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ASYMPTOTICS FOR THE LENGTH OF A MINIMAL
TRIANGULATION ON A RANDOM SAMPLE1

BY J. E. YUKICH

Lehigh University

w x2 Ž .Given F ; 0, 1 and finite, let s F denote the length of the mini-
mal Steiner triangulation of points in F. By showing that minimal Steiner
triangulations fit into the theory of subadditive and superadditive Eu-
clidean functionals, we prove under a mild regularity condition that

1r21r2lim s X , . . . , X rn s b f x dx c.c.,Ž .Ž . H1 n 2w xnª` 0, 1

w x2where X , . . . , X are i.i.d. random variables with values in 0, 1 , b is a1 n
positive constant, f is the density of the absolutely continuous part of the
law of X , and c.c. denotes complete convergence. This extends the work of1
Steele. The result extends naturally to dimension three and describes the
asymptotics for the probabilistic Plateau functional, thus making progress
on a question of Beardwood, Halton and Hammersley. Rates of conver-
gence are also found.

1. Introduction. In their pioneering paper, Beardwood, Halton and
Ž . Ž .Hammersley 1959 showed that the length of the shortest tour T X , . . . , X1 n

Ž .on independent and identically distributed i.i.d. random variables X , . . . , X1 n
w x2with values in the unit square 0, 1 satisfies

1r21r21.0 lim T X , . . . , X rn s b f x dx a.s.,Ž . Ž . Ž .H1 n
2nª` w x0, 1

where f is the density of the absolutely continuous part of X and b is a1
positive constant. This celebrated limit result for the traveling salesman

Ž .problem TSP is one of the central theorems in the probability theory of
combinatorial optimization. It is known that several other functionals in
combinatorial optimization and operations research, including lengths of
minimal matchings and minimal spanning trees, also satisfy the asymptotics
Ž . Ž . Ž .1.0 . We refer to Rhee 1993 , Steele 1981, 1997 and Redmond and Yukich
Ž . Ž .1994, 1996 , and Yukich 1995, 1998 for details.

In this paper we develop the asymptotic behavior of the total edge length of
the minimal triangulation on n points which are independently and identi-

w x2cally distributed on the unit square 0, 1 . We show that modulo a constant
Ž .factor the asymptotics are identical to those 1.0 of the TSP functional T.
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Ž .This extends and generalizes earlier work of Steele 1982 , who took the first
important steps in the study of the length of random triangulations. We
extend our results to three dimensions and in this way obtain asymptotics for
the probabilistic Plateau functional.

Triangulations arise naturally in many areas of mathematics, including
computational geometry. They have applications to surface interpolation,
geometric searching techniques, and the finite-element method. See Preparata

Ž . Ž .and Shamos 1985 and Bern and Eppstein 1992 for thorough treatments.
We now formulate the minimal triangulation problem precisely. Given a

w x2finite set F of points in 0, 1 , a triangulation of F is a decomposition of
w x20, 1 into triangles whose vertices coincide with the set F and the corners of
w x20, 1 . In general, a set F admits more than one triangulation. The total edge
length of a triangulation is the sum of the lengths of the edges in the
triangulation.

Given 1 - d - `, a ‘‘d-triangulation’’ of F is a triangulation in which all
triangles have aspect ratios which are uniformly bounded by d , that is the
ratio of the radii of the circumscribed and inscribed balls is bounded uni-
formly by d over all triangles. Such triangulations have a number of motiva-

wtions and applications including some in computational learning theory Salz-
Ž .xberg, Delcher, Heath and Kasif 1991 . Let S denote a function whichd

w x2assigns to each set F ; 0, 1 a d-triangulation of F which has the least total
Ž . Žedge length. Let S F denote the graph of this triangulation possibly empty,d

. < Ž . <depending on the choice of F and s and let S F denote the total edged

Ž . Ž . Ž .length of S F . We will occasionally write S F for S F .s d

w x2 w x2If F ; 0, 1 and G ; 0, 1 is an additional set of points distinct from F
Ž . Ž .i.e., a Steiner set then S F j G denotes the graph of a Steiner d-triangula-d

tion of F with respect to G. We tacitly assume that d ) 1 is chosen large
enough such that for every set F there is a Steiner set G for which

Ž .S F j G exists. We define the length of the minimal Steiner d-triangulationd

of F by
s F [ inf S F j G ,Ž . Ž .d d

G

where G ranges over all finite sets of Steiner points including the empty set.
It is conceivable that adding more and more Steiner points may decrease the

w Ž .xtotal length of the triangulation see Bern and Eppstein 1992 . Thus it is
unclear whether the infimum is realized by a set G and it is thus an open
problem whether a ‘‘minimal d-triangulation’’ actually exists.

Without loss of generality we may assume that G ranges over points in
w x20, 1 with rational coordinates. The set of admissible Steiner triangulations

` Ž .nof a set F thus has the cardinality of the countable set D Q = Q . Thisns1
Ž .technical remark will ensure the measurability of s X , . . . , X , where X ,d 1 n i

i G 1, are random variables.
The main goals of this paper are to develop some basic deterministic

properties of d-triangulations and to use these to determine the asymptotic
Ž .behavior of s X , . . . , X , where X , i G 1, are i.i.d. random variables withd 1 n i

values in the unit square.
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The minimal triangulation length s is an example of a Euclidean func-d

w x2tional: it is a real-valued function defined on the finite subsets F of 0, 1
with its value determined by the Euclidean distances between points in F.
Up to now, the length s has not fit into any established theory of subaddi-d

Ž .tive Euclidean functionals. This peculiarity has been noted by Steele 1982 ,
who points out that s does not appear to enjoy the ‘‘simple subadditive’’d

property

2w xs F j G F s F q s G q C , F , G ; 0, 1 ,Ž . Ž . Ž .d d d

Ž .where here and elsewhere C [ C d is a constant depending only on d and
whose value may vary from line to line. One of the main points of this article
is to show that the length s fits nicely within the theory of subadditive andd

w Ž .xsuperadditive Euclidean functionals see Redmond and Yukich 1994, 1996 .
In this way we readily show for each fixed d , 1 - d - `, that s resembles thed

traveling salesman functional in that modulo constant factors, they have
identical asymptotic properties.

To keep the presentation self-contained, we now recall the essentials of the
Ž . Ž .theory of Euclidean functionals. We refer to Steele 1981, 1997 , Rhee 1993 ,

Ž . Ž .Redmond and Yukich 1994, 1996 , and Yukich 1998 for additional back-
ground, details, and examples.

For both theoretical and practical purposes it is convenient to define
Ž .Euclidean functionals on pairs F, R , where R is a d-dimensional rectangle

d d Ž .in R and F is a finite subset of R . We let RR [ RR d denote the collection of
d-dimensional rectangles in R d.

Given 0 - p - d, we say that L p is a continuous subadditive Euclidean
pŽ .functional of order p if for all rectangles R g RR we have L B, R s 0 and

for all finite sets F ; R d we have the following conditions:

Ž . Ž . pŽ . p pŽ .1.1 Homogeneity . L aF, aR s a L F, R for all a ) 0;
Ž . Ž . pŽ . pŽ . d1.2 Translation invariance . L y q F, y q R s L F, R for all y g R ;
Ž . Ž .1.3 Geometric subadditivity . There exists a constant C such that for all1

w x dpositive integers m and all subsets F of 0, 1 ,

md

dp p dypw xL F , 0, 1 F L F l Q , Q q C m ,Ž .Ž . Ý i i 1
is1

Ž . w x d d
dwhere Q is the partition of 0, 1 into m subcubes of edgei iF m

length my1 ;
Ž . Ž .1.4 Continuity . There exists a constant C such that for all finite subsets2

w x dF and G of 0, 1 ,

Ž .d d dyp rdp pw x w x � 4L F j G , 0, 1 y L F , 0, 1 F C card G .Ž . Ž . 2

Superadditive Euclidean functionals are defined in a way that naturally
Ž . Ž . pparallels the conditions 1.1 ] 1.4 . Say that L is a continuous superadditive
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Ž . Ž . Ž .Euclidean functional of order p, 0 - p - d, if 1.1 , 1.2 , 1.4 and the
following hold:

Ž X. Ž . X1.3 Geometric superadditivity . There exists a constant C such that for1
w x dall positive integers m and subsets F of 0, 1 ,

md

d Xp p dypw xL F , 0, 1 G L F l Q , Q y C m ,Ž .Ž . Ý i i 1
is1

Ž . Ž .dwhere Q is the partition given in 1.3 .i iF m

A subadditive Euclidean functional L p of order p is quasi-additive if there
exists a superadditive Euclidean functional L p of order p such that L p F L p

r r
and L p closely approximates L p on homogeneous samples, that isr

d dp pw x w x� 4 � 4E L U , . . . , U , 0, 1 y E L U , . . . , U , 0, 1Ž . Ž .1 n r 1 n1.5Ž .
s o nŽdyp.r d .Ž .

w x dHere and elsewhere U , i G 1, are i.i.d. uniform random variables on 0, 1 .i
Ž .As shown in Redmond and Yukich 1994, 1996 , quasi-additive functionals

form a large class and include the traveling salesman, minimal spanning
tree, minimal matching, and semi-matching functionals. The superadditive
functional L p is usually a boundary rooted version of L p in the sense thatr

w x dedges may be rooted to the boundary of 0, 1 and subsequent travel on the
boundary is free.

Quasi-additive functionals enjoy growth rates in the complete convergence
Ž .c.c. sense. Recall that Y ª Y in the sense of complete convergence iff for alln

` � < < 4« ) 0, Ý P Y y Y ) « - `. Quasi-additive functionals have pleasingns1 n
wasymptotics and satisfy the following general result cf. Redmond and Yukich

Ž .x1994, 1996 .

Ž . pTHEOREM 1.1 Umbrella theorem for Euclidean functionals . Let L and
L p be continuous subadditive and superadditive Euclidean functionals ofr

p p Ž .order p, 0 - p - d, respectively. If L and L satisfy the approximation 1.5 ,r
p p w x dL F L , and X , i G 1, are i.i.d. random variables with values in 0, 1 ,r i

then
dp Ždyp.r dw x� 4lim L X , . . . , X , 0, 1 rnŽ .1 n

nª`

Ž .dyp rdps b L , d f x dx c.c.,Ž . Ž .H
dw x0, 1

1.6Ž .

Ž p .where b L , d is a positive constant and f is the density of the absolutely
continuous part of the law of X .1

It has been long expected that for each fixed 1 - d - ` the minimal
Ž .triangulation length s conforms to the asymptotics 1.6 , but the proof hasd

remained elusive. This is due largely to the fact that s lacks an easilyd

established ‘‘simple subadditivity’’ property and that not much is known
about s . One of the main contributions of this paper is develop some basicd

properties of stochastic triangulations and in this way show that s doesd

Ž .satisfy 1.6 . This is accomplished by demonstrating that triangulations fit
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naturally within the framework of Theorem 1.1, which is more encompassing
than one might guess. Showing that triangulations conform to the conditions
of Theorem 1.1 involves methods combining probability and geometry. The
arguments depend upon a judicious definition of a superadditive ‘‘boundary
triangulation functional.’’ By verifying that subadditive triangulations and
superadditive boundary triangulations satisfy the conditions of Theorem 1.1
when p s 1 and d s 2, we may prove our first main result, which makes

Ž .progress on a problem raised by Steele 1982 and which shows that minimal
triangulations resemble minimal tours.

Ž .THEOREM 1.2 Asymptotics for minimal triangulations . Let X , i G 1, bei
w x2i.i.d. random variables with values in 0, 1 . Fix 1 - d - ` and consider the

minimal triangulation length s . Thend

1r21r21.7 lim s X , . . . , X rn s b s f x dx c.c.,Ž . Ž . Ž . Ž .Hd 1 n d
2nª` w x0, 1

Ž .where b s is a positive constant and f denotes the density of the absolutelyd

continuous part of the law of X .1

Ž .The above result adds to the work of Steele 1982 , who considers the case
d s `, that is, the case involving no restrictions on the aspect ratios of the
triangles. Steele uses geometric subadditivity of triangulations to establish
Ž .1.7 for s in the special case that X , . . . , X are uniformly distributed` 1 n

w x2 Ž .random variables on 0, 1 . According to Steele 1982 , Theorem 1.2 ad-
dresses a problem of Gyorgy Turan.¨ ´

By placing the triangulation functional in the context of quasi-additive
functionals, we may, moreover, derive rates of convergence in a natural way.

Ž .THEOREM 1.3 Rates of convergence . Fix 1 - d - `. The mean of s ond

w x2uniform samples in 0, 1 satisfies
1r41r21.8 Es U , . . . , U y b s n F C n log n .Ž . Ž . Ž . Ž .d 1 n d

The above two-dimensional results have a natural three-dimensional ana-
w x3log. Given a finite set F of points in 0, 1 , a tetrahedralization of F is a

w x3decomposition of 0, 1 into tetrahedra whose vertices coincide with the
w x3points in F and the corners of the cube 0, 1 . In general, F admits more

than one tetrahedralization. The total surface area of a tetrahedralization is
the sum of the areas of the triangular faces.

Given 1 - D - `, a D-tetrahedralization is one in which the tetrahedra
have aspect ratios uniformly bounded by D, that is the ratio of the radii of the
circumscribed and inscribed spheres is bounded uniformly by D over all
tetrahedra. This regularity condition insures that the cube of the length of
a tetrahedral edge is bounded by a constant multiple of the volume of the
tetrahedron, a fact which will be useful in the sequel.

Given 1 - D - `, let T denote a function which assigns to each setD
w x3F ; 0, 1 a D-tetrahedralization of F having the least total surface area.

Ž .Let T F denote the graph of the tetrahedralization and let its total surfaceD
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< Ž . < w x3area be denoted by T F . If G ; 0, 1 is a set of Steiner points, then weD
Ž .let T F j G denote the graph of the corresponding Steiner D-tetrahedrali-D

zation of F. We tacitly assume that D ) 1 is chosen large enough so that for
w x3 Ž .every set F ; 0, 1 there is a Steiner set G for which T F j G exists.D

Ž . Ž .Analogously to s F , define the area t F of the minimal Steiner D-tetra-d D
hedralization of F by

t F [ inf T F j G ,Ž . Ž .D D
G

Ž .where G ranges over all finite sets of Steiner points. Here t F may beD
thought of as the discrete Plateau functional for the point set F.

As in the definition of s , we may without loss of generality restrictd

attention to Steiner points with rational coordinates. In this way we ensure
Ž .the measurability of t X , . . . , X , where X , i G 1, are random variables.D 1 n i

In Section 6 we will prove the following analog of Theorem 1.2. This makes
Ž .progress on a question raised by Beardwood, Halton and Hammersley 1959 .

Ž .THEOREM 1.4 Asymptotics for minimal tetrahedralizations . Let X , i G 1,i
w x3be i.i.d. random variables with values in 0, 1 . Then for each fixed 1 - D - `

we have

1r31r31.9 lim t X , . . . , X rn s b t f x dx c.c.,Ž . Ž . Ž . Ž .HD 1 n D
3nª` w x0, 1

Ž .where b t is a positive constant and f denotes the density of the absolutelyD
continuous part of the law of X .1

We anticipate that Theorems 1.3 and 1.4 admit extensions to higher
dimensions. In this way we could perhaps find asymptotics for the random-
ized version of the problem of Douglas, which considers minimal surfaces in

Ž .higher dimensions. Beardwood, Halton, and Hammersley 1959 were appar-
ently the first to consider such a problem. In their admittedly cryptic re-
marks, they recognize the potential applicability of subadditivity methods but
do not develop the necessary mathematics. For a treatment of the problem of

Ž .Douglas we refer to Chapter 4 of Courant and Schiffer 1950 and Douglas
Ž .1939 . We will not pursue generalizations to higher dimensions here.

We summarize the contributions of this paper.

1. Modulo constant factors, for each 1 - d - ` the triangulation length s isd

shown to have an asymptotic behavior identical to that of the TSP, making
Ž .progress on a problem of Steele 1982 .

2. The collection of quasi-additive Euclidean functionals, which includes the
TSP, minimal spanning tree, minimal matching and semi-matching func-
tionals, is shown to include the minimal triangulation and discrete Plateau
functionals as well.

Ž .3. A rate of convergence for the mean of s U , . . . , U , 1 - d - `, is ob-d 1 n
tained.

4. Asymptotics for the discrete probabilistic Plateau functional t , 1 - D - `,D
are found.
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This paper is organized as follows. Section 2 presents the boundary trian-
gulation functional, which forms the cornerstone of the theory. Sections 3 and
4 show that the minimal triangulation length and its superadditive boundary
version are continuous Euclidean functionals on R2 of order 1, that is, satisfy

Ž . Ž . Ž . Ž . Ž X. Ž .conditions 1.1 ] 1.4 and 1.1 , 1.2 , 1.3 , 1.4 , respectively, with p s 1 and
d s 2. Finally, Section 5 proves that the minimal triangulation length and its

Ž .boundary version satisfy the closeness condition 1.5 . In this way we prove
Theorem 1.2. Section 6 proves Theorem 1.4.

To facilitate the exposition and lighten the notation, we will often omit
mention of ‘‘d ’’ and ‘‘D’’ when referring to d-triangulations and D-tetra-
hedralizations, respectively. Moreover, when it is clear from the context, we
will often simply write s for s and t for t .d D

2. The boundary triangulation functional. In earlier work on Eu-
Ž .clidean functionals initiated by Redmond and Yukich 1994, 1996 , it was

recognized that the ‘‘boundary functional’’ L associated with an optimizationr
problem L plays a key role in simplifying both the conceptual and technical
analysis. Roughly speaking, boundary functionals L are defined on subsetsr
of a rectangle R and differ from the functional L only in that edges on the
boundary of R are assigned zero length. In the case of the minimal tour
functional, this means that travel along the boundary is effectively free. The
purpose of this section is to define appropriately the ‘‘boundary d-triangula-
tion functional,’’ where throughout 1 - d - ` is arbitrary but fixed.

w x2 2 Ž .Given a convex polygon D ; 0, 1 and F ; R whose convex hull co F
Ž .contains D, consider a d-triangulation of co F . Such a d-triangulation parti-

Ž .tions co F into triangles whose vertices coincide with F and whose aspect
Ž .ratios are bounded by d . The d-triangulation of co F , which has the property

that the total edge length of the restriction of its graph to the interior of D is
minimal is called the ‘‘boundary d-triangulation’’ of D induced by F and is

Ž . w x2denoted by S F, D . A boundary d-triangulation of 0, 1 thus generates ar , d

w x2partition of 0, 1 consisting of the usual triangles as well as perhaps
quadrilaterals, pentagons and even hexagons. When the context is clear, we
will omit mention of d and refer to boundary d-triangulations as simply
boundary triangulations.

< Ž . <By the ‘‘total edge length’’ S F, D of the boundary d-triangulationr , d

Ž .S F, D we mean the sum of the lengths of the edges in the triangulationr , d

Ž . Ž .which lie in the interior of D. Analogously to s F [ s F , define for alld

F ; D the length of the ‘‘minimal boundary d-triangulation’’ of F with respect
to D by

s F , D [ inf S F j G , D ,Ž . Ž .r , d r , d
G

where G ranges over finite sets of Steiner points in R2 with the property that
the convex hull of F j G contains D. Without loss of generality we will
assume that the points in G have rational coordinates. Minimal boundary
triangulations may fail to exist for the same reasons that the standard
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minimal triangulation may not exist. We will occasionally condense notation
and write s for s and S for S . It is clear from the definitions thatr r , d r r , d

Ž w x2 . Ž . w x2s F, 0, 1 F s F for all F ; 0, 1 .r
The study of the minimal boundary triangulation length s is motivatedr

w x2by the fact that it enjoys geometric superadditivity: for all F ; 0, 1 we
have

m2

2w x2.1 s F , 0, 1 G s F l Q , Q .Ž . Ž .Ž . Ýr r i i
is1

To see this, find a sequence G of Steiner sets such that the boundaryn
Ž w x2 . < Ž w x2 . <triangulations S F j G , 0, 1 , n G 1, have lengths S F j G , 0, 1 ,r n r n

Ž w x2 . 2 iŽdecreasing down to s F, 0, 1 as n ª `. For each 1 F i F m , let S F jr r
w x2 .G , 0, 1 denote the boundary triangulation of Q generated by the intersec-n i

Ž w x2 .tion of S F j G , 0, 1 with subsquare Q . Then for each n G 1 we haver n i

m2 m2

2 2iw x w xS F j G , 0, 1 s S F j G , 0, 1 G s F l Q , Q ,Ž .Ž . Ž .Ý Ýr n r n r i i
is1 is1

where the inequality follows by minimality of s . Let n tend to infinity tor
Ž .deduce superadditivity 2.1 . Summarizing, we have shown the following

lemma.

Ž X. XLEMMA 2.1. Here s is superadditive and satisfies 1.3 with C s 0.r 1

Having defined the minimal triangulation lengths s and s we arer
positioned to prove Theorem 1.2. We must verify that s and s are continu-r
ous subadditive and superadditive Euclidean functionals of order 1, respec-

Ž .tively, and that they satisfy the closeness condition 1.5 with p s 1 and
d s 2. This is shown in the following three sections.

3. Minimal triangulations are subadditive and continuous. We will
verify that the length s [ s of the minimal triangulation satisfies condi-d

Ž . Ž .tions 1.1 ] 1.4 with p s 1 and d s 2. Throughout, let 1 - d - ` be arbi-
trary but fixed and write s for s . In the sequel we show that the boundaryd

Ž . Ž . Ž X . Ž .triangulation length s [ s satisfies 1.1 , 1.2 , 1.3 and 1.4 with p s 1r r , d

and d s 2.
It will be helpful to consider the triangulation of sets in regions other than

the unit square. We thus enlarge the definition of triangulations in the
following way.

w x2DEFINITION 3.1. Let F ; D be a finite set, where D ; 0, 1 is a convex
Ž .polygon. Consider all Steiner d-triangulations S F j G, D , G ; D, of D, thatd

is, all decompositions of D into triangles whose vertices coincide with F j G
Žand the corners of D and whose aspect ratios are bounded by d . Let S F j

. < Ž . <G, D have total edge length S F j G, D . Defined

s F , D [ inf S F j G , D ,Ž . Ž .d d
G
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Ž . Ž .where G ranges over all finite sets in D. We call s F, D [ s F, D thed

w x2length of the minimal d-triangulation of F with respect to D. When D s 0, 1 ,
Ž . Ž w x2 .we will simply write s F for s F, 0, 1 .

Ž .Notice that s , considered as a function on pairs F, R , satisfies homo-
Ž . Ž .geneity 1.1 and translation invariance 1.2 with p s 1; s also satisfies

Ž .geometric subadditivity 1.3 with no error term.

w x2LEMMA 3.2. For every F ; 0, 1 we have
m2

3.1 s F F s F l Q , Q ,Ž . Ž . Ž .Ý i i
is1

Ž . w x2
2where Q denotes the usual partition of 0, 1 into subsquares of edgei iF m

length my1.

PROOF. For each 1 F i F m2, we may find a sequence of Steiner sets
ŽŽ . .G [ G ; Q , n G 1, such that the triangulations S F j G l Q , Q ,n n, i i d n i i

< ŽŽ . . <n G 1, have lengths S F j G l Q , Q which decrease down to the lengthd n i i
Ž .of the minimal triangulation s F l Q , Q as n tends to infinity. For eachi i

ŽŽ . . 2n G 1, the union of the local triangulations S F j G l Q , Q , 1 F i F m ,d n i i
w x2is a feasible Steiner triangulation of 0, 1 . Minimality implies that for all

n G 1,
m2

s F F S F j G l Q , Q .Ž . Ž .Ž .Ý d n i i
is1

Ž .Now let n tend to infinity to deduce 3.1 . I

When Q and Q are adjacent subsquares, the Steiner points on thei j
boundary of Q need not coincide with the Steiner points on the boundary ofi

Ž .Q . We notice therefore that 3.1 would fail if we restricted attention toj

triangulations which were simplicial complexes.
Ž .By using geometric subadditivity 3.1 and following an induction argu-

Ž .ment due to Steele 1982 , we obtain a useful growth bound for s .

w x2LEMMA 3.3. There is a finite constant C such that for all F ; 0, 1 ,
1r2� 43.2 s F F C card F .Ž . Ž .

w Ž . x Ž . Ž .PROOF Steele 1982 , Lemma 4.1 . For n G 1 set w n [ max s F ,
w x2 Ž .where the max is over all choices of F ; 0, 1 with card F s n. Set w 0 s 4.

w x2Observe that by decomposing 0, 1 into four subsquares we obtain via
Lemma 3.2,

4 4
1w n F max w a : a s n ,Ž . Ž .Ý Ýi i2½ 5

is1 is1

where 1r2 represents the scaling factor. By induction and the inequality
1 4 1r2 1r2 1r2Ž .Ý a F n , it follows that w n F Cn . Iis1 i2
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Ž . w x2Notice that we may obtain growth bounds for s F, D , D ; 0, 1 a convexd

polygon, by approximating D by the union of inscribed subsquares and
applying growth bounds on the individual subsquares. This argument shows

w x2that there is a finite constant C such that for all convex polygons D ; 0, 1
Ž . � 41r2and all nonempty sets F ; D, we have s F, D F C card F .d

Ž .Finally, we may verify that s satisfies continuity 1.4 with p s 1; namely,
w x2we show for all F, G ; 0, 1 that

1r2� 43.3 s F j G y s F F C card G .Ž . Ž . Ž .
w x2 Ž .For all « ) 0 and all F ; 0, 1 , let G [ G F be the uniquely defined« «

Steiner sets such that

3.4 S F j G F s F q « .Ž . Ž . Ž .d « d

Ž .Here we choose G F according to some specified algorithm; the exact choice«
« Ž .of algorithm is not important. Here and henceforth, let D F denote the

Ž . «collection of triangles defined by the triangulation S F j G and let EE [d «
« Ž .EE F denote the collection of edges of these triangles. By assumption, the

« Ž .aspect ratios of the triangles in D F are uniformly bounded by d . It follows
that the square of the length of an edge of a triangle is bounded by a constant
multiple of the triangular area. Since the sum of the areas of the triangles in

« Ž .D F is just the area of the unit square, it follows that

< < 23.5 E F CŽ . Ý
«EgEE

Ž .for some universal constant C [ C d which does not depend on « . Here and
< <elsewhere, E denotes the Euclidean length of the edge E.

Ž . Ž .To show continuity 3.3 , it suffices by 3.5 to show
1r2

1r22< < � 43.6 s F F s F j G F s F q C E card G .Ž . Ž . Ž . Ž . Ýž /
«EgEE

Ž .Notice that the first inequality in 3.6 is a consequence of the intrinsic
Ž .monotonicity of s . To show 3.3 , it thus suffices to prove the second inequal-

Ž .ity in 3.6 .
Given G, we may assume that G l F s B. The points in G are located in

Ž . « Ž . wtriangles D , . . . , D , J [ J G - `, belonging to D F if a point in G lies1 J
« Ž . « Ž .xon an edge in EE F , then it belongs to two triangles in D F . Let E ,i

1 F i F J, be the longest edge of triangle D , 1 F i F J.i
Ž . < Ž . <Observe that s F j G is bounded by S F j G and the sum of thed «

lengths of the minimal triangulations of G l D with respect to D , 1 F i F J.i i
In other words,

J

s F j G F S F j G q s G l D , DŽ . Ž . Ž .Ýd « i i
is1

J
1r2< <F S F j G q C E card G l D� 4Ž . Ž .Ýd « i i

is1

3.7Ž .
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Ž .by scaling 1.1 and Lemma 3.3. Applying Holder’s inequality, we obtain¨
1r2

1r22< < � 4s F j G F S F j G q C E card G ,Ž . Ž . Ýd « ž /
«EgEE

Ž . Ž . Ž .which together with 3.4 and 3.5 , gives continuity 3.3 as desired.

4. Boundary minimal triangulations are superadditive and contin-
uous. By Lemma 2.1 we know that the boundary triangulation functional

Ž X.s [ s is superadditive 1.3 , where 1 - d - ` is arbitrary but fixed. It isr r , d

Ž . Ž .also clear that s satisfies homogeneity 1.1 and is translation invariant 1.2r
Ž .when p s 1. It remains to verify continuity 1.4 which, when p s 1 and

w x2d s 2 requires showing for all F, G ; 0, 1 ,

2 2 1r2Xw x w x � 44.1 s F j G , 0, 1 y s F , 0, 1 F C card G .Ž . Ž . Ž .r r 2

This will follow from a slight modification of the proof of the continuity of s .
We first clarify the terminology. Let 1 - d - ` be arbitrary but fixed. As

w x2 Ž .before, for all « ) 0 and all F ; 0, 1 , let G [ G F be the uniquely« «

defined Steiner sets such that

S F j G F s F q « .Ž . Ž .r « r

Ž .Without loss of generality we may assume that co F j G is contained in a«

w x2 Ž .large square Q : 0, 1 where the edge length of Q is at most C [ C d .
« Ž .Let D F denote the collection of polygons formed by the boundaryr

Ž . « « Ž .triangulation S F j G . Let EE [ EE F denote the set of all edges of theser « r r
polygons. Since these edges form a subset of the edges of triangles contained

Ž .in the square Q, it follows as in 3.5 that the sum of the squares of their
lengths is bounded by a constant multiple of the area of Q, that is,

< < 2E F C ,Ý
«EgEEr

Ž . « Ž .where C [ C d . If D is a polygon in D F with diameter D and if G is a setr
Ž . � 41r2of points in D then s G, D is bounded by C ? D ? card G . The diameter D

is bounded by the sum of the lengths of the edges of D and D2 is bounded by
a constant multiple of the sum of the squares of the lengths of the edges of D.

Ž . Ž .The proof of continuity 4.1 follows exactly as in the proof of continuity 3.3
of s .

5. Quasi-additivity. We have now verified that the minimal triangula-
tion lengths s and s are continuous subadditive and superadditive Eu-r
clidean functionals of order 1, respectively. We conclude the proof of Theorem

Ž .1.2 by showing quasi-additivity 1.5 of s [ s and s [ s , where 1 - d - `d r r , d

is arbitrary but fixed. We will actually establish the stronger bound
1r45.1 Es U , . . . , U y Es U , . . . , U F C n log n ,Ž . Ž . Ž . Ž .1 n r 1 n

Ž .which will be useful in obtaining the rate 1.8 .
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Given « ) 0 and the random variables U , . . . , U we recall that G [1 n «

Ž .G U , . . . , U are the uniquely defined Steiner sets with the property that« 1 n

� 4S U , . . . , U j G F s U , . . . , U q « .Ž .Ž .r 1 n « r 1 n

« Ž .Let D U , . . . , U denote the collection of polygons generated by the bound-r 1 n
Ž� . . « Ž .ary triangulation S U , . . . , U j G and let EE U , . . . , U be the collec-r 1 n « 1 n

« Ž .tion of polygonal edges formed from the intersection of D U , . . . , U and ther 1 n
w x2 Ž .interior of 0, 1 . To prove 5.1 we first establish bounds on the lengths of the

« Ž .edges in EE U , . . . , U . This edge length bound implies that with high1 n
« Ž .probability the collection D U , . . . , U contains neither hexagons nor pen-r 1 n

w x2tagons with a side linking opposite sides of 0, 1 . Thus with high probability
« Ž .there are at most four pentagons in D U , . . . , U .r 1 n

« Ž .LEMMA 5.1. With high probability, all polygonal edges E g EE U , . . . , U1 n
< <have an edge length E satisfying

1r2< <5.2 E F C log nrn .Ž . Ž .

Ž .REMARK. The precise meaning of the high probability statement 5.2 is as
Ž .follows: for any prescribed a ) 0 we can find C [ C a ) 0 and a set V0

� c 4 Ž ya . « Ž .with Pr V s O n such that on V all edges E g EE U , . . . , U satisfy0 0 1 n
the bound

1r2< <E F C log nrn .Ž .

PROOF. The proof is a simple consequence of the fact that the aspect
« Ž .ratios of the polygons in D U , . . . , U are bounded and therefore if an edger 1 n

« Ž . < <E belongs to EE U , . . . , U , then there is a circle of radius C E which is1 n
w x2contained in 0, 1 and which does not contain any sample points, where

Ž .C [ C d is a constant depending only on d .
w x2 Ž .Indeed, for all x g 0, 1 and r ) 0, let B x, r designate the ball centered

Ž .at x with radius r and let E r denote the event that there is an edgen
« Ž . Ž .E g EE U , . . . , U whose length exceeds r. Given E r , the bounded aspect1 n n

ratio assumption implies the existence of a ball of radius at least Cr which is
contained entirely within a polygon and thus does not contain any sample
points. This is clearly true for edges E which do not meet the boundary. For
edges E meeting the boundary there are several cases which may be checked
in a straightforward fashion. In any case, there is a C - ` such that

2 2w x w x � 45.3 E r ; ' x g 0, 1 : B x , Cr ; 0, 1 , B x , Cr l U s B .Ž . Ž . Ž . Ž .� 4n i iFn

� Ž .4Thus, Pr E r is bounded by the probability that there is ‘‘hole’’ of radiusn
� 4at least Cr in the sample U , . . . , U . It is well known and easy to show that1 n

Ž .1r2with high probability, holes with radius larger than C log nrn do not
« Ž .exist. Thus, with high probability, edges in EE U , . . . , U have length less1 n

Ž .1r2than C log nrn . I
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Ž .We require one more auxiliary result before proving 5.1 . To simplify the
Ž . Ž . Ž . « Ž .notation, write s n for s U , . . . , U and likewise for s n , and EE n . Let1 n r

« Ž . Ž� 4 . « Ž .S n [ S U , . . . , U j G . Consider the edges in EE n which meet ther r 1 n «

w x2 « Ž . « Ž .boundary of 0, 1 and let S n [ S U , . . . , U denote the sum of the1 n
lengths of these edges. The following lemma gives a crude yet sufficient upper

« Ž .bound for S n .

« Ž . Ž .1r4LEMMA 5.2. For all 0 - « - 1, ES n F C n log n .

w x2PROOF. We decompose 0, 1 into a subsquare R and a moat R [1 2
w x2 Ž .1r20, 1 y R . We choose R so that it has side length 1 y C log nrn and is1 1

w x2 < « Ž . <centered within 0, 1 . Let S n l R denote the sum of the lengths of ther 1
« Ž . < « Ž . <edges in S n l R and similarly for S n l R . By Lemma 5.1 we haver 1 r 2

« Ž . < « Ž . <that S n F S n l R with high probability. It will thus be enough tor 2
show

1r4«E S n l R F C n log n .Ž . Ž .r 2

« Ž . � 4Since S n l R is a feasible boundary triangulation of U , . . . , U l Rr 1 1 n 1
with respect to R , we have1

« « «S n s S n l R q S n l RŽ . Ž . Ž .r r 1 r 2

«� 4G s U , . . . , U l R , R q S n l R ,Ž .Ž .r 1 n 1 1 r 2

where the inequality follows by the minimality of s .r
Ž .The number of sample points in R is a binomial random variable Bi n, p1

with parameters n and p, p [ area R . Taking expectations and scaling we1
get

1r2« «E S n G 1 y C log nrn Es U , . . . , U q E S n l R .� 4Ž . Ž . Ž .Ž . Ž .r r 1 BiŽn , p. r 2

< « Ž . < < Ž . <By definition we have E S n F E s n q « and thusr r

1r2«E S n l R F Es n q « y 1 y C log nrn Es Bi n , pŽ . Ž . Ž . Ž .Ž .Ž .r 2 r r

1r2 1r2F E s n y s Bi n , p q « q C log nrn E Bi n , pŽ . Ž . Ž . Ž .Ž .Ž Ž .r r

Ž .by the growth bound 3.2 . By the continuity of s , the above is bounded byr

1r2 1r2 1r2F E n y Bi n , p q « q C log nrn npŽ . Ž . Ž .Ž .
1r2 1r2F E n y Bi n , p q C log nŽ . Ž .Ž .Ž

1r2 1r2s n 1 y p q C log n .Ž . Ž .Ž .
Ž Ž .1r2 .2 Ž .1r2 Ž .Since p [ 1 y C log nrn G 1 y C log nrn , we see that n 1 y p F

Ž .1r2C n log n , completing the proof of Lemma 5.2. I

Ž .We are now in a position to establish the estimate 5.1 and thus conclude
the proof of Theorem 1.2.
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Ž . Ž . Ž . « Ž .LEMMA 5.3. For all 0 - « - 1 we have s n F s n F s n q S n q C.r r

Ž .Clearly 5.1 follows from Lemma 5.3 since it is enough to take expecta-
tions and apply Lemma 5.2.

« Ž .PROOF. Let 0 - « - 1 and S n be as above. We claim thatr

« «s n F s n F S n q S n q C.Ž . Ž . Ž . Ž .r r

The first inequality follows by the definition of s . To prove the second, wer
� 4need to show that there is a feasible triangulation of U, . . . , U whose totaln

< « Ž . < « Ž .length is bounded by S n q S n q C. Such a triangulation is obtainedr
by triangulating the quadrilaterals and pentagons in the graph described by

« Ž . ŽS n recall that with high probability the graph contains no hexagons andr
.at most four pentagons . We triangulate the quadrilaterals by adding their

« Ž .diagonals, the sum of whose lengths is at most the sum of S n and the
perimeter of the unit square. A triangulation of the pentagons may be
achieved with a cost bounded by a constant since there are at most four

< « Ž . < Ž .pentagons. Thus we have shown the claim. Since S n F s n q « , ther r
result follows. I

We have now proved Theorem 1.2 and turn our attention to the proof of
Theorem 1.3. The proof depends on the following general rate result, which is

Ž .a slight modification of a previous result of Redmond and Yukich 1994 ,
Ž .Theorem 1.2 b .

Ž .THEOREM 5.4 Rates of convergence . Let L be a quasi-additive continuous
w x2Euclidean functional of order 1 on 0, 1 such that the following ‘‘add-one

bound’’ is satisfied:

1r25.4 E L U , . . . , U y E L U , . . . , U F C log nrn .Ž . Ž . Ž . Ž .1 n 1 nq1

< Ž . Ž . < Ž . Ž .If E L U , . . . , U y E L U , . . . , U F a n , where a n is a function of n,1 n r 1 n
then

1r21r25.5 E L U , . . . , U y b L n F C a n k log n .Ž . Ž . Ž . Ž . Ž .1 n

Ž .The proof of this result essentially follows Redmond and Yukich 1994 ,
where the same type of estimate is obtained when the function log n is
replaced by a constant function.

PROOF OF THEOREM 1.3. To apply Theorem 5.4 to triangulations, we must
Ž .show that s satisfies the estimate 5.4 . For all « ) 0 and U , . . . , U we1 n

Ž .recall that G [ G U , . . . , U are the uniquely defined Steiner sets with the« « 1 n
property that

� 4S U , . . . , U j G F s U , . . . , U q « .Ž .Ž .1 n « 1 n
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« Ž .Recall that D U , . . . , U denotes the collection of triangles generated by1 n
Ž� 4 .S U , . . . , U j G . Notice that1 n «

s U , . . . , U F s U , . . . , UŽ . Ž .1 n 1 nq1

� 4F S U , . . . , U j G q D « , nŽ .Ž .1 n «5.6Ž .
F s U , . . . , U q D « , n q « ,Ž . Ž .1 n

Ž . « Ž .where D « , n is the diameter of the random triangle in D U , . . . , U which1 n
Ž . Ž .1r2contains the point U . By Lemma 5.1 we have D « , n F C log nrnnq1

with high probability where C does not depend upon « . Letting « s
Ž .1r2log nrn gives the high probability bound

1r2
s U , . . . , U y s U , . . . , U F C log nrnŽ . Ž . Ž .1 n 1 nq1

and therefore the add-one bound
1r2

Es U , . . . , U y Es U , . . . , U F C log nrn .Ž . Ž . Ž .1 n 1 nq1

Ž . Ž .Thus, by 5.1 and 5.5 we obtain
1r41r2Es U , . . . , U y b s n F C n log nŽ . Ž . Ž .1 n

Ž .which is the desired estimate 1.8 . This concludes the proof of Theorem 1.3.
I

6. The probabilistic Plateau functional. To establish Theorem 1.4 we
may adapt the above approach to the three-dimensional setting. We fix D
once and for all, 1 - D - `. It is helpful first to enlarge the definition of

w x3t [ t in the following way. Let F ; D be a finite set, where D ; 0, 1 is aD
Ž .convex polyhedron. Given D, a tetrahedralization T F, D is a decompositionD

of D into tetrahedra with aspect ratios bounded by D such that the tetrahe-
Ž .dral vertices coincide with F and the corners of D. Analogously to t F , weD

define
t F , D [ inf T F j G , D ,Ž . Ž .D D

G

< Ž . <where T F j G, D denotes the total surface area and where G ranges overD
finite sets in D.

We now consider the properties of the Plateau functional t [ t . NoticeD
Ž . 2 Ž .that t aF s a t F and thus t is homogeneous of order 2. We may check

that t is subadditive on R3 by following the arguments of Lemma 3.2. Also,
w x3 Ž . � 41r3for any F ; 0, 1 we have t F F C card F , which we may establish by

wfollowing the induction arguments of Lemma 3.3 here and in all that follows,
Ž .C [ C D denotes a constant depending only on D and whose value may

x Ž . Ž .vary from line to line . Indeed, for n G 1, set w n [ max t F , where the
w x3 w x3max is over all choices of F ; 0, 1 with card F s n. By decomposing 0, 1

into eight subcubes of edge length 1r2, we obtain from subadditivity,
8 8

1w n F max w a : a s n ,Ž . Ž .Ý Ýi i4½ 5
is1 is1
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where 1r4 represents the square of the scaling factor 1r2. Since Ý8 a1r3 Fis1 i
1r3 8 Ž . 1r34n when Ý a s n, the desired bound w n F Cn follows via induc-is1 i

tion.
To see that t is a continuous subadditive Euclidean functional on R3 of

Ž . Ž .order two, that is, satisfies conditions 1.1 ] 1.4 with d s 3 and p s 2, it
remains only to verify continuity

1r3� 4t F j G y t F F C card G .Ž . Ž .
We follow the approach used to verify the continuity of s .

w x3 Ž .For all « ) 0 and F ; 0, 1 let G [ G F be Steiner sets such that« «

T F j G F t F q « .Ž . Ž .D « D
« Ž . Ž . « Ž .Let T F [ T F j G . Let D F denote the collection of tetrahedra de-D «

« Ž . « « Ž .fined by T F and let EE [ EE F denote the collection of tetrahedral edges.
Since the tetrahedra have uniformly bounded aspect ratios, the sum of the

« Ž .cubes of the edges in EE is bounded by a finite constant C, C [ C D . Using
Ž . � 41r3 Ž .the growth bound t F F C card F , we easily establish the analog of 3.7 ,

namely
J

1r32« < <t F j G F T F q C E card G l D ,� 4Ž . Ž . Ž .Ý i i
is1

« Ž .where E is the longest edge of tetrahedron D , D g D F . Holder’s inequal-¨i i i
J < < 3ity, together with the bound Ý E F C, completes the proof of continuity.is1 i

w x3 3 Ž .Given a convex polyhedron D : 0, 1 and F ; R such that co F > D, we
next define a ‘‘boundary tetrahedralization’’ of D induced by F in the same
way that we defined boundary triangulations. Given 1 - D - ` fixed, con-

Ž .sider a D-tetrahedralization of co F . Such a tetrahedralization partitions
Ž .co F into tetrahedra with aspect ratios bounded by D and whose vertices

Ž .coincide with F. The D-tetrahedralization of co F , having the property that
the total surface area of the restriction of its graph to the interior of D is
minimal, is called the ‘‘boundary D-tetrahedralization’’ of D induced by F

Ž .and is denoted by T F, D . The boundary D-tetrahedralization of D thusr , D
generates the usual tetrahedra as well as polyhedra with faces contained in

< Ž . <the boundary of D. We let T F denote the total surface area of the facesr , D
of the polyhedra in the interior of D. We let

t F , D [ inf T F j G , D ,Ž . Ž .r , D r , D
G

3 Ž .where G ranges over all finite sets in R with the property that co F j G > D.
Ž . Ž w x3.We will suppress mention of D and henceforth write t F for t F, 0, 1r r , D

Ž . Ž .and t F, D instead of t F, D .r r , D
Given this extended definition of t , observe that t is a continuousr r

superadditive Euclidean functional on R3 of order 2; that is, it satisfies
Ž . Ž . Ž X. Ž .conditions 1.1 , 1.2 , 1.3 and 1.4 with p s 2 and d s 3. To verify continu-

ity
3 3 1r3w x w x � 4t F j G , 0, 1 y t F , 0, 1 F C card G ,Ž . Ž .r r 2

we may follow the approach of Section 4.



ASYMPTOTICS FOR MINIMAL TRIANGULATIONS 43

Ž .We may also show closeness of the functionals t and t as given by 1.5r
with p s 2 and d s 3 there. To do this, we will follow the approach of Section

Ž .5. For all « ) 0 and U , . . . , U , we let G U , . . . , U be the uniquely defined1 n « 1 n
Steiner sets such that

� 46.1 T U , . . . , U j G F t U , . . . , U q « .Ž . Ž .Ž .r 1 n « r 1 n

« Ž . « Ž� 4 . «Let T n [ T U , . . . , U j G . Let D denote the collection of tetrahedrar r 1 n « r
« Ž . « « Ž .generated by the tetrahedralization T n . Let EE [ EE U , . . . , U be ther 1 n

collection of edges formed from the intersection of the edges in D« and ther
w x3 « « Ž .interior of 0, 1 . Let FF [ FF U , . . . , U be the collection of faces formed by1 n

« w x3intersecting the faces of D and the interior of 0, 1 .r
Ž . Ž .The following estimate 6.2 is the analog of 5.2 ; its proof follows the

Ž . Ž . Ž .proof of 5.2 with small modifications. Note that 6.3 follows from 6.2 and
the bounded aspect ratio property of the tetrahedra.

LEMMA 6.1. With high probability all edges E g EE « satisfy the length
bound

1r3< <6.2 E F C log nrnŽ . Ž .

and all faces F g FF « satisfy the area bound

2r36.3 area F F C log nrn .Ž . Ž .

« w x3Consider the faces in EE which meet the boundary of 0, 1 and let
« Ž . « Ž .S n [ S U , . . . , U denote the sum of their areas. Exactly as in Lemma1 n

« Ž .5.2, we may find a rough estimate for S n .

« Ž . 2r9Ž .1r9LEMMA 6.2. For all 0 - « - 1 we have ES n F Cn log n .

w x3PROOF. Following the proof of Lemma 5.2, decompose 0, 1 into a sub-
w x3 w x3cube Q centered within 0, 1 and a moat 0, 1 y Q . Let the edge length of1 1

Ž .1r3 < « Ž . <Q be 1 y C log nrn . Let T n l Q denote the sum of the areas of the1 r 1
« Ž . < « Ž . <faces in T n l Q and similarly for T n l Q . By Lemma 6.1 we haver 1 r 2

« Ž . < « Ž . <S n F T n l Q with high probability. It will be enough to show thatr 2

1r9« 2r9E T n l Q F Cn log n .Ž . Ž .r 2

Now as in the proof of Lemma 5.2 we have

« «� 4T n G t U , . . . , U l Q , Q q T n l QŽ . Ž .Ž .r r 1 n 1 1 r 2

and taking expectations we get

21r3« «E T n G 1 y C log nrn Et U , . . . , U q E T n l Q ,� 4Ž . Ž . Ž .Ž . Ž .r r 1 BiŽn , p. r 2
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Ž .where Bi n, p denotes a binomial random variable with parameters n and
Ž Ž .1r3.3p [ volume of Q s 1 y C log nrn . Thus by scaling and the growth1

bounds for t we haver

21r3«E T n l Q F Et n q « y 1 y C log nrn Et Bi n , pŽ . Ž . Ž . Ž .Ž .Ž .r 2 r r

1r3 1r3 1r3F E n y Bi n , p q « q C log nrn npŽ . Ž . Ž .Ž .Ž
1r3 1r3F n 1 y p q C log nŽ . Ž .Ž .

1r31r3 1r3F nC log nrn q C log nŽ . Ž .Ž .
1r92r9F Cn log n .Ž .

This completes the proof of Lemma 6.2. I

Ž . Ž .Let t n [ t U , . . . , U . The following is the analog of Lemma 5.3.1 n

Ž . Ž . Ž . Ž « Ž . .LEMMA 6.3. For all 0-«-1 we have t n Ft n Ft n qC S n q1 .r r

« Ž . Ž .PROOF. Let 0 - « - 1 and T n be as in 6.1 . We claim thatr

« «6.4 t n F t n F T n q C S n q 1 .Ž . Ž . Ž . Ž . Ž .Ž .r r

The first inequality follows by monotonicity. To prove the second, we need to
� 4show that there is a feasible tetrahedralization of U , . . . , U whose total1 n

< « Ž . < Ž « Ž . .surface area is bounded by T n q C S n q 1 . We observe that ther
« Ž .polyhedra given by T n which meet the boundary are convex and may ber

tetrahedralized at a cost bounded by a constant multiple of the sum of the
« Ž .areas of their faces. The combined areas of their faces is the sum of S n and

w x3 Ž . Ž . Ž .the area of the boundary of 0, 1 . This proves 6.4 . Combining 6.4 and 6.1
we obtain Lemma 6.3. I

Lemmas 6.2 and 6.3 establish that the Plateau functional t and its
Ž .boundary version t are close in the sense that they satisfy 1.5 with p s 2r

and d s 3. More precisely, we have shown that

1r92r96.5 Et U , . . . , U y Et U , . . . , U F Cn log n .Ž . Ž . Ž . Ž .1 n r 1 n

We have therefore shown that t and t satisfy all the conditions of Theoremr
1.1 with p s 2 and d s 3. Theorem 1.4 follows as desired.

It is a simple matter to find rates of convergence for the mean of t . Since
we are in dimension three we can avoid appealing to Theorem 5.4. The

Ž . Ž . 1r3subadditivity of t gives Et U , . . . , U G b t n and the superadditivity of1 n
Ž . Ž . 1r3 Ž .t gives Et U , . . . , U F b t n . By 6.5 we thus have the rate estimater r 1 n

1r91r3 2r9Et U , . . . , U y b t n F Cn log n .Ž . Ž . Ž .1 n

Whether these rates are optimal is unclear.
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7. Concluding remarks. Using the theory of continuous subadditive
and superadditive Euclidean functionals, we have provided the asymptotics
for the minimal Steiner triangulation functional as well as its three-dimen-
sional counterpart, the discrete Plateau functional. With regard to the for-

Ž .mer, we have extended the work of Steele 1982 under the regularity
condition that the triangles have bounded aspect ratios. Whether one can
remove or relax this condition remains open. Additional questions which

Ž .merit investigation include: 1 Is there an analog of Theorems 1.2 and 1.4 for
triangulation and tetrahedralization functionals which do not use Steiner

Ž .points? 2 Are there asymptotics for triangulation and tetrahedralization
functionals which are defined in terms of simplicial complexes?
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