�t1� occurs, and that σ and l0 are defined
as above. We recall that, by (6.8), H3� a�t1� occurs off of a set of probability η.
On H3� a�t1�, one automatically has σ ≤ t1/2. Now, restart Z�t� at time σ . By
the strong Markov property, the restarted Markov process evolves according
to the same law as before. We claim that, irrespective of σ and Z�σ�, the
class �3� l0� b� will be empty before �3� l0� a� is occupied again, off of a set of
probability η. This will imply the desired inequality (6.11), for a new choice
of η which is twice the original value.

If Z3� l0� b�σ� = 0, then we are already done. If Z3� l0� b�σ� > 0, then, off of
a set of probability at most 4γ/3L2 ≤ 1/L, the class �2� a� will be occupied
before �3� l0� a� is. Assume that this nonexceptional event occurs, with σ ′,
σ ′ ≥ σ , denoting the corresponding time. Restart the process at time σ ′. As
shown in the first paragraph of the proof, Z2� a�t+σ ′� dominates a birth–death
process with rates L/γ and 1/γ until either (a′) or (b) fails. Here, the birth–
death process has initial value at least 1. It is therefore routine to check that
the probability of this birth–death process ever reaching 0 is at most 1/L. By
the above domination, the probability of the class �2� a� becoming empty [and
thus �3� l0� a� possibly being occupied], before (b) fails, is therefore at most 1/L.
Adding this to the exceptional probability at the beginning of the paragraph
shows that, off of a set of probability 2/L, starting at time σ , the class �3� l0� b�
will be empty before �3� l0� a� is occupied again. Choosing L ≥ 2/η gives the
desired bound η, and hence completes the proof of (6.11). ✷
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Proposition 6.3 gives an upper bound on the time required for all classes
�3� l� a� to empty, in terms of Z3� a�0�. Recall that t1 =N2s1/L.

Proposition 6.3. For a given η > 0, let s1 > 0 be sufficiently small, and L
(depending on s1) be sufficiently large. Assume that Z3� a�0� ≤ N, where N is
sufficiently large. Then,

�6�12� P�τa > t1� ≤ η�

Together with (6.7) of Proposition 6.1, Proposition 6.3 implies the following
corollary, which provides lower bounds on the probability ofZ3� a�t� decreasing
by a factor of 2. The bounds in (6.6) and (6.13) are the main estimates required
for Proposition 6.4.

Corollary 6.1. For a given η > 0, let s1 > 0 be sufficiently small and L
(depending on s1) be sufficiently large. Assume that Z3� a�0� ≤ N, where N is
sufficiently large. Then,

�6�13� P
(
Z3� a�t1� ≥N/2

) ≤ η�
The proof of Proposition 6.3 is fairly long, and so we postpone it until the

next section. We note here that the argument breaks into two cases, depending
on whether the total number of customers to visit �3� a� �= ⋃L

l=1�3� l� a�� by
time t1/4 is at most t1/5L or is greater than this. In the first case, the number
of customers is small enough to directly show, in Proposition 7.1, that τa ≤
t1/4 typically holds. The second case is more complicated and is handled in
Proposition 7.2. There, it is shown that the number of customers served at
class �2� a�, by time t1, is typically large enough to substantially slow down
the influx of customers from class �2� b� to �3� a�, which will imply that τa ≤ t1
typically holds.

Proposition 6.4 is the main result of this section. It states that if the number
of customers at �3� a� is initially at most a given power of M, then this will
typically continue to be the case, for any larger power, for a long period of time
relative to M.

Proposition 6.4. For given 0 < r0 < r1, let L be sufficiently large. Assume
that Z3� a�0� ≤Mr0 , where M is sufficiently large. Then,

�6�14� P
(
Z3� a�t� ≥Mr1 for some t ≤M2

) ≤ 1/M�

For our purposes, 0 < r0 < r1 < 1/2 is the relevant range of r0 and r1.
When analyzing the fluid limits of Z�t� in Section 10, we will scale time and
Z�t� by M; this, in particular, implies that the upper bound on time in (6.14)
goes to ∞ as M→ ∞. Although we do not require this here, the bounds M2

and 1/M in (6.14) can easily be replaced by any power.

Proof of Proposition 6.4. Define � · � so that �Z�t�� = Z3� a�t�. It is not
difficult to verify that the conditions of Corollary 5.1 are satisfied for Z�t� and
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� · �. Recall that Z�t� is a Markov process with jump rates at most 7 = 6L2/γ,
and upward jumps at most J = 1. For given Z�0�, with Z3� a�0� =N, consider
the probability that Z3� a�t�/N first exits the interval �1/2�2� on the right. By
(6.6) and (6.13), for sufficiently large L and N, this probability can be chosen
as close to 0 as desired. So, for given η > 0 and large L, (5.10) is satisfied by
Z�t� and � · �, with R1 = R2 = 2 and appropriate ν.

It follows from (5.13) of Corollary 5.1, that for fixed r and large enough L,

�6�15� P
(
Z3� a�t� ≥MN for some t ≤Mr

) ≤M−r

holds for Z3� a�0� ≤N and large enough M and N. Substitution of Mr1−r0 for
M, Mr0 for N and 2/�r1 − r0� for r, in (6.15), shows that

P
(
Z3� a�t� ≥Mr1 for some t ≤M2

) ≤ 1/M

holds for Z3� a�0� ≤Mr0 and large enough M, which is (6.14). ✷

7. Proof of Proposition 6.3. In this section, we demonstrate Proposition
6.3. We break the bound there, (6.12), into three parts. One part, a bound on
P�Fc1�, is already given in Proposition 6.2. The other two parts are treated
in Propositions 7.1 and 7.2. To state them, we let F2 denote the event such
that, by time t1/4, the total number of customers to visit �3� a� is strictly
greater than t1/5L. [This quantity includes customers originally at �3� a�.]
The assertions (7.1) and (7.2) in Theorems 7.1 and 7.2, respectively, are then
adapted from (6.12) by restricting the statement to the sets Fc2 and F1 ∩F2.
Recall that, as in the previous section, t1 = N2s1/L and that τa is defined
before Proposition 6.1.

Proposition 7.1. Fix η > 0, s1 > 0 and L, and assume that Z3� a�0� ≤N,
where N is sufficiently large. Then,

�7�1� P
(
τa > t1/4�Fc2

) ≤ η�
Proposition 7.2. Fix η > 0, s1 > 0 and L, and assume that Z3� a�0� ≤N,

where N is sufficiently large. Then,

�7�2� P
(
τa > t1�F1 ∩F2

) ≤ η�
Proposition 6.3 follows immediately from Propositions 6.2, 7.1 and 7.2.

The proof of Proposition 7.1 is quick, whereas that of Proposition 7.2 is
more involved. The main point in the proof of the former is that the bound
t1/5L is small enough so that, under Fc2, service at a single class �3� l� a� is
fast enough to ensure that �3� a� empties quickly. Here and later on, c1� c2� � � �
will denote positive constants whose exact values do not concern us.

Proof of Proposition 7�1. Let S1 denote the sum of the amounts of time
spent serving those customers visiting the classes �3� l� a�, l = 1� � � � �L, by
time t1/4. (This includes the time required for customers there, but not yet
served by t1/4.) UnderFc2, there are at most t1/5L such customers. The service
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times at each class �3� l� a� are given by independent exponential random
variables with mean 3L/4. It therefore follows from (5.1) that

�7�3� P
(
S1 ≥ t1/5�Fc2

) ≤ exp�−c1N
2��

for appropriate c1 > 0. Moreover, the classes �3� l� a� have priority over the
classes �3� l� b�. So, when S1 < t1/5 < t1/4, the classes �3� l� a� must all be
empty at some t ≤ t1/4; in particular, τa ≤ t1/4. Together with (7.3), this
implies that

�7�4� P
(
τa > t1/4�Fc2

) ≤ exp�−c1N
2��

The bound in (7.1) follows for large enough N. ✷

We proceed to the proof of Proposition 7.2. The basic idea is as follows.
Under the event F2, there are a substantial number of customers that visit
�3� a� by time t1/4, and hence, typically, a substantial number that visit each
class �3� l� a�. Under F1, this includes the class �3� l0� a�, which will be empty
at some time in �t1/4� t1/2�. The customers entering �3� l0� a� by time t1/4
(or a comparable number of other customers) will then be served at �3� l0� b�
by time 3t1/4. Also, these customers will be served at �2� a� by time t1. This
takes time away from the service of customers at �2� b�, and hence limits the
influx of customers from �2� b� into �3� a�. The service at �3� a� will thus be fast
enough to ensure that each class �3� l� a� will be empty at some time before
t1, and so τa ≤ t1, as desired.

We employ the following lemma as an intermediate step in demonstrating
Proposition 7.2. Below, F3 denotes the event where the time in �0� t1� spent
serving customers at �2� a� is strictly greater than γt1/7L2.

Lemma 7.1. Fix η > 0, s1 > 0 and L > 0. For sufficiently large N,

�7�5� P
(
F1 ∩F2 ∩Fc3

) ≤ η�
Proof. Let F4 denote the event where by time t1/4, the total number of

customers to visit each of the classes �3� l� a�, l = 1� � � � �L, is strictly greater
than t1/6L2. Under F2, the total number of customers to visit �3� a� is strictly
greater than t1/5L, and each of these customers chooses a class �3� l� a� ran-
domly. It therefore follows from (5.2) that

�7�6� P
(
F2 ∩Fc4

) ≤ L exp
{−c2N

2}�
for appropriate c2 > 0.

We recall that σ is the first time, after t1/4, at which some class �3� l� a� is
empty, and that �3� l0� a� denotes the class. Under F1∩F4, all of the customers
visiting �3� l0� a�, by time σ , are served at �3� l0� b� before further customers,
arriving after σ , are served at �3� l0� a�; there are more than t1/6L2 of these
customers and σ ≤ t1/2. The mean service time at �3� l0� b� is γ/L. Since
�γ/L��1/6L2� < 1/4, by (5.1), the first t1/6L2 customers at �3� l0� b� also typi-
cally take at most time t1/4 to serve. Let F5 denote the event where, by time
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3t1/4, the number of customers served in �3� l0� b� is greater than t1/6L2. It
follows that

�7�7� P
(
F1 ∩F4 ∩Fc5

) ≤ exp
{−c3N

2}�
for appropriate c3 > 0.

The entire time over �3t1/4� t1� is available for service of customers at �2� a�,
of which there are more than t1/6L2 by time t1. Since the mean service time
at �2� a� is γ, and γ/7L2 ≤ 1/4, another application of (5.1) implies that

�7�8� P
(
Fc3 ∩F5

) ≤ exp
{−c4N

2}�
for appropriate c4 > 0. Together, (7.6)–(7.8) immediately imply (7.5), for large
enough N. ✷

We now demonstrate Proposition 7.2. This will complete the proof of Propo-
sition 6.3.

Proof of Proposition 7.2. On F3, the amount of time in �0� t1� available
for serving customers in �2� b� is at most �1 − γ/7L2�t1. Denote by F6 the
event that the number of customers in �2� b� served over this time is at most
�4/3��1 − γ/8L2�t1. Since the mean service time at �2� b� is 3/4, (5.1) implies
that

�7�9� P
(
F3 ∩Fc6

) ≤ exp
{−c5N

2}
for appropriate c5 > 0.

On F6, there are at most �4/3��1−γ/8L2�t1 customers that enter �3� a� up
until time t1. Let F7 denote the event that at most �4/3L��1 − γ/9L2�t1 of
these customers enter each of the classes �3� l� a�. By (5.2),

�7�10� P
(
F6 ∩Fc7

) ≤ L exp
{−c6N

2}�
for appropriate c6 > 0. Including the at most N customers initially at �3� a�
and choosing N large enough, at most �4/3L��1 − γ/10L2�t1 customers visit
each class �3� l� a� up until time t1 on F7. Let Sl2, l = 1� � � � �L, denote the
amount of time spent serving these customers. Since the mean service time of
each customer of �3� a� is 3L/4, (5.1) implies that

�7�11� P
(
Sl2 ≥ �1 − γ/11L2�t1�F7

) ≤ exp
{−c7N

2}
for l = 1� � � � �L, and appropriate c7 > 0.

Together, (7.5) and (7.9)–(7.11) imply that, for a given η > 0 and a large
enough choice of N,

�7�12� P
(
max
l
Sl2 ≥ �1 − γ/11L2�t1�F1 ∩F2

)
≤ η�

But the classes �3� l� a� have priority over the classes �3� l� b�. So, if Sl2 <
�1 − γ/11L2�t1 < t1 for a given l, then �3� l� a� must be empty at some t, with
t ≤ t1. In particular, when maxl S

l
2 < t1, then τa ≤ t1. Together with (7.12),
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this implies that

�7�13� P
(
τa > t1�F1 ∩F2

) ≤ η�
which is the bound given in (7.2). ✷

8. Bounds on the classes (3, b). Here, we obtain upper bounds on the
number of customers at each of the classes �3� l� b�, l = 1� � � � �L. We will show,
in Proposition 8.2, that if the numbers of customers at �3� a� and �3� l� b�, for
a given l, are initially small on the appropriate scale, then the number of
customers at �3� l� b� remains comparatively small for a long period of time.
These bounds are employed in Section 10 to show that, for the corresponding
fluid limits, the amount of mass at �3� l� b� remains 0 for all time for fluid
limits starting with no mass there or at �3� a�. As before, we require L to be
large.

The approach taken here for the classes �3� l� b� differs from the analysis
of �3� l� a� in Sections 6 and 7 in several ways. Since the classes �3� l� a� have
priority over the classes �3� l� b�, it was not necessary to obtain upper bounds
on the number of customers at the latter classes for our results in Sections 6
and 7. Here, to analyze the behavior at the classes �3� l� b�, we will obviously
need to know the behavior at �3� l� a�. Fortunately, we can employ Proposi-
tions 6.3 and 6.4 for this purpose. On the other hand, the behavior at �3� b�
is inherently more elementary than that at �3� a� in the following sense. The
rate of service at �2� b� and the combined rate at �3� a� are the same, namely
4/3, when service is taking place at all of these classes. So, until �2� a� begins
service or �2� b� is empty, the evolution of Z3� l� a�t�, for a given l, is determined
by fluctuations rather than by a net drift. Also, the amount of service required
at �2� a� has an important effect on Z3� l� a�t�. The evolution of Z3� l� b�t�, dur-
ing individual on and off periods of service, is simpler–linear decrease in the
former periods and at most linear increase in the latter. Also, one can show
that the on periods will begin, and continue until �3� l� b� is empty, with high
probability when the corresponding class �3� l� a� empties, without one need-
ing to analyze much of the network. These differences make the analysis here
quicker than in Sections 6 and 7.

Our first result, Proposition 8.1, plays the role of Propositions 6.1 and 6.2.
Here, the bounds are additive rather than multiplicative. Also, for application
later on, we need estimates at each class �3� l� b�, rather than for �3� b�. We
will employ the following terminology. For l = 1� � � � �L, let

τa� l = inf
{
t� Z3� l� a�t� = 0

}
�

Then, τa = maxl τa� l, where τa was defined in Section 6. Similarly, we let

τb� l = inf
{
t� Z3� l� b�t� = 0

}
�
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Proposition 8.1. Fix η > 0, and suppose that L andN2/L are sufficiently
large. Then, for each l = 1� � � � �L,

P
(

sup
t≤N2

Z3� l� b�t� ≥ Z3� l� b�0� + 2N2/L
)
≤ η�(8.1)

P
(

sup
t∈�τb� l�N2�

Z3� l� b�t� ≥ 2N2/L
)
≤ η(8.2)

and

P
(

sup
t∈�τa� l+N2/2� τb� l∧N2�

Z3� l� b�t� ≥ Z3� l� b�0� −N2L
)
≤ η�(8.3)

Proof. The bounds in (8.1) and (8.2) are easy to see. Arrivals at �3� l� b�,
for a given l, are dominated by a rate-4/3L Poisson process. So, (8.1) follows
from (5.1), when N2/L is large. Since Z3� l� b�τb� l� = 0, the same is true for
(8.2).

The bound (8.3) requires more work. Since the reasoning here is similar to
that given in the proof of Proposition 6.2, we abbreviate some of the steps. We
let τ′a� l be the first time after τa� l at which �2� a� is occupied. When �3� b� l�
is occupied at time τa� l, this occurs with probability at least 1 − 1/L before
�3� l� a� is again occupied, because of the relative rates of service at �2� b�
and �3� l� b�. The process Z2� a�t+ τ′a� l� dominates a birth–death process with
birth rate L/γ and death rate 1/γ, until either �3� l� b� or �2� a� is empty. The
probability of the birth–death process ever reaching 0 starting from 1 is 1/L.
So, the probability of service at �3� l� b�, over �τa� l� τb� l�, being interrupted by
customers at �3� l� a� is at most 2/L. Since there are no arrivals at �3� l� b�
then, it follows that, over �τa� l� τb� l�, Z3� l� b�τa� l� −Z3� l� b�t� dominates a rate-
L/γ Poisson process, off of the exceptional event of probability 2/L.

Since L/γ > 6L, it follows from (5.1), that for large enough N,

�8�4� P
(

sup
t∈�τa� l+N2/2� τb� l�

Z3� l� b�t� ≥ Z3� l� b�τa� l� − 3N2L
)
≤ 3/L�

Also, off of the exceptional set given in (8.1),

�8�5� Z3� l� b�τa� l� < Z3� l� b�0� + 2N2/L�

when τa� l ≤ N2. Plugging (8.5) into (8.4), and choosing L ≥ 3/η implies that
(8.3) holds, with a factor of 2 on the right side. Increasing η by a factor of 2
implies (8.3). ✷

On the set where τa� l ≤N2/2, the inequalities (8.2) and (8.3) together show
that

Z3� l� b�N2� < (
Z3� l� b�0� −N2L

) ∨ �2N2/L�
typically holds. For s1/L ≤ 1/2, one has t1 ≤N2/2. So, by employing Proposi-
tion 6.3, one can remove this restriction on τa� l in the following result. Note
that application of Proposition 6.3 introduces the condition Z3� a�0� ≤N here.
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Corollary 8.1. For a given η > 0, let L be sufficiently large. Assume that
Z3� a�0� ≤N, where N is sufficiently large. Then, for each l = 1� � � � �L,

�8�6� P
(
Z3� l� b�N2� ≥ (

Z3� l� b�0� −N2L� ∨ �2N2/L�) ≤ η�
We employ the bounds (8.1) and (8.6), in conjunction with Propositions 5.1

and 6.4, to Proposition 8.2. The proposition states that if the numbers of cus-
tomers at �3� a� and �3� l� b�, for a given l, are initially at most given powers
of M, then this will typically continue to hold at �3� l� b� for a long period of
time relative to M.

Proposition 8.2. For given r0 and r1, with 0 < 2r0 < r1, let L be suffi-
ciently large. Assume that Z3� a�0� ≤ Mr0 and Z3� l� b�0� ≤ Mr1/2, for given l,
where M is sufficiently large. Then,

�8�7� P
(
Z3� l� b�t� ≥Mr1 for some t ≤M2

) ≤ 2/M�

For our purposes, 0 < 2r0 < r1 < 1 gives the relevant ranges of r0 and r1.
When analyzing the fluid limits of Z�t� in Section 10, we will scale time and
Z�t� byM. The above bound on r1 is therefore small enough to ensure that the
number of customers at �3� l� b� scales to 0. We will only need the proposition
when Z3� l� b�0� = 0. One can, on the other hand, check that when L = 1, (8.7)
can fail even when Z3�0� = 0. [If service at �2� b� continues through time t,
the return times of Z3� a� l�s� to 0, for a given l, and thus the variable Z3� b� l�s�,
will repeatedly be of order t on �0� t�.]

Proof of Proposition 8.2. Choose r′ ∈ �r0� r1/2�. By (6.14) of Proposition
6.4 and the assumption Z3� a�0� ≤Mr0 ,

�8�8� P
(
Z3� a�t� ≥Mr′ for some t ≤M2

) ≤ 1/M�

Define the process Z̃�t� by setting Z̃�t� = Z�t� until Z3� a�t� ≥Mr′ , and after
which setting Z̃�t� = =, where �=� is an extension of the state space. For
Z̃�t� = =, also set Z̃3� l� b�t� = 0. By (8.8), to show (8.7), it suffices to show
instead

�8�9� P
(
Z̃3� l� b�t� ≥Mr1 for some t ≤M2

) ≤ 1/M�

for Z̃3� l� b�0� ≤Mr1/2 and large enough M.
Define � · � so that �Z̃�t�� = Z̃3� l� b�t�/M2r′ . It is not difficult to verify that

the conditions of Proposition 5.1 are satisfied for Z̃�t� and � · �. Since Z�t� is
a Markov process with jump rates at most 7 = 6L2/γ and upward jumps at
most J = 1, the same is true for Z̃�t�. For given Z̃�0�, consider the probability
that ∥∥Z̃�t�∥∥− ∥∥Z̃�0�∥∥ = (

Z̃3� l� b�t� − Z̃3� l� b�0�
)
/M2r′
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first exits the interval �−1�1� on the right. Setting N =Mr′ in (8.1) and (8.6),
it follows that, for sufficiently large L and M, this probability can be chosen
as close to 0 as desired, when �Z̃�0�� ≥ 1. So, for given η > 0, and large L
and M, (5.10) is satisfied by Z̃�t� and � · �, with R1 = R2 = ν = 1.

It follows from (5.11) of Proposition 5.1, that for r = 1 and large enough L,

�8�10� P
(�Z̃�t�� ≥M+N for some t ≤ eM) ≤ e−M

holds for �Z̃�0�� ≤ N, with N ≥ 1, and large enough M. Substitution of
Mr1−2r′/2 for both M and N in (8.10) shows that (8.9) holds for Z̃3� l� b�0� ≤
Mr1/2 and large enough M. This, in turn, implies (8.7). ✷

9. Restarting the process. In Section 10, we will apply Propositions
6.4 and 8.2 to the stations �3� l�, l = 1� � � � �L, of the queueing network in
(2.1), (2.2). These results assume initial data at �3� l� which are small on
an appropriate scale; they then state that the number of customers there
will typically remain comparatively small for long times. Proposition 6.4 does
this for the classes �3� l� a�, and Proposition 8.2 does this for �3� l� b�. Since
these assumptions need not hold for Z�0�, we need to show that we can find
appropriate stopping times κa and κb� l, l = 1� � � � �L, where they typically do
hold. This is the purpose of the current section.

The main results here are Propositions 9.3 and 9.4, with the former treating
�3� l� a�, and the latter treating �3� l� b�. Both κa and κb� l will be at most fixed
multiples of �Z�0��. In Proposition 9.3, we will show that Z3� l� a�κa� is small
simultaneously for all l, whereas, in Proposition 9.4, the argument κb� l in
Z3� l� b�κb� l� is allowed to vary with l. On account of this, Proposition 9.4 will
be easy to show, whereas the demonstration of Proposition 9.3 will occupy
most of the section.

We proceed to analyze Z3� l� a�t� by reinterpreting the arrivals and depar-
tures at �3� l� a�, l = 1� � � � �L. Arrivals at each �3� l� a� are due to departures
at �2� b�. These can only occur when Z2� b�t� > 0 but Z2� a�t� = 0, during which
periods they are given by independent Poisson processes, with intensity 4/3L
for each l. We may therefore construct L independent Poisson processes, each
with intensity 4/3L, corresponding to all potential arrivals at each l. Actual
arrivals at �3� l� a� occur when Z2� b�t� > 0 and Z2� a�t� = 0; ghost arrivals
occur when at least one of these two conditions fails. So, Z2� b�t� decreases by
1 and Z3� l� a�t� increases by 1 when an actual arrival occurs, and otherwise
remain the same. Similarly, potential departures at a given �3� l� a� occur ac-
cording to independent Poisson processes, each with intensity 4/3L. These are
given by actual departures or ghost departures, depending on whether or not
Z3� l� a�t� > 0. When an actual departure occurs, Z3� l� a�t� decreases by 1 and
Z3� l� b�t� increases by 1.

In order to analyze Z3� l� a�t�, for a given l, we first compare it with the
process X1

l �t�, which is identical to Z3� l� a�t�, except that ghost departures
at �3� l� a� are included. That is, X1

l �t� decreases by 1 whenever a potential
departure occurs. The process Z3� l� a�t� is obtained from X1

l �t� by “reflecting”
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X1
l �t� at 0. So, one can write Z3� l� a�t� in terms of X1

l �t�, by the standard
pathwise formula

�9�1� Z3� l� a�t� =X1
l �t� −

(
inf
s≤t
X1
l �x�

)
∧ 0�

In order to analyze X1
l �t�, we compare it with the process Xl�t�, which is

identical to X1
l �t�, except that ghost arrivals at �3� l� a� are included. That

is, Xl�t� increases by 1 whenever a potential arrival occurs. Since Xl�t� is
a continuous time symmetric nearest neighbor random walk, with upward
and downward jumps each occurring at rate 4/3L, it is easily analyzed, as in
Proposition 9.1. We can write

�9�2� Xl�t� =X1
l �t� +X2

l �t��
whereX2

l �t� is the process of ghost arrivals at �3� l� a�. The station 2 is strictly
subcritical, and so it is not difficult to show, as in Lemma 9.1, that Z2�t� = 0
at least a fixed portion of the time. This provides lower bounds on X2

l �t�, as
in Lemma 9.2. Together with the bounds on Xl�t� and (9.2), this will provide
upper bounds on X1

l �t� at select random times, as in Proposition 9.2, and
hence, using (9.1), on Z3� l� a�t� at the same times. Since X2

l �t�, l = 1� � � � �L,
will tend to grow in unison when Z2� b�t� = 0 or Z2� a�t� > 0, this procedure,
in fact, provides bounds which hold simultaneously on Z3� l� a�t�, for all l, at
select random times, as in Proposition 9.3.

In contrast to the above procedure for boundingZ3� l� a�t� simultaneously for
all l, the procedure we employ for bounding Z3� l� b�t�, for a given l, requires
almost no work. This follows from the strict subcriticality of station �3� l�,
which ensures that it will be empty at some random time which is typically
at most a fixed multiple of �Z�0��.

We now begin our analysis of Z3� l� a�t�. Let

�j�t� =
∣∣�s� Zj�s� = 0� s ≤ t�∣∣

be the amount of time up until t during which the station j is empty. The
following lemma is a consequence of the strict subcriticality of the individual
stations in the queueing network. Here, we set �Z�0�� = z.

Lemma 9.1. For large enough t satisfying t ≥ 32z and appropriate c8 > 0,

�9�3� P
(
�j�t� ≤ t/16

) ≤ exp�−c8t�
when j = 1�2. When j = �3� l�, l = 1� � � � �L, (9.3) holds for large enough t
satisfying t ≥ 32Lz.

Proof. The argument is straightforward, since each class is visited at
most once by a given customer. The sum of the mean service times at each
station j, j = 1�2, is less than 7/8 by (2.2). Moreover, by (5.1), the total
number of distinct customers in the network up until time t will be, for fixed
ε > 0, at most �1 + ε�t + z off of a set of exponentially small probability.
Setting ε = 1/32 and substituting for z gives the upper bound 17t/16. Since
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�17/16��7/8� < 15/16, (9.3), for j = 1�2, follows from another application
of (5.1).

The reasoning for j = �3� l� is the same, except that one requires both
(5.1) and (5.2) so that, off of a set of exponentially small probability, at most
��1 + ε�/L�t + z customers visit �3� l�, for a given l. The sum of the mean
service times at �3� l� a� and �3� l� b� is less than 7L/8 by (2.2). The reasoning
then continues as before, since the factors of L cancel. ✷

Denote the first time at which the station j is empty by τj. The following
is an immediate consequence of Lemma 9.1.

Corollary 9.1. For large enough t satisfying t ≥ 32z when j = 1�2, and
t ≥ 32Lz when j = �3� l�, l = 1� � � � �L,

�9�4� P�τj > t� ≤ exp�−c8t�
for appropriate c8 > 0.

We wish to consider the behavior of Z2�s� on �t�35t�, for large t with t ≥
32Lz. (Later on, we will apply Corollary 9.1 at t with j = �3� l�, for each l.)
We note that, off of a set of exponentially small probability in t, �Z�t�� ≤
33t/32+ z ≤ 17t/16. So, one can apply Lemma 9.1 to the process restarted at
time t, with j = 2. By (9.3), it follows that on �t�35t�, the proportion of time
thatZ2�s� = 0 is at least 1/16 off of a set of exponentially small probability. We
decompose this interval into nt = �34t2/7� subintervals Ii = �ti−1� ti�, where
ti = t + it5/7 and i = 1� � � � � nt, leaving off the last piece of length less than
t5/7. [The choice of the power 5/7 is somewhat arbitrary; any choice in �1/2�1�
will suffice.] It is then easy to see that, off of the exceptional random set, for
at least one such interval, the proportion of time that Z2�s� = 0 is at least
1/20. Denote the first such interval by Ii0 , when it exists, and the presence of
such an interval by i0 <∞. For later use, we set

κa =
{
ti0� for i0 <∞�
35t� for i0 = ∞�

where κa is the first of the two stopping times mentioned at the beginning of
the section. Note that t ≤ κa ≤ 35t always holds. We have shown the following.

Corollary 9.2. For large enough t satisfying t ≥ 32Lz and appropriate
c9 > 0,

�9�5� P�i0 = ∞� ≤ exp�−c9t��

One of the processes employed to analyze Z3� l� a�t�, l = 1� � � � �L, wasXl�t�,
the rate-8/3L continuous time symmetric nearest neighbor random walk in-
troduced below (9.1). The reversed process X̃l�s� = Xl�T� −Xl�T − s�, with
s ∈ �0�T� and T fixed, is also a rate-8/3L continuous time symmetric nearest
neighbor random walk. Applying (5.3) to X̃l�s�, with β = 4/7 and β = 3/5,
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respectively, we obtain the following bounds on the fluctuations ofXl�s�, mea-
sured backwards from T.

Proposition 9.1. Let T ≤ 35t, with t sufficiently large. For each l and
appropriate c10 > 0,

�9�6�
P

(
Xl�T� − inf

{
Xl�s�� s ≤ T

} ≥ t4/7) ≤ exp
{−c10t

1/7}�
P

(
Xl�T� − inf�Xl�s�� T− t5/7 ≤ s ≤ T� ≥ t3/7) ≤ exp

{−c10t
1/7

}
�

We will need to control the fluctuations of Xl�s� corresponding to (9.6), but
with T replaced by the random time κa defined above. On i0 <∞, κa can take
only nt values. Applying Proposition 9.1 and adding up the probabilities of a
large fluctuation for each i = 1� � � � � nt, one obtains analogous estimates at
time κa.

Corollary 9.3. Let t be sufficiently large. For each l and appropriate
c10 > 0,

�9�7�

P
(
Xl�κa� − inf

{
Xl�s�� s ≤ κa

} ≥ t4/7� i0 <∞)
≤ nt exp

{−c10t
1/7}�

P
(
Xl�κa� − inf

{
Xl�s�� κa − t5/7 ≤ s ≤ κa

} ≥ t3/7� i0 <∞)
≤ nt exp

{−c10t
1/7}�

Denote by Vi the amount of time that station 2 is empty over the intervals
Ii, i = 1� � � � � nt, specified above. Also, denote by X2

l� i the number of ghost
arrivals at �3� l� a� over Ii. Potential arrivals at �3� l� a� occur independently
of the state of the queueing network, according to a Poisson process with
rate 4/3L. Ghost arrivals occur there at the same rate when station 2 is
empty. [They also occur when �2� a� is occupied, although we will not use this
here.] So, on the set �Vi ≥ t5/7/20�,X2

l� i dominates a Poisson random variable
with mean t5/7/15L. Using the large deviation estimate (5.1), one obtains the
following bounds on X2

l� i.

Lemma 9.2. For each i = 1� � � � � nt and l, and large enough t,

�9�8� P
(
X2
l� i ≤ t5/7/20L�Vi ≥ t5/7/20

) ≤ exp
{−c11t

5/7}
for appropriate c11 > 0.

Applying these bounds to i = i0 implies the following.

Corollary 9.4. For each l and large enough t,

�9�9� P
(
X2
l� i0

≤ t5/7/20L� i0 <∞) ≤ nt exp
{−c11t

5/7}
for appropriate c11 > 0.
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Recall that the process Xl�s� of potential arrivals at �3� l� a� is the sum of
the processes X1

l �s� and X2
l �s� of actual and ghost arrivals. When i0 <∞ and

X2
l� i0
> t5/7/20L, it follows that for s ≤ ti0−1,

�9�10�
X1
l �κa� −X1

l �s� =
(
Xl�κa� −Xl�s�

)− (
X2
l �κa� −X2

l �s�
)

≤ (
Xl�κa� −Xl�s�

)−X2
l� i0

< Xl�κa� −Xl�s� − t5/7/20L�

This allows us to control X1
l �κa� −X1

l �s� on the complement of the event in
(9.9).

Proposition 9.2 gives bounds on the fluctuations of X1
l �s�, measured back-

wards from κa. For s ∈ �κa − t5/7� κa�, the result is a direct application of the
second part of (9.7) and the monotonicity of X2

l �s�. For s ∈ �0� κa − t5/7�, one
instead needs the first part of (9.7), together with (9.9) and (9.10).

Proposition 9.2. For each l and large enough t,

�9�11� P
(
X1
l �κa� − inf

s≤κa
X1
l �s� ≥ t3/7� i0 <∞

)
≤ 3nt exp

{−c12t
1/7}

for appropriate c12 > 0.

Employing Proposition 9.2 together with the previous estimates, it is now
straightforward to show Proposition 9.3. By Corollary 9.2, for large t satisfying
t ≥ 32Lz, i0 <∞ occurs off of a set of (exponentially) small probability. Also,
by Corollary 9.1, τ3� l ≤ t ≤ κa off of a set of small probability. By (9.1) and
Proposition 9.2, on i0 < ∞ and τ3� l ≤ κa, one has Z3� l� a�κa� < t3/7 off of a
set of small probability. Together, these results give the desired behavior of
Z3� l� a�κa�.

Proposition 9.3. For each l and large enough t, with t ≥ 32Lz,

�9�12� P
(
Z3� l� a�κa� ≥ t3/7

) ≤ exp
{−c13t

1/7}
for appropriate c13 > 0.

Recall that κa satisfies κa ≤ 35t, and does not depend on l.
We also want to show the analog of (9.12) for the classes �3� l� b�, at ap-

propriate times κb�l ∈ �35t� dt�, for appropriate d. The reasoning is, in this
case, much simpler. Again, assume that t ≥ 32Lz. Customers enter the net-
work at rate 1, and so by (5.1), off of a set of exponentially small probability,
�Z�35t�� ≤ 36t+z ≤ 37t. Restarting the process at this time, we let τ′3� l denote
the first time at which the station �3� l� of the restarted process is empty. By
Corollary 9.1, off of a set of exponentially small probability, τ′3� l ≤ 32 · 37Lt.
Set d = 35 + �32 · 37�L, and let κb� l be the stopping time

κb� l =
(
35t+ τ′3� l

) ∧ �dt��
We thus obtain the following result. Note that κa ≤ κb� l ≤ dt.
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Proposition 9.4. For each l and large enough t, with t ≥ 32Lz,

�9�13� P
(
Z3� l� b�κb� l� > 0

) ≤ exp�−c14t�
for appropriate c14 > 0.

10. Proof of Theorem 3. In this section, we complete the proof of The-
orem 1, that the Markov process Z�t� for the network (2.1), (2.2) is positive
recurrent. We recall from Section 4 that it suffices to demonstrate Theorem 3.
For this, in turn, it suffices to verify that the fluid limit model corresponding
to Z�t� is asymptotically stable.

As summarized in Section 4, there are several main steps in showing the
fluid limit model is asymptotically stable. Most of the work has already been
done in Sections 5–9. In particular, using Propositions 6.4, 8.2, 9.3 and 9.4,
it will follow that any fluid limit �T̄�t�� Z̄�t�� satisfies Z̄3�t� = 0 for large
enough t. This is shown in Proposition 10.1. One can therefore, in effect, omit
station 3 when analyzing the behavior of the fluid limits. For the resulting
network, it suffices to analyze the behavior of the corresponding fluid model
equations. If one omits station 3, the network is strictly subcritical with route

�10�1� → �1� b� → �2� b� → �2� a� → �1� a� →
and mean service times

�10�2� m1� a =m2� b = 3
4 � m1� b =m2� a = γ�

with γ ∈ �0�1/8�. This reduced network is last-buffer-first-served; by Dai and
Weiss (1996), its fluid model is stable. This enables us to show, in Proposi-
tion 10.3, that our fluid limit model is asymptotically stable.

We now tie together our results from Sections 5–9 to show Z̄3�t� = 0 for
large t.

Proposition 10.1. For sufficiently large L and appropriate eventsHz, with
P�Hz� → 1 as �z� → ∞, all fluid limits �T̄�t�� Z̄�t�� on Hz, of Z�t�, satisfy

�10�3� Z̄3�t� = 0 for t ≥ t0
and appropriate t0. Moreover,

�10�4� ∣∣Z̄�t0�
∣∣ ≤ 2t0 + 1�

Proof. We first recall the stopping times κa and κb� l, l = 1� � � � �L, em-
ployed in Propositions 9.3 and 9.4. Choosing t = 32L�z� in both places, one
has

�10�5� κa ≤ κb� l ≤ t0�z�
for t0 = 32dL, where d is given at the end of Section 9. By Proposition 9.3,
for large �z�,
�10�6� P

(
Z3� a�κa� ≥ L�32L�z��3/7) ≤ L exp

{−c13�32L�z��1/7}�
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and by Proposition 9.4, for large z and given l,

�10�7� P
(
Z3� l� b�κb� l� > 0

) ≤ exp�−c14�z���

where c13 > 0 and c14 > 0.
Restart the process Z�t� at κa. By (10.6), Proposition 6.4 and the strong

Markov property, for sufficiently large �z�,

�10�8� P
(
Z3� a�t� ≥ �z�4/9 for some t ∈ �κa� �z�2�

) ≤ 2/�z��

[In Proposition 6.4, we are setting M = �z�, r0 ∈ �3/7�4/9� and r1 = 4/9.] In
particular, by (10.5), this includes t = κb� l, for �z� large enough and given l.

Restart Z�t� again, this time at κb� l. By (10.7), (10.8), Proposition 8.2 and
the strong Markov property,

�10�9� P
(
Z3� l� b�t� ≥ �z�9/10 for some t ∈ [

κb� l� �z�2
]) ≤ 5/�z��

(In Proposition 8.2, set M = �z�, r0 = 4/9 and r1 = 9/10.) By (10.5), (10.8) and
(10.9), one obtains that

�10�10� P
(
Z3�t� ≥ �L+ 1��z�9/10 for some t ∈ [

t0�z�� �z�2
]) → 0

as �z� → ∞. Let Hz
1 denote the complement of the exceptional set in (10.10).

Clearly, each fluid limit �T̄�t�� Z̄�t�� on Hz
1 satisfies (10.3), and P�Hz

1� → 1 as
�z� → ∞.

We still need to bound �Z̄�t0��. Let E�t� denote the number of external
arrivals into the network [at �1� b�] by time t. This does not depend on the
initial state z. By the weak law of large numbers, E�t�/t→ 1, in probability,
as t→ ∞. Since Z�t� only increases through external arrivals, it follows that

�10�11� P

(
1
�z� �Z�t0�z��� > 2t0 + 1

)
→ 0 in probability�

as �z� → ∞. Consequently, (10.4) holds for each fluid limit onHz
2, whereHz

2 is
the complement of the exceptional set in (10.11). Setting Hz = Hz

1 ∩Hz
2, one

has P�Hz� → 1 as �z� → ∞, which completes the proof of the proposition. ✷

In the following lemma, we show that fluid model solutions �T̄�t�� Z̄�t�� for
the original network (2.1), (2.2) which satisfy Z̄3�t� ≡ 0 are also fluid model
solutions for the reduced network (10.1), (10.2). To simplify notation, we set
D̄k�t� = m−1

k T̄k�t� for all classes k, and let D̄3� a�t� and D̄3� b�t� denote the
corresponding sums over l. [D̄k�t� measures the “departures” at k.]

Lemma 10.1. Let �T̄�t�� Z̄�t�� be a solution of the fluid model equations
(2.10), (2.11) for the network (2.1), (2.2), with Z̄3�t� = 0 for all t. Then, the
restriction of �T̄�t�� Z̄�t�� to the stations 1 and 2 is a solution of (2.10), (2.11)
for the network (10.1), (10.2).
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Proof. The equations (2.10) and (2.11) for the network (10.1), (10.2) follow
automatically from their analogs for the network (2.1), (2.2), except for

�10�12�
Z̄2� a�t� = Z̄2� a�0� +m−1

2� bT̄2� b�t� −m−1
2� aT̄2� a�t�

= Z̄2� a�0� + D̄2� b�t� − D̄2� a�t��
which needs to be shown. By (2.10) of the original network,

Z̄3� a�t� = Z̄3� a�0� + D̄2� b�t� − D̄3� a�t��
which implies that D̄2� b�t� = D̄3� a�t� for all t, since Z̄3� a�t� = 0. Similarly,
D̄3� a�t� = D̄3� b�t�. So, D̄2� b�t� = D̄3� b�t� for all t. Also, by (2.10),

�10�13� Z̄2� a�t� = Z̄2� a�0� + D̄3� b�t� − D̄2� a�t��
Together with the previous equality, (10.13) implies (10.12). ✷

The discipline of the network given in (10.1), (10.2) is last-buffer-first-served
(LBFS). Since the traffic intensity at each station is less than 1, the network is
strictly subcritical. We can therefore employ the following result, Theorem 4.4
from Dai and Weiss (1996).

Proposition 10.2. The fluid model corresponding to any strictly subcritical
network with the LBFS discipline is stable.

Together, Propositions 10.1 and 10.2, and Lemma 10.1 imply that the fluid
limit model corresponding to the process Z�t� is asymptotically stable. This
demonstrates Theorem 3, and hence completes the proof that Z�t� is positive
recurrent.

Proposition 10.3. For sufficiently large L, the fluid limit model corre-
sponding to the process Z�t� is asymptotically stable.

Proof. Choose the events Hz as in Proposition 10.1. Then, P�Hz� → 1 as
�z� → ∞, and all fluid limits �T̄�t�� Z̄�t�� onHz satisfy Z̄3�t� = 0 for all t ≥ t0,
with

�10�14� ∣∣Z̄�t0�
∣∣ ≤ 2t0 + 1�

Set Z̃�t� = Z̄�t + t0�. Then, Z̃�t� is a solution of the fluid model equations
(2.10), (2.11), with Z̃3�t� = 0 for all t. By Lemma 10.1, the restriction of Z̃�t�
to the stations 1 and 2 is a solution of (2.10), (2.11) for the reduced network
(10.1), (10.2). This network is strictly subcritical, with ρ1 = ρ2 = 3/4 + γ < 1,
and its discipline is LBFS. So, by Proposition 10.2, the restriction of Z̃�t� is
stable; that is, Z̃1�t� = 0 and Z̃2�t� = 0 for t ≥ t1�Z̃�0��, and appropriate t1.
Consequently,

�10�15� Z̃�t� = 0 for t ≥ t1
∣∣Z̃�0�∣∣.
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Converting back to Z̄�t� and employing (10.14), one obtains from (10.15)
that

�10�16� Z̄�t� = 0 for t ≥ δ,
for δ = t0 + t1�2t0 + 1�. Since this holds for all fluid limits on Hz, the fluid
limit model corresponding to Z�t� is asymptotically stable, as desired. ✷

Acknowledgment. The author thanks V. Dumas for illuminating discus-
sions on the applications of fluid limits.
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