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LOG-SOBOLEV INEQUALITIES AND SAMPLING
FROM LOG-CONCAVE DISTRIBUTIONS

By ALaN Frieze! anDp Ravi KANNAN?

Carnegie Mellon University

We consider the problem of sampling according to a distribution with
log-concave density F over a convex body K € R". The sampling is done
using a biased random walk and we give improved polynomial upper
bounds on the time to get a sample point with distribution close to F.

1. Introduction. This paper is concerned with the efficient sampling of
random points from R”, where the underlying density F is log-concave (i.e.,
log F is concave). This is a natural restriction which is satisfied by many
common distributions, for example, the multivariate normal. The algorithm
we use generates a sample path from a Markov chain whose stationary
distribution is (close to) F. The algorithm falls into the class of Metropolis
algorithms. Using recent developments in the theory of rapidly mixing Markov
chains, in particular, the notion of conductance [8, 5], Applegate and Kannan
[1] proved a bound on the convergence rate of the chain considered in this
paper. In a recent paper, Frieze, Kannan and Polson [3] proved tighter
bounds using an approach related to the classical Poincaré inequalities
instead of conductance. In this paper, we improve these bounds still further
by using logarithmic Sobolev inequalities; see Diaconis and Saloff-Coste [2]
for an expository article.

Instead of sampling from the continuum of points in R", we discretize the
problem by assuming that R" is divided into a set of hypercubes @y of side 6
(6 is a given small positive real number) and the problem is to choose one of
these cubes each with probability proportional to the integral of F' over the
cube. (If necessary, a sample from the continuum can then be picked by
standard rejection sampling techniques from the cube chosen; we omit details
of this.) Second, we assume that we have a compact convex set of diameter d
and we wish to choose points only from K (not all of R"). This is justified
because clearly for any positive real number ¢, we can find a compact convex
set (e.g., a ball or hypercube) such that the integral of F over the set is at
least (1 — £) times the integral over R".

Let # denote the set of cubes which intersect K. Let C denote the set of
centres of these cubes. For x € R", we denote the cube of side § and centre x
by C(x).[Thus C(x) € Z if and only if x € C.] We choose our sample point X
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LOG-SOBOLEV INEQUALITIES AND SAMPLING 15

by performing a random walk over C. The walk is biased so that its steady
state is (close to) what we want, and we run the walk until it is close enough
to the steady state. The result of this paper concerns the rate of convergence
of the walk to its steady state.

We may not be able to compute F' exactly and so we assume we have good
approximations F(x), x € C. Further, we assume that F(x) is strictly posi-
tive for all x € C. We extend F to the whole of K by putting F(y) = F(x) for
y € C(x), x € C.

We can only take advantage of the log-concavity of F if our grid is
sufficiently fine and our approximations F(x) are sufficiently good. In this
context, we will assume that for some small « > 0,

(1) (1+a) 'F(x) <F(y) <(1+a)F(x) VyeC(x).

When we have F = F, it is easy to check that this condition is satisfied if we
choose a to be e™® — 1, where M is the Lipschitz constant of In F with
respect to the infinity norm [i.e., M satisfies In F(x) — In F(y)| < M|x — yl.,
Vx,y € K]. However, an « smaller than e™? — 1 may satisfy (1); this is, in
fact, the case for important functions like F(x)=e ¢* and F(x) =
exp(—c|x|?) as tedious, but simple calculations show. As we will see, the rate
of convergence to the steady state depends upon (1 + «). In typical applica-
tions, one would make 1 + « a constant. [For example, this can be ensured by
choosing 6 = O(1/M).]

The walk we consider fits into the scheme of Metropolis algorithms intro-
duced in Metropolis, Rosenberg, Rosenbluth, Teller and Teller [7]. It was used
by Applegate and Kannan [1] in their paper on volume computation and was
further studied by Frieze, Kannan and Polson [3].

In the following text, for any natural number m, [m] ={1,2,..., m} and
ey, ey,...,e, are the standard basis vectors of R™. For convenience, we
consider the continuous time version, where the time between transitions is
an independent negative exponential with mean 1.

The random walk. This generates a random trajectory X(¢), ¢ > 0, where
X(0) is picked according to some initial distribution p,(x). Fix a time ¢,
where a transition has just taken place. At a random time ¢’ = ¢ + 7, where 7
is a negative exponential with mean 1, we do the following:

STEP 1. Choose j randomly from [n]. Choose o randomly from { +1}.
SteP 2. Let y = X(¢) + de,.

Step 3. If y & C, then X(¢') = X(¢); replace ¢ by ¢’ and return to Step 1.
Otherwise, put X(¢') =y with probability 6 = Min(1, F(y)/F(X,)} and
X(t') = X(t) with probability 1 — 0.
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Let I'(x) = {y # x: P(x, y) > 0}. Then the transition probabilities P(x, y)
= Pr(X(¢') =y | X(¢) = x) are formally given by
F
1 (%)
x

F(x) for y e I'(x)

1
P(x,y) = %Mm

and
P(x,x)=1- ) P(x,y).

yFX
We refer to this as “the random walk” in this paper.

The process has a steady state with probabilities #(x) with
lim, ., Pr(X(¢) = x) = w(x) for all x independent of the distribution of X(0).
It is easy to verify that

m(x) = F(x)/A,
where A = ¥__, F(x). We assume that the F(x) are sufficiently good approx-
imations so that sampling according to 7 can be considered to be our
objective.

Note that this process is time-reversible, that is,

m(x)P(x,y) = w(y)P(y,x) forx,yeC.
Let p,(x)=Pr(X, =x) be the distribution at time ¢ and let f,(x)=
p,(x)/m(x). Then let M = max . fo(x)log fo(x). For 0 < 6 <1,1let C, = {x
€ C: vol(C(x) N K) = 66"} and m, = ¥, , ¢, m(x).
The variational distance between p, and 7 is given by
Ip, — 7llv = X Ip,(x) — w(x)l.
xeC

Our main result is the following theorem.

THEOREM 1. Assume d > 8n'/2. There is an absolute constant y > 0 such
that

1 v0t52 o
lp, — wlltv < | = |exp{ — T log 73" +

MTrgnd2 1z
2 ’

y8?

where , = min 7(x).

Generally speaking, it is not difficult to choose p,(x) so that for 6 = 1/10 say,
M, is exponentially small. Usually one has p, concentrated on a small set
S, and then f, is zero outside this set. One can then blow up K so that =, is
sufficiently small, while only marginally changing p,(x) for x € S,. This
improves results of [3], essentially by replacing 7' by log 7.

2. Back to a continuous problem. The eniropy Ent_( n) of measure u
is given by

Ent,(pn) = X p(x)log iiz; :
xeC



LOG-SOBOLEV INEQUALITIES AND SAMPLING 17

It follows from the convexity of x* that

(2) Ent,(p) <log7,'.

Inequality (2.8) of [2] shows that for any measure u, we have
(3) 2/l w — mlty < Ent_(u).

(For a proof, see the Appendix.)
For ¢ € R®, we introduce the quantities

(4) () =3 L L (d(x) = d(¥) 7(x)P(x,y)

x€C yel(x)
and
b(x)?
2(8) = T ¢(x)og 2| ()
xeC ||¢||2
= llI3Ent (),
where
(5) llollz= Y o(x)’m(x) and wu(x) = m(x)d(x)*/lell3 for x € C.
xeC
We now define the log-Sobolev constant « by
&
a= inf{%:f/(q&) #0
e/ e ) }
= inf : uis a measureon C ).
Ent_(u)

Putting ¢,(x) = /f,(x) for x € C, it is shown in [2] (see Appendix for a
proof) that

A

d
(6) EEntﬂ'(pt) - _4g(¢t’ d)t)

IA

—4a Ent_(p,).
It follows that
Ent_(p,) <e **'Ent_( p,).

We need to modify this in order to account for the border cubes C(x), x & C,.

2.1. Two integrals. Given ¢ € RV and a small &> 0, we define ®,:
K — R as follows: suppose z € C(x) for some x € C. Let C(x, &) denote the
cube centred at x with side § — 2¢. If z € C(x, &), we let @ (2) = Pp(x). If
z & C(x, &), let D be a face of C(x) which is closest to z. (If there is a tie for
D, the value of @, does not matter, as we will see.) Suppose first that
D = C(x) N C(y) for some y € C and that dist(z, D) = ne, where 0 < n < 1.
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In this case, we let @ (z) = (1 + n¢(x) + (1 — n)@(y)) /2. In this way, if we
start at a point on a face of C(x, &) parallel to D and move toward D, then &,
changes linearly from ¢(x) to ¢(y) over a distance 2¢. Finally, if the
hypercube on the other side of D to C(x) is not in %, then we keep

®(2) = Pp(x).

We consider the two integrals
L= [ IVO,(2)PF(2)g(2) dz
K
and
®,(2)"fx F(£)g(£) d¢

fx ®.(£)°F({)g(¢)de
Here g: K — R is defined by

J, = [ @,(2)"log F(2)g(z) dz.
K

g(y) = fory e C(x), x € C.

z
F(y)
Thus, in particular,

fc(x)F(y)g(y) dy = 8"F(x), «x€C,

and
(7) (1+a) '<g(y)<1+a.
On a set Z of measure zero (consisting of points for which there is a tie for

D), @, is not differentiable. We can, however, easily “smooth out” ®, close to
Z so that (4) and (1) imply

I = 2/ VO, (2)°F(z) dz
xrec KnC(x)

IA

Y [ Ve,(2)IPF(2)dz
C(x)

xeC

8_18n_1 Z Z

(8) xeC yeT(x)

IA

(¢(x) - 6(y)

5 ) F(x) +0(1)

[O(1) as ¢ - 0]

1+a 9 . = —
s( i )6 Y Y (6(x) - ¢(y) min(F(x), F())

4 x€C yel'(x)

+ 0(1)
=(1+ a)e 'And" '&(p, ) + O(1),
where the term O(1) may depend on n, F and ¢. So
el

®) #(9.9) 2 (1+ a)’(1+f(e))nd" A ~0(s).
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We decompose

(10) Ent.(p,) = En;(p,) + Eng(p,),
where En;(p,) = X, ¢, p,(%)log f,(x) and so forth.
Arguing as we did for &(¢, ¢), we see that
®.(2)"Jx F({)g(¢) dg
P, (z ®log
xgcﬂfKﬁC(x) 2 Jx ©.({)°F(£)g(¢)d¢
(11) ?
05"A Y. ¢(x)’log q,’)(xg
xeC, $ll2
66"A En;(n) + O(¢),
where u is as in (5).

Applying (6) and (9) (with ¢ = ¢,) and (11) (with u = p,), we find that for
some absolute constant A; > 0,

J,

&

1\

F(z)g(z)dz

%

m(x) + O(¢)

A oL, o)
-A—F+
Lpen—1A ()

06el

< —Alenz(m) +0(e).

&

d
aEntﬂ'(pt)

IA

(12)

In the next section we prove the following theorem.

THEOREM 2. Suppose K is a convex set in R" of diameter d, F is a
(positive real valued) log-concave function on K and g is any sufficiently
smooth real valued function on K satisfying (7). Then with f= ®, and
d > én'/?, we have

o [F(2)"[x Fgd¢
/Kf(x) log(—fK Fgdq

sAzdzgS*IfKIVf(z)|2F(z)g(z) dx

F(z)g(z)dz

(13)

for some absolute constant A, > 0.

Letting &£ — 0, we see from (12) and the above theorem that

d 1082
14 —Ent < ——7
( ) dt n 7T(pt) < Aznd2

In the proof of (6) [see (29)] we find that
fi(x) =e "Df(x).

En;(p,).

This implies that

maxf,(x) < maxf,(x)
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and, consequently,

(15) Eng(p,) < Mm,.

It follows from (14) and (15) that

M
(16) Ent,(p,) <e PEnt,(p,) + B",

where 8 = A,082/A,nd?. Theorem 1 now follows from (3) and (16).

3. Proof of Theorem 2. As in [3], we use the localization lemma of
Lovasz and Simonovits [6] to reduce the geometry to one dimension.

LEMMA 1. Let f,, fo be low semicontinuous functions defined on R" such
that

| f(z)dz>0, i=1.2
Rn
Then there exist a, b € R" and a linear function 1:[0,1] - R, such that

[' fa+ @ -0p)e)" rde>0,  i-12.
t=0

We use the fact that (13) fails to hold if and only if there exists A > 0 such
that

fKF(x)g(x) dx > )\fo(x)zF(x)g(x) dx

and
[Kf(x) F(x)g(x)log(Af(x)?) dx >Ad286‘1/K|Vf(x)| F(x)g(x) dx.

So we put

fi=Fg(1 - Af*)xx
and

f = Fg(f*log(Af?) — Ad%6 'IVFI*) xk,

where xjx is the indicator function of the body K.

Let a, b and [ be as in Lemma 1. We observe that we can take a, b € K
because of the factor yx. Let f(¢) = ®.((A — H)a + tb), g(¢) = g((1 — t)a + tb),
h(t) = F((1 — t)a + tb)I(t)" ' and g(¢) = |V, ((1 — t)a + tb)|. Note that A(¢)
is log-concave. We can assume that |b —al|=d as |b — a| < d and |b — al can
replace d in our proof.
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We then see that if (13) fails to hold, then, where (¢) = g(£)h(?),

F(£) Lo w(t) dt
Lo F(£)*w(¢) dt

Suppose on this line segment, A attains its maximum at . We consider the
two parts of the line segment [0, /] and [ £, 1] separately. The arguments are
symmetric and we give only one part. In fact, we will assume for simplicity
that { = 0 and A decreases monotonically on [0, 1]. We can make the follow-
ing normalizations (the first by scaling ~ and the second by then scaling f,
neither of which changes the theorem):

W(t)dt > Ad%s ' [* g(1)*0(t) dt.
t=0

an [ iof(t)zlog(

[ owde=1,
(18) 0

J" ey de=1.
t=0
Let X € [0,1] be a random variable with density function . Now
(19) f(2)" < 2(f(1) = £(0))" + 2£(0)".
Also (from the fact that log is a concave function),
") og( 7))y de < 1(0)og [ (o) uce) ae
(20) t=0 B t=0

= 0.
Now, putting u = (b — a)/d, we get

(1) = FON* = ([ F (o) ds)2

=d? ft iu )—((1—s)a+sb)ds ,
s=0

Jj=1

where y; is defined by

b

Xj(s) =
0, otherwise.

By the Cauchy—-Schwarz inequality, we have

n n 1/2
5, <[ £unea] o,

Jj=1
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So we get, with another application of Cauchy—Schwarz,

1/2 2

(f(t) — £(0))* < d? g(s)ds

/st:O ( ~i1 ul x;(s)

- dz(f:_o élu;%xj(s) ds)(fst_oé(S)Z dS)-

Now each time the line from 0 to ¢ crosses a hyperplane of the form x; = m3,
m an integer, we get a contribution of 2&/du; to [ x,(s) ds. Furthermore, the
number of such crossings is at most

du;t
(21) L

So we get (using the facts that ¥7_, u? = 1 and X|u;| < Vn)

nl/2
— + p )/t g(s)’ ds

s=

(F(t) — £(0))* < 2d%

<B[" &(s)*ds,
s=0
where

1 n?
— 4+ .
]

Now let T'={¢: f(t)* > 1} and T, = T N [s,1] for 0 < s < 1. Then

f;o(f(t) - f(O))Zlog(f(t)2)¢(t) dt

B =2d%

<B[ [ 2(s)? dslog(f(¢)*)w(t) dt

teT 's=0

_Bf &(s) Pr(XeT)f g(f(t) )%dtds

1 f(8) ()

1
B/S:OgQPr(X e Ts)log(/t —

d
cr Pr(X € T, s

IA

L
< BfZOgQPI‘(X S Ts)log(m) ds.

We will prove that

Pr(XETS)log( <(1+a)(1+et)a(s)

1
(22) Pr(X e T,) )

< (1+a)’(1+e Yy(s) by (7).
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Let h(t) = e ", where n(t) is convex. Let A = 1'(s). Then
(23) h(t) < h(s)e 9.
So,

Pr(XeT) <Pr(X=s)= [ y(1)dt

(24) <(1+a)[ h(s)e N de

(1 + a)h(s)
= : )
We also have

(25) (1+a)™ ' <h(0) <h(s)e.

The first inequality follows from the monotonicity of 2 and (18). The second
follows from (23). Thus

(26) h(s) = (1+a) 'e ™

The function ¢ log(1/¢) increases monotonically from 0 at £ =0 to e™! at
&= e ! and decreases monotonically from then on. So if A(s) > 1/((1 + a)e),
then

(27) Pr(X e T)log(1/Pr(X e T,)) <e ' <h(s)(1+a),

which implies (22) in this case.
So assume that A(s) <e !'/(1+ a). Now P(X €T, < Pr(X > s) =
R () dt < (1 + a)h(s) <e ! So,

1

Pr(X e Ts)log(

o)
(1 + a)h(s)
<(1+ a)h(s)r from (26).

So A <1 will imply that (27) holds again. We can therefore assume that
A > 1, but then A(s)/A < h(s) <e ! /(1 + a) and so we obtain from (24) that

) _ (L+a)h(s)
Pr(XeT,) |~ A

_ (L+a)h(s)
(28) <7

=(1+ a)h(s)(b%/\ + 1)

<(1+a)(e* +1)h(s)

m) <(1+ a)h(s)log

Pr(X e Ts)log( og

el
(1+a)h(s)

log(Ae*) from (26)

as claimed. So if

C=2B(1+a)’(1+el),
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then
[ (R0 = FO) log(F()*)ir(t) dt = €[ ghu(r) dr.

Theorem 2 follows. O
There is an alternative random walk, the ball walk, which has been

applied in this area [4-6]. It is, in some sense, preferable to the one we have
studied, since better upper bounds are known on its “mixing time.”

Ball walk. Replace Steps 1 and 2 of the previously discussed walk by the
following steps.

STEP 1'. Choose v uniformly at random from the set {u € R": |u| < §}.
StEP 2'. Let y = X(¢) + u.

PrOBLEM. Estimate the log-Sobolev constant for the ball walk.

APPENDIX

ProoF oF (3). Observe first that for © > 0, we have
3(u—1)" < (4+2u)(ulogu —u + 1).
Applying this with u = w(x)/7(x) and then multiplying by #(x), we obtain
V3lu(x) = m(x)l

< (4w (x) + 2u(x))"*(p(x)log( u(x)/m(x)) = p(x) + m(x))"".
Applying the Cauchy—-Schwarz inequality,

(3l — 7T||TV)2
< Y (4m(x) +2u(x)) )X (m(x)log( m(x)/m(x)) — u(x) + 7(x))

=6Ent_(u). |

ProoF oF (6). The following sequence of derivations relies heavily on the
time-reversibility of our process. We indicate these uses by an asterisk (*) at
the end of the line. Observe first that if f,(x) = p(x)/7(x) and H, = e ‘e’”,
then

) ne—t 0 Pn , X
ft(x):;otn! Z:p(y) (¥, x)

yel W(x)
29 = ret ()P (x, ’
(29) =Zt’zp(y)(y)
n=0 T yel 77-(y)

=H,fo(x).
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We apply this to compute the rate of change of Ent_( p,) with respect to ¢:

d
EEntTr(pt)
= Zcﬂ(x) (fi(x)log fi(x))
= ZCW(x)(l + log £( x)) (%)
= Zcﬂ(x)(l + log f,( x)) Hfo(x)
= Zcﬂ(x)(l + log fi(x))(P —I)f,(x)
= ZCW(x)(l + log f,(x)) ZCP(x,y)(ft(y) —f(x))
= Zcﬂ(x)log f,(x) ZCP(x,y)(ft(y) —f(x)) i
= —% Y. m(x)P(x,y)(log fi(x) —log fi(¥))(f,(x) — f,(¥))-
x,yeC

Now (2.7) of [2] shows that if @ > b > 0, then
(log @ — log b)(a — b) > 4(a/? — b1/2)”.

Hence,
d
—Ent,(p) < -2 ¥ 7(x)P(x, y)(£,(x)7* = f(9) %)
x,yGC
_ _4g(ft1/2’ ft1/2)
< —4a Ent_(p,),

which proves (6). O
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