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INTERPLAY OF AVERAGES IN A FLUID QUEUE WITH

LONG RANGE DEPENDENCE INDUCED BY
HEAVY TAILS

By David Heath, Sidney Resnick1 and Gennady Samorodnitsky1
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We consider a fluid queue with sessions arriving according to a Pois-
son process. A long-tailed distribution of session lengths induces long range
dependence in the system and causes its performance to deteriorate. The
deterioration is due to occurrence of load regimes far from average ones.
Nonetheless, the extent of this performance deterioration is shown to de-
pend crucially on the average values of the system parameters.

1. Introduction. We consider the following fluid queuing model. Sessions
(ON periods) are initiated at a network server or multiplexer according to a
Poisson process with rate λ > 0. Each session is active for a random length
of time with distribution F and a finite mean µ; during this time it generates
network traffic at unit rate. We assume that the lengths of different sessions
are independent, and they are also independent of the Poisson arrival process.
The service rate is r > 0 units of traffic per unit time. If X�t� denotes the
amount of work (measured in units of network traffic, e.g., packets) in the
buffer at time t, then the content process �X�t�; t ≥ 0� satisfies

dX�t� =N�t�dt− r1�X�t� > 0�dt;(1.1)

where N�t� is the number of sessions active at time t. We will usually take
X�0� =N�0� = 0, but this is not an important assumption for the main results
of the paper. Observe that �N�t�; t ≥ 0� is the stochastic process describing the
number of customers in the system in an M/G/∞ queue. The mean values
of the system parameters determine whether the system described by (1.1)
reaches steady state, and we will always assume that

r > λµ:(1.2)

That is, the maximal service rate in the system exceeds the overall arrival
rate in the system.

The performance measure we are interested in is the expected time until
overflow of a large buffer. Specifically, assuming that the work in the system
is “collected” in a buffer of size γ, we call

τγ = inf�t ≥ 0x X�t� ≥ γ�(1.3)
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the time of buffer overflow. A system has good performance if the expected
time of buffer overflow Eτγ is large. The tail behavior of the session length
distribution F has crucial impact on the rate of growth of the expected time of
buffer overflow as γ → ∞. Exponentially fast decaying probability tails of F
have been found to imply in similar situations exponentially fast increase in
Eτγ as a function of γ. See, for example, Heath, Resnick and Samorodnitsky
(1997). On the other hand, power-like decay of probability tails of F have
been shown, in certain circumstances, to lead to a polynomially fast increase
in Eτγ as a function of γ [Resnick and Samorodnitsky (1997a)], and a similar
phenomenon has been observed in Heath, Resnick and Samorodnitsky (1997).

It has been argued in the literature that a decay in system performance
is caused by long range dependence in the input stream. This has been
observed in different situations by Duffield and O’Connell (1995), Ryu and
Lowen (1995), Erramilli, Narayan and Willinger (1996), Heath, Resnick and
Samorodnitsky (1998), Vamvakos and Anantharam (1996), Liu, Nain, Towsley
and Zhang (1997) and Resnick and Samorodnitsky (1997b). A survey is in
Boxma and Dumas (1996). Since heavy-tailed session length is known to cause
long range dependence in our model and in similar models [Jelenković and
Lazar (1998), Boxma and Dumas (1996), Heath, Resnick and Samorodnitsky
(1998), Willinger, Taqqu, Sherman and Wilson (1997), Resnick and Samorod-
nitsky (1997b)], the loss in performance of our fluid queue mentioned above
is not surprising. It is also not surprising that the performance loss tends
to grow as the session length distribution tails grow heavier, because the
length of memory tends to increase with heaviness of the distribution tails.
What is surprising is that the extent of the performance loss is determined
by an interesting interplay of the heaviness of the tails and the average
characteristics of the system, as will be described presently.

Let

k = inf�j ≥ 1x λµ+ j− r > 0�:(1.4)

Clearly, the parameter k is determined by the average characteristics of the
system. It is the minimal number of sessions, running simultaneously, re-
quired to change the direction of the drift in the system from negative to
positive. It turns out, from the nature of large deviations in the heavy-tailed
situation, that this is exactly when the amount of work in the buffer goes up by
any significant amount. Therefore, if the buffer is large, the buffer overflow
will most likely occur when at least k sessions are running simultaneously
and for a sufficiently long period of time. Since the time until this occurs is,
clearly, significantly affected by the value of k, the importance of the parame-
ter k for system performance becomes less surprising. We refer the reader to
Embrechts, Klüppelberg and Mikosch (1997) and Resnick and Samorodnitsky
(1997a) for a discussion of heavy-tailed large deviations.

Various assumptions have been used in the literature to model heavy-tailed
session lengths. In this paper we will impose only relatively weak assumptions.
Specifically, we assume that the session length distribution tail F̄ = 1−F is
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dominatedly varying. That is,

lim inf
x→∞

F̄�ax�
F̄�x�

> 0(1.5)

for some (equivalently, all) a > 1. Recall that such a distribution has finite
Matuszewska indices ∞ > α > β ≥ 0 such that for every ε > 0 there are C
and x0 such that

1
C
a−α−ε ≤ F̄�ax�

F̄�x�
≤ Ca−β+ε(1.6)

for all a > 1 and x ≥ x0. See Bingham, Goldie and Teugels [(1987), pages
65, 71]. To guarantee existence of a finite first moment we will often assume
that β > 1.

2. Bounds on the expected hitting time. The following is the main
result of this paper.

Theorem 1. Assume that the session length distribution F has a dominat-
edly varying tail, with Matuszewska indices in (1.6) satisfying β > 1. Assume
that (1.2) holds, and let k be defined by (1.4). Assume, further, that r − λµ is
not an integer. Then there is a C ≥ 1 and a γ0 > 0 such that

C−1γ
(
γF̄�γ�

)−k ≤ Eτγ ≤ Cγ
(
γF̄�γ�

)−k(2.1)

for all γ ≥ γ0.

It is interesting that Theorem 1 exhibits a “phase transition”-type depen-
dence for system performance on the service rate r. If one increases r without
changing the parameter k, then the asymptotic growth rate of the expected
time until overflow, Eτγ, does not change (even though the multiplicative con-
stant may be affected). Hence, the system performance sees little improve-
ment. On the other hand, once the service rate has increased enough to change
the parameter k, the rate of growth of Eτγ increases, and so the system per-
formance sees marked improvement. Indeed, if, for example, F̄�x� � constx−α

as x→∞, α > 1, then Theorem 1 says that

Eτγ � Cγk�α−1�+1

for large γ and some constant C. The effect of k on the system performance is
clearly visible.

Note that the assumption r−λµ not being an integer is the same as saying
that r− λµ− �k− 1� is strictly positive.

While the case r − λµ being an integer is not likely to be of practical im-
portance, the theoretical behavior of Eτγ in that case is, most likely, affected
by additional distributional properties of the session lengths. Note also that
the upper bound in (2.1) holds without the assumption that r − λµ is not an
integer.
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Unfortunately, the multiplicative constants in (2.1) are difficult to keep
track of in the generality of the situation we are considering in Theorem 1.
With stronger assumptions on the tail of the session length distribution F
(like regular variation) and careful bookkeeping, one should be able to get
certain bounds on these constants. In the simplest case, that of k = 1, it is
proved in Resnick and Samorodnitsky (1997a) that the limit

lim
γ→∞

F̄

(
γ

1+ λµ− r

)
Eτγ

exists, and the limit is identified under somewhat more restrictive assump-
tions on F. We suspect that under appropriate assumptions on F, a similar
result should hold for a general k, but the argument has, so far, escaped us.

Before proving this theorem completely we take several intermediate steps
in the next section. The theorem is then proved in Section 4.

3. Preliminary results. In this section we collect auxiliary results that
are needed in this paper. These results deal with various aspects of the fluid
model (1.1) and the underlying M/G/∞ queue. We are especially interested
in positive dependence occurring in these models. Our first result is a version
of the standard exponential one-sided large deviation bound.

Lemma 1. Let �Fγ; γ > 0� be a uniformly integrable family of probability
distributions on �0;∞� such that

∫ ∞
0
xFγ�dx� → µ > 0

as γ→∞. For a γ > 0; let �Z�γ�i ; i ≥ 1� be a sequence of i.i.d. random variables
with common distribution Fγ, independent of a Poisson process �Nγ�t�; t ≥ 0�
with intensity λγ such that

lim
γ→∞

λγ = λ > 0:

Denote

Wγ =
Nγ�γ�∑
i=1

Z
�γ�
i ; γ > 0:

Then for every 0 < ρ < 1 there is a cρ > 0 such that

P�Wγ ≤ ρλµγ� = o
(
exp�−cργ�

)
(3.1)

as γ→∞.

Proof. We give a short proof for completeness. Exponentiating and using
Markov’s inequality gives us for any θ > 0;

P�Wγ ≤ ρλµγ� ≤ exp�θρλµγ�E exp�−θWγ�

= exp
{
θρλµγ − λγγ

∫ ∞
0

(
1− exp�−θx�

)
Fγ�dx�

}
:
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Consider now only γ so large that λγ > ρ0:25λ and
∫∞

0 xFγ�dx� > ρ0:25µ.
By the uniform integrability we can choose M so big that

∫∞
M xFγ�dx� ≤

�ρ0:25 − ρ0:4�µ for all γ > 0. Finally, choose a θ so close to zero that 1− e−θx ≥
ρ0:25θx for all 0 < x ≤M. Then

P�Wγ ≤ ρλµγ� ≤ exp
{
θρλµγ − θρ0:5λγ

∫ M
0
xFγ�dx�

}

≤ exp
{
θρλµγ − θρ0:5λγ

(
ρ0:25µ− �ρ0:25 − ρ0:4�µ

)}

= exp
{
−�ρ0:9 − ρ�θλµγ

}
;

and we obtain (3.1) with any cρ < �ρ0:9 − ρ�θλµ. 2

The next lemma treats level crossings of a certain Markov chain with a
negative drift. The c’s in this lemma do not have to be the same. In general,
we reserve the letter c for a finite positive constant whose value is immaterial
and which may change each time it appears.

Lemma 2. Let X be a random variable such that EX < 0 and such that
for every ε > 0 there is c > 0 such that for all x large enough,

P�X > x� ≤ cx−β+ε(3.2)

for β > 1. Suppose that for each γ > 0, X�γ� is a random variable such that

X�γ�
st≤X, and such that for some d > 3 and h > 0;

P

(
X�γ� >

1
d
γ

)
≤ cγ−h(3.3)

for all γ large enough.

Let a ≥ 0. Define a family of Markov chains by Z
�γ�
1 = a, and

Z
�γ�
n+1 = max

(
Z
�γ�
n +X�γ�n ; a

)
; n ≥ 1;

where �X�γ�n ; n ≥ 1� are i.i.d. copies of X�γ�. Let

nγ = inf
{
n ≥ 1x Z�γ�n ≥ γ

}
:

Then for every δ > 0 and 0 < ρ < β− 1;

lim inf
γ→∞

P
(
nγ > δγ

min�h/2; ρd/3�) > 0:(3.4)

Proof. We call a cycle the interval of time between successive returns of
Z
�γ�
n to a. Denote the initial cycle length by C1. Since the length of each cycle

is at least 1, for every γ > a we have

nγ
st≥Gγ;(3.5)
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where Gγ is a geometric random variable with probability for success given by

pγ = P
[ C1∨
j=1

Z
�γ�
n ≥ γ

]
;(3.6)

the probability that �Z�γ�n � reaches or exceeds γ within a cycle. So Gγ is the
number of failures before the first success where success means a cycle max-
imum exceeds γ.

We now estimate pγ. We have

pγ = P

[ C1∨
n=1

Z
�γ�
n ≥ γ

]

≤ P
[ C1∨
n=1

Z
�γ�
n ≥ γ;C1 > γ

h/2
]
+P

[ C1∨
n=1

Z
�γ�
n ≥ γ;C1 ≤ γh/2

]

≤ P
[
C1 > γ

h/2]+P
[ C1∨
n=1

Z
�γ�
n ≥ γ;C1 ≤ γh/2;

C1∨
j=1

X
�γ�
j ≥

γ

d

]

(3.7)

+P
[ C1∨
n=1

Z
�γ�
n ≥ γ;C1 ≤ γh/2;

C1∨
j=1

X
�γ�
j <

γ

d

]

≤ P
[
C1 > γ

h/2]+P
[ �γh/2�∨
j=1

X
�γ�
j ≥

γ

d

]
+P

[ C1∨
n=1

Z
�γ�
n ≥ γ;

C1∨
j=1

X
�γ�
j <

γ

d

]

=x P1�γ� +P2�γ� +P3�γ�:

The assumption X�γ�
st≤X implies that the cycle length for �Z�γ�n ; n ≥ 1� is

stochastically dominated by the time of the first return to zero of the Lindley
process

S0 = 0; Sn+1 = �Sn +Xn+1�+; n ≥ 0(3.8)

[here and in the sequel a+ = max�a;0�] where �Xn; n ≥ 1� are i.i.d. copies of
X. Since the latter time of the first return to zero has a finite mean because
of the negative mean of X [see, e.g., Proposition 7.6.4 of Resnick (1992)] we
use Markov’s inequality to see that

P1�γ� ≤ cγ−h/2:(3.9)

Furthermore, by (3.3) we have

P2�γ� ≤ γh/2P
(
X�γ� >

1
d
γ

)
≤ cγ−h/2:(3.10)

Finally, to estimate P3�γ� let us consider an unconstrained random walk
defined by Z̃�γ�1 = 0, and

Z̃
�γ�
n+1 = Z̃

�γ�
n +X�γ�n ; n ≥ 1:
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Then

P3�γ� ≤ P
(

sup
n≥1

Z̃
�γ�
n ≥ γ − a; and the level γ − a

is initially reached without steps ≥ 1
d
γ

)
:

(3.11)

Let

m1�γ� = inf
{
n ≥ 1x Z̃�γ�n ≥

1
d
γ

}
:

For j ≥ 2 we define mj�γ� = ∞ if mj−1�γ� = ∞, whereas if mj−1�γ� <∞, we
define

mj�γ� = inf
{
n > mj−1�γ�x Z̃

�γ�
n − Z̃�γ�mj−1�γ� ≥

1
d
γ

}
:

Then it follows from (3.11) that, for all γ large enough (comparatively to a),

P3�γ� ≤ P
(
m�d/3��γ� <∞

)
=
(
P�m1�γ� <∞�

)�d/3�(3.12)

by the strong Markov property of the random walk. Here and in the sequel
�a� denotes the largest integer not exceeding an a ≥ 0. To check the first
inequality in (3.12), set

T�γ − a� = inf
{
nx Z̃�γ�n ≥ γ − a

}
:

Observe if the steps X�γ�n are bounded by γ/d, then at time m1�γ�, the maxi-
mum height of the random walk �Z�γ�n � is

γ

d
+ γ
d
= 2γ
d
:

Similarly, ifmj�γ� <∞, then after j steps, the maximum height of the random

walk �Z�γ�n � is j · 2γ/d. Therefore,
[
m�d/3��γ� = ∞;

T�γ−a�∨
n=1

X
�γ�
n ≤

γ

d

]

⊂
[
the maximum height of the random walk is

([
d

3

]
− 1

)
2γ
d

at time m�d/3�−1�γ� and the random walk never goes γ/d

higher,
T�γ−a�∨
n=1

X
�γ�
n ≤

γ

d

]

⊂
[ ∞∨
n=1

Z
�γ�
n ≤

2γ
3
+ γ
d
;
T�γ−a�∨
n=1

X
�γ�
n ≤

γ

d

]

⊂
[ ∞∨
n=1

Z
�γ�
n < γ − a;

T�γ−a�∨
n=1

X
�γ�
n ≤

γ

d

]
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provided

γ

(
2
3
+ 1
d

)
< γ − a

or

a < γ

(
1
3
− 1
d

)
:

Observe that it follows from the assumption X�γ�
st≤X that

P
(
m1�γ� <∞

)
≤ P

(
sup
n≥0

S̃n >
1
d
γ

)
;(3.13)

where �S̃n; n ≥ 0� is the unconstrained version of the random walk in (3.8):
S̃0 = 0 and

S̃n+1 = S̃n +Xn+1; n ≥ 0:

Fix a 0 < ρ < β− 1. It follows from (3.2) that there is a random variable Y

such that EY < 0, Y
st≥X, and

P�Y > y� is regularly varying at infinity with exponent ρ+ 1:(3.14)

Then

P

(
sup
n≥0

S̃n >
1
d
γ

)
≤ P

(
sup
n≥0

S∗n >
1
d
γ

)
;(3.15)

where �S∗n; n ≥ 0� is the walk S∗0 = 0 and

S∗n+1 = S∗n +Yn+1; n ≥ 0;

where �Yn; n ≥ 1� are i.i.d. copies of Y. Now, it follows from Embrechts and
Goldie (1982) that for a negative mean random walk satisfying (3.14) we have

P

(
sup
n≥0

S∗n >
1
d
γ

)
is regularly varying at infinity with exponent ρ:(3.16)

We conclude by (3.12), (3.13), (3.15) and (3.16) that for every 0 < ρ < β− 1,

P3�γ� ≤ cγ−ρd/3(3.17)

for all γ large enough. We conclude by (3.8), (3.9), (3.10) and (3.17) that for
any 0 < ρ < β− 1,

pγ ≤ cγ−min�h/2; ρd/3�(3.18)

for all γ large enough.
In particular, it follows from (3.18) that pγ → 0 as γ→∞. Therefore, pγGγ

converges weakly, as γ → ∞, to a mean 1 exponential random variable. We
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conclude that

lim inf
γ→∞

P
(
nγ > δγ

min�h/2; ρd/3�) ≥ lim inf
γ→∞

P
(
Gγ > δγ

min�h/2; ρd/3�)

= lim inf
γ→∞

P
(
pγGγ > δpγγ

min�h/2; ρd/3�) > 0

by (3.18). This completes the proof of the lemma. 2

Our next sequence of results deals with certain aspects of positive depen-
dence occurring in an M/G/∞ queue.

Lemma 3. Let �Zi; i ≥ 1� be the sequence of successive session lengths
(indexed by the order of their arrivals) in the M/G/∞ model underlying (1.1).
For i = 1;2; : : : let Ki denote the number of new sessions arriving during the
ith session (of length Zi). Then for every m ≥ 1 and ni = 1;2; : : : ; i = 1; : : : ;m
we have

P
(
K1 < n1; : : : ;Km < nm

)
≥

m∏
i=1

P
(
Ki < ni

)
:(3.19)

Proof. Let the Poisson arrival stream of sessions be �Ti; i ≥ 1� where
0 < T1 < T2 < · · · so that

N�A� =
∞∑
i=1

εTi�A�

is the number of sessions initiated in a set A (here εx is the point mass
at x.) The point process N is associated [Burton and Waymire (1985), page
1271; Resnick (1987), page 300] and so for intervals I1; : : : ; Im in �0;∞� and
nonnegative integers l1; l2; : : : ; lm;

P
(
N�Ii� < li; i = 1; : : : ;m

)

≥ P
(
N�Ii� < li; i = 1; : : : ;m1

)
P
(
N�Ii� < li; i =m1 + 1; : : : ;m

)
:

(3.20)

Another reference for other facts on associated random variables is Esary,
Proschan and Walkup (1967).

The proof of (3.19) is by induction on m. Since there is nothing to prove for
m = 1, assume that (3.19) holds for some m ≥ 1, and let us prove it for m+1.
For fixed ni ≥ 1, i = 1; : : : ;m consider a set in R2m+1

+ defined by

Bm;n1;:::;nm
=
{
�t1; : : : ; tm; tm+1; z1; : : : ; zm�x 0 < t1 < · · · < tm < tm+1,
z1 ≥ 0; : : : ; zm ≥ 0; and after the first m + 1 arrivals
of sessions at times t1; : : : ; tm; tm+1; the lengths of
the first m of which are z1; : : : ; zm; the condition

K1 < n1; : : : ;Km < nm is not yet violated
}
.
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We have then

P
(
K1 < n1; : : : ;Km < nm;Km+1 < nm+1

)

=
∫
Bm;n1;:::; nm

λm+1 exp
(
−λtm+1

)
dt1 · · ·dtm dtm+1F�dz1� · · ·F�dzm�(3.21)

×
∫ ∞

0
P

(m+1⋂
l=1

�Kl<nl�
∣∣∣∣Ti= ti;Zi= zi; i= 1; : : : ;m+1

)
F�dzm+1�;

where Ti stands for the arrival time of the ith session. Now, for fixed
t1; : : : ; tm; tm+1; z1; : : : ; zm ∈ Bm;n1;:::; nm

let Ii = �tm+1; ti+ zi� (= \ if tm+1 ≥
ti + zi), i = 1; : : : ;m. By the definition of Bm;n1;:::; nm

there are l1; : : : ; lm
such that

P
(
K1 < n1; : : : ;Km < nm;Km+1 < nm+1

∣∣Ti = ti;Zi = zi; i = 1; : : : ;m+ 1
)

= P
(
N�Ii� < li; i = 1; : : : ;m;N

(
�tm+1; tm+1 + zm+1�

)
< nm+1

)

≥ P
(
N
(
�tm+1; tm+1 + zm+1�

)
< nm+1

)
P
(
N�Ii� < li; i = 1; : : : ;m

)

= P
(
N
(
�tm+1; tm+1 + zm+1�

)
< nm+1

)

×P
(
K1 < n1; : : : ;Km < nm

∣∣Ti = ti;Zi = zi; i = 1; : : : ;m+ 1
)
;

where we have used (3.20). Substituting the above in (3.21) we obtain

P
(
K1 < n1; : : : ;Km < nm;Km+1 < nm+1

)

≥
∫
Bm;n1;:::; nm

P
(
K1 < n1; : : : ;Km < nm

∣∣Ti = ti;Zi = zi;

i = 1; : : : ;m+ 1
)

× λm+1 exp
(
−λtm+1

)
dt1 · · ·dtm dtm+1F�dz1� · · ·F�dzm�

×
∫ ∞

0
P
(
N
(
�tm+1; tm+1 + zm+1�

)
< nm+1

)
F�dzm+1�

=
∫
Bm;n1;:::; nm

P
(
K1 < n1; : : : ;Km < nm

∣∣Ti = ti;Zi = zi;

i = 1; : : : ;m+ 1
)

× λm+1 exp
(
−λtm+1

)
dt1 · · ·dtm dtm+1F�dz1� · · ·F�dzm�

×P
(
Km+1 < nm+1

)

= P
(
K1 < n1; : : : ;Km < nm

)
P
(
Km+1 < nm+1

)

≥
m+1∏
i=1

P
(
Ki < ni

)

by the assumption of the induction. This completes the proof. 2
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Lemma 4. Fix an m ≥ 1, and let

Ei =
{
during the ith session, the number of simultaneously
present newly arriving sessions is always less than m

}
;

i = 1;2; : : : :
(3.22)

Then for every n ≥ 1,

P
(
E1 ∩ : : : ∩En

)
≥
(
P�E1�

)n
:(3.23)

Proof. We start, once again, with a simple association statement. The
process �N�t�; t ≥ 0� describing the number of customers in the system in the
M/G/∞ queue consists of associated random variables. To see this, endow
Mp��0;∞�× �0;∞��, the space of point measures on �0;∞�× �0;∞�, with the
partial order “≤” defined by

ν ≤ µ

iff

ν�A� ≤ µ�A� ∀A ∈ B��0;∞�× �0;∞��;

which means the support of ν is contained in the support of µ. If

ψt = x
(
Mp��0;∞�× �0;∞�

)
;≤
)
7→ �R;≤�

is monotone, then since

M x=
∞∑
k=1

ε�Tk;Zk�

is a Poisson process on �0;∞�× �0;∞�, M is associated [Burton and Waymire
(1985), Resnick (1987)] and thus �ψt�M�; t > 0� is an associated family. It
remains to observe that if ν ∈Mp��0;∞�× �0;∞��, the map

ψt�ν� = ν
{
�s; z�x s ≤ t ≤ s+ z

}

is monotone and

ψt�M� =N�t�:

So we conclude �N�t�; t > 0� is an associated family of random variables.
We now prove (3.23), and the proof is by induction on n. For n = 1 there is

nothing to prove, so assume that (3.23) holds for some n ≥ 1, and let us prove
it for n + 1. In the following computation t2; : : : ; tn+1 stand for realizations
of the arrival times of the next n sessions after the start of the first session
(which is assumed to have arrived at time 0), and z1; z2; : : : ; zn+1 stand for
the corresponding lengths of the first n + 1 sessions. Recall that F is the
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distribution of the session lengths. We have

P
(
E1 ∩ · · · ∩En ∩En+1

)

=
∫
�0;∞�n

F�dz1� · · ·F�dzn�
∫

0<t2<···<tn+1

λn exp�−λtn+1�dt2 · · ·dtn+1

×
∫ ∞

0
F�dzn+1�P

(
A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1� ∩A2�zn+1�

)
;

(3.24)

where A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1� is the event that the number of si-
multaneously present newly arriving sessions during each one of the first
n sessions is always less than m and when arrivals 2; : : : ; n + 1 occur at
t2; : : : ; tn+1 and lengths of the first n + 1 sessions are z1; : : : ; zn+1. Also de-
fine A2�zn+1� to be the event that the number of simultaneously present
newly arriving sessions during the time zn+1 is always less than m. The
event A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1� is, of course, determined by the ses-
sions arriving after time tn+1, but for some combination of the parameters
z1; : : : ; zn; t2; : : : ; tn+1 and zn+1 the conditions describing the event may al-
ready be violated by the time tn+1, so no choice of new arrivals can, in that
case, make the event happen.

For t ≥ 0, let N1�t� denote the number of sessions that arrived to the
system after the time tn+1 and that are active at time t + tn+1. The process
�N1�t�; t ≥ 0� has the same law as the process �N�t�; t ≥ 0�, and, hence, is
associated. Furthermore, it is obvious that the indicator functions of the events
A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1� and A2�zn+1� are nonincreasing functions of
each of N1�t�’s. Therefore, these random variables are associated, and so

P
(
A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1� ∩A2�zn+1�

)

≥ P
(
A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1�

)
P
(
A2�zn+1�

)
:

(3.25)

Observe that the probability P�A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1�� is, for fixed
z1; : : : ; zn and t2; : : : ; tn+1, a nonincreasing function of zn+1. Furthermore, the
probability P�A2�zn+1�� is a nonincreasing function of zn+1 as well. Therefore,
for fixed z1; : : : ; zn; t2; : : : ; tn+1; if we consider P�A1�z1; : : : ; zn; t2; : : : ; tn+1y ·��
and P�A2�·�� as random variables on �R+;B;F�, they will be associated. We
conclude from this and from (3.24) and (3.25) that

P
(
E1 ∩ : : : ∩En ∩En+1

)

≥
∫
�0;∞�n

F�dz1� · · ·F�dzn�
∫

0<t2<···<tn+1

λn exp�−λtn+1�dt2 · · ·dtn+1

×
∫ ∞

0
F�dzn+1�P

(
A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1�

)
P
(
A2�zn+1�

)

≥
∫
�0;∞�n

F�dz1� · · ·F�dzn�
∫

0<t2<···<tn+1

λn exp�−λtn+1�dt2 · · ·dtn+1

×
∫ ∞

0
P
(
A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1�

)
F�dzn+1�

×
∫ ∞

0
P
(
A2�zn+1�

)
F�dzn+1�
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=
∫
�0;∞�n

F�dz1� · · ·F�dzn�
∫

0<t2<···<tn+1

λn exp�−λtn+1�dt2 · · ·dtn+1

×
∫ ∞

0
P
(
A1�z1; : : : ; zn; t2; : : : ; tn+1y zn+1�

)
F�dzn+1�P�E1�

= P
(
E1 ∩ · · · ∩En

)
P�E1�

≥
(
P�E1�

)n+1

by the assumption of the induction. This completes the proof. 2

If ��;F ;P� is a probability space, Ai ∈ F for i ≥ 1, and N a random
variable with nonnegative integer values on this probability space, then we
use the notation

N⋃
i=1

Ai x=
∞⋃
i=1

(
Ai ∩ �N ≥ i�

)
:

In the following lemma the events Ei are defined by (3.22).

Lemma 5. For every t > 0,

P

(N�t�⋃
i=1

Ec
i

)
≤ P�Ec

1�E�N�t��:(3.26)

Proof. Our claim (3.26) follows from the obvious fact that

P

(N�t�⋃
i=1

Ec
i

)
≤ E

(N�t�∑
i=1

1�Ec
i�
)

and the following version of Wald’s identity.
Let �Wi; i ≥ 1� be identically distributed random variables with a finite

mean on a probability space ��;F ;P�, and N a random variable with non-
negative integer values on the same probability space. Assume that

E�Wi �N = n� = E�Wi� for all n < i:(3.27)

Then

E

( N∑
i=1

Wi

)
= E�W1�E�N�:(3.28)

Indeed,

E

( N∑
i=1

Wi

)
=
∞∑
n=0

P�N = n�E
( n∑
i=1

Wi

∣∣∣∣N = n
)

=
∞∑
n=1

P�N = n�
n∑
i=1

E�Wi �N = n�
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=
∞∑
i=1

∞∑
n=i
P�N = n�E�Wi �N = n�

=
∞∑
i=1

( ∞∑
n=0

P�N = n�E�Wi �N = n�−
i−1∑
n=0

P�N = n�E�Wi �N = n�
)

=
∞∑
i=1

(
E�Wi� −E�Wi�

i−1∑
n=0

P�N = n�
)

= EW1

∞∑
i=1

P�N ≥ i� = E�W1�EN;

proving (3.28). 2

Our next lemma gives a bound on the order of magnitude of the probability
of the event E1 in (3.22) for a choice of parameters we will need in the sequel.

Lemma 6. Let F be a distribution whose tail 1−F is dominatedly varying
with Matuszewska index β > 1 in (1.6). For γ > 0 we let the distribution of the
session lengths Fγ be defined by

F̄γ�x� =
F̄�x�
F̄�γ�

; x ≥ γ:

Assume, further, that the intensity of the Poisson process of arriving sessions
is λF̄�γ�. Then there is a finite positive constant c = c�m� [m is the parameter
defining Ei in (3.22)] such that for all γ ≥ 1;

Pγ�E1� ≥ 1− c
(
γF̄�γ�

)m
:(3.29)

Here Pγ means that the corresponding probability is computed for a system
defined using this particular γ.

Proof. The proof is by induction in m. Take first m = 1. We have

1−Pγ�E1� =
1

F̄�γ�
∫ ∞
γ

(
1− exp

(
−λzF̄�γ�

))
F�dz�

= λF̄�γ�
∫ γ

0
exp�−λF̄�γ�x�dx+ λ

∫ ∞
γ
F̄�x� exp�−λF̄�γ�x�dx

=x I1�γ� + I2�γ�:

Clearly,

I1�γ� ≤ λγF̄�γ�:
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Furthermore, by (1.6) we have for all γ ≥ x0 and any 0 < ε < β− 1;

I2�γ� = λγ
∫ ∞

1
F̄�γy� exp�−λF̄�γ�γy�dy

≤ CλγF̄�γ�
∫ ∞

1
y−�β−ε� dy

= cγF̄�γ�
for some 0 < c <∞. Therefore, we have (3.29) for m = 1.

Assume now that (3.29) holds for an m ≥ 1, and let us prove it for m + 1.
We have

1−Pγ�E1� =
1

F̄�γ�
∫ ∞
γ
F�dz�Pγ

(
within time interval �0; z� there is a
time when at leastm+1 newly arrived

sessions are simultaneously active
)

≤ 1

F̄�γ�
∫ ∞
γ
F�dz�Pγ

(
within at least one of N�0; z� new ses-
sions arriving in �0; z�, the number of
simultaneously present subsequently

arriving sessions is at least m
)

.

(3.30)

However, by Lemma 5 and the assumption of the induction, we have

Pγ
(
within at least one of N�0; z� new sessions arriving in �0; z�
the number of simultaneously present subsequently arriving

sessions is at least m
)

≤ EN�0; z�Pγ (during a session, the number of simultaneously
present subsequently arriving sessions is at least m

)

≤ cF̄�γ�z
(
γF̄�γ�

)m
:

Substituting the above bound into (3.30), we obtain

1−Pγ�E1� ≤ c
(
γF̄�γ�

)m ∫ ∞
γ
zF�dz�:(3.31)

However, the same easy computation we used above in the case m = 1 shows
that

∫ ∞
γ
zF�dz� ≤ cγF̄�γ�;

all γ big enough. Substituting the above into (3.31) completes the inductive
step. 2

Lemma 7. LetX1; : : : ;Xn be independent random variables, and letA be a
measurable increasing set inRn [i.e., �x1; : : : ; xn� ∈ A and yi ≥ xi; i = 1; : : : ; n
implies �y1; : : : ; yn� ∈ A.] Then for any u,

P

( n∑
i=1

Xi > u; �X1; : : : ;Xn� ∈ A
)
≥ P

( n∑
i=1

Xi > u

)
P
(
�X1; : : : ;Xn� ∈ A

)
:
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Proof. The random variables X1; : : : ;Xn are independent, hence as-
sociated. If Vix Rn 7→ R; i = 1;2 are nonincreasing functions, then
V1�X1; : : : ;Xn�;V2�X1; : : : ;Xn� are associated. Choose

V1�x1; : : : ; xn� = 1
( n∑
i=1

xi > u

)
; V2�x1; : : : ; xn� = 1

(
�x1; : : : ; xn� ∈ A

)

and check both are monotone. The statement of the lemma now follows. 2

4. Proof of the main theorem. We are now in a position to prove our
main result. As often happens in similar situations, one of its two bounds is
quite a bit easier to prove than the other one.

Proof of Theorem 1. Choose any δ > 0 and take any n ≥ 1. Fix also
ε1 > 0 and 0 < ε2 < 1 such that

�r− k�ε1 + λµε2 ≤
k+ λµ− r

2
:(4.1)

Notice that if for some i = 0;1; : : : ; n− 1 at least k sessions of length at least
δ+ 2γ�1+ ε1�/�k+λµ− r� each arrive in the interval �iδ; �i+ 1�δ�, and if the
total length of the sessions of length at most 2γε1/�k+λµ−r� arriving in the
interval ��i+1�δ; �i+1�δ+2γ/�k+λµ−r�� is at least 2γ�1−ε2�λµ/�k+λµ−r�,
then by the time �i+ 1�δ+ 2γ�1+ ε1�/�k+ λµ− r� the amount of work in the
buffer is at least

�k− r�2γ�1+ ε1�
k+ λµ− r + 2γ�1− ε2�λµ

k+ λµ− r = 2γ
(
�1+ ε1� −

λµ

k+ λµ− r�ε1 + ε2�
)
≥ γ;

where the last inequality uses (4.1). Therefore,

τγ ≤ �i+ 1�δ+ 2γ�1+ ε1�
k+ λµ− r ≤ nδ+

2γ�1+ ε1�
k+ λµ− r:

If we choose

δ =Mγ with M> 2/�k+ λµ− r�;

then the intervals ��i+ 1�δ; �i+ 1�δ+ 2γ/�k+ λµ− r��, i = 0;1; : : : ; n− 1 are
disjoint. Denote by Aik the event that at least k sessions of length at least
δ+2γ�1+ε1�/�k+λµ−r� arrive in the interval �iδ; �i+1�δ�: LetBik be the event
that the total length of the sessions of length at most 2γε1/�k+λµ−r� arriving
in ��i+ 1�δ; ��i+ 1�δ+ 2γ�/�k+λµ− r�� is at least 2γ�1− ε2�λµ/�k+λµ− r�.
The previous discussion can be summarized as

n−1⋃
i=0

�AikBik� ⊂
[
τγ ≤ nδ+

2γ�1+ ε1�
k+ λµ− r�

]
;
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where ��Aik;Bik�;0 ≤ i ≤ n− 1� are independent. Therefore

P

[
τγ > nδ+

2γ�1+ ε1�
k+ λµ− r

]
≤ P

( n−1⋂
i=0

�Ac
ik ∪Bcik�

)

=
(
P�Ac

ik� +P�Bcik�
)n

= pnγ x=
(
p�1�γ + p�2�γ

)n
:

We conclude that

Eτγ =
∫ ∞

0
P�τγ > t�dt

≤
(
δ+ 2γ�1+ ε1�

k+ λµ− r

)
+
∞∑
n=1

∫ �n+1�δ+2γ�1+ε1�/�k+λµ−r�

nδ+2γ�1+ε1�/�k+λµ−r�
P�τγ > t�dt

(4.2)
≤
(
δ+ 2γ�1+ ε1�

k+ λµ− r

)
+ δ

∞∑
n=1

P

(
τγ > nδ+

2γ�1+ ε1�
k+ λµ− r

)

≤
(
δ+ 2γ�1+ ε1�

k+ λµ− r

)
+ δ 1

1− pγ
:

We now estimate 1−pγ. By the finiteness of the mean of the session length
distribution F and the fact that δ =Mγ we have

δF̄

(
δ+ 2γ�1+ ε1�

k+ λµ− r

)
→ 0

as γ→∞. Therefore,

1− p�1�γ =
∞∑
j=k

exp
(
−δλF̄

(
δ+ 2γ�1+ ε1�
k+ λµ− r

))

×
(
δλF̄�δ+ �2γ�1+ ε1�/k+ λµ− r��

)j

j!

∼
(
δλF̄�δ+ �2γ�1+ ε1�/k+ λµ− r��

)k

k!
≥ c�γF̄�γ��k

(4.3)

for large γ, where we have used (1.6). Recall that here, and in the sequel, c
stands for a finite positive constant, whose exact value is not being kept track
of, and which may change from time to time. By Lemma 1 we know that, as
γ→∞,

p�2�γ = o�e−cγ�;(4.4)

c > 0. Therefore, we conclude by (4.2), (4.3) and (4.4) that

lim sup
γ→∞

γ−1(γF̄�γ�
)k
Eτγ <∞:(4.5)

This proves the upper bound in (2.1). The lower bound is a bit trickier.
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We modify our fluid queue as follows. Instead of a single server with service
rate r, we consider two servers, one with service rate k−1 and the other with
service rate r1 = r − �k − 1� > 0, each with an infinite buffer. [Note that
since λµ + �k − 1� ≤ r by definition of k, we have r1 > 0.] We route the
arriving sessions as follows. Fix some K > 0 (to be specified later). All the
work arriving in the sessions whose length exceeds γ/K goes into the buffer
of server 1, while all the rest goes into the buffer of server 2. The state of the
new system is, by definition, the combined amount of work in the two buffers.
It is clear that the new system is less efficient than the original one, and so
the state of the new system will not reach level γ at a later time than the
original system. We will use the same notation, τγ, to describe the first time
the state of the new system reaches γ. Since we will work only with the new
system until the end of the proof of the theorem (unless stated otherwise), no
confusion should result from this ambiguity in notation. To prove the lower
bound in (2.1) we need to prove that (for the new system)

lim inf
γ→∞

γ−1(γF̄�γ�
)k
Eτγ > 0:(4.6)

Let Xi�t� denote the content of the buffer of server i = 1;2 at time t ≥ 0,
and let

τ�1�γ = inf�t ≥ 0x X1�t� > 0�
and

τ�2�γ = inf�t ≥ 0x X2�t� ≥ γ�:

Thus X1�·�, X2�·� are independent and hence so are τ�1�γ and τ�2�γ . Then τγ ≥
min�τ�1�γ ; τ�2�γ �, and so for every ε > 0;

Eτγ ≥ Emin
(
τ�1�γ ; τ

�2�
γ

)
≥ εγ

(
γF̄�γ�

)−k
P
(
min

(
τ�1�γ ; τ

�2�
γ

)
≥ εγ

(
γF̄�γ�

)−k)

= εγ
(
γF̄�γ�

)−k
P
(
τ�1�γ ≥ εγ

(
γF̄�γ�

)−k)
P
(
τ�2�γ ≥ εγ

(
γF̄�γ�

)−k)
:

(4.7)

It follows from (4.6) and (4.7) that to complete the proof of the theorem it is
enough to show that there is an ε > 0 and a δ > 0 such that for all γ large
enough,

P
(
τ�1�γ ≥ εγ

(
γF̄�γ�

)−k) ≥ δ(4.8)

and

P
(
τ�2�γ ≥ εγ

(
γF̄�γ�

)−k) ≥ δ:(4.9)

We actually prove (4.9) first. That is, we concentrate on a system consisting
of single server with service rate r1 = r − �k − 1�, which serves all sessions
whose length does not exceed γ/K. That is, now the term “system” corresponds
to this particular system describing the environment of server 2 and “sessions”
are only sessions of length not exceeding γ/K. Let us denote by �Un; n ≥ 1�
the increasing sequence of times the number of active sessions in this system
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changes from 1 to 0. These times are the ends of busy periods in the underlying
M/G/∞ queue. We also refer to these times as ends of activity periods.

If Sn =X2�Un� is the state of the system at time Un, then �Sn; n ≥ 0� is a
Markov chain with S0 = 0. We also denote

Mn = sup
Un−1≤t<Un

X2�t�; n ≥ 1;

with U0 = 0. Then Mn is the maximal level the amount of work in the sys-
tem reaches during the nth activity period of the underlying M/G/∞ queue.
Letting

nγ = inf�n ≥ 1xMn ≥ γ�;

we see that

τ�2�γ ≥ Unγ−1:(4.10)

If we denote by In and Bn the lengths of the nth idle and busy periods of the
underlying M/G/∞ queue (that is, Un−Un−1 = In+Bn), then it follows from
(4.10) that, for all u > 0 and m ≥ 1,

P
(
τ
�2�
γ ≥ u

)
≥ P

(
Unγ−1 ≥ u

)
≥ P

( nγ−1∑
i=1

Ii > u

)

≥ P
(
nγ > m;

m∑
i=1

Ii > u

)
:

(4.11)

We may, obviously, assume that the idle times I1; I2; : : : are defined on
a probability space ��1;F1;P1�, while all the rest of random variables gen-
erating the underlying M/G/∞ queue live on another probability space
��2;F2;P2�, and the overall probability space is ��1 ×�2;F1 × F2;P1 ×P2�.
Observe that for a fixed ω2 ∈ �2 the event �nγ > m� depends only on
I1; : : : ; Im, and the indicator of this event is a nondecreasing function of
I1; : : : ; Im. Therefore by Lemma 7,

P

(
nγ > m;

m∑
i=1

Ii > u

)
= E2

(
P1

(
nγ > m;

m∑
i=1

Ii > u

))
(4.12)

≥ E2

(
P1
(
nγ > m

)
P1

( m∑
i=1

Ii > u

))

= E2
(
P1�nγ > m�

)
P

( m∑
i=1

Ii > u

)

= P
(
nγ > m

)
P

( m∑
i=1

Ii > u

)
:(4.13)
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It follows from (4.11) and (4.12) that

P
(
τ
�2�
γ ≥ εγ

(
γF̄�γ�

)−k) ≥ P
(
nγ > 2εγ

(
γF̄�γ�

)−k)

×P
( ∑

i≤2εγ�γF̄�γ��−k
Ii > εγ

(
γF̄�γ�

)−k
)
:

However, by the law of large numbers,

P




∑

i≤2εγ
(
γF̄�γ�

)−k
Ii > εγ

(
γF̄�γ�

)−k

→ 1

as γ→∞. Therefore, (4.9) will follow once we prove that

lim inf
γ→∞

P
(
nγ > 2εγ

(
γF̄�γ�

)−k)
> 0:(4.14)

Let us denote by Fn the nth time the number of active sessions in the
system changes from 0 to 1. These times are the beginnings of activity periods
in the underlying M/G/∞ queue. Let Zn =X2�Fn�, n ≥ 1. We agree that the
nth activity periods begins at time Fn and ends at time Un. Let us also denote
by Wn the total amount of work brought in the system during the nth activity
period and by Vn the length of that part of the nth activity period Bn when
the buffer is not empty. Clearly, 0 ≤ Vn ≤ Bn. Denoting Z1 = 0, we see then
that �Zn; n ≥ 1� is a Markov chain satisfying the recursion

Zn+1 = �Zn +Wn − r1Vn − r1In�+; n ≥ 1:(4.15)

Let

mγ = inf�n ≥ 1x Zn ≥ γ�:
Observe that, if for some k, Zk < γ/2 and Mk ≥ γ, then Wk > γ/2. Therefore,

P
(
nγ > 2εγ

(
γF̄�γ�

)−k) ≥ P
(
mγ/2 > 2εγ

(
γF̄�γ�

)−k)

−P
(
Wk >

γ

2
; some k ≤ 2εγ

(
γF̄�γ�

)−k
)
:

(4.16)

Fix an h > 0. We now use Proposition 1 of Resnick and Samorodnitsky
(1997a), according to which we can and do choose K (used in routing the
sessions arriving in the system) so big that

P�Wk > u� = o�u−h� as u→∞:(4.17)

If we choose h > k�α− 1� + 1, where α is a Matuszewska index in (1.6), then

P

(
Wk >

γ

2
; some k ≤ 2εγ

(
γF̄�γ�

)−k
)
≤ 2εγ

(
γF̄�γ�

)−k
P

(
W1 >

γ

2

)
→ 0

as γ→∞. Therefore, (4.14) will follow once we prove that for some ε > 0;

lim inf
λ→∞

P
(
mγ > εγ

(
γF̄�γ�

)−k)
> 0:(4.18)
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Note that we have used the dominated variation to simplify the above expres-
sion.

To analyze the Markov chain (4.15) we note that the random variables
�Wn; n ≥ 1� and �In; n ≥ 1� form two independent sequences of i.i.d. random
variables. Unfortunately, the sequence �Vn; n ≥ 1� is not, in general, an i.i.d.
sequence (it is i.i.d. in the case 0 < r1 < 1). Furthermore, Vn depends on
Zn−1. To overcome this difficulty, we use several simple observations. First of
all, we see that

E
(
Vn �Zn−1 = a

)
↑ EBn as a ↑ ∞:(4.19)

Let us denote by W0
n the amount of work brought in the system during the

nth activity period of the original system (i.e., the system we discussed before
splitting the arriving sessions into two different streams). Similarly, letB0

n and
I0
n be the corresponding busy and idle times. An elementary renewal theorem

gives us the relation

EW0
n = λµE

(
B0
n + I0

n

)
;

and so we have

E
(
W0

n − r1B
0
n − r1I

0
n

)
= �λµ− r1�E

(
B0
n + I0

n

)
< 0(4.20)

by the definition of k. It follows from (4.20) and (4.19) that there is an a ≥ 0
such that for all γ ≥ γ0�K� we have

E
(
W0

n − r1In
)
− rnE

(
Vn �Zn−1 = a

)
< 0:(4.21)

From that point on we fix an a such that (4.21) holds.
We now modify the Markov chain (4.15) by defining Z∗1 = a, and

Z∗n+1 = max
(
Z∗n +Wn − r1Vn − r1In; a

)
; n ≥ 1:(4.22)

Intuitively, if at time Fn the amount of work in the buffer is less that a, we
add the necessary work to increase the amount of work in the system to a.
Alternatively, think of putting into the buffer a false bottom at level a. Observe
that if both (4.15) and (4.22) are driven by the same random variables, then
we have Z∗n ≥ Zn for all n ≥ 1.

Let ��Wn;V
′
n�; n ≥ 1� be a sequence of i.i.d. random vectors such that

the distribution of �W1;V
′
1� is the same as the distribution of �W1;V1� with

Z1 = a. Assume also that the sequence ��Wn;V
′
n�; n ≥ 1� is independent of

the i.i.d. sequence �In; n ≥ 1�. Then �W1;V
′
1�

st≤ �W1;V1� if Z1 ≥ a and so can
put ��Wn;Vn;V

′
n�; n ≥ 1� on the same probability space such that V′n ≥ Vn

for all n ≥ 1. We now modify the Markov chain (4.22) as well, by defining
Z′1 = a, and

Z′n+1 = max
(
Z′n +Wn − r1V

′
n − r1In; a

)
; n ≥ 1:(4.23)

We then have Z′n ≥ Z∗n ≥ Zn for all n ≥ 1. Defining

m′γ = inf�n ≥ 1x Z′n ≥ γ�;



INTERPLAY OF AVERAGES AND LONG RANGE DEPENDENCE 373

we see that m′γ ≤mγ. Therefore, (4.18) will follow once we prove that for some
ε > 0;

lim inf
λ→∞

P
(
m′γ > εγ

(
γF̄�γ�

)−k)
> 0:(4.24)

We now use Lemma 2. To this end we consider three systems. One is the
present system we are considering (that is, we are admitting only sessions
whose length does not exceed γ/K). The second one is the original system (we
admit all sessions) and the last one is the system in which we admit only ses-
sions whose length does not exceed γ0�K�/K, where γ0�K� is the level defined
in (4.21). We only consider γ ≥ γ0�K�. Observe that we can put all three sys-
tems on the same probability space in the following way. Start by generating
an activity period of the third system. For each arrival in this activity period
we always have an arrival in the first two systems such that the correspond-
ing session lengths for all three systems are ordered, with the longest for the
second system and the shortest for the third system. Furthermore, within the
activity period of the third system we generate additional arrivals for the first
system, and at the same time points we will also have an arrival for the orig-
inal (second) system, whose length is at least the length of the corresponding
session for the first system. Finally, still within the activity period of the third
system we generate yet additional arrivals for the original (second) system.
It is clear that the activity periods in the the first two systems will not end
until the end of the activity period of the third system. Let V∗1 be the amount
time within the activity period of the third system that the latter system is
not empty, and let W0

1 be the amount of work brought in the original (sec-
ond) system within its activity period. Let X = W0

1 − r1V
∗
1 − r1I1. Let also

X�γ� = W1 − r1V
′
1 − r1I1, where W1; I1 and V′1 correspond to the system of

interest (i.e., the first system). We assume that the state of all three systems
at the time their activity periods start is a. Observe that with this construc-
tion we have V′1 ≥ V∗1 and W1 ≤ W0

1. Therefore, X�γ� ≤ X, from which we

conclude that X�γ�
st≤X. It follows from (4.21) that EX < 0. Furthermore, it

follows from Theorem 1 of Resnick and Samorodnitsky (1997a) and the dom-
inated variation of F that (3.2) holds. Finally, it follows from Proposition 1
of Resnick and Samorodnitsky (1997a) that for every h > 0 there is a K so
large that

P

(
X�γ� >

1
K1/2

γ

)
≤ P

(
W1 >

1
K1/2

γ

)
= o�γ−h�

as γ→∞. Thus we have verified all the conditions of Lemma 2, with d =K1/2.
The claim (4.24) follows from Lemma 2 once we make sure that

h

2
≥ 1+ k�α− 1�

and

�β− 1��K1/2/3� ≥ 1+ k�α− 1�;
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where α and β are the Matuszewska indices in (1.6). However, both of these
conditions will be satisfied once we choose K large enough. Therefore, we have
proved that for K large enough (4.9) holds.

We now prove (4.8). We concentrate now on a system in which sessions
arrive according to a Poisson process with rate λF̄�γ/K�. The service rate in
the system is k − 1. Let us denote by Si the time of the arrival of the ith
session, and let the events Ei be defined by (3.22) with m = k − 1. Further,
let ε1 be a positive number satisfying

ε1 > ελK
α/2;(4.25)

where α is the Matuszewska index from (1.6). We have by Lemma 4,

P
(
τ�1�γ ≥ εγ

(
γF̄�γ�

)−k)

≥ P
({
S�ε1�γF̄�γ��−�k−1�� ≥ εγ

(
γF̄�γ�

)−k}⋂ ⋂

j≤ε1�γF̄�γ��−�k−1�

Ej

)

≥ P
(
S�ε1�γF̄�γ��−�k−1�� ≥ εγ

(
γF̄�γ�

)−k)

(4.26)

−
(

1−P
( ⋂

j≤ε1�γF̄�γ��−�k−1�

Ej

))

≥ P
(
S�ε1�γF̄�γ��−�k−1�� ≥ εγ

(
γF̄�γ�

)−k)

−
(
1−

(
P�E1�

)ε1�γF̄�γ��−�k−1�)
:

Here �a� is the smallest integer greater or equal to a. Observe that by (4.25)
and the law of large numbers

P
(
S�ε1�γF̄�γ��−�k−1�� ≥ εγ

(
γF̄�γ�

)−k)→ 1(4.27)

as γ → ∞. Furthermore, by Lemma 6 there is a finite positive constant c =
c�K� such that for all γ big enough,

P�E1� ≥ 1− c�K�
(
γF̄�γ�

)k−1
:

Therefore, for all γ big enough,

1−
(
P�E1�

)ε1�γF̄�γ��−�k−1�
≤ 1− 1

2 exp�−ε1c�K��:(4.28)

Now (4.8) follows from (4.26), (4.27) and (4.28), and the proof of the theorem
is complete. 2
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