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PREDICTING RANDOM FIELDS WITH INCREASING
DENSE OBSERVATIONS'

By MiIcHAEL L. STEIN
University of Chicago

This work investigates some spectral characteristics of the errors of
optimal linear predictors for weakly stationary random fields. More
specifically, for errors of optimal linear predictors, results here explicitly
bound the fraction of the variance attributable to some set of frequencies.
Such a bound is first obtained for random fields on R¢ observed on the
infinite lattice dJ for all J on the d-dimensional integer lattice. If the
spectral density exists, then the faster the spectral density tends to 0 at
high frequencies, the more quickly this bound tends to 0 as & | 0. Under
certain conditions on the spectral density, a similar result is given for
processes on R where both observations and predictands are confined to a
finite interval and observations may not be evenly spaced. These results
provide a powerful tool for studying a problem the author has previously
addressed using different methods: the properties of linear predictors
calculated under an incorrect spectral density. Specifically, this work gives
a number of new rates of convergence to optimality for predictors based on
an incorrect spectral density when the ratio of the incorrect to the correct
spectral density tends to 1 at high frequencies.

1. Introduction. In a series of previous papers (Stein 1990a, b, 1993,
1997), I have argued that the low frequency behavior of a random field does
not have much impact on optimal linear predictions of the field in some
region when it is densely sampled in this region. These works addressed this
problem by considering what happens when using an incorrect spectral
density whose high frequency behavior is similar to that of the actual
spectrum. This work takes a more direct approach to studying the effect of
low frequency behavior on prediction problems for mean 0 weakly stationary
random fields by bounding the fraction of variance of prediction errors
attributable to various frequency ranges.

To clarify what I mean by the fraction of the variance attributable to a set
of frequencies, consider a mean 0 weakly stationary random field Z with
spectral measure F. The spectral representation of Z is given by Z(x) =
e exp(i ©Tx)Y(d w), where Y is a mean 0 complex random measure such
that, for Borel sets A; and A,, E{Y(A))Y(A,)} = F(A; N A,). For real con-
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stants a,,..., a,, the random variable X = X?_,a,;Z(x,) can then be written
as X = [paV(w)Y(dw), where V(w) = L}_,a; expiw’x;). Furthermore,
Var(X) = [ V(w)|*?F(dw). Let Z be the random field obtained by filtering
out frequencies outside of B in the spectral representation: Zz(x) =
/5 exp(i 0" x)Y(d w). Then Var{L]_,a;Zy(x;)} = J5/V(0)?F(d w) and we might

reasonably call [5|V(w)?F(d®)/[g«|V(w)]?F(dw) the fraction of the variance
of X attributable to the frequencies in B.

The main results in this work (Theorems 1 and 3) put bounds on this ratio
when the random variable X is the error of an optimal linear predictor.
Loosely speaking, what the results say are that if observations are densely
packed in the region in which we wish to predict the random field, then this
ratio will be small if the set B does not contain frequencies of too large a
magnitude. To give an explicit example of this phenomenon, suppose Z is a
mean 0 process on R and Cov{Z(x), Z(y)} = e %*~Y for some a > 0 so that Z
has spectral density f(w) = a/{m(a? + w?)}. Consider predicting Z(}8) based
on observing Z(0) and Z(§). The optimal linear predictor is then easily shown
to be 3sech(6a){Z(0) + Z(8)} and the variance of the prediction error is
tanh(38a) [Daley (1991), page 134]. Moreover, for covariance functions of this
form, these results are unchanged if further observations are added outside of
[0, 6]. For this prediction problem, the function V corresponding to the
prediction error is V(w) = 3sech(38a)(1 + e'“?) — e!“®/2 and straightforward
calculations yield

|V(w)[* = {sech(46a) — cos(3wd) — 1}2
= 4 sech?(3a8){sin?(}dw) + sinhz(iSa)}z.
The second expression for |V( w)|? is useful for numerical calculations because

it does not involve taking differences of nearly equal numbers. Define the
ratio

[l V(@) f(w) do

r(T,6) = 5 .
[V (o) [ f(w) do

Then if 6|0 and &7 |0, it can be shown that r(T,8) ~ (83T /16m)
(a? + :T?). We see that r(T, §) is small whenever 6T is small. For « = 1,
Figure 1 plots r(T, §) computed numerically for § = 0.1, 0.05, and 0.025 as a
function of T'. As expected, r(T, §) is small whenever 8T is small and (T, §)
decreases rapidly with 6 for fixed T

Theorem 1 in Section 2 provides an elementary but powerful approach to
bounding the fraction of variance of prediction errors attributable to a set of
frequencies when Z is observed at 8J for all J € Z¢, the integer lattice in d
dimensions. Prediction problems based on such an infinite lattice of observa-
tions are relatively easy due to the fact that the space of possible linear
predictors is isomorphic to a space of periodic functions [Hannan (1970)]. For
any mean 0 weakly stationary process on R¢, Theorem 1 gives a simple and
generally sharp uniform (over all possible linear predictions) bound on the
fraction of the variance of a prediction error attributable to some set of
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Fic. 1. Plots of r(T, §) when K(x) = e !*! for various values of &: solid line, 8 = 0.1; dashed
line, 8§ = 0.05; open circles, & = 0.025.

frequencies. For a fixed and bounded set of frequencies, the faster the
spectral density f(w) tends to 0 as |w| — «, the faster this bound tends to 0
as 6 0.

While Theorem 1 is of independent interest, it can be used to obtain results
on the effect of misspecifying the spectral density on prediction. For example,
Theorem 2 gives rates of convergence as 6 |0 for the uniform asymptotic
optimality of predictions when using f; instead of the correct f, under the
conditions f,(w)(1 + |w))* is bounded away from 0 and « and there is a
positive y such that (1 + |wD{f (@) — fo(0)}/fo(w) is bounded. Furthermore,
the rates obtained are shown to be the best possible unless perhaps « = y or
o= 2y.

Section 3 uses a similar approach to obtain some results for the much more
difficult setting when the observations and predictands are confined to a
finite interval in R. Theorem 3, which is proven in Section 4, gives the crucial
bound on the fraction of the variance of prediction errors attributable to a
frequency band of the form (—r,r). As in the infinite lattice setting, this
bound yields new results on the effects of using a misspecified spectral
density in prediction. These results hold much more generally than the only
previous bounds for a nonperiodic process observed on a finite interval, given
in Stein (1990b). In the course of proving Theorem 3, I obtain a result that is
relevant to the design of time series experiments as studied by Sacks and
Ylvisaker (1966, 1968, 1970, 1971). The Appendix describes this connection.

Optimal linear prediction of a random field with mean 0 is generally called
simple kriging in geology and hydrology [Cressie (1993), Christakos (1992)]
and is extensively used in the atmospheric sciences, where it is called
objective analysis [Daley (1991)]. Ordinary kriging, which is just best linear
unbiased prediction when the mean of the random field is an unknown
constant [Christensen (1991), Robinson (1991)], is more commonly used in
geological applications. While the focus here is on simple kriging, many of the
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results obtained also apply to ordinary kriging. In particular, combining
results of Section 3 with those in the Appendix yields bounds on the effect of
adopting an incorrect spectral density on ordinary kriging predictions.

2. Infinite lattice. Consider a mean 0 weakly stationary random field Z
on R? with spectrum F and covariance function K(x) = [z« exp(i 0”x)F(d o).
Let H, be the linear envelope of all finite sums of the form Xc;Z(x;) with c,s
real and x/s in R%. For % and k in H,, define their inner product as E(hk)
and let H(F) be the Hilbert space given by the closure of H, with respect to
this inner product. Similarly, let 7|, be the linear envelope of functions
expressible as finite sums of the form Xc; exp(i w’x ;) with ¢/’s real and x;’s
in R For ¢ and u in %), take their inner product as (¢, u)r =
Jrie(w)u( w)F(dw) and define [[¢llr = (¢, go)}:/z. Let 7°(F) be the closure of
7, with respect to this inner product. Identify Yc;,Z(x;) with Xc; exp(i wTx )
and extend this correspondence to limits of such sums under their respective
norms. Denoting by /4 the element 7°(F') corresponding to A € H(F), this
correspondence is a unitary isomorphism of H(F) and 7 (F): E(hk) =
Ch, k)p.

Next, let H;(F) be the subspace of H(F) generated by Z(8J) for J € Z¢
and Z;(F) the corresponding subspace of 7'(F). Define e(h, §) to be the error
of the best linear predictor of & when Z(8J), J € Z¢, is the set of observa-
tions. Equivalently, e(h, §) is the difference between A and its projection on
H,(F).If V € 7°(F) corresponds to the error of a best linear predictor, then V
is orthogonal to 7;(F); that is, (V,U)r = 0 for all U € 7;(F).

Let A(r) = (—ar, wr]?. For a symmetric Borel set B C A(6 1), define

Y,F(S + 278 1)
YrezaF(S + 2787 1J)’
where the supremum is over symmetric Borel subsets S of B, ¥'; indicates
summation over J € Z¢ \{0}, S + x means the set S translated by x and 0/0

is defined to be 0. The following result puts a bound on how much of the
variance of a prediction error can come from the frequencies in the set B.

My(F,B) = sup

THEOREM 1. Suppose V € 7°(F) is orthogonal to 73(F). Then, for any
symmetric Borel set B C A(671),

(2.1) /B|V(w)|2F(dw) < My(F,B)IIV|3.

Furthermore, if Y ;F(-+ 278 'J) is absolutely continuous with respect to F(-)
on B,
2
JslV(@)["F(dw)
Vi

where the supremum is over all V € 7°(F) orthogonal to 73(F) satisfying
V1% > 0. If there are no such V, define this supremum as 0.

(2.2)

= M,(F, B),

PrOOF. Note that (2.1) is trivial if |[V]|% = 0 or M (F, B) = 1, so assume
otherwise. Consider the function V; z(w) with period 275" in each coordi-
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nate, V; z(w) = V(w) for w € B and V; z(w) = 0 for o € A(6~ ')\ B. Then
My(F, B) < 1 and B symmetric imply V; 5 € Z;(F). Thus

0= [ V(o)Vs z(@)F(de)

= [IV(0)F(de) + L'[ V(o + 276" 1)V, z(@)F(dw + 2787 1),
B J B
so that

fB|V(w)|2F(dw>

< Z// V(o + 2776*1J)VSYB(Q,)|F(dw + 276~ 1)
J B

< {Z/fBW(w + 278 )" F(dw + 275 1)
J

1/2
XL [ Vs (@) F(do + 2776‘1J)}
J B

2 M5 F’B 2 v
< [{IIVII% - fBlV(w)| F(dw)}#(ﬁ.’g)/;v(wﬂ F(dw)} ;

where the second inequality is by Cauchy—Schwarz. Straightforward algebra
yields (2.1).

To prove (2.2), note that it is trivial if M (F, B) = 0, so assume otherwise.
Denote by ¢ the Radon-Nikodym derivative of ¥, F(- + 2w§'JJ) with respect
to X, c,«F(-+ 278 1J) on B. Given & € (0, My(F, B)), let B, be the subset of
B on which ¢(w) > M (F, B) — &. By the definition of M (F, B), L ;. ,«F(B,
+ 278~ 1J) > 0, so that, by assumption, F(B,) > 0. Next, define a function V
by

, for /=0, weB,,
1-1/¢(w), for J #0, w € B,_,

and 0 otherwise. Then it is straightforward to show that V € 7(F), V is
orthogonal to Z;(F) and IVII%Z > 0. Furthermore fBIV(w)IZF(dw) = F(B,)
and ¢(w)/{1 — ¢(w)} is the Radon—Nikodym derivative of X, F(-+ 275 1eJ)
with respect to F' on B,, so that

V(w+ 2w6 1) = {

IVI% = F(B,) +[B{% - 1} Y F(dw+ 2757 1J)
. w J
1
— F(B,) +f3{<p(w) - 1}F(dw)
F(B,)

< —— .
M,(F,B) — ¢
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It follows that [5|V(w)|?F(dw)/IIVI% > M,(F, B) — £, which implies (2.2)
since ¢ can be taken arbitrarily small. O

The condition preceding (2.2) that ¥, F(- + 278~ J) be absolutely continu-
ous with respect to F on B is always satisfied if M;(F, B) < 1. It may not
hold if M (F,B) =1, in which case, (2.2) can be false. In particular, if
M (F, B) = 1 and the support of F does not intersect B, then [5|V(w)|?F(d o)
is trivially always 0 so that the left-hand side of (2.2) is in fact 0, not 1.

Let us now consider some specific cases of Theorem 1. Suppose F has
density f with respect to Lebesgue measure and there exist positive con-
stants C, and C; and « > d such that

(2.3) Co(l+ o) “<flo) <Ci(1+]|ol) .

Then if B(r) is the ball of radius r centered at the origin with r < 7/8 so
that B(r) c A(671),

C'1 a ’ -
My(F,B(r)) < —((1+7r)" sup Y 'lo+ 276 'J|“
Co weB() J
(2.4)

v

= g—:{w} &(a),
where &,(a) = X;|J] % As a second example, suppose there exist positive
constants «, C, and C, such that
Cyexp(—alol) < f(w) < C,exp(—alwl|).
Then, for r < /8,
M,(F,B(r))

C
< —exp(ar) sup Y exp(—alw + 278 1J))
Co weB(r) J

IA

C
—lexp(Z ar) Y. exp(—2amd |J])
Co 7

IA

¢ d 1
C—exp(Zar) (2d — 1) " exp(—2amé™")
0

©

oo d
+24d Y, Y exp(—2aﬂ'5_1d_l/2 ZJi)}

Ji=d dy,...,dg=0 i=1

C
—lexp{—Za(ﬂ'S*1 —-r)}
Co

) 244
x|(2d —1)" + = |
{1 — exp(—2amd 'd"1/?)}

IA
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where the third inequality follows by splitting up the sum over J into those
terms for which all components of J have magnitude of at most d and all
other terms. We see that, for r fixed and 6 |0, Ms(F, B(r)) tends to 0 more
quickly if f tends to 0 more quickly at high frequencies. While this behavior
might initially appear to be unexpected, note that sampling theorems [Jerri
(1977)], which give conditions under which perfect interpolation is possible,
are an extreme example of this phenomenon. More specifically, suppose the
process is bandlimited and B is the support of F. If B is contained in A(571),
then M,(F, B) = 0, which implies [3|V(w)*?F(dw) =0, so that [V|% =0
since F' has 0 mass outside B. We have just proven the standard sampling
theorem for random fields observed on an infinite lattice with spacing &,
which says that perfect interpolation is possible if the support of F is a
subset of A(871). Thus, Theorem 1 can be viewed as an extension of sorts of
the sampling theorem to nonbandlimited spectra.

Another way to think about Theorem 1 is in terms of the spectral represen-
tation of the prediction error process. Suppose V(w; x, 8) is the function in
7°(F) corresponding to e(Z(x), §), the prediction error at x. Then M (F, B)
small implies that [z.V(w;x,8)Y(dw) will be similar to e(Z(x), ) =
JriV(w; x, 8)Y(d w) uniformly in x. Thinking of e(Z(x), §) as a random field
on R? we have that the prediction error random field is only slightly
distorted by filtering out the frequencies in B when M (F, B) is small. Carr
(1990) and Christakos [(1992), page 359] note that the prediction error
random field can be viewed as a high-pass filter but they do not provide any
quantitative assessment of this phenomenon.

Next consider applying Theorem 1 to the properties of linear predictions
based on an incorrect spectral density. Suppose F, and F, have positive
spectral densities f, and f; satisfying

2.5 0<e Sf—SC‘ < oo forall w,
0 f() 1
Ow

so that H(F,)) = H(F)) as sets. Define E; as expectation under F, and e;(k, §)
as the error of the best linear predictor of A under F,. Let H_;(F) be the set
of those h in H(F) for which Ee(h, §)* > 0. Under (2.5), H_;(F,) = H_(F)).
Think of F; as the true spectrum and F, as the presumed spectrum used to
calculate linear predictors and evaluate their mean squared errors. Then

Eyfey(h, 8) —eo(h, 8))°  Eye(h,8)” — Eyeo(h, 5)°
Eoeo(h’S)2 Eoeo(h’5)2

is the relative increase in mean squared error due to using F, instead of the
correct F,, where the equality follows from the fact that e (%, &) is orthogo-
nal to all elements of Hs(F,) under F,, and hence is orthogonal to e,(k, §) —
eo(h, 8). Another measure of the effect of presuming F, is the spectrum is

Eyey(h,8)" — Egey(h, 8)°
EOel(h’ 5)2

(2.6)

(2.7)

b
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the relative difference between the presumed mean squared error under Fj,
given by E,e,(h, §)?, and the actual mean squared error of this predictor,
given by E,e,(h, §)%. If both (2.6) and (2.7) are near 0, then little is lost in
using F, both to predict & and to evaluate the mean squared error of the
prediction. Daley [(1991), Section 4.9] reviews work in the atmospheric
sciences that also takes the approach of considering the effects of using a
fixed but wrong covariance structure on subsequent predictions. From a
practical perspective, it would be more satisfactory to assess the effect of
using an estimated spectral density on subsequent predictions. However, 1
maintain that it is essential to have a good understanding of the simpler
problem of the effect of using a fixed but incorrect spectral density in order to
know what one should mean by a good estimate of the spectral density when
the ultimate goal is prediction. Handcock and Stein (1993) and Handcock and
Wallis (1994) discuss the use of Bayesian methods to account for the uncer-
tainty in the covariance structure on subsequent predictions.

For h € H(F)), the element in 7°(F,) corresponding to e,(k, §) is [Hannan
(1970)]

ZJ}“i(w+2778_1J)lAl(w+2775_1J) i
(o + 2w8 1) ~ h(w).

Té(w’h’ fz) =

Define ¢(w) = {f((w) — fo(w)}/fo(w), ulr) = sup,c sy ¥(0), I(r) =
inf,, ¢ a¢ye Y(w) and m(r) = max(|u(r)|, |I(r)]. Then, for » € H(F,),

|E191(h, 5)2 — Eqey(h, 5)2|
=\fRdfo<w)¢(w)|Ts(w,h,fl)lz dw\
<cit[  flolb(@)|T (o kA do
(2.8)
+m(8 ) [ fo(@)|Ti(w,h )] do
A(87 1)

<cit[  flolb(@)|T (o kA do

+ m(8 V) Eyey(h, 8)°.

Next consider bounding Ey{e,(k, 8) — e,(h, §)}°. Define f; by f;(w) = fy(®)
for o € A(671) and f;(w) = f(®) elsewhere. Then

Eofes(h, 8) — eg(h, 8))" < 2E,{ey(h, 8) — e;(h, 8))’

(2.9)
+ 2E,{es(h, 8) —ey(h, 8)).
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By equation (5) of Cleveland (1971),

{w(s ") -1 HY

{1+u(s H}1+ 1(5—1)}Eoeo(h, 5)%.

(2.10) Ey{es(h,8) —ey(h, )} < .

The function I'(w) = Ts(w, h, ;) — Ts(w, h, f;) has period 278! in each
coordinate and for w € A(871),

fo(o@)¥y(w)Ts(w,h, f1)
folw) + X, fi(w+ 277671J) '

I'(w) =
Thus,
Eqfey(h, 8) —es(h, 8))"
= [ fol@)Ir(o) do
- /A(371)§fo(w + 2767 1)

fo( @) () Ty(w, h, ) [
(2.11) | Fo(@) + 2 filw + 25 1) | 2

ZJfO(LU+ 2776711'])
<

X fo(@)¥( )| Ty(w, b, £)[* do

<ot max(l e ) [ f(o)p(@) [Ty, h, )] do,

so that, for h € H_;(F,),

Eylei(h,8) —eo(h, 8)}2
Eqeq(h, 8)°
(2.12) < {u(sil) - 1(571)}2
T2ft+uw(sH1+ 167}
2max(1,¢,")

coBoeq(h, 8)2

[ w(@) ()T (o, h, i) do
AT

using (2.9)-(2.11). To make further progress in (2.8) or (2.12), we need to
bound integrals of the form

[ (@) f()T(w.h f)] do,
A1)
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where o = || in (2.8) and o = ¥? in (2.12). The following lemma gives one
example of how Theorem 1 can be used to give such a bound.

LeMMA 1. Suppose [, satisfies (2.3) and there exist positive D and B such
that 0 < 0(w) < DA + |w)™? for all . Then, for any h € H(F)),

[ o) ()T, h i) do
A

) B C ) a .
SDElel(h"s)z[z(;) + BCOI(;) §d(a)£)w6 (1+r)Far|.

Proor. Let dB(r) be the surface of B(r). Then
2
[ o(e) (@) T(w, b, ) do
A(s™D

<[ o()f()T(0,h, )] do
B(ws™1)

5\° .
+D(—) / fil)|Ty(w, hy 1) dw
AN\ B(#ms™ Y

B
< Df”5'1(1 +r) Pp(r)dr+ D(E) Eey(h, )%,
0 o
where
p(r) = [ AT (b ) u(dr)

and w(dv) indicates the surface measure on dB(r). Define P(r) = [{p(s)ds.
By Theorem 1, P(r) < My(F,, B(r))E e,(h, §)* and, by definition, P(75° 1) <
E,e(h, 8)?. Integrating by parts,

/07571(1 + r)pr(r) dr

- (1 + 7—;)31)(775—1) + ,8/077871(1 +r) P P(r) dr

IA

v

B 1
{(f) + BT+ )My (Fy, B(r)) dr | Brey(h, 8)".
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Lemma 1 then follows from (2.4). O

Lemma 1 allows us to obtain explicit bounds on the effects of misspecifying
the spectral density:

THEOREM 2. If f, satisfies (2.3), f1/f, satisfies (2.5) and |¢(w)| < D1 +
lw)~7 for all w, then

|Brei(h, 8)° — Egey(h, 8)°|

i —1\Ha=7}
(213) sup O/ §minta,v) 10g 51 1
heH_y(F)) Eye (A, 6)2 ( ( ) )
and
E,{ey(h,8) —ey(h, 8)) _ -
(214) sup 0{ 1( ) 0( )} _ O(Smln(a’zy)(log 5_1)1( 27)),

heH_4(F,) Eoeo(haﬁ)2

where 1{-} is an indicator function. Furthermore, except possibly in the case
a=1vin(2.13) and a = 2v in (2.14), these bounds are sharp in the sense that
there exist f, and f, satisfying the stated conditions for which both conclu-
sions are false if O(-) is replaced by o(-).

Before proving this result, let us consider its interpretation. The larger the
power of & on the right-hand side of (2.13) or (2.14), the smaller the bound on
the effect of using f; instead of the correct f,. Figure 2 schematically
illustrates the rates as a function of y for a given «. We see that for y < a/2,
the exponent of § in (2.14) is twice that in (2.13). This result supports the
empirical finding of geostatisticians that misspecifying the covariance struc-
ture has a greater effect on the evaluation of mean squared errors than on
the predictions themselves [Starks and Sparks (1987)]. However, in neither
case can the rate by faster than O(5%), so that, when y > «, the two rates are
the same. Stein (1997) gives a result similar to (2.14) for periodic processes
but the rate given there is not as good when vy < (a + d)/2.

Power of § ’

0 af2 a

¥

Fi1G. 2. Schematic plot of rates of convergence in Theorem 2: solid line, power of § in (2.13);
dashed line, power of § in (2.14).
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While Theorem 2 is stated in terms of a random field with known mean 0,
the same result applies if the mean is an unknown constant u. The point is
that, whenever Z has a spectral density, u can be recovered with probability
1 from the observations on the lattice for any 8 > 0, which follows from
results of Yaglom [(1987), Section 16]. Thus, there is no meaningful difference
between simple and ordinary kriging in this setting.

PrOOF OF THEOREM 2. To prove (2.13), just apply Lemma 1 and the bound
on || to (2.8). To prove (2.14), apply Lemma 1 and the bound on 2 to (2.12).
To prove the sharpness of the bounds, suppose fy(w)=(1+|w)™* and
Y(w) =1 + |w)~”. First consider A(w) = exp(—lwlz) € 7°(F,). Then

Eoeo(ha5)2
Cu ZJexp(—|w+27T5_1J|2)(1 +|w+2775_1J|)_a
= [ (1 +]w) —
R (14 o+ 278 1)

—exp(—lwlz)} dw

= [ Y +lo+2m5 K] "
AGYH g

T exp(—lo + 2m8 W) (1 + o + 278 1) ©
X —a
Y14 o+ 2767 1))

2
(2.15) —exp(—|w+2775_1K|2)} dw

=f (1+|w|)_aexp(—2|w|2)
A(™YH

—an 2

"(1+ o+ 278 1|

% 7 ( w T )_a do
ZJ(1+|w+2778_1J|)

+/ Y1+ lo+ 276 Kl) ©
AG™YH g

Xexp(—2|w|2){ (1 +la) dw

T,(1+ o+ 2767 )
+ 0(e /?)

= 6¢
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as 6|0, where a(8) < b(8) as 6 |0 means b(5) positive and a(5)/b(8) is
bounded away from 0 and « for all sufficiently small 8. Since f,,/f; satisfies
(2.5), we also have E,e (h, §)* < 6 as & | 0. Next,

Ee(h, 5)2 —Epey(h, 5)2

e Y fi(w+ 2m8 1) |2
- a=vy _ 2 J/1
- /A(afl)(l + |wl) exp(—2|w| ){ Y fi(0+ 25 1) w

+ "1+ |w+ 278 K])) * 7 exp(—2|w/?
fA(@fw%( ) p( @ )

fi(w) ’
. { Ty fuw + 270 1) } o

+ O(e 1/?)

= 8% 4 517
as & |0, which, together with (2.15), proves the sharpness of (2.13) for o # y.
To prove the sharpness of (2.14) when «a < 2y, as § |0,

Eyfeo(h, 8) — ey(h, 8))°
= f B Y folw+ 2w67'K)
A™H g

{ T, fo( @+ 27671 Jexp(—lw + 2781 J )
X

ZJfO(w + 2776_1J)

L fi(w+ 278 ' )exp(—low + 2778_1J|2) ? p
Y, f(w+ 2m8 1) @

x] (1-|—|w|)3a{2fo(w+2778*1J)exp(—|w+2776*1J|2)
A6 J
XY fi(w+ 278 1)
J

Y o+ 2767 )exp(—|w + 2778_1JI2)
J
2
X Y folw+ 277'871J)} do
J

= A(a,l)(l + lol) “{fo(w)exp(—lwl );’fl(w + 2787 1)

—fi(w)exp(—lw®) Y fo(w + 27r6—1J)} do
J

+ 0(e /?)
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= 1+ o)’ exp(—2|ol?
‘/;x(ﬁ’l)( “) p( ¢ )

1 1

!

X @ aty
1+ lwl) 7 (1 +|w+ 278 1))

1 1

2
— - ’ 1 do+ O(e V/?
(1 + |l) ”§ (1+|w+ 275 1J)) } ( )

o S2
= 52,

which together with (2.15), proves the sharpness of (2.14) when a < 2y. To
prove the sharpness of (2.14) when « > 2y, take f, and f, as before and
define hy; = H{w € A(§7 1)}, which is in 7°(F,). Then

Sfo(w+ 2787 1T) |
Eoeo(h3,6)2=fA(81)fo(w){ sfol@ T )} ®

T, folw+ 278 1)

+f Z/fo(a)+277671e])
A(™Y g

(2.16) y fol ) zdw
ZJfO((U + 27T8_1J)
= (1+|w|)082“dw+ 5% dw
A7) A(5™Y
< 5 ¢
as 6 |0; and,
Eyleq(hs, 8) — ey(hs, 5)}2
2
N fo(0) fo(w) - fi( ) _ do
A5~ Yifolw+ 2767 J) Yifi(w+ 2767 J)

1
<[ .0 |w|>“{2

7 (1+|w+2m5 )"

2
1 . 1
- > Y =1 do
(1+le)” 7 (1+]|o+ 2757 1))
Now we can choose ¢ > 0 independent of & such that

1 1 1

! !

(o3 22 o4
(I+lol)" 7 (1+ o+ 275 1J)) § (1+ o+ 275 )"




256 M. L. STEIN

for all w € A(£871), so there exists a constant C such that, for all § suffi-
ciently small,

Eofeq(hs, 8) — ey(hy, 8))

1
>C 1+w) Y -
fA(aS‘l)( ) %: (1+]o+ 278 1))

= 5a+ 2y—d
which, together with (2.16), proves the sharpness of (2.14) for o > 2vy. O

3. Observations on a finite interval. The arguments in the previous
section were critically dependent on the fact that the Hilbert space generated
by the observations was isomorphic to an easily characterized space of
periodic functions. When the observations do not have such a special struc-
ture, obtaining results analogous to Theorems 1 and 2 is much more difficult.
Theorem 3 here considers processes observed perhaps unevenly on a finite
interval and gives a bound analogous to the special case (2.4) of Theorem 1
when « = 2n for a positive integer n. This bound is then used to obtain some
new results on the effect of using a misspecified spectral density on linear
predictions.

Suppose Z is a mean 0 weakly stationary process on R with spectrum F
and corresponding spectral density f. For a compact interval R, let 73(F) be
the subspace of 7'(F) generated by e'“!, ¢t € R. For N > 1, let 7,(F) be the
subspace of 73(F) generated by ¢,y,..., ¢, v Where ¢y € 73(F) for 1 <
J < ly. Denote the orthogonal complement of 7, (F) relative to 73(F) by
7 n(F)* . Let 7 y(F) be all elements of 7%(F) that are not in 7 (F). Define
Hy(F), Hy(F), Hy(F)* and H_y(F) to be the subsets of H(F) correspond-
ing to 7x(F), 7(F), 7x(F)* and 7_,(F). Finally, given a function ¢:
R — C, define ¢, by go(,)(w) = ¢(w)l{|lw| < r}. The key to obtaining results
similar to those in the preceding section is to bound || go(r)“ r for o € 7 (F)*+,
that is, to bound the fraction of the variance of prediction errors attributable
to a set of low frequencies.

For ¢ € 7°(F), define the operator M, on 7' (F) by M, (1) = (¢, 7)r. Let
P, be the projection operator from 7°(F) to Zx(F): that is, for ¢ € 7(F),
(¢ = Pro,7)p =0 for all 7€ 73(F), so that, in particular M (e'*") =
M Pw(ei“’t) for ¢t € R. Define Py to be the operator that projects elements of
7 (F) onto 7y (F). Then, for ¢ € 7 (F)* C 7x(F),

2
||€D(r)||F = <€D(r)> ®)F = <PR€D(r)> ®)F = <PR€0(r) - PNPRQD(r)’ ®)F
< ”PR QD(,«) - PNPRQD(r)”FHQD”F < ”PR Qo(r) - 7-”FHQDHF

for any 7 € 7 (F). Thus, we can bound || go(r)ll?: by approximating an element

of 7(F) with an element of 7,(F), which is exactly the problem addressed
in Stein [(1990a), Section 4].
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To apply the results from Stein (1990a), suppose from now on that R =
[0,1], C, and C; are positive constants and n is a positive integer such that

(3.2) Co <f(w)(1+0®)" <C, forall o

and set K(t) = [, f(w)e'“’ d w, the covariance function corresponding to the
spectral density f. For an interval ) and a positive integer %, define W*2(Q)
to be the class of real-valued functions ¢ on Q such that ¢*~V exists and is
absolutely continuous on () and the almost everywhere derivative of ¢* 1 is
square integrable on Q. Set n, = [(n — 1)/2]. In the results to follow, assume
that, for |t| < 1,

ng )
(33) KC"2(t) = L gl +g(t), g W h2([-1,1]).
j=0

Note that (3.2) implies g, # 0 so that K@" Y does not exist at 0. Thus,
loosely speaking, (3.3) says that K has max(3,n + 1) more derivatives on
(0,1], than it does at 0. For example, (3.3) holds for any rational spectral
density f. For n > 2, (3.3) also holds if f can be written in the form f; + f,
where f; is rational with fj(w) x 02" as w > » and 0®" " !f,(w) is inte-
grable. For a real-valued function ¢ on [0, 1], define |lc/l = {/jc(¢)* dt}*/? and
set @ = max,_;_, |g;l. I will write q,(f) and g(:; f) when it is necessary to
make clear the dependence on the spectral density.

THEOREM 3. Suppose [ satisfies (3.2) and that K satisfies (3.3). Further-
more, suppose Hy(F) is made up of Z and its n — 1 mean square derivatives
at 0=ty <t;y< = <tyy=1 and set Sy =max,_;,_ y(t;xy —t;_ 1 n)
Then there exists a universal constant A, depending only on n such that, for
all g € 7y (F)*,

C? C
oo lF < A, 8% { —5r2" + b,(f)—= llel?,
90 C,

where, for n > 2,

. 2
Q + X gl

Q n+1
+
|QO|

—| + (Iqol_1 Y gl
=2

0

n/(n— l)}

Theorem 3 is proven in Section 4. Although the bound looks rather
complicated, it basically says that IIgo(,)H% = O((1 + r?")S2"), which is similar

bn(f)={

and, forn =1, b,(f) = {llg"ll + lg®ID/qo}>.
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to (2.4) with Sy taking the role of § and a = 2n. The bound in Theorem 3
has the merit of holding for any S, and is not just an asymptotic result.

Let us now consider applying Theorem 3 to derive analogs to the results in
Theorem 2. For a spectrum F; with density f;, let K, be the corresponding
covariance function and e;(k, N) the error in predicting A based on H, (F)).
As in Section 2, let ¢(w) = {f(w) — fo(0)}/fo(w). As a way of requiring that
fo and f; have similar high-frequency behavior, assume there are positive
constants D and y such that

(3.4) l¥(w)| <D(1 + o) 7 forall w.

Theorems 4 and 5 provide explicit bounds on the behavior of linear predictors
under the wrong spectral density. While the bounds in Theorems 4 and 5 are
rather messy, they again apply for all S,, and are not just asymptotic results.
Under the assumption that Sy = O(N™!), these bounds do yield rates of
convergence, given in the corollaries. Proofs of Theorems 4 and 5 and Corol-
laries 1 and 2 are provided at the end of this section.

Define «(r,y) =7y/{(1 + 0) " w?"dw. For r>2, k(r,y) =<1+ r2""7
unless 2n = vy, in which case, k(r, y) < log r. Note that (3.2) and (3.4) imply
q0(fy) = qo(f1) so that g, is unambiguously defined in Theorems 4 and 5.

THEOREM 4. Suppose f, and [, satisfy (3.2), ¢ satisfies (3.4) and Hy(F,)
is as in Theorem 3. If K, satisfies (3.3),

|E131(h’N)2 - Eoel(h’N)2|

DC,
< 2N "+ A,S3"
(3.5) Co
2
¢ ¢ 5
XU oo | *(Ny) +0,(F1) & |Erea(h, N),
90 0
and if K, satisfies (3.3) and f(w) > fo(w) for all w,
|Eyey(h, N)® = Eyey(h, N)’|
<D|2NY +A,S}"
(3.6)
2
(o ¢ 2
X —) k(N,v) +b,(fo) = |Eceo(h,N)".
9o Cy
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THEOREM 5. Suppose f, and f; satisfy (3.2), (3.4) holds and Hy(F)) is as
in Theorem 3. If both K, and K, satisfy (3.3), then, for all r > 0,

Eyfes(h, N) = eo(h, N))*

sup

heH_yn(F,) Eoeo(}%N)2
8C;D” N 3
< —— + "=
= CSriy N e,

(3.7) o
X [{bnm) + bn(fl)}c—:(l +7r77)

+2

qo
If K, satisfies (3.3) and () > fy(w) for all w, then, for all r > 0,
Eyfey(h, N) — eg(h, N)Y

c,\?
—) {rm=7+ K(r,y)}w.

sup 5
heH _yn(Fy) Eoeo(h’N)

Cl ’ 2n Cl -y

(3.8) < ¢yw *2DASY bn(fO)C—O(l +r7)

c,\’
—) {r#n=7 + K(r,y)}w.

d0

+

COROLLARY 1. Suppose [, and f, satisfy (3.2), i satisfies (3.4), Hy(F,) is
as in Theorem 3 and Sy = O(N ). If both K, and K, satisfy (3.3) or K,
satisfies (3.3) and fi(w) = fo(w) for all o sufficiently large, then, fori = 0,1,

Efe,(h,N) — eo(h,N))*
sup -
(3.9) heH_y(F) Eiei(h,N)
= 0(N*min(4yn/(2n+y),2n)(1og N)l{“/=2n))‘

COROLLARY 2. Suppose [, and f, satisfy (3.2),  satisfies (3.4), Hy(F,) is
as in Theorem 3 and Sy = O(N~1). If K, satisfies (3.3) or if K, satisfies (3.3)
and fi(w) = f(w) for all » sufficiently large, then

|Evei(h, N)* = Egey(h, N)’|
sup 2
(3.10) heH _y(Fy) Eye,(h,N)
= O(N~minCmv(Jog N )21,

Figure 3 schematically indicates the rates of convergence in Corollaries 1
and 2. These results should be compared with those in Theorem 2 in the
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Fi1c. 3. Schematic plot of rates of convergence in Corollaries 1 and 2: solid line, power of 1/N in
(8.10); open circles, power of 1/N in (3.9); dashed line, conjectured best possible power of 1/N
in (3.9).

infinite lattice setting. I would conjecture that the rates obtained in that
setting should also be attainable here if one sets a« = 2n and 8 = N™!. Thus,
comparing Corollary 2 with (2.13) suggests that we have obtained the best
possible rate of convergence except possibly when y = 2n. However, compar-
ing Corollary 1 with (2.14) suggests that the rates in this corollary can be
improved to N~ ™27 when y < 2n.

Proposition 2 of Stein (1990b) is comparable to Corollary 2 but only applies
if f)(®) = (a? + w?)™" for some positive a and y is an even integer. Even so,
Proposition 2 of Stein (1990b) gives a slower rate of convergence than
Corollary 2 when v > n + 1 and the same rate when y < n + 1, with the sole
exception that if y=2 and n = 1 then Proposition 2 gives the rate N 2
whereas Corollary 2 gives N2 log N. Proposition 1 of Stein (1990b) gives
results comparable to Corollary 1 but only in the special case f,(w) = (a® +
0?)™" and fw) = (b%+ 0?)7", in which case, it gives the rate N2 for
n=1and N3 for n > 2. For this special case, Corollary 1 implies the rate
N 2logN for n =1 and N **/*D for n > 2, so that Corollary 1 has a
slower rate of convergence for n = 1 or 2, the same rate for n = 3 and a
faster rate for n > 4.

There are many other possible bounds one could derive using the results in
Stein (1990a) and (3.1). For example, Theorem 4.1 of Stein (1990a) can be
used to bound the right-hand side of (3.1) under weaker conditions than (3.3).
Theorem 4.3 of Stein (1990a) makes it possible to obtain bounds when only Z
and not its mean square derivatives are observed. In both cases, the resulting
rates of convergence will generally be slower than those given here. Finally,
the Appendix shows that Corollaries 1 and 2 also apply to ordinary kriging
predictors if K, and K, satisfy (3.3).

When considering processes on a finite interval, the low frequency behav-
ior of the process should have very little impact on the behavior of predic-
tions. Thus, I believe that the condition on the spectral densities in (3.2)
requiring f(w)X1 + ©?)" to be bounded away from 0 and « for all  is
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unnecessarily strong. For example, I conjecture that Corollaries 1 and 2 still
hold if the condition that f, and f, satisfy (3.2) is replaced by the weaker
condition that, for i = 0,1, f.(0)X1 + ®?)" is bounded away from 0 and <« for
all |w| sufficiently large. Furthermore, I believe that (3.9) holds for i = 0
without assuming f; is integrable in a neighborhood of the origin. In particu-
lar, when f(w) = 0 2" and Z is Gaussian, then Z"~V is Brownian motion
[see Yaglom (1987), Section 24.3]. Under this model and using the sampling
scheme in Theorem 3, the best linear predictor of Z(¢) viewed as a function of
t € [0, 1] is uniquely defined as follows: it is a polynomial of degree 2n — 1 on
each interval of the form [¢, , y,¢;y] for i = 1,..., N and it agrees with the
available observations. It would be appealing to be able to give a specific rate
at which a simple piecewise polynomial interpolant was an asymptotically
optimal predictor in terms of conditions on the true spectral density f,.
Unfortunately, all of the proofs for the results in this section make use of (3.2)
holding for all w and I do not know how to modify the arguments to remove
this condition.

ProoF OF THEOREM 4. Similar to the notation of Section 2, for A € Hp(F),
define Ty (w, &, [) to be the element in 73(F) corresponding to e(h, N). If K,
satisfies (3.3), using Theorem 3 and integration by parts as in the proof of
Lemma 1,

|Ejey(h, N)* — Egey(h, N)?|

C,
< o [ r@lf(o)Ty(o. b, A)[ do

C N -y d
<G [fo 1+ 0) " o {I T (v, b )10 < 0} 7} dw
+NYE1e1(h,N)2]
DC, L
<

Co Co

c,\? C
2N‘7+yf0N(1+w)71AnS§,”{(q—) 0" +b,(f, —1}dw]
0

X E,e(h,N)?

and (3.5) follows.
If K, satisfies (3.3) and f; > f,,, then using the shorthand e; for e,(h, N),

0 <E,e? — E,e?
= Eleg — Eoeg + Eoeg — Eoef + Elef — Eleg
_ 2 2 2 2
=Ee; —Eje; —Ey(e; —ey)” — Eq(e; —eg)
<E,e} — E,e’

and (3.6) follows using essentially the same argument as above. O
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PROOF OF THEOREM 5. Define f,(w) = max(fy(w), fi(»)) and f;; (o) to
equal f;(w) for |w| < r and f,(w) for |w| > r. We have

¢

C, E (e, — 91)2

(3.11) Ey(e, —e))” < 2Ey(ey, — e,)” + 2
and
2 ¢ 2 2
(3.12) Ey(e; —eg)” < 2C_E2(92 —e3,) + 2Eq(eg, —€)"
0

Then
, D* D> _ CD* |
(3.13) E2(62 - e20r) < EEzez < ﬁEzeO < WEOQO,
0

where the first inequality is due to equation (5) of Cleveland (1971). Since
fa0r = fo>

2 2 2
E(eq, —ey) < Ey(es, —eg)” + Ey (e, — €)
— 2 2 2 2
(3.14) = Eqesy, — Egg ez, T Egreq — Egeg
2 2
< Ey,e; — Eyep.

Thus, if K, satisfies (3.3) and h € H_y(F,),

Ey(es, = €0)' = [ |£(0) = fo(@)] | Tw(.h, fy) [ do
r ., d
<D[ (1 +0) 7 = {ITw (v, b, fo) Ulvl < o} 7, do

<DA,S%

C ¢\
b”(fO)C_O(l +r 7)) + q—o) {1‘2”’”y + K(r,y)}w.

which together with (3.12) and (3.13) implies

Ey(ey, — 90)2 ?

1
+ 2DA_S2"
E,e? n=N

ol

d0

C, c,\?
x[bnm)c—o(l +r77) + —) {rm=r + K(r,y)}}

for h € H_y(F,). Similarly,

2 572
Bie —e) _,CiD” 2DAnS§,’l(%

2 = 4755 2y
E,ej Cir

2

0

X

G
bn(fl)c_o(l +r7) A+ 70

c,\?
—) {r2"’7+ K(l",’)/)}]
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for h € H_y(F,). Then (3.7) follows from these last two inequalities and
(3.11). Finally, (3.8) follows by noting that f; > f, and (3.14) imply

2 2 2
Eo(e; —eg)” <2Ey(eq —ey,) + 2Ey(eq, —€)
< 2(Ey,ef — Eyeq) + 2E ey, — e;)”
and proceeding as in the proof of (3.7). O

ProOF OF COROLLARIES 1 AND 2. When the conditions of Theorem 5 are
satisfied, Corollary 1 follows by setting » = N*/**7*D_Thus, we only need to
consider proving Corollary 1 when K, satisfies (3.3) and fi(w) > f,(w) for all
o sufficiently large. Define f3;(w) = min(fy(w), fi(w)) and let K; be the
corresponding covariance function. Since K, satisfies (3.3) and f; — f, has
bounded support, K, also satisfies (3.3). Next,

2C
(3.15) Ei(e; — 30)2 < C 1E3(el - 93)2 + 2E(e; — 30)2-
0

The corollary follows under the stated conditions by applying (3.8) with
r = N"/("*7+D ¢4 the first term on the right-hand side of (3.15) and applying
(38.7) with r = N*/*7*D to the second term on the right-hand side of (3.15).

To prove Corollary 2, note that it follows immediately from Theorem 4
when the conditions of that theorem are satisfied. Thus, we are again left
with proving the result when K, satisfies (3.3) and fi(w) = f,(w) for all o
sufficiently large. We have

E.,e? — Eye? = E,e? — E,e? + Ejel — Eje? + Eje2 — E e
+ Eje2 — Ejel + Eje2 — Ee?,
so that

|E e} — Eye?| < |E,e} — Eje?| + Ey(e; — 63)2 + |Eze?2 — E,e?|
2 2
+ Eo(e; —eg)” + Eg(e; —eg).

The result follows by applying (3.6) to the first term on the right-hand side of
this inequality, (3.5) to the third term and Corollary 1 to the other three
terms. O

4. Proof of Theorem 3. Define the operator ®: R™ X L*([0,1]) - Z(F)
by taking ¢ = ®(a, ¢) to mean

n—1

(4.1) o) = Y a;(io) + (1 + iw)”folc(t)eiwt dt,

j=0
where a = (a,,...,a,_,)’. Ibragimov and Rozanov [(1978), page 30], show
this mapping is onto 7%(F) under (3.2). Hence Py ¢,,, can be represented as

in (4.1). If the function c¢ in this representations is sufficiently smooth, we can
bound the right-hand side of (3.1) using the results of Stein [(1990a), Sec-
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tion 4]. Lemma 2 below gives the critical needed bound on the smoothness of
¢ as a function of r.

We first note some properties of the operator ®. Define the Hilbert space
G = R" x L*([0,1]) with inner product {((a,,c,), (a,, ¢;))¢ = ala, +
Jdco(t)ey(t) dt. Then the linear operator ®: G — 73(F) is onto, bounded and
invertible with bounded inverse. To prove this, first note that if we set
f.(0) =1 + »?)™" and let F, be the corresponding spectrum, ||®(a, c)llzpn =
|D(a, O)II%n + || ®(0, c)ll%n, since the cross term is 0 due to the analyticity in the
upper half complex plane of (iw)//(1 — iw)". By Parseval’s relation,
(0, C)II%H = (27) 7 le/|*. Furthermore, | ®(a, 0)||?vn/aTa is uniformly bounded
away from 0 and . It follows that there exist positive finite constants «, and
v, independent of f, a and ¢ such that

|®(a,c)lF

(4.2) Cou, < E <Cyw,

ala + |c|

as long as the denominator is positive. Define ® !: 73(F) > G to be the
inverse of ® and ® ! = (®;1, ®; 1), so that ®(a, c) = ¢ implies ®;(¢) = a
and @, (¢) =c.

From (3.1) and Theorem 4.1 of Stein (1990a) we get

4 2 2
leolF < Ppeg — PyPreg|l7llellz

27Cre® XN (tkN —l-1,N )2ftkN d"
2 dt”

R

n

2 NE

<, C:S§"lellE X eI,
Jj=0

{cr(t)e‘t}} dtll el

lp—1,N

where <, is used to indicate that there exists a universal constant depend-
ing only on n such that the right-hand side times this constant is greater
than or equal to the left-hand side. Theorem 3 results from combining the
preceding bound and the following lemma.

LEMMA 2. If f satisfies (3.2) and K satisfies (3.3), then ¢, = ®;'(Pr ¢, €
W™2([0,1]) for all ¢ € 73(F) and all r > 0. Furthermore, there exists a
universal constant U, depending only on n such that

n 1/2
e+ [22) )

n
(43) Z “CEJ)H < UnH(P(r)“F
Jj=0

ProOF. For a function ¢ € Z°(F) and ¢ € R, define
m(t;0) = [ f(w)e o(0) do.

The key step of the proof is to relate the smoothness of m(:; Pg¢,,) to that
of c,.
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Our first task is to show ¢, € W™2([0,1]). For this part of the proof, the

specific value of r is irrelevant, so I will write m(¢) for m(¢; Py ¢,,), which
equals m(; ¢.,)) on [0, 1]. There exists (a, ¢c) € G such that, for 0 <¢ < 1,

n—1

(4.4) m(t) = fif(w)e_i“’t[ Y a,(io) +(1+ iw)nfolc(s)ei“’s dsl do.

Jj=0

Consider first proving ¢ € W™2([0, 1]) for n > 2. Then
n—1 n
. . il n 1 .
(45) m(t) = 'ZO (—1)a,KP(¢t) + .ZO(_l)J(j )fo c(s)KY(t —s) ds.
J= Jj=
Define
n—1 . )
u(t) =m"=0(t) = X (-1)'a; KV 0(¢),
j=0

which is in W** 12([0, 1]) due to the analyticity of m and (3.3). Differentiating
both sides of (4.5) and n — 1 times and rearranging terms yields

ot ifn) rt jtn—lyy
w(t) — Eo(_l) (J.)[Oc(s)zﬂ (¢t —s)ds
—(-1)" iqu-(zj # 1) [le(s) (¢ = 5)” sgn(t = 5) ds
—(—1)”[01c(s)g'(t—s) ds
d 1
- (—1)nq0Ej;)c(s)|t —slds

_ (_1)”q0[01c(s)sgn(t — 5) ds,

where a sum whose upper limit is lower than its lower limit is taken to be 0.
Since c is integrable on [0, 1], [fc(s)sgn(t — s)ds = 2[lc(s) ds — [jc(s) ds is
absolutely continuous on [0,1] with almost everywhere derivative 2c(#).
Hence,

" _n*1 V=) [le(s) KU (¢ — 5) ds
2a060) = ("W = T (3]0 [leoroma - a
(4.6) - ZO q;(2j + 1)2j/010(s)|t —s/* 'ds
j=1

—/Olc(s)g"(t —s) ds
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almost everywhere on [0, 1], where K?"~ 1V is the almost everywhere deriva-
tive of the absolutely continuous K®"~?. The right-hand side of (4.6) is
absolutely continuous on [0, 1], so we may take ¢ to be as well, in which case
(4.6) holds everywhere on [0, 1].

To complete the proof when n = 2, note that we now have

2qoc(t) = W () — /Olc(s)K"(t —s)ds + 2f()1c(s)K<3>(t ~5)ds
—/Olc(s)g”(t +s)ds
with ¢ and g” absolutely continuous. Integration by parts yields
folc(s)g"(t —s)ds = —e(1)g'(t — 1) + ¢(0)g'(¢) + folc'(s)g'(t —s)ds
and hence
2q0¢/(1) = (1) +e(Dg" (1 = 1) = e(0)&"(1) = ['¢(s)g" (L~ 5) ds
—folc(s)K(S)(t —s)ds + 4qye(t) + 2[01c(s)g"(t — 5) ds.

so that ¢’ is absolutely continuous on [0, 1]. Since ¢’ is bounded on [0, 1] and
g" is absolutely continuous on [ — 1, 1], for almost every ¢, we can differentiate
ac'(s)g"(t — s) ds inside the integral [Graves (1956), page 215] to obtain

2qoc"(¢) = p(t) +c(1)g® (¢t — 1) — c(0)g®(¢) - /010’(8)g(3)(t —s)ds
—2q,c(t) — j:c(s)g”(t —s8)ds
+4q,¢' () + 2 e(s)g®(t — 5) ds
0

is the almost everywhere derivative of ¢’ on [0, 1]. The right-hand side of this
expression is square integrable, so ¢ € W22([0, 1]) as required.
To complete the proof when n = 3, from (4.6),

= —u - (—1y(® "e(s) KU (¢ — ) ds
2a0e(t) = ~() + T (0[] fleomoroe -y

— 6q1/:c(s)|t —slds — j;)lc(s)g”(t —s)ds
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with ¢ absolutely continuous on [0, 1]. It follows that

2q,c"(t) = —u®(t) + flc(s)K@(t —s)ds + 6q,c(t)
0
- 18q1flc(s)|t — sl ds
0
1 1
- 3[ c(s)g"(t —s)ds + 6q,c'(t) + 18q1f c(s)sgn(t —s)ds
0 0

+ 3]010(3)g(3)(t —s)ds — 12q,c(t) — f()lc(s)g(4)(t —s)ds.

After applying integration by parts to the last term on the right-hand side,
the rest of the proof that ¢ € W22([0, 1]) proceeds as in the n = 2 case. The

proof for n > 4 can be obtained by repeatedly applying the above arguments
and is omitted.

When n = 1, more care is needed because K is not differentiable at 0.
Define é(w) = [lc(s)e’“s ds and m(t) = [{m(s) ds. Then

(4.7) my(t) = aOfOtK(s) ds + [Otf:u +iw)f(w)e *¢(w) dwds.

Now (1 + i w)f(w) and é(w) are both in L*(R), which implies (1 + i w)f(0)é(w)
is integrable, so the last integral in (4.7) equals

f:(1 + iw)f(w)a(w){fotemds} do

l+iw

Zf: ~ f(w)(1—e—iwf){folc(s)emds}dw

_ folc(s)[/lf(w){ei“s—ei“’(s_t)—k [ et du}dw]ds

s—t

- jolc(s)K(s)ds— folc(s)K(t—s)ds+ folc(s)fss_tK(u) du ds.
Thus,

my(t) —aOfOtK(s) ds — /;)lc(s)K(s) ds — folc(s)/itK(u) duds

= —j;)lc(s)K(t —s) ds.

Differentating both sides with respect to ¢ and using K(¢) = q,l¢t| + g(¢)
yields

m(t) — ayK(t) — /Olc(s)K(t —s)ds

= —qoj:c(s)sgn(t —8)ds — folc(s)g’(t —8)ds.
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Thus, for almost every ¢ € [0, 1],

2qqc(t) = —m/(t) + apf{qy + 8'(8)} — qofolc(s)sgn(t —s)ds
(4.8)
! '(t—s)ds — [e(s)g" (¢ — s) ds.
[ e(s)g'(t=s)ds = [e(s)g"(t =) d

Since the right-hand side of (4.8) is continuous, we can set 2¢,c(¢) equal to
the right-hand side of (4.8) for all ¢ € [0,1] and hence take c¢ continuous.
However, ¢ continuous on [0,1] and g” absolutely continuous on [—1,1]
imply the right-hand side of (4.8) is absolutely continuous with almost
everywhere derivative

2qoc'(t) = —m"(t) + ay8"(t) — 2q,c(t)

+/Olc(s)g”(t —s)ds — Llc(s)g(?’)(t —s) ds,

which is square integrable on [0, 1].

Now that we have ¢ € W™2([0, 1]), using the representation for ¢ in (4.6), I
next prove (4.3) for n > 2; the case n = 1 is simpler and the proof is omitted.
Since the dependence of various quantities on r is now critical, I now use the
subscript r to indicate this dependence wherever it exists and set a, =

(aq,, ..., a, 1 )" From the definition of u, for 0 < ¢ < 1,
n—1 ) _
M(rn+1)(t) — m(Zn)(t; QD(r)) _ Z (_1)Jaer(J+2n)(t)’
j=0

which is well defined due to (3.3), and

2

me s e = [ o)) fo)e ™ do| d

< 27Tfj lo(w) w?"f( ) |2 dow
< 27Cr?"l g, )7,
where the first inequality uses Parseval’s theorem. From (4.2),
ala, +lc,lI* < (Cou,) 'IPrey)llF < (Cou,) NI,

so that, by the definition of w,

n+1

Q+ X lgWl|.

j=2

(4.9)  Iu Yl <, C2rlle, e + C5 2l e

r
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Next,

dr [n-1 n 1 )

dtn{ L (70 leormome - s)ds}

j=0
(410) n—1 ) n+1 )
<, @ X el +lle, I X gl
j=0 j=2
and
n ng ) ) 1 9i 1 n—2 )
(411) | =i X q;(2) + D2/ e, (s)lt —sI¥ T ds )| <, @ L llell
j=1 0 j=0

From Lemma 5.42 of Adams (1978) with § =2 and T = 1, the Cauchy—
Schwarz inequality and (a? + 52)V2 < |a| + |b],

(4.12) sup |u(t)] < 2V2ull + 22 |lull* /"
0<t<1

for any u € W2([0, 1]). So,

dr
H ) e (9)g" (¢ = 5) ds

d

=Ha{cr(0)g<”)(t) —c,(1)g™(t—1)
(4.13) )
+/O . (s)g™(t — s) ds}H

<, (le,(0)] + le,. (D) + lie, g™V
<, (lle, I + lle, g =Vl

where the last step makes use of (4.12). Applying (4.9)-(4.11) and (4.13) to the
nth derivative of (4.6) yields

n+1

Q@+ X lgWl

n
g0l T llc?l <, ||qo<r>llp{0%/2r" + Gy
j=2

Jj=0

(4.14)

n+1

n—1
+Q X el + (lle, I + llellly X gl
j=0 j=2
From (4.12), for any u € W22([0, 1)),
w11 = &/ (1)u(1) — w'(0)u(0) — folu(t)u"(t) dt

< 23 {|[ull + el 21w 12 Hl N+ 1 21 112} + Nl e,
which can be used to show that, for example,

(4.15) lw'll/llull = 100 implies [lw”ll/Ilu'Il > 1011/[| /llzll.
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We next bound Y}- M|l in terms of llc,|l and [lc{™|. If |lc,|l = 0, then
L2 olle”ll = 0, so suppose otherwise. Define A = max(lO"+2 (HC(n)H/”C DY/ ™)
and B = max, _;_, el Ne, D7 If B < A, £02gllell < nA™ e, Il If B
> A, then define j, to be the smallest value of j for which el /lle, ||)1/J > A,
with j, necessarily satisfying 1 < j, < n — 1. From (4.15), for j, <j <n — 1,
el < [l V|| < 10" Jo A~ |c™)]|, so that, for B > A,

Jo—1
Z el =" llell + Z el < jo Ao~ + (n — j)10™ 7oA~ Yl

Jj=0 Jj=0 J=Jo

Considering the two cases B < A and B > A separately yields

n—1
: _ _ 1 -1
(4.16) Y el <, A" el + A~ Hie™Il <, N Il + e, 1Y ™ et =17,
j=0

Using a similar argument to bound |[|c.|| gives

(4.17) e, <, NIl =+ lle 1D/ et/

and (4.2) implies

(4.18) le, | <, C51/llg s
Applying (4.16)—(4.18) to (4.14) yields

n+1
lg,l Z el <, C12llegllrr™ + e, IrCe 21 Q@ + X gVl
Jj=0 j=2
_ 1 1
+ QCy MM g IF et "
+1
+ C—(n—l)/(2n>|| ||(n*1)/n|| (m)||1/n " (@)
0 o ) I Y gDl
j=2

The left-hand side is at most 4 times the maximum of the four summands on
the right-hand side. If the third summand is the maximum, ¥7_llc”ll <,
1Q/q,|"Cy '?ll@llF; and if the fourth summand is the maximum, then

n+1 n/(n—1)
1
Y el <, Cs 1/2||¢(R)||F{|qo| Y llg@l :
Jj=0 Jj=0

Equation (4.3) follows for n > 2. O

APPENDIX

Sacks and Ylvisaker (1966, 1968, 1970, 1971), Cambanis (1985), Wahba
(1974), Eubank, Smith and Smith (1982) and Ritter (1995, 1996) studied the
problem of choosing locations for observing a continuous stochastic process on
[0,1] to obtain asymptotically optimal estimates of regression coefficients.
When there is a single regression coefficient, the setup is to consider a process
of the form Y (¢) = Bx(¢) + Z(¢), where x is a known function, 8 an unknown
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scalar and Z a mean 0 stochastic process with cov(Z(s), Z(¢)) = K(s, t). The
basic assumption used about x in all of these works is that it can be written
in the form

(A.1) x(t) = fOlK(s,t)n(s) ds

for ¢ € [0, 1], under some condition on 7, often continuity. Cambanis (1985)
notes that this representation also arises when studying a problem in signal
detection. When Z is m-fold integrated Brownian motion, then if x
W2m2(0,1]) and x(1) =0 for j=m + 1,...,2m + 1, we can take n(¢) =
(=D 1x@m=2(¢) in (A.1) [Eubank, Smith and Smith (1982)]. Except for
some minor extensions to this case described by Eubank, Smith and Smith
(1982), there are no results showing when x satisfies (A.1) in these works.
The proof of Lemma 2 provides a method of demonstrating that a representa-
tion such as in (A.1) exists, at least for stationary Z.

Suppose Z is stationary and K(s, t) = K(s — t) satisfies (3.3). To avoid the
problem of boundary conditions, consider the slightly more general represen-
tation
(A2) x(t) = j K(s —t)n(s)ds + 2 {a,K9(t) + b;KO(1 - t)}.

j=0
As noted by Sacks and Ylvisaker (1971) and Cambanis (1985), including
these extra terms in the representation will not change any of the results on
asymptotically optimal designs. Examining the proof of Lemma 2, we see that
any function x € W2%2([0,1]) has a representation as in (4.4) with c €
W ™2([0, 1]). Defining ¢(t) = c(t)e !, it follows by straightforward calculations
using integration by parts that

x(t) = flK(t —s)(—1)"e™(s)e*ds
ln-1- VI
En e

X {ee (KM (1 - t) — (-1)* e (0)KP(t)},

which is of the form (A.2) with n(¢) = (—1)"¢™(¢)e’. If, as in Sacks and
Ylvisaker (1970) or Cambanis (1985), we want 1 to be continuous, then it
suffices to assume that x®™ exists and is continuous on [0, 1] and that K is
of the form given in (3.3) where g("*1 exists and is continuous on [ —1, 1].
These results can be used to show that Corollaries 1 and 2 apply to
ordinary kriging predictors when K, and K, satisfy (3.3), f, and f; satisfy
(8.2) and the observations are as in Theorem 3 with Sy = O(N™!). Let
é,(h, N) be the error of the ordinary kriging predictor of A under K,. Since K,
satisfies (3.3), the results of the preceding paragraph imply the function
x(t) = 1 on [0, 1] can be written as in (4.4) with ¢ € W™2([0, 1]). Considering
the discussion in the paragraph preceding Theorem 4.1 of Stein (1990a),
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Theorems 4.1 and 5.2 of Stein (1990a) imply
Ef{é,(h,N) —e,(h,N))
a3 I CIUR U )
heH_y(F) E.e;(h,N)
for i = 0, 1. Since f, and f; satisfy (3.2),

= O(N"?")

C
Eo(é1 - éo) = 3_01 E\(é — el)2 + 3Eq(e; — 90)2 + 3Ey(é, — 90)2
0

and

- - 2
Eo{el(h7 N) - eo(h’ N)}
sup - 5
(A4) heH_y(F,) Eyéo(h,N)
— O(N—min(4-yn/(2n+y),2n)(log N)1(7=2n})
follows from (3.9) and (A.3). next,
|E\é? — E é?| <|E,é3 — E\e?| + |E el — E,e?|
+ |Eyje? — Eye2| + |Eyel — Eyé2| + |E,é2 — Eyé2|
<E(é - ‘31)2 +|E e} — Eqefl

2 . 2 2
+Eo(e; —eg)” +Ey(é, —ey) + Ey(é; — &)
and

|Eyé,(h, N)* — Eyéy(h, N)’|
sup - 3 =
heH_x(F)) Eyé,(h,N)
follows from (3.9), (3.10), (A.3) and (A.4).

O(N—min(Qn,y)(log N)1(7=2n))
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