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PRICING CONTINGENT CLAIMS ON STOCKS
DRIVEN BY LÉVY PROCESSES1

By Terence Chan

Heriot-Watt University

We consider the problem of pricing contingent claims on a stock whose
price process is modelled by a geometric Lévy process, in exact analogy with
the ubiquitous geometric Brownian motion model. Because the noise pro-
cess has jumps of random sizes, such a market is incomplete and there is
not a unique equivalent martingale measure. We study several approaches
to pricing options which all make use of an equivalent martingale measure
that is in different respects “closest” to the underlying canonical measure,
the main ones being the Föllmer–Schweizer minimal measure and the mar-
tingale measure which has minimum relative entropy with respect to the
canonical measure. It is shown that the minimum relative entropy measure
is that constructed via the Esscher transform, while the Föllmer–Schweizer
measure corresponds to another natural analogue of the classical Black–
Scholes measure.

1. Introduction. We consider the problem of pricing contingent claims
on a stock whose price at time t, St, is modelled by a geometric Lévy process

dSt = σtSt− dYt + btSt− dt;

where Y is a general Lévy process (satisfying some additional conditions) and
not merely a Brownian motion. The classical option pricing theory of Black
and Scholes relies on the fact that the payoff of every contingent claim can be
duplicated by a portfolio consisting of investments in the underlying stock and
in a bond paying a riskless rate of interest; in other words, the risk of buying
or writing an option can be completely hedged against. In such complete mar-
kets, there is a unique measure which is equivalent to the canonical measure
(the “real world” measure) and which makes the discounted price process a
martingale. The unique fair price of a contingent claim is then the expectation
under this martingale measure of the discounted payoff at maturity, which is
essentially the content of the famous Black–Scholes formula.

For the stock prices described above, there are many equivalent measures
under which the discounted price process is a martingale, in contrast to the
geometric Brownian model. In other words, such a market is incomplete—
that is, contingent claims cannot in general be hedged by a suitable portfolio.
Because there does not exist a unique equivalent martingale measure, it is not
possible simply to use the martingale measure to price a contingent claim in
the manner just described. Instead, additional criteria must be used to select
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an appropriate martingale measure from among the uncountably many such
measures with which to price a contingent claim. Many different approaches
to this problem have been proposed in recent years but there is as yet no
definitive way of pricing contingent claims in incomplete markets which is
preferable to the other possible methods in all situations. Moreover, compared
to the large body of work devoted to finding new approaches to option pricing
in incomplete markets, relatively little seems to have been done to compare
and to investigate the relationship between the various approaches. Part of
the aim of this paper is to go a little way toward redressing the balance. For
our particular model, we shall concentrate on various approaches to pricing
options which are all based on the idea of using an equivalent martingale
measure that is in different respects “closest” to the underlying canonical
measure, the main ones being the Föllmer–Schweizer minimal measure and
the martingale measure which has minimum relative entropy with respect to
the canonical measure.

2. Description of the model. Before describing the model, we first re-
view some preliminary results concerning Lévy processes. For a more detailed
treatment, the reader is referred to Protter (1990), Jacod and Shiryaev (1987)
and Liptser and Shiryayev (1989).

A Lévy process Yt is simply a process with stationary and independent
increments: in other words, Ys+t −Ys is independent of �Yux u ≤ s� and has
the same distribution as Yt−Y0. All Lévy processes are semimartingales and
throughout this paper we adopt the convention that all Lévy processes are
right continuous with left limits (cadlag).

Since Y has stationary independent increments, its characteristic function
must take the form

E�exp�−iθYt�� = exp�−tψ�θ��
for some function ψ, called the Lévy exponent of Y. The Lévy–Khintchine
formula says that

�2:1�
ψ�θ� = c

2

2
θ2 + iαθ+

∫
��x�<1�

(
1− e−iθx − iθx

)
ν�dx�

+
∫
��x�≥1�

(
1− e−iθx

)
ν�dx�

for α, c ∈ R and for some σ-finite measure ν on R\�0� satisfying

�2:2�
∫

min�1; x2� ν�dx� <∞:

The measure ν is called the Lévy measure of Y.
The Lévy–Khintchine formula (2.1) is intimately connected to the structure

of the process Y itself, in particular to the Lévy decomposition of Y, which
we describe below. From the Lévy–Khintchine formula we can deduce that
Y must be a linear combination of a Brownian motion and a quadratic pure
jump process X which is independent of the Brownian motion. [A process is
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said to be quadratic pure jump if the continuous part of its quadratic variation
�X�c ≡ 0, in which case its quadratic variation becomes simply

�X�t =
∑

0<s≤t
�1Xs�2;

where 1Xs = Xs −Xs− is the jump size at time s.] It will be convenient to
explicitly separate out the Brownian component from the quadratic pure jump
component X and we therefore write

�2:3� Yt = cBt +Xt;

where B is a standard Brownian motion on R and X is quadratic pure jump.
We now proceed to describe the Lévy decomposition of X [the full Lévy de-
composition of Y is then obtained by combining this with (2.3)].

Let Q�dt;dx� be a Poisson measure on R+ × R\�0� with expectation (or
intensity) measure dt×ν; where ν is the Lévy measure introduced earlier and
dt denotes Lebesgue measure. The measure ν (or more precisely dt×ν) is also
sometimes called the compensator of Q. The Lévy decomposition of X says
that

�2:4�

Xt =
∫
��x�<1�

x
(
Q��0; t�; dx� − tν�dx�

)
+
∫
��x�≥1�

xQ
(
�0; t�; dx

)

+ tE
[
X1 −

∫
��x�≥1�

x ν�dx�
]

=
∫
��x�<1�

x
(
Q��0; t�; dx� − tν�dx�

)
+
∫
��x�≥1�

xQ��0; t�; dx� + αt;

where we have put

α = E
[
X1 −

∫
��x�≥1�

x ν�dx�
]
:

The parameter α is called the drift of the Lévy process X.
For the purposes of our model, we require the process Y to satisfy certain

additional conditions. The key assumption we require of Y is that

�2:5� E�exp�−hY1�� <∞ for all h ∈ �−h1; h2�,

where 0 < h1, h2 ≤ ∞. This implies that Yt has finite moments of all orders,
and in particular, E�X1� <∞. In terms of the Lévy measure ν of X; we have

∫
��x�≥1�

e−hx ν�dx� <∞;(2.6a)

∫
��x�≥1�

xγe−hx ν�dx� <∞ ∀γ > 0;(2.6b)

∫
��x�≥1�

x ν�dx� <∞(2.6c)
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for all h ∈ �−h1; h2�. [Note that as (2.6a) holds for all h in an open interval,
(2.6b) and (2.6c) follow from (2.6a).] With these assumptions in mind, (2.4) can
be rewritten as

�2:7�
Xt =

∫
R
x�Q��0; t�; dx� − tν�dx�� + tE�X1�

=Mt + at;
where Mt =

∫
R x�Q��0; t�; dx� − tν�dx�� is a martingale and a = E�X1�. Ob-

serve that (2.7) gives the Doob decomposition of X as the sum of a martingale
and a previsible process of finite variation. Even though a is not the drift of
X in the sense in which the term is usually understood (α is the drift in the
technical sense), we shall see later that a plays the role of a drift contribution
from the jump component of Y. We refer to a (or more correctly, the process
t 7→ at) as the previsible part of X.

In addition, (2.5) implies that instead of the characteristic function, one
could consider the Laplace transform of Yt instead. By a slight abuse of nota-
tion, we also use ψ to denote the “Lévy exponent” and write E�exp�−θYt�� =
exp�−tψ�θ��. Bearing in mind the simplified decomposition (2.7) for processes
satisfying (2.5), the Lévy–Khintchine formula (2.1) now becomes

�2:8� ψ�θ� = −c
2θ2

2
+ aθ+

∫
R
�1− e−θx − θx� ν�dx�:

A very similar analysis can be carried out for more general semimartingales
with jumps and in particular for processes with independent but not neces-
sarily stationary increments. Jacod and Shiryaev (1987) have a full treat-
ment. A random measure Q�dt;dx� is also associated with such a process,
but it is not necessarily a Poisson measure. As in the case of Lévy processes,
the measure Q describes the mechanism by which jumps of the process oc-
cur. The compensator of Q is the unique previsible measure ν�dt;dx� such
that Q��0; t�; 3� − ν��0; t�; 3� is a martingale for any Borel set 3 ⊂ R\�0�. If
the process in question has independent increments, the measure ν is neces-
sarily deterministic, so Q is an inhomogeneous Poisson measure. [For Lévy
processes, the stationarity of increments implies that ν�dt;dx� = dt ν�dx�.]
The compensator can also be characterized as the unique previsible measure
such that

�2:9� E
[∫
�0; t�×3

H�s; x�Q�ds;dx�
]
= E

[∫
�0; t�×3

H�s; x�ν�ds;dx�
]

for any Borel set 3 and any previsible process H. We also have an analogue
of the Lévy–Khintchine formula: E�exp�−θXt�� = exp�−ψX�t; θ��; where

�2:10� ψX�t; θ� = atθ+
∫
R

(
1− exp�−θx� − θx

)
ν
(
�0; t�; dx

)
;

where at = E�Xt� is the previsible part of X. Together with the quadratic
variation of the continuous part of X (which is zero if X is quadratic pure
jump as in our case), the compensator measure and previsible part form the
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three components of the characteristics of a semimartingale. The following
result is also worth noting: for any measurable function f�t; x�,

�2:11�
∑

0<s≤t
f�s; 1Xs� =

∫ t
0

∫
R
f�s; x�Q�ds;dx�:

Next, we recall Itô’s formula for cadlag semimartingales. If X1;X2; : : : ;Xn

are cadlag semimartingales and f a C2 function, then

f�X1
t · · ·Xn

t � − f�X1
0 · · ·Xn

0�

=
∫ t

0
fi�X1

s− · · ·Xn
s−�dXi

s + 1
2

∫ t
0
fij�X1

s− · · ·Xn
s−�d�Xi;Xj�cs

+
∑

0<s≤t

[
f�X1

s · · ·Xn
s � − f�X1

s− · · ·Xn
s−� − fi�X1

s− · · ·Xn
s−�1Xi

s

]
;

where �Xi;Xj�c is the continuous part of the mutual variation of Xi and Xj,
fi = ∂f/∂xi, fij = ∂2f/∂xi∂xj and we have used index summation convention.
This will often be abbreviated to

df�X1
t ;X

2
t · · ·Xn

t �
= fi�X1

t− · · ·Xn
t−�dXi

t + 1
2fij�X1

t− · · ·Xn
t−�d�Xi;Xj�ct

+ f�X1
t · · ·Xn

t � − f�X1
t− · · ·Xn

t−� − fi�X1
t− · · ·Xn

t−�1Xi
t:

Turning now to a description of the model, on a probability space ��;
�Ft�;P�, let Yt = cBt +Xt = cBt +Mt + at be a Lévy process of the form
described earlier, satisfying the condition (2.5). We assume that the filtration
�Ft� is the minimal one generated by Y. The stock price St is the solution of
the stochastic differential equation

�2:12�
dSt = σtSt− dYt + btSt− dt
= σtSt−�cdBt + dMt� + �aσt + bt�St− dt;

where the coefficients σt and bt are deterministic continuous functions. Equa-
tion (2.12) has an explicit solution [see Protter (1991)] given by

�2:13�

St = S0 exp
{∫ t

0
σs dYs +

∫ t
0

(
bs −

c2σ2
s

2

)
ds

}

×
∏

0<s≤t
�1+ σs1Ys� exp�−σs1Ys�

= S0 exp
{ ∫ t

0
cσs dBs +

∫ t
0
σs dMs +

∫ t
0

(
aσs + bs −

c2σ2
s

2

)
ds

}

×
∏

0<s≤t
�1+ σs1Ms� exp�−σs1Ms�:

From this we see that σ�Sux u ≤ t� = Ft and so a contingent claim 0T expiring
at time T may be regarded as a nonnegative FT-measurable random variable.
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The Doob decomposition of Y suggests that bt + aσt rather than bt should
be regarded as the drift in (2.12). Although in practice, a and b cannot be
estimated separately and consequently there is no need to add a drift to X
separately from b in (2.12), we have chosen to consider the parameters a and
b separately for convenience, because the value of a is often implicit in the
specification of a particular process as X and so cannot be chosen indepen-
dently (e.g., if we specify that X be a Poisson process of rate λ, this forces
a = λ).

In order to ensure that St ≥ 0 for all t almost surely, we need σt1Mt ≥ −1
for all t. This in turn implies that the jumps of X must be bounded on at
least one side, that is, either bounded from below or bounded from above.
Suppose that 1Xt = 1Mt ∈ �−c1; c2�; which is equivalent to saying that the
Lévy measure ν is supported on �−c1; c2� where c1, c2 ≥ 0 and one (but not
both) of c1, c2 may be infinite. This implies that at least one of h1, h2 in (2.5)
must be infinite. In order to ensure that St ≥ 0 we need

�2:14� − 1
c2
≤ σt ≤

1
c1

for all t.

As far as the Brownian component ofY is concerned, the sign of the volatility σ
is inconsequential, but if one were to keep to the usual convention that σ > 0,
then (2.14) shows that the jumps of X should be bounded from below (i.e.,
c1 < ∞). The conditions (2.5) and (2.14) will of course rule out any processes
with “fat-tailed” distributions such as stable processes. However, the allowable
Lévy processes here include all the processes considered in Gerber and Shiu
(1994): for example the gamma, the inverse Gaussian, the Poisson and the
difference of two independent Poisson processes.

The riskless rate of interest is given by a deterministic continuous function
rt and the value Pt of a bond or bank account paying this rate of interest
evolves according to the ODE

Ṗt = rtPt:

As with σ and b, we could also allow r to be adapted to �Ft�, although this is
a less useful generalization in practice. For notational convenience, we denote
by Ŝt the discounted stock price defined by

�2:15� Ŝt = exp
{
−
∫ t

0
rs ds

}
St:

It will be seen in the next section that, in this model, there are many mea-
sures, equivalent to the underlying canonical measure P, which makes Ŝt a
martingale.

We conclude this section by briefly mentioning some other similar models
which have been considered by various authors. Bardhan and Chao (1993) con-
sidered a similar model where the noise consists of several Brownian motions
and several point processes whose jumps are all of size 1 but whose intensities
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may not be time-homogeneous and may be random. However, the contingent
claims they considered are on more than one stock, where the number of stocks
exactly equals the total number of noise terms (Brownian motions and point
processes). This, together with the fact that the jump sizes are fixed, ensure
that their model is complete. Aase (1988) is essentially an attempt at a more
general model than that of Bardhan and Chao, where the point process may
have random jump sizes but still a finite number of jumps in any finite time
interval. Unfortunately, Aase (1988) claims that the model is also complete
even though there are more than one equivalent martingale measure; this
is false because it contradicts a well-known theorem of Harrison and Pliska
(1981, 1983) to the effect that completeness of the market is equivalent to
uniqueness of the equivalent martingale measure. Indeed, Aase (1988) claims
that every martingale can be represented as an integral with respect to Ŝt, in
the form

�2:16�
∫ t

0
θs dŜs;

where θt is a previsible process. (The existence of such a representation is
equivalent to completeness.) This is false, as the martingale representation
theorem [see, e.g., Jacod and Shiryaev (1987)] for the jump processes consid-
ered in Aase (1988) (which includes certain classes of Lévy processes) says
that every martingale has the representation

∫ t
0
H�s; x��Q̃�ds;dx� − ν̃�ds;dx��;

where Q̃�ds;dx� is a random jump measure whose compensator is ν̃—
analogous, respectively to the Poisson and Lévy measures associated with
a Lévy process—and where H�s; x� is a previsible Borel function (see the
next section for a precise definition). We shall see in the next section that,
under any equivalent martingale measure, the jump part of Ŝt has the
representation

∫ t
0
γs dM̃s =

∫ t
0

∫
R
γsx

(
Q̃�ds;dx� − ν̃�ds;dx�

)
:

Hence, in order that the representation (2.16) holds, we need H�s; x� = θsγsx,
which of course is not true in general. Finally, Gerber and Shiu (1994) con-
sider the case where the stock price is modelled by a process of the form
exp�σYt+bt�, where σ and b are constants and Y is a Lévy process satisfying
(2.5). This has many similarities with our present model and both are obvious
generalizations of the geometric Brownian model. The program carried out in
the next section can be equally well carried out for the Gerber–Shiu model,
often with only fairly minor modifications. Each model has its own advantages
and disadvantages. The main advantage of the Gerber–Shiu model is that the
jumps of X can be of any size and do not have to be bounded from one side.
The present model based on (2.12) describes the price dynamics in a manner
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which is intuitively more natural and is also more appealing in other mathe-
matical respects. This is because the starting point of the classical geometric
Brownian model is (2.12); that the price St also has the form exp�σ ′Yt+b′t� is
a direct consequence of the stochastic calculus involved, in particular, Itô’s for-
mula. For discontinuous Lévy processes, Itô’s formula is rather different and
so a model which takes as its starting point a differential equation like (2.12)
and then takes account of the differences in the underlying stochastic calculus
in the subsequent computations is more likely to lead to simpler calculations
and more attractive results. This point is illustrated in Section 3.3 in relation
to the Esscher transform and minimum relative entropy measure. Gerber and
Shiu (1994) deal only with pricing contingent claims by Esscher transforms,
without explaining why the Esscher transform is a particularly appropriate
martingale measure to use. [However, in their response to the discussions that
follow their paper, they give a justification of the Esscher transform in terms
of utility; see page 175 of Gerber and Shiu (1994).] We shall show that it is
the martingale measure which has minimum relative entropy with respect to
the canonical measure.

3. Equivalent martingale measures and pricing formulas. We be-
gin by characterizing all equivalent martingale measures Q under which the
discounted price process Ŝ defined at (2.15) is a �Ft�-martingale. To this end,
we first need to characterize all the measures which are absolutely continuous
with respect to P.

We continue to use the notation established in the previous section. In
particular, Yt = cBt + Xt is a Lévy process satisfying (2.5) and Xt is a
quadratic pure jump Lévy process with Lévy measure ν supported on a subset
of �−c1; c2�, where at least one of c1, c2 is finite. The Doob–Meyer decompo-
sition of X is given by Xt = Mt + at, where M is a quadratic pure jump
martingale with M0 = 0 and a = E�X1�. If Q�dt;dx� is the Poisson measure
associated with X, let M�dt;dx� = Q�dt;dx� − dt ν�dx� denote the compen-
sated measure. Thus, for example, the martingale part of X can be written as
Mt =

∫ t
0

∫
R xM�ds;dx�. Further, expectations under the canonical measure P

will be denoted by E�·� while expectations with respect to any other measure
Q will be denoted by Q�·�.

Let P denote the previsible σ-algebra on �×R+ associated with the filtra-
tion �Ft� and let P̃ = P ×B, where B is the Borel σ-algebra on R. A function
H�ω; t; x� which is P̃ -measurable will be called Borel previsible. Thus, sup-
pressing the explicit dependence on ω, a Borel previsible function or process
H�t; x� is one such that the process t 7→ H�t; x� is previsible for fixed x and
the function x 7→H�t; x� is Borel-measurable for fixed t.

Lemma 3.1. Let Gt and H�t; x� be previsible and Borel previsible processes
respectively. Suppose that

E
[∫ t

0
G2
s ds

]
<∞
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and H ≥ 0, H�t;0� = 1 for all t ≥ 0. Let h�t; x� be another Borel previsible
process such that

�3:1�
∫
R

[
H�t; x� − 1− h�t; x�

]
ν�dx� <∞:

Define a process Zt by

�3:2�

Zt = exp
{∫ t

0
Gs dBs − 1

2

∫ t
0
G2
s ds+

∫ t
0

∫
R
h�s; x�M�ds;dx�

−
∫
�0; t�×R

[
H�s; x� − 1− h�s; x�

]
ν�dx�ds

}

×
∏

0<s≤t
H�s; 1Xs� exp�−h�s; 1Xs��:

Then Z is a nonnegative local martingale with Z0 = 1 and Z is positive if and
only if H > 0.

Remark. The process h referred to in Lemma 3.1 is, of course, not unique.
However, given H, it is essentially unique in the following sense: suppose that
h�t; x� and f�t; x� are two Borel previsible processes such that (3.1) holds; then
because

∫
R�f�t; x� − h�t; x�� ν�dx� < ∞, it is an easy exercise to check that

the process Z is unchanged if h is replaced by f in (3.2): simply write f =
h+�f−h�. [However, note that it is crucial that

∫
R�f�t; x�−h�t; x�� ν�dx� <∞:

the terms involving h in (3.2) do not cancel precisely because
∫
R h�t; x� ν�dx�

may diverge.] Thus, once H is fixed, Z does not depend on the choice of the
process h satisfying (3.1). Of course, the easiest and most obvious choice of
h is h ≡ H − 1: However, in the present context, particularly in connection
with the Esscher transform discussed below, it is useful to allow more general
choices of h. In the case where x 7→H�t; x� is twice-differentiable, the natural
choice of h�t; x� is

h�t; x� = x∂H
∂x
�t;0� = htx say,

for then H�t; x� ∼ 1+ htx+O�x2� as x→ 0 and because of (2.6c) we simply
have to choose H so that

∫
�x�≥1

H�t; x� ν�dx� <∞:

We shall henceforth assume that h�t; x� = htx is related toH�t; x� in this way.

Proof of Lemma 3.1. It is clear that Z is nonnegative (resp., positive) if
and only if H ≥ 0 (resp., H > 0). That Z is a local martingale is a simple
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consequence of Itô’s formula; indeed, noting that Zt−Zt− = Zt−�H�t; 1Xt�−
1�, Itô’s formula gives

Zt = 1+
∫ t

0
GsZs− dBs +

∫ t
0

∫
R
h�s; x�Zs−M�ds;dx�

−
∫ t

0

∫
R
Zs−�H�s; x� − 1− h�s; x�� ν�dx�ds

+
∑

0<s≤t
Zs−

[
H�t; 1Xt� − 1− h�s; 1Xs�

]

= 1+
∫ t

0
GsZs− dBs +

∫ t
0

∫
R
h�s; x�Zs−M�ds;dx�

+
∫ t

0

∫
R
Zs−�H�s; x� − 1− h�s; x��M�ds;dx�

= 1+
∫ t

0
GsZs− dBs +

∫ t
0

∫
R
Zs−

[
H�s; x� − 1

]
M�ds;dx�:

This last expression is a local martingale. 2

The processes G, H and h can be chosen so that E�Zt� = 1 for all t, in which
case Z is a martingale.

The next result is essentially a summary of Theorems 3.24 and 5.19 in
Chapter III of Jacod and Shiryaev (1987) as they apply to the present setting.

Theorem 3.2. Let P̃ be a measure which is absolutely continuous with re-
spect to P on FT. Then

dP̃
dP

∣∣∣∣
FT

= ZT;

where Z is as in Lemma 3.1, for some G, H and h for which E�ZT� = 1.
Moreover, under P̃, the process

�3:3� B̃t = Bt −
∫ t

0
Gs ds

is a Brownian motion and the process X is a quadratic pure jump process with
compensator measure given by ν̃�dt;dx� = dt ν̃t�dx�, where

�3:4� ν̃t�dx� =H�t; x� ν�dx�;
and previsible part given by

�3:5� ãt = P̃�Xt� = at+
∫ t

0

∫
R
x�H�s; x� − 1� ν�dx�ds:

Remark. Jacod and Shiryaev (1987) treat only the case that h ≡ H − 1
for the process Z in Lemma 3.1. Also, in their treatment of characteristics
of general semimartingales, Jacod and Shiryaev (1987) introduce truncation
functions, and the corresponding results in Theorem 3.24 of that book depend
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in part on the choice of truncation function. In the present situation, assump-
tion (2.6c) renders the introduction of truncation functions unnecessary.

Turning now to the problem of pricing a contingent claim 0T, we wish to
find an equivalent measure Q under which the discounted price process Ŝt as
defined in (2.15) is a martingale; the price of 0T is then Q�exp�−

∫ T
0 rs ds�0T�.

By Theorem 3.2, under Q, X has Doob–Meyer decomposition

�3:6� Xt = M̃t + at+
∫ t

0

∫
R
x
(
H�s; x� − 1

)
ν�dx�ds;

where M̃ is a Q-martingale. In fact,

M̃t =Mt −
∫ t

0

∫
R
x
(
H�s; x� − 1

)
ν�dx�ds;

where M is the P-martingale in the Doob–Meyer decomposition of X under P.
Note that 1M̃t = 1Mt. Therefore, writing the discounted share price Ŝt in
terms of the Q-martingale M̃ and Q-Brownian motion B̃, we have

Ŝt = S0 exp
{∫ t

0
cσs dBs +

∫ t
0
σs dMs +

∫ t
0

(
aσs + bs − rs −

c2σ2
s

2

)
ds

}

×
∏

0<s≤t
�1+ σs1Ms� exp�−σs1Ms�

= S0 exp
{∫ t

0
cσs dB̃s+

∫ t
0
σs dM̃s+

∫ t
0

(
aσs + cσsGs+bs−rs−

c2σ2
s

2

)
ds

+
∫ t

0
σs

∫
R
x�H�s; x� − 1� ν�dx�ds

}

×
∏

0<s≤t
�1+ σs1M̃s�e−σs1M̃s :

Since

exp
{∫ t

0
cσs dB̃s +

∫ t
0
σs dM̃s −

∫ t
0

c2σ2
s

2
ds

} ∏
0<s≤t
�1+ σs1M̃s� exp�−σs1M̃s�

is a Q-martingale, a necessary and sufficient condition for Ŝ to be a martingale
under Q is the existence of G and H for which the process Z in Lemma 3.1 is
a positive martingale and such that

�3:7� cσsGs + aσs + bs − rs +
∫
R
σsx�H�s; x� − 1� ν�dx� = 0

for all s, almost surely. Note that h does not appear in (3.7), which is another
reflection of the fact that h is essentially unique, given H, in the sense of
the remark following Lemma 3.1. It will turn out that G and H are in fact
deterministic functions in all the cases considered in the sequel; in this case,
(2.5) ensures that Z in Lemma 3.1 is a positive martingale and the key con-
dition for an equivalent martingale measure is then (3.7). Moreover, B and
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X are still independent and have independent increments under Qy in this
connection, note that ν̃ is a deterministic measure.

Of course, (3.7) does not specify G and H, and hence the equivalent martin-
gale measure Q, uniquely. Below, we examine various approaches to choosing
G and H based on other criteria, additional to (3.7).

3.1. The Föllmer–Schweizer minimal measure. Recall that when the noise
Y in (2.12) is just a standard Brownian motion, the unique equivalent mar-
tingale measure Q is obtained by

�3:8� dQ
dP

∣∣∣∣
FT

= ZT;

where Z satisfies

dZt = γtZt dBt

and the process γ is chosen so as to make Ŝ a martingale under Q. In the
present setting, a natural analogue of this would be to use the martingale
measure Q defined by (3.8), where the Radon–Nikodym derivative Z is now
given by

dZt = γtZt−�cdBt + dMt�;
or equivalently

�3:9� Zt = 1+
∫ t

0
γsZs−�cdBs + dMs�:

In other words, the Brownian motion in the classical Black–Scholes setting
has been replaced by the martingale part of the noise process Y. We saw in
the proof of Lemma 3.1 that, in general,

Zt = 1+
∫ t

0
GsZs− dBs +

∫ t
0

∫
R
Zs−�H�s; x� − 1�M�ds;dx�:

Comparing this last expression with (3.9), we see that we require

�3:10� H�s; x� − 1 = c−1Gsx = h�s; x�;
so that γs = c−1Gs. [When c = 0, this just boils down to G ≡ 0; H�s; x� − 1 =
γsx.] To obtain a martingale measure, we now use the martingale condition
(3.7) together with (3.10). Putting

v =
∫
R
x2 ν�dx�;

it is easily verified that the solution to (3.7) and (3.10) is

�3:11�
Gs =

c�rs − bs − aσs�
σs�c2 + v� ;

H�s; x� − 1 =
(
rs − bs − aσs
σs�c2 + v�

)
x:
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In (3.9), we therefore have

�3:12� γs =
rs − bs − aσs
σs�c2 + v� :

Finally, we need some conditions to ensure that H�s; 1Xs� > 0; otherwise,
the measure we have obtained will not be a probability measure but only a
signed measure. Since we are assuming throughout this paper that the jump
size 1X ∈ �−c1; c2�, we require the right-hand side of (3.11) of be greater than
−1 for all x ∈ �−c1; c2�, which is equivalent to the condition that

�3:13� − 1
c2
<

(
rs − bs − aσs
σs�c2 + v�

)
<

1
c1
:

So far, we have done nothing more than show that one can obtain an equiv-
alent martingale measure by drawing an obvious analogy with the classical
Black–Scholes setting. It turns out, however, that the martingale measure
given by (3.8), (3.9) and (3.12) is precisely the Föllmer–Schweizer minimal
measure introduced in Föllmer and Schweizer (1991), which we shall proceed
to show.

The minimal measure is closely connected to a hedging portfolio, which
minimizes the risk involved in trying to duplicate a contingent claim 0T (pro-
vided such a portfolio exists). We briefly sketch the main ideas below, following
closely the treatment in Föllmer and Schweizer (1991) but omitting some of
the technical assumptions not essential to the exposition.

We adopt the notational convention that for any quantity ft, the discounted
quantity will be denoted by f̂t = exp�−

∫ t
0 rs ds�ft. The value Vt of any hedg-

ing portfolio can be written as Vt = ξtSt + ηt exp�
∫ t

0 rs ds� and hence the
discounted value is

V̂t = ξtŜt + ηt;
where ξ and η are, respectively, the number of units of stock and bond. Only
strategies for which VT = 0T P-a.s. are admissible. Define the cumulative cost
at time t by

Ct = V̂t −
∫ t

0
ξs dŜs

and the remaining risk by

E
[
�CT −Ct�2

∣∣Ft

]
:

(In complete markets, Ct is constant and hence the risk is zero.) The idea is to
look for strategies �ξ;η�; which minimizes the remaining risk in a local sense:
the risk is minimal under all “infinitesimal perturbations” of the strategy at
time t. This is equivalent to the following precise technical definition.

Definition 3.1. An admissible strategy �ξ;η� is called optimal if the asso-
ciated cost C is a square-integrable martingale orthogonal to the martingale
part (in the Doob decomposition) of Ŝ under P.
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Suppose now that the contingent claim 0T admits the following decomposi-
tion:

�3:14� 0̂T = 00 +
∫ T

0
ξs dŜs +LT

for some ξ, where Lt is a square-integrable martingale orthogonal to the mar-
tingale part of Ŝ under P. Then letting

V̂t = 00 +
∫ t

0
ξs dŜs +Lt;

ηt = V̂t − ξtŜt;
we see that �ξ;η� is an optimal admissible strategy. Conversely, an opti-
mal admissible strategy �ξ;η� gives a decomposition of the form (3.14) with
Lt = Ct − C0. Thus, the existence of an optimal strategy is equivalent to a
decomposition of the form (3.14). Next, we introduce the idea of a minimal
martingale measure.

Definition 3.2. An equivalent martingale measure Q is called minimal
if any square-integrable P-martingale which is orthogonal to the martingale
part of Ŝ under P remains a martingale under Q.

Clearly, if an optimal strategy and a minimal equivalent martingale mea-
sure Q exist, we have V̂t = Q�0̂T �Ft�; which motivates taking V0 = Q�0̂T� as
the price of the contingent claim. However, we are not able to say anything
about the existence of an optimal strategy in this paper.

It remains to show that the measure given by (3.8), (3.9) and (3.12) is
minimal. The argument here is the same as that in Föllmer and Schweizer
(1991) for the continuous case. Under P, Ŝ satisfies

�3:15�
Ŝt = Ŝ0 +

∫ t
0
σsŜs− �cdBs + dMs� +

∫ t
0
�aσs + bs − rs�Ŝs− ds

= Ŝ0 +Wt +At;

where

Wt =
∫ t

0
σsŜs− �cdBs + dMs�

is a P-martingale and

At =
∫ t

0
�aσs + bs − rs�Ŝs− ds

is a continuous adapted, and hence previsible, process. Therefore (3.15) gives
the Doob decomposition of Ŝ under P. Consider now a square-integrable P-
martingaleN which is orthogonal toW, so that �N;W� = 0. Hence �N;Z� = 0
for the density Z given by (3.9), which implies that N is a Q-local martin-
gale. Since N and Z are both square-integrable P-martingales, the Cauchy-
Schwartz inequality shows that NZ is L1�P�-bounded and so N is in fact a
Q-martingale.
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3.2. Pricing by martingale decompositions. In the continuous case, an im-
portant property of the minimal measure is that it gives Ŝ the law of its
martingale part under the Doob decomposition; in fact, the minimal measure
can be uniquely characterized by this property [see Föllmer and Schweizer
(1991)]. It turns out that when Ŝ is discontinuous as in the present setting,
this is no longer the case. On the other hand, the idea of using the martingale
measure under which Ŝ has the law of its martingale part has a certain in-
tuitive appeal. It is therefore interesting to ask which equivalent martingale
measure will give Ŝ the law of its martingale part in our present setting and
to compare it to the minimal measure.

Consider the Doob decomposition of Ŝ under P given by (3.15). Let Q be a
martingale measure as described in Theorem 3.2, satisfying the martingale
condition (3.7). Under Q, Ŝ satisfies

�3:16� Ŝt = Ŝ0 +
∫ t

0
σsŜs− �cdB̃s + dM̃s�;

where M̃ is the Q-martingale in (3.6) and B̃ is the Q-Brownian motion de-
scribed in Theorem 3.2. Specifically,

M̃t =
∫ t

0

∫
R
x�Q̃�ds;dx� − ν̃s�dx�ds�;

where Q̃�ds;dx� is a nonhomogeneous Poisson measure with compensator
measure ν̃s�dx� given by Theorem 3.2. Therefore, comparing (3.16) with the
form of W, we see that the only way in which Ŝ can have the law of W under Q
is to have ν̃ ≡ ν; which implies that H ≡ 1 and h ≡ 0 and Q must be given by

�3:17� dQ
dP

∣∣∣∣
FT

= exp
{∫ T

0
Gs dBs −

1
2

∫ T
0
G2
s ds

}
;

where, from (3.7),

�3:18� Gs =
rs − bs − aσs

cσs
:

However, for this to make sense, we require c 6= 0; in other words, the noise
must have a Brownian component. If the driving Lévy process has no Brow-
nian component, there is no martingale measure which would give Ŝ the law
of its martingale part.

The most interesting observation one can make about the measure given by
(3.17) and (3.18) is that it corresponds precisely to the classical Black–Scholes
formula, if we treat b + aσ as an overall drift which (3.17) removes by only
changing the drift of the underlying Brownian motion B while leaving the
jump part of the noise alone.

In the case of positive semimartingales, there is a multiplicative analogue
of the Doob decomposition. If Ŝ is any positive semimartingale, then it can be
written uniquely as Ŝt = Ŝ0RtCt, where Rt is a (local) martingale and Ct is a
previsible process [see Liptser and Shiryayev (1989)]. For the discounted stock
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price Ŝ, one can easily read off this decomposition from the formula (2.13); we
have Ŝt = Ŝ0RtCt, where

Rt = exp
{ ∫ t

0
cσs dBs +

∫ t
0
σs dMs −

1
2

∫ t
0
c2σ2

s ds

}

×
∏

0<s≤t
�1+ σs1Ms� exp�−σs1Ms�

is a P-martingale and

Ct = exp
{ ∫ t

0
�aσs + bs − rs�ds

}

is trivially previsible.
Elliott, Hunter, Kopp and Madan (1995) proposed pricing contingent claims

using the martingale measure under which Ŝ has the law of its martingale
part R under this multiplicative distribution. The motivation behind this is
that, as we saw in Section 3.1, the minimal measure may in general only be a
signed measure. In Elliott, Hunter, Kopp and Madan (1995) it is shown that,
under certain regularity conditions, the multiplicative decomposition always
results in a proper probability measure. Moreover, this approach has a natural
intuitive appeal similar to that based on the Doob decomposition and, for our
model, it actually gives the same answer, as we shall now demonstrate.

Let Q be any measure of the form described in Theorem 3.2 with G and H
satisfying (3.7). Then under Q,

Ŝt = Ŝ0 exp
{∫ t

0
cσs dB̃s +

∫ t
0
σs dM̃s − 1

2

∫ t
0
c2σ2

s ds

}

×
∏

0<s≤t
�1+ σs1M̃s� exp�−σs1M̃s�:

Comparing this with the form of R, we again require M ≡ M̃ and Q to be
the measure given by (3.17) and (3.18) in order for Ŝ to have the law of R
under Q. Also, for this to work there must again be a Brownian component.

3.3. Pricing by minimum relative entropy and Esscher transform. Gerber
and Shiu (1994) proposed pricing contingent claims by Esscher transforms.
Let θ ∈ R be fixed. The Esscher transform of a Lévy process Y [satisfying
(2.5)], or equivalently of its underlying canonical measure P, is defined to be
the process whose law Qθ is given by

dQθ
dP

∣∣∣∣
Ft

= exp�−θYt + tψ�θ��;

where ψ�θ� = − log E�exp�−θY1�� is the Lévy exponent of Y given by (2.8).
If the stock price process has constant coefficients, which is the case for the
model considered in Gerber and Shiu (1994), the value of θ can be chosen so
as to make the discounted price process Ŝ a martingale under Qθ. When the



520 T. CHAN

stock price process has time-dependent coefficients as in our model, we need
to consider generalized Esscher transforms of the form

�3:19� dQ
dP

∣∣∣∣
Ft

= exp
{
−
∫ t

0
θs dYs +

∫ t
0
ψ�θs�ds

}

and choose θs to satisfy the martingale condition. Of course, as an alternative
to (3.8) and (3.9), (3.19) is another natural analogue of the usual Girsanov
transform used for the Black–Scholes formula. In the framework of Theorem
3.2 and Lemma 3.1, if H�t; x� = exp�−θtx� and h�t; x� = −θtx, then in (3.2),
the product vanishes and moreover,

∫ t
0

∫
R
h�s; x�M�ds;dx� = −

∫ t
0
θs dMs = −

∫ t
0
θs dXs + a

∫ t
0
θs ds:

Therefore, comparing (2.8), (3.2) and (3.19), we see that the Esscher transform
corresponds to the choices H�t; x� = exp�−θtx�, h�t; x� = −θtx and G ≡ −cθ.
The martingale condition (3.7) can then be used to specify θ as follows:

�3:20� −c2σsθs + aσs + bs − rs +
∫
R
σsx

(
exp�−θsx� − 1

)
ν�dx� = 0:

[To see that this has a unique solution θ for which ψ�θs� <∞ for all s, define
F�θ� =

∫
R x�e−θx−1� ν�dx�−θ for θ ∈ �−h1; h2�, where h1 and h2 are as in (2.5).

Then it is easy to check that F is monotonically decreasing and F�θ� → +∞
as θ ↓ −h1 and F�θ� → −∞ as θ ↑ h2. Hence equations of the form F�θ� = c
have a unique solution in �−h1; h2�.]

The Esscher transform is a well-known tool in many actuarial applications
[see Esscher (1932)]; Gerber and Shiu were the first to show that it can also
be used in option pricing. Gerber and Shiu (1994) provide an interpretation of
this approach in terms of maximal expected utility. There is, in fact, another
useful interpretation of the Esscher transform; we shall show that it gives rise
to the equivalent martingale measure which has minimum relative entropy
with respect to P. Intuitively speaking, if one thinks of the measure P as
encapsulating some information about how the market behaves, then pricing
options by Esscher transform amounts to choosing the equivalent martingale
measure which is closest to P in terms of its information content.

For a fixed measure P, the relative entropy IP�Q� of any measure Q with
respect to P is defined to be

IP�Q� =
∫

log
dQ

dP
dQ =

∫ dQ
dP

log
dQ

dP
dP:

[Note that IP�Q� ≥ 0 for any Q. If Q is not absolutely continuous with respect
to P, IP�Q� is infinite.] For an equivalent martingale measure Q given by
Theorem 3.2 and the martingale condition (3.7), the relative entropy in terms
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of the Q-martingales B̃ and M̃ is therefore

IP�Q� = Q
[

log
dQ
dP

∣∣∣∣
FT

]

= Q
[∫ T

0
Gs dB̃s +

1
2

∫ T
0
G2
s ds

+
∫ T

0
hs dM̃s +

∫ T
0

∫
R
hsx�H�s; x� − 1� ν�dx�ds

−
∫ T

0

∫
R
�H�s; x� − 1− hsx� ν�dx�ds

+
∫ T

0

∫
R
�logH�s; x� − hsx� ν̃s�dx�ds

]

= Q
[

1
2

∫ T
0
G2
s ds+

∫ T
0

∫
R

[
H�s; x��logH�s; x� − 1� + 1

]
ν�dx�ds

]
:

[In the above calculation, we have written h�s; x� = hsx and used the results
(2.9) and (2.11).]

The problem of finding the equivalent martingale measure of minimum
relative entropy can clearly be reduced to that of minimizing

Q
[

1
2G

2
s +

∫
R

[
H�s; x��logH�s; x� − 1� + 1

]
ν�dx�

]

for fixed s, subject to (3.7). Because the measure Q varies with each choice of
G and H, it is a little less clear that the problem can be reduced further to
that of minimizing

�3:21� 1
2G

2
s +

∫
R

[
H�s; x��logH�s; x� − 1� + 1

]
ν�dx�

for each fixed s and ω, subject to (3.7). But it is clear that this last optimization
problem has a deterministic solution in G and H, because all the coefficients
σ , b and so on, are assumed to be deterministic. Denote by Q∗ the measure
associated with the optimal choice of G and H. The corresponding optimal
value I∗ of (3.21) is therefore also deterministic and for any other choice of G
and H with associated measure QG;H, we have

1
2G

2
s +

∫
R

[
H�s; x��logH�s; x� − 1� + 1

]
ν�dx� ≥ I∗

and hence

QG;H
[

1
2G

2
s +

∫
R

[
H�s; x��logH�s; x� − 1� + 1

]
ν�dx�

]
≥ I∗ = Q∗�I∗�:

It might seem at first sight that the natural way to minimize (3.21) subject
to (3.7) is to express G in terms of H using (3.7) and then substitute into
(3.21). However, the quadratic term in G in (3.21) would result in the square
of an integral involving H, which is difficult to handle. It turns out that the
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most convenient way to solve this optimization problem is first to fix G and
choose H to minimize

∫
R

[
H�s; x��logH�s; x� − 1� + 1

]
ν�dx�

subject to (3.7) and then minimize (3.21) (with the optimal H) over G.
Let λs be a continuous function and let

L�λ;H� =
∫
R

[
H�s; x��logH�s; x�−1�+1

]
ν�dx�+

∫
R
λsσsx�H�s; x�−1� ν�dx�:

Thus λ is a Lagrange multiplier associated with the constraint (3.7) and L is
the associated Lagrangian. Observe that H 7→ L�λ;H� is convex in H > 0, so
to find the optimal H, we require

d

dt
L�λ;H+ tF�

∣∣∣∣
t=0
= 0

for all F, which gives

H�s; x� = exp�−λsσsx�:

The Lagrange multiplier λ can be expressed in terms of G (assumed to be
fixed for the moment) via (3.7):

∫
R
σsx

(
exp�−λsσsx� − 1

)
ν�dx� = rs − bs − aσs − σsGs:

Since all the optimization is carried out for fixed s, we temporarily drop the
explicit dependence on s for the sake of clarity. The previous equation is then
simply

�3:22�
∫
R
σx�e−λσx − 1� ν�dx� = r− b− aσ − cσG:

Putting H ≡ e−λσx into (3.21) gives

�3:23� 1
2G

2 +
∫
R

[
1− e−λσx�λσx+ 1�� ν�dx�;

which we must now minimize over G. We simply differentiate the above with
respect to G and solve

�3:24� G+ λ′�G�
∫
R
λ�σx�2e−λσx ν�dx� = 0:

However, differentiating (3.22) shows that

λ′�G� = cσ
(∫
R
�σx�2e−λσx ν�dx�

)−1

and substituting into (3.24) gives G = −cσλ. [Similarly, we find the second
derivative of (3.23) is 1 + λ′�G�2

∫
�σx�2e−λσx ν�dx� > 0, so G = −cσλ does
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indeed give the minimum of (3.23).] Thus both G and H are now specified in
terms of λ, and restoring the s in (3.22) gives the equation for λs,

�3:25� −c2σ2
s λs + aσs + bs − rs +

∫
R
σsx

(
exp�−λsσsx� − 1

)
ν�dx� = 0:

Comparing (3.25) and (3.20), we see that this is precisely the measure con-
structed via the Esscher transform, with θ ≡ σλ.

As one of the main motivations behind the study of the Esscher transform
presented here is Gerber and Shiu (1994), it is interesting to see if similar
results hold for the model of stock price used in that paper, namely,

�3:26� St = S0 exp�σYt + bt�
for constants σ and b. For simplicity, we shall also take r ≡ 0, so that S = Ŝ.
The Esscher transform of Y is exactly the same as before; in the context of
Theorem 3.2 we have H�t; x� = e−θx, h�t; x� = θx and G ≡ cθ where θ is the
(constant) Esscher parameter appearing in (3.19). However, whereas for our
model the martingale condition used to specify θ is (3.7), a different martingale
condition applies to the Gerber–Shiu model (3.26). Since

St = S0 exp�cσBt + σMt + aσt+ bt�

= S0 exp
{
cσB̃t + σM̃t + aσt+ bt+ cσ

∫ t
0
Gs ds

+ σ
∫ t

0

∫
R
x�H�s; x� − 1� ν�dx�ds

}
:

Itô’s formula gives

dSt = σSt− dB̃t + σSt− dM̃t

+St−
{
cσGt + aσ + b+

c2σ2

2
+ σ

∫
R
x�H�s; x� − 1� ν�dx�

}
dt

+St−
{
exp�σ1M̃t� − 1− σ1M̃t

}

= σSt− dB̃t + σSt− dM̃t +St−

×
{
cσGt + aσ + b+

c2σ2

2
+ σ

∫
R
x�H�s; x� − 1� ν�dx�

}
dt

+St−
∫
R

(
exp�σx� − 1− σx

)
M̃�dt;dx�

+St−
∫
R

(
exp�σx� − 1− σx

)
ν̃�dx�dt:

Hence, in order for S = Ŝ to be a martingale under Q, we require

�3:27�
cσGt + aσ + b+

c2σ2

2
+ σ

∫
R
x�H�t; x� − 1� ν�dx�

+
∫
R
�eσx − 1− σx�H�t; x� ν�dx� = 0:
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In terms of θ, this translates into

�3:28� −c2σθ+ aσ + b+ c
2σ2

2
+
∫
R

[
�eσx − 1�e−θx − σx

]
ν�dx� = 0:

Turning now to the minimum relative entropy measure, we need to minimize
(3.21) subject to (3.27). Following exactly the same Lagrangian procedure as
before, we find

H�x� = exp
{
λ�1− exp�σx��

}
;

G ≡ −cσλ
(where λ is the Lagrange multiplier). Substituting this into (3.27) gives

�3:29�
−c2σ2λ+ aσ + b+ c

2σ2

2

+
∫
R

[
�exp�σx� − 1� exp

{
λ
(
1− exp�σx�

)}
− σx

]
ν�dx� = 0:

Comparing (3.29) with (3.28), we see that it is no longer possible to make the
identification θ = σλ and that (3.28) and (3.29), although similar, are in fact
different equations. Thus, the Esscher transform for the model (3.26) does not
correspond to the measure of minimum relative entropy. However, the two
are sufficiently similar to make one further worthwhile observation. If Y only
makes very small jumps, its Lévy measure ν is concentrated around 0. Making
the approximation

1− eσx ∼ −σx for small x

in the integrand of (3.29), we see that the solutions to (3.28) and (3.29) can
be approximated to some extent by θ ≈ σλ. Therefore, the Esscher transform
gives a measure which has approximately minimum relative entropy in this
sense. This is not surprising since the models (2.12) and (3.26) are identical
(but with different σ and b) if Y is Brownian motion, and so they should be
close in some sense when the jumps of Y are small.

4. Integro-differential equations for the valuation process. Con-
sider any contingent claim whose payoff depends only on the value at ma-
turity of the underlying security. Thus the payoff at time T can be written as
0T = g�ST� for some function g. The typical example is of course a European
call with strike price K, for which g�x� = �x−K�+. Let

Vt = Q
[
exp

{
−
∫ T
t
rs ds

}
g�ST�

∣∣∣∣Ft

]

be the value of the contingent claim at time t.
Recall that in the classical Brownian setting, the valuation process V ad-

mits a Feynman–Kac type representation Vt = u�t;St�, where u is the solu-
tion to the Cauchy problem associated with a linear PDE [see, e.g., Karatzas
and Shreve (1991)]. The same approach will carry over to the present set-
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ting without difficulty, the only difference is that the resulting equation is
an integro-differential equation, the integral term being associated with the
jumps in the Lévy process. As the essentials of the argument are standard
and well known, we shall simply sketch the derivation and leave the details
to the reader.

Recall that, under Q, the price of the underlying stock satisfies

dSt = σtSt−�cdB̃t + dM̃t� + rtSt− dt:
Let Gt be the following linear integro-differential operator:

Gtf�x� = 1
2c

2σ2
t x

2f′′�x� + rtxf′�x� +
∫
R

[
f�x+ σtxy� − f�x� − σtxyf′�x�

]
ν̃t�dy�:

Of course, Gt is the generator of St, as Itô’s formula applied to f�St� will
readily verify. For functions u�t; x�, we use the short-hand notation u̇ ≡ ∂u/∂t
and u′ ≡ ∂u/∂x.

Theorem 4.1. Let u�t; x� be the solution to the following Cauchy problem:

�4:1� u̇+Gtu− rtu = 0; u�T;x� = g�x�:
Then u admits the representation

u�t; x� = Qt; x
[
exp

{
−
∫ T
t
rs ds

}
g�ST�

]
:

Proof. For fixed t, simply apply Itô’s formula to the process t′ 7→
u�t′; St′� exp�−

∫ t′
t rs ds� to show that it is a Q-martingale, and then take its

Q-expectation. 2

The Markov property combined with the above result shows that Vt =
u�t;St�. Equation (4.1) can then be solved numerically as a practical way
to compute the price of the option.

5. Numerical examples. Throughout this section, we take as parame-
ters of our model σ ≡ b ≡ c = 1 and r ≡ 0. We calculate the price of a
European call option with strike price K = 1 and maturity at time t = 1
for various values of the initial share price S0, using each of the martingale
measures discussed in Section 3.

As a first example, we let Xt = �N1�t� −N2�t��/2 where N1 and N2 are
independent Poisson processes of rate 1. For this process, the Lévy measure
is ν = δ−1/2 + δ+1/2 and the previsible part is a = E�X1� = 0. Also (2.14) is
satisfied, so share prices St are nonnegative almost surely.

For the minimal measure we have, from (3.11),

H�x� = 1− 2
3x;

which satisfies the nonnegativity condition (3.13). Under this measure, N1
and N2 are Poisson processes with rates 2/3 and 4/3, respectively, and M̃t =
Xt + t/3 is a Q-martingale.
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Table 1
Prices based on Poisson process model

S0 Minimal measure Black–Scholes measure Esscher transform measure

0.50 0.135 0.242 0.152
0.75 0.281 0.480 0.304
1.00 0.451 0.749 0.482
1.25 0.636 1.035 0.676
1.50 0.832 1.335 0.880

Under the measure of Section 3.2, the law ofX remains unchanged and only
the drift of the Brownian part changes. For this reason, we shall henceforth
refer to this as the Black–Scholes measure.

For the Esscher transform measure, the solution to (3.20) is θ ≈ 0:6626.
Under this measure, N1 and N2 are Poisson processes with rates e−θ/2 and
eθ/2; respectively, and so M̃t =Xt + t sinh�θ/2� is a Q-martingale.

The processes involved are very simple to simulate; the prices in Table 1
are based on 5000 simulations.

As a further example, we take X to be a Gamma(1,1) process whose law is
given by

E
[
exp�−λXt�

]
=
(

1
1+ λ

)t
:

For this process, the Lévy measure is ν�dx� = x−1e−x1�0;∞��x�dx and the
previsible part is a = E�X1� = 1. Since the Lévy measure is supported on
�0;∞�, there is no sensible choice of parameters which would satisfy (3.13)
because in practice one should have b+aσ > r. We shall therefore not consider
the minimal measure for this process. For the Esscher transform measure, the
solution to (3.20) is θ =

√
2. Under this measure, X is still a Gamma process,

but now with shape parameter 1 and scale parameter θ+ 1, that is,

Qθ
[
exp�−λXt�

]
=
(

θ+ 1
θ+ 1+ λ

)t
:

Although a Gamma process is not too difficult to simulate, the prices in
Table 2 are obtained by numerically solving (4.1) rather than by simulating the

Table 2
Prices based on the Gamma process model

S0 Black–Scholes measure Esscher transform measure

0.50 0.149 0.107
0.75 0.295 0.240
1.00 0.465 0.403
1.25 0.653 0.587
1.50 0.852 0.785
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various processes as in the first example. Table 2 gives the values of u�0; S0�,
where u is the solution to (4.1).

6. Concluding remarks. We have focussed on only three possible ap-
proaches to option pricing under the framework of stock prices driven by
Lévy processes. There are many other approaches which have been suggested
by various authors. For most of these, explicit pricing formulas of the type
presented here should be obtainable. For example, Davis (1994) presents an
approach to option pricing based on utility maximization. It is possible to
characterize explicitly the associated martingale measure (in the framework
of Theorem 3.2) for a large class of utility functions—for example xγ/γ for
0 < γ < 1 and log x. Unfortunately, none of these utility functions gives rise
to any obviously “nice” martingale measures such as the ones discussed here.
In this regard, it is worth mentioning that Gerber and Shiu (1994) have noted
in their discussion that, for their model, the Esscher price corresponds to the
price obtained by the Davis utility approach if one takes as the utility function
xγ/γ, where γ is a function of the Esscher parameter, satisfying an equation
similar to (3.20). The main drawback of this idea is that the choice of utility
function depends not only on the investor’s risk-averseness or other aspects
of the investor’s preference, but also on the market itself since the Esscher
parameter depends on the market parameters. In any case, for the model
studied here based on (2.12), the Esscher transform does not admit such an
interpretation.
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