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An on–off process is a 0–1 process ξt in which consecutive 0-periods
�T0; n� alternate with 1-periods �T1; n� �n = 1;2; : : :�. The on and off time
sequences are independent, each consisting of i.i.d. r.v.s. By the superposed
flow, we mean the processZt =

∑N
`=1 r

`ξ`t , where r` > 0 and �ξ1
t �; : : : ; �ξNt �

are independent on–off flows. The process ξ`t is not Markovian; however,
with the age component η`t , the process w`t = �ξ`t ; η`t� is a piecewise deter-
ministic Markov process. In this paper we study the buffer content process
for which the tail of its steady-state distribution 9�b� fulfills inequality
C−e−γb ≤ 9�b� ≤ C+e−γb, where γ > 0 is the solution of some basic non-
linear system of equations.

1. Introduction. Fluid models with exponential on and off times were
intensively studied by many authors beginning with the pioneering papers
of Anick, Mitra and Sondhi (1982) in the homogeneous case and Stern and
Elwalid (1991) for a nonhomogeneous case [see also a survey by Kulkarni
(1995)]. In this paper we study fluid models with general on and off times
and, under some assumptions, we derive exponential lower and upper bounds
for the tail of the steady-state distribution of the buffer content. Bensaou,
Guibert, Roberts and Simonian (1994) and Guibert (1994) studied fluid models
using the Beneš–Borovkov equation. However, their results for nonexponential
on and off times are computationally quite complex. Guibert and Simonian
(1995) found approximations for the tail of the steady-state distribution of
the buffer content using large deviations techniques; however, the form of the
rate function derived in their paper can be utilized only numerically. Other
references on related topics are Palmowski and Rolski (1996), Kulkarni (1994),
Asmussen and Rubinstein (1995) and Whitt (1993). Nonexponential estimates
for the tail of the buffer content distribution were studied, for instance, by
Heath, Resnick and Samorodnitsky (1996) and Jelenkovič and Lazar (1996).

By an on–off flow we mean a 0–1 process ξt, in which consecutive 0-periods
�T0; n� alternate with 1-periods �T1; n� �n = 1;2; : : :�. Random variables
�T0; n� are off times and �T1; n� are on times. We assume that both sequences
are independent, each consisting of i.i.d. random variables. In this paper we
consider N flows ξ1

t ; : : : ; ξ
N
t . The flows are not supposed to be identically

distributed and we denote the generic on and off times of the `th flow by T`1
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and T`0, respectively �` = 1; : : : ;N�. If E�T`0 +T`1� <∞, then there exists the
(time) stationary on–off flow ξ`t .

In this paper we consider the fluid model with input rate Zt =
∑N
`=1 r

`ξ`t
and constant output rate c, wherein the buffer content process Xt is governed
by the equation

dXt

dt
=
{
Zt − c; for Xt > 0;
�Zt − c�+; for Xt = 0:

It is known [see, e.g., Kulkarni and Rolski (1994)] that if the stability condition

N∑
`=1

p`r` < c(1.1)

holds, where

p` = ET`1
ET`0 + ET`1

;

then there exists 9�b� = limt→∞ P�Xt ≥ b� and

9�b� = P
(

sup
t≤0

∫ 0

t
�Zs − c�ds ≥ b

)

= P
(

sup
t≥0

∫ t
0
�Zs − c�ds ≥ b

)
:

In this case, limb→∞9�b� = 0 and we study how fast 9�b� converges to 0. We
also suppose that

c <
N∑
`=1

r`y(1.2)

otherwise, the buffer is empty in the steady state. Notice that p` is the
steady-state probability that the `th flow is in the state on. The main result
of this paper are two-sided exponential bounds for 9�x�. For the `th source
�` = 1; : : : ;N�, let F`

1 denote the distribution of T`1 and let F`
0 denote the dis-

tribution of T`0; the corresponding moment generating functions are F̂`
1 and

F̂`
0, respectively. We assume that the distributions are absolutely continuous

with densities f`1 and f`0 and the corresponding hazard rate functions

r`1�x� =
f`1�x�

1−F`
1�x�

; r`0�x� =
f`0�x�

1−F`
0�x�

;

respectively. If flows are identically distributed, then the superscript ` is omit-
ted. Such flows are called homogeneous flows, in contrast with the more gen-
eral case of heterogeneous flows.

Throughout this paper we make the following assumption about the exis-
tence of the solution of a system of equations, which we call the basic system
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of nonlinear equations (BSNL). There exist γ > 0 and c` > p`r` (` = 1; : : : ;N)
fulfilling the following system of equations:

F̂`
1�−γ�c` − r`��F̂`

0�−γc`� = 1; ` = 1; : : : ;N;(1.3)

N∑
`=1

c` = c:(1.4)

We call γ the adjustment coefficient and we discuss this system later in Sec-
tion 5. It is clear thatF`

1 cannot be heavy-tailed, and in Theorem 1.1 we impose
even stronger conditions. For the homogeneous case it suffices to assume that
there exists γ > 0 such that

F̂1

(
−γ

(
c

N
− r

))
F̂0

(
−γ c

N

)
= 1:(1.5)

The main result of the paper is the following theorem.

Theorem 1.1. Suppose that

inf
y→∞

E
[
exp�−γc`�T`0 − y���T`0 > y

]
> 0(1.6)

and

sup
y→∞

E
[
exp�γ�r` − c`��T`1 − y���T`1 > y

]
<∞(1.7)

for ` = 1; : : : ;N. Then for some constants 0 < C− ≤ C+,

C−e
−γx ≤ 9�x� ≤ C+e−γx; x ≥ 0:

A sufficient condition for (1.6) is

lim inf
x→∞

r`0�x� = ρ`0 > 0(1.8)

and for (1.7) is

lim sup
x→∞

r`1�x� = ρ`1 > 0 and ρ`1 > γ�r` − c`�:(1.9)

The proof is given in Section 3, wherein we also give forms for C− and C+ in
formulas (3.12) and (3.13), respectively. We give a comment on conditions (1.8)
and (1.9) in Section 5.

For the proof of Theorem 1.1 we use a Markovian theory of on–off flows.
Process ξt is not Markovian alone, but it is Markovian with the supplementary
age component ηt. Thus, the process wt = �ξt; ηt� is a Markov process, which
is a piecewise deterministic (PD) Markov process—a class introduced by Davis
(1984, 1993). Moreover, the (extended) generator Q of the Markov processwt is
known. We recall needed concepts and results from PD processes in Section 2.
In the proof we use a form of exponential martingales and a perturbation
theorem from the Appendix to define a new underlying probability measure.
The change of measure technique, called twisting in large deviation theory [see



ON–OFF FLOWS AND FLUID MODEL 527

Shwartz and Weiss (1995)], is standard for such purposes [see, e.g., Palmowski
and Rolski (1996) and Asmussen (1994)].

2. Process wt. Formally we define the process wt = �ξt; ηt� as follows.
Let τn; n = 1;2; : : : ; be the sequence of switchover epochs. It is defined re-
garding the initial condition w0 = �ξ0; η0�. If ξ0 = 0 and η0 = y, then τ1 has
distribution F0�dt+y�/F̄0�y� and is independent of �T0; n�, �T1; n�. Then we
define recursively

τn+1 =
{
τn +T0; n/2; if n is even,
τn +T1; �n/2�; if n is odd,

and

ξt =
{

0; if τn ≤ t < τn+1 and n is even,
1; if τn ≤ t < τn+1 and n is odd:

Similarly, if ξ0 = 1 and η0 = y, then τ1 has distribution F1�dt+y�/F̄1�y� and
it is independent of �T0; n� and �T1; n� and we define recursively

τn+1 =
{
τn +T1; n/2; if n is even,
τn +T0; �n/2�; if n is odd

and

ξt =
{

1; if τn ≤ t < τn+1 and n is even,
0; if τn ≤ t < τn+1 and n is odd.

We define the supplementary age process by ηt = t−τn if τn ≤ t < τn+1. For all
initial conditions i = 0;1 and y ≥ 0, the process wt is Markov and we denote
the underlying probability measure by P�i; y�. If µ�di;dy� is a probability on
�0;1� × R+, then we denote

Pµ =
∫
P�i; y�µ�di;dy�:(2.1)

The process wt is stationary if we choose

µ�i; dy� = π�i; dy�(2.2)

= 1
E�T0 +T1�

F̄i�y�dy:(2.3)

Generator Q of wt and its domain D �Q� are defined as follows. We denote
by Cb��0;1� × R+� all continuous and bounded functions gx �0;1� × R+ → R.
For g;g∗ ∈ Cb��0;1� × R+� we denote

Mg;g∗�wt� = g�ξt; ηt� − g�i; y� −
∫ t

0
g∗�ξs; ηs�ds; t ≥ 0:

We look for all functions g;g∗ ∈ Cb��0;1�×R+� such that Mg;g∗�wt�; t ≥ 0, is
a P�i; y�-martingale for all �i; y�, and then we denote this family of g by D �Q�
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and the mapping Qx g→ g∗ we call a (full) generator. The result of Theorem
26.14 from Davis (1993) adapted to the process wt says that for i = 0;1,

�Qg��i; x� = ∂

∂x
g�i; x� + ri�x��g�1− i;0� − g�i; x��(2.4)

and D �Q� consists of all functions g�i; y� ∈ Cb��0;1� ×R+�, such that g�i; y�
are absolute continuous on �0; s∗i�, where s∗i = inf�tx Fi�t� = 1�.

Remark 2.1. Following Davis [(1993), Remark 26.16] we can consider un-
bounded functions g. Then we have that D �Q� consist of all functions g�i; y�,
such that g�i; y� are absolute continuous on �0; s∗i�, where s∗i = inf�tx Fi�t� =
1� and E�g�i;T`i� <∞ �` = 1; : : : ;Ny i = 0;1�.

3. Proof of Theorem 1.1. We first prove it for N = 1 and then we show
how to adapt the proof for the general case. In this case we do not write su-
perscript `. In the first lemma we consider the following system of differential
equations:

�Qh��i; y� = β�ri− c�h�i; y�; i = 0;1:(3.1)

Lemma 3.1. The smallest β < 0 such that there exists h ∈ D �Q� and
inf i; y h�i; y� > 0 fulfilling (3.1) is β = −γ. Then

h�1; y� = exp�−γ�r− c�y�
F̄1�y�

∫ ∞
y

exp�γ�r− c�z�f1�z�dz

= E
[
exp�γ�r− c��T1 − y���T1 > y

](3.2)

and

h�0; y� = F̂1�−γ�c− r��
exp�γcy�
F̄0�y�

∫ ∞
y

exp�−γcz�f0�z�dz

= F̂1�−γ�c− r��E
[
exp�−γc�T0 − y���T0 > y

]
:

(3.3)

Proof. Solving system (3.1) with initial conditions we get

h�i; y� = exp�β�ir− c�y�
F̄i�y�

[
h�i;0� − h�1− i;0�

∫ y
0

exp�−β�ir− c�z�fi�z�dz
]
;

i = 0;1; y ≥ 0:

Since we want inf i; y h�i; y� > 0, therefore, for all i = 0;1 and y ≥ 0,

h�i;0� − h�1− i;0�
∫ y

0
exp�−β�ir− c�z�fi�z�dz > 0;

from which, passing with y→∞, we obtain

h�i;0� − h�1− i;0�
∫ ∞

0
exp�−β�ir− c�z�fi�z�dz ≥ 0:



ON–OFF FLOWS AND FLUID MODEL 529

Choosing h�0;0� = 1 we write

1− h�1;0�F̂0�βc� ≥ 0;

h�1;0� − F̂1�β�c− r�� ≥ 0

or

F̂1�β�c− r�� ≤ h�1;0� ≤ F̂−1
0 �βc�:

Therefore, we look for the smallest negative β for which

F̂1�β�c− r�� ≤ F̂−1
0 �βc�

or H�β� ≤ 1, where

H�x� = F̂1�x�c− r��F̂0�xc�:(3.4)

The function H is strictly log convex because logH is a sum of two strictly
convex functions log F̂i �i = 0;1� [see Kingman (1961)]. Moreover, it is equal
to 1 at x = 0 and, in view of assumption (1.1), its derivative at zero is positive.
Therefore, the function is strictly less than 1 in the interval �−γ;0� and greater
than 1 in �−∞;−γ�. Thus, h�1;0� = F̂1�−γ�c− r�� = F̂−1

0 �−γc� and hence

h�1; y� = exp�−γ�r− c�y�
F̄1�y�

∫ ∞
y

exp�γ�r− c�z�f1�z�dz;

h�0; y� = F̂1�−γ�c− r��
exp�γcy�
F̄0�y�

∫ ∞
y

exp�−γcz�f0�z�dz:

We now show that h ∈ D �Q� and inf i; y h�i; y� > 0. Clearly, functions h�i; y�
�i = 1;2� are absolute continuous and so it suffices to show that they are
bounded away from 0 and ∞. Thus,

h�1; y� =
∫ ∞
y

exp�γ�r− c��z− y��
F̄1�y�

f1�z�dz ≥
∫ ∞
y

f1�z�
F̄1�y�

dz = 1;

h�0; y� ≤ F̂1�−γ�c− r��:
Moreover, h�1; y� is bounded above by (1.7) and h�0; y� is cutoff zero by
(1.6). 2

Using (3.1) we have

�Qh��ξs; ηs� = −γ�rξs − c�h�ξs; ηs�:
From Proposition 3.2 of Ethier and Kurtz (1986) (recalled in the Appendix in
Proposition A.1), we have that

Mt =
h�wt�
h�w0�

exp
(
−
∫ t

0

Qh�ws�
h�ws�

)
ds = h�wt�

h�w0�
exp

(
γ
∫ t

0
�Zs − c�ds

)
(3.5)

is a martingale. Define now a family of probability measures on ��;F w
t � by

dP̃w0

t =Mt dP
w0
t , where Pw0

t = Pw0
�F w
t
�t ≥ 0�. Since �Mt; t ≥ 0� is a multiplica-
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tive functional of the process wt from Kunita (1976), we get that this family
defines exactly one probability measure P̃ on ��;∨t≥0 F w

t �, where
∨
t≥0 F w

t is
the smallest σ-field generated by all elements of Ft �t ≥ 0� and wt is also a
Markov process. By Ẽ we denote the expectation corresponding to P̃.

Lemma 3.2. The processwt on ��;∨t≥0 F w
t ; P̃� is an alternating on–off flow

with on-time and off-time distributions F̃1 and F̃0, respectively, with densities

f̃0�x� =
e−γcx

F̂0�−γc�
f0�x�; f̃1�x� =

e−γ�c−r�x

F̂0�−γ�c− r��
f1�x�(3.6)

and

r
ẼT1

Ẽ�T1 +T0�
− c > 0:(3.7)

Proof. From the perturbation theorem in the Appendix,

�Q̃g��i; y� = ∂g�i; y�
∂y

+ g�i; y�
h�i; y�

∂h�i; y�
∂y

+ γ�ri− c�g�i; y�

+ ri�y�
[
h�1− i;0�
h�i; y� g�1− i;0� − g�i; y�

]

= ∂g�i; y�
∂y

+ r̃i�y��g�1− i;0� − g�i; y��;

where

r̃0�y� =
exp�−γcy�f0�y�∫∞

y exp�−γcz�f0�z�dz
;

r̃1�y� =
exp�−γ�c− r�y�f1�y�∫∞

y exp�−γ�c− r�z�f1�z�dz
: 2

(3.8)

From (2.4) we get (3.6). We now compute that

ẼT1 =
∫∞

0 z exp�−γ�c− r�z�f1�z�dz
F̂1�−γ�c− r��

= F̂
′
1�−γ�c− r��

F̂1�−γ�c− r��
;

ẼT0 =
∫∞

0 z exp�−γcz�f0�z�dz
F̂0�−γc�

= F̂
′
0�−γc�

F̂0�−γc�
:

To demonstrate that the new drift is positive, we compute

r
ẼT1

ẼT1 + ẼT0

− c = r F̂′1�−γ�c− r��F̂0�−γc�
F̂′1�−γ�c− r��F̂0�−γc� + F̂′0�−γc�F̂1�−γ�r− c��

− c

= − H′�−γ�
F̂′1�−γ�c− r��F̂0�−γc� + F̂′0�−γc�F̂1�−γ�r− c��

:

The derivative of functionH defined in (3.4) at x = −γ is clearly negative while
the denominator is positive. Therefore the above expression is positive. 2
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We are now ready to give the proof of Theorem 1.1 for N = 1. Let τ�b� =
min�t ≥ 0x

∫ t
0�rξs − c�ds ≥ b�. Thus from dPt =M−1

t dP̃t, following the idea
from Asmussen (1994), using the fact that by Lemma 3.2 stopping time τ�b�
is P̃�i; y�-a.s. finite and the strong Markov property, we can write

9�i; y��b� = P�i; y��τ�b� <∞�

= Ẽ�i; y�
[
h�i; y�
h�wτ�b��

exp
(∫ τ�b�

0

Qh�ws�
h�ws�

ds

)
y τ�b� <∞

]

= Ẽ�i; y�
[
h�i; y�
h�wτ�b��

]
e−γb:

(3.9)

Hence, by (2.1),

9�b� = e−γb 1
E�T0 +T1�

1∑
i=0

∫ ∞
0
F̄i�y�h�i; y�Ẽ�i; y�

[
1

h�ξτ�b�; ητ�b��

]
dy:(3.10)

Lemma 3.3. For N = 1, constants C+ and C− from Theorem 1.1 are

C+ =
1

E�T0 +T1�
1

inf i; y h�i; y�
r

c

F̂1�γ�r− c�� − 1
γ�r− c�

and

C− =
1

E�T0 +T1�
1

supi; y h�i; y�
r

c

F̂1�γ�r− c�� − 1
γ�r− c� :

Proof. For deriving C+, we write

9�b� = e−γb
1∑
i=0

ETi
E�T0 + ET1�

∫ ∞
0

F̄i�y�dy
ETi

h�i; y�Ẽ�i; y�
[

1
h�ξτ�b�; ητ�b��

]

≤ e−γb 1
E�T0 +T1�

1
inf i; y h�i; y�

×
(∫ ∞

0
exp�−γ�r− c�y�dy

∫ ∞
y

exp�γ�r− c�z�f1�z�dz

+ F̂1�γ�r− c��
∫ ∞

0
exp�γcy�dy

∫ ∞
y

exp�−γcz�f0�z�dz
)

= exp�−γb� 1
E�T0 +T1�

1
inf i; y h�i; y�

×
(
F̂1�γ�r− c�� − 1

γ�r− c� + F̂1�γ�r− c���1− F̂0�−γc��
γc

)

= exp�−γb� 1
E�T0 +T1�

1
inf i; y h�i; y�

(
F̂1�γ�r− c�� − 1

γ

)(
1

r− c +
1
c

)
:

Similar derivations prove C−. 2
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We now consider general N. Consider Markov process Wt = �jt;ht�. We
make it stationary if the initial distribution is

π�i; dy� =
N∏
`=1

π`�i`; dy`�;

where π` is defined in (2.3) for the `th flow. Under probability measure Pπ =∫
P�i;y� dπ the process Zt =

∑N
`=1 r

`ξ`t is the input rate and Zt − c is the net
rate. Let τ�b� = min�t ≥ 0x

∫ t
0�Zs − c�ds ≥ 0� and h�i;y� = ∏N

`=1 h
`�i`; y`�.

Following (3.5), each process

M`
t�c`� =

h`�w`t�
h`�w`0�

exp
(
γ
∫ t

0
�r`ξ`s − c`�ds

)
; t ≥ 0;

is a �P�i`; y`�;F w`

t �-martingale provided the `th equation of BSNL (1.3) holds.
Consider now

Mt =
N∏
`=1

M`
t�c`�; t ≥ 0:

Since
∑N
`=1 c

` = c,

Mt =
h�Wt�
h�i;y� exp

(
γ
∫ t

0
�Zs − c�ds

)

and Mt is a �P�i;y�;F W
t �-martingale. Similarly as for N = 1, we define new

probability measure P̃�i;y� by dP̃�i;y�t =Mt dP
�i;y�
t on ��;F W

t �, where now F W
t

is the history of Wt up to t. The extension of (3.10) for general N is

9�b� = e−γb
N∏
`=1

1

E�T`0 +T`1�
∑

i∈2�0;1�

∫
RN+

N∏
`=1

F̄i`�y`�h`�i`; y`�

× Ẽ�i;y�
[

1
h�jτ�b�;hτ�b��

]
dy

(3.11)

and hence for the upper bound we have

9�b� ≤
N∏
`=1

1

E�T`0 +T`1�

( 1∑

i`=0

∫ ∞
0
F̄i`�y`�h`�i`; y`�dy`

)
1

inf i; y h`�i; y�
:

The proof of the lower bound is similar. Hence we obtain

N∏
`=1

C`−e
−γb ≤ 9�b� ≤

N∏
`=1

C`+e
−γb; b ≥ 0;

where

C`+ =
1

inf i; y h`�i; y�

(
1

E�T`0 +T`1�
r`

c`
F̂`

1�γ�r` − c`�� − 1
γ�r` − c`�

)
(3.12)
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and

C`− =
1

supi; y h`�i; y�

(
1

E�T`0 +T`1�
r`

c`
F̂`

1�γ�r` − c`�� − 1
γ�r` − c`�

)
:(3.13)

4. Gaussian asymptotics. In this section we find the asymptotics for γN
in the homogeneous on–off model parametrized by the number of sources N
with F0 and F1 fixed, input rate rN and output rate cN. For some c; r > 0, let

rN =
r√
N
; cN = c+ pr

√
N:(4.1)

Under some mild conditions [see Szczotka (1980)], the sequence of processes

Z̃N�t� =
∑N
i=1 ξi�t� −Np√

N

considered as random elements on D�0;∞� converges in distribution to a
Gaussian process �Z̃�t�� with mean 0 and covariance function R�t� of the
process �ξi�t��. It can be proved [see Kulkarni and Rolski (1994)] that in this
case, under conditions (4.1),

XN

D→X;

whereXN andX are, respectively, the steady-state buffer contents in theNth
on–off model and in the fluid model driven by the Gaussian process �rZ̃�t��.
For the Gaussian fluid model with net rate �rZ̃�t� − c�, Dębicki and Rolski
(1995) showed

P�X > b� ≤ Ce−γb + o�exp�−γx��;
where constant C is given explicitly and

γ = c

r2
∫∞

0 R�t�dt:(4.2)

It can be demonstrated [see, e.g., Kopociński (1973), page 294, or Kopociński
(1967)] that, for �ξi�t�� and hence also for �Z̃�t��,

∫ ∞
0
R�t�dt = µ2

01�µ12 − µ2
11� + µ2

11�µ02 − µ2
01�;(4.3)

where

µ0i =
∫ ∞

0
xi dF0�x�; µ1i =

∫ ∞
0
xi dF1�x�:

In the following proposition we demonstrate that, from Theorem 1.1,
straightforward computations lead us to exactly the same limit.

Proposition 4.1. Suppose that the third moments of T0 and T1 are finite.
If γN and γ are given by (1.5) and (4.2), respectively, and (4.1) holds, then
γN → γ as N→∞.



534 Z. PALMOWSKI AND T. ROLSKI

Proof. Applying the Taylor formula to

F̂1

(
−γN

(
cN
N
− rN

))
F̂0

(
−γN

cN
N

)
= 1

we get
(
1+a1�N�γN+ 1

2a2�N�γ2
N+ o�N−1�

)(
1+ b1�N�γN+ 1

2b2�N�γ2
N+ o�N−1�

)
=1;

where

ai�N� = µ0i

(
cN
N

)i
; bi�N� = µ1i

(
cN
N
− rN

)i
;

which is equivalent by (4.1) to

�µ01 + µ11�γNc−
γ2
Nr

2

2�µ01 + µ11�2
�µ2

01µ12 + µ02µ
2
11 − 2µ2

01µ
2
11� + o�N−1� = 0:

Hence by (4.3),

γN →
c

r2

[
µ2

01�µ12 − µ2
11� + µ2

11�µ02 − µ2
01�
]−1 = c

r2
∫∞

0 R�t�dt: 2

5. System of nonlinear equations. In this section we consider the
BSNL in the following form: for some c1; : : : ; cN > 0 such that

∑N
`=1 c

` = c
and γ > 0,

F̂`
1�−γ�c` − r`��F̂`

0�−γc`� = 1; ` = 1; : : : ;N:(5.1)

Since c` < r`, from Jensen inequality we have

exp
(
−γ��c` − r`�ET1 + cET0�

)
< E exp

(
−γ��c` − r`�T1 + c`T0�

)
= 1:

Hence −γ��c` − r`�ET1 + c`ET0� < 0, which yields c` > p`r`, explaining the
assumption for c` made in Section 1.

Consider first the homogeneous case with the single equation

H�−γ� = F̂1�−γ�c− r��F̂0�−γc� = 1:(5.2)

This equation appeared in Asmussen and Rubinstein (1995) in the context of
optimal change of measure. Clearly, if lims→s∗ F̂1�s� = ∞ for some 0 ≤ s∗ ≤ ∞,
then (5.2) has the unique solution, because in this case, for continuous, convex
function H, we have limx→x0

H�x� = ∞ for some −∞ ≤ x0 ≤ 0. We point out
that this is fulfilled for the large class of phase-type distributions [for the
definition of phase-type distributions, we refer to Neuts (1981)]. Indeed, let
T1 be phase type with representation �a;T�, where a is a probability vector
and T is a transient intensity matrix. Then

F̄1�x� = a exp�xT�e;(5.3)

F̂1�s� = −a�sI+ T�−1t◦;(5.4)

f1�x� = a exp�xT�t◦;(5.5)
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where e is a column vector consisting of 1s and t◦ = −Te. We assume that T
is a subintensity matrix (off-diagonal entries are nonnegative and at least one
row sums up to a strictly negative number) and hence the Perron–Frobenius
eigenvalue λ1 is negative and for all remaining eigenvalues <�λj� < <�λ1�
�j = 2; : : : ; n�. Hence from (5.4) we get that lims→−λ1

F̂1�s� = ∞. Moreover,
for phase-type distributions, conditions (1.8) and (1.9) are also fulfilled. In fact,
let F1 be phase type. Then from (1.3) and (5.4) we get

γ�c− r� > λ1:(5.6)

Suppose that fi and ji are, respectively, the left and right eigenvectors cor-
responding to λi. Moreover, if the eigenvectors �f1; : : : ;fn� are independent
(e.g., in the case when eigenvalues of T are distinct), then

exp�xT� =
n∑
i=1

eλixjifi:

Using this representation, inequalities (5.3), (5.5) and definition of vector t◦,

lim
x→∞

r1�x� =
aj1f0t◦

aj1f0e
= −λ1:

Hence condition (1.9) follows from (5.6). Similarly, we can show that for phase-
type distribution F0, condition (1.8) is fulfilled. Thus, all assumptions of The-
orem 1.1 are fulfilled if on and off times are phase type.

Sufficient conditions for the unique existence of the general BSNL are given
in the following proposition:

Proposition 5.1. Let lims→s∗` F̂
`
1�s�=∞ for some 0≤s∗`≤∞�`=1; : : : ;N�.

Then there exist the unique γ>0; c1>p1r1; : : : ; cN>pNrN solving BSNL (1.3).

Proof. We first recall that H`�x; c`�= F̂`
1�x�c`− r`��F̂0�xc`� �`=1; : : : ;N�

are continuous and strictly convex functions and define function κ`�c`� by
the equation H`�−κ`�c`�; c`� = 1. Each function H`�x; c`� is decreasing with
respect to c`. Hence κ`�c`� is a continuous increasing function. Moreover, the
following argument shows that κ`�c`� → 0 as c` ↘ p`r`. If c` ↘ p`r`, then
�d/dx�H`�x; c`��x=0 → 0. Supposing that for some κ`0 > 0 there is κ`�c`� → κ`0
as c` ↘ p`r`, we would have H`�x;p`r`� = 1 for −κ`0 < x ≤ 0, which is
impossible, because each H`�x; c`� is strictly convex. Therefore, the graph of
function H` moves at level 1 from 0 to certain constant as c` move from p`r`

to c. Thus, there exist constants c1 > p1r1; : : : ; cN > pNrN and
∑N
`=1 c

` = c
such that these graphs have one common point −γ at level 1, which is the
solution of BSNL. 2

Similarly, as for the one source case, we get the following corollary:

Corollary 5.1. If F`
0 and F`

1 �` = 1; : : : ;N� are phase-type distributions,
then there exists the unique solution of BSNL. Moreover, conditions (1.8) and
(1.9) hold.



536 Z. PALMOWSKI AND T. ROLSKI

However, there are cases when the system has no solutions as the follow-
ing example shows. The simple case is when F0 and F1 are degenerated
at ET0 and ET1, respectively. Then exp�−γ��c− r�ET1 + cET0�� = 1 yields
−γ��c− r�ET1 + cET0� = 0, which is possible only if c = rp. However, this is
impossible because c > rp. The explanation of this fact is that for the periodic
on–off stream the buffer content process is clearly bounded and, therefore,
exponential bounds are too strong. The above example can be extended easily
to nondegenerated random variables taking for the F1 and F0 uniform distri-
bution over �ETi−ε;ETi+ε� �i = 0;1� for sufficiently small ε > 0. Then (5.2)
reads

Hε�−γ� = exp�−γ��c− r�ET1 + cET0�� =
sinh�−γε�c− r��
−γε�c− r�

sinh�−γεc�
−γεc = 1:

However, the left-hand side is strictly less than 1 for all positive γ > 0 (see
Figure 1).

Consider now the case when there exist groups of size N1; : : : ;Nm. Within
groups, the input rate is ri > 0, and F1; i and F0; i are on and off time distri-
butions, respectively; namely,

r1 = · · · = rN1 = r1;

rN1+1 = · · · = rN1+N2 = r2;

:::

rN1+···+Nm−1+1 = · · · = rN1+···+Nm = rm

Fig. 1.
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and for i = 0;1

F1
i = · · · = F

N1
i = Fi;1;

F
N1+1
i = · · · = FN1+N2

i = Fi;2;

:::

F
N1+···+Nm−1+1
i = · · · = FN1+···+Nm

i = Fi;m:

Then the BSNL is reduced to the following system: there exists for some
c1; : : : ; cm > 0 such that

∑m
j=1Njcj = c and γ > 0,

F̂1; j

(
−γ

(
cj

Nj

− rj
))
F̂0; j

(
−γ cj

Nj

)
= 1; j = 1; : : : ;m:(5.7)

To compare different fluid models, we made some numerical experiments. To
simplify calculations we consider only the homogeneous case. Following Anick,
Mitra and Sondhi (1982), we take rN = 1, T0 ∼ Exp�0:4� and cN = 16:666 for
N = 30;50, cN = 33:333 for N = 85;100, cN = 66:666 for N = 150;200 (see
Table 1). In the first case, T1 has exponential distribution T1 ∼ Exp�1�; in the
second case, T1 has Erlang distribution Erl�2;2�; in the third case, T1 has
hyperexponential distribution pExp�2�+�1−p�Exp��2− 2p�/�2− p��, where
p = 0:1. In all cases, ET1 = 1. It is easy to verify that in the model considered
by Anick, Mitra and Sondhi (both T0 and T1 have exponential distribution),
(1.5) has the same solution as was given by Anick, Mitra and Sondhi (1982)
or recently by Palmowski and Rolski (1996).

We can justify the order γHyper < γExp < γErl as follows. Let F∗1 ∼ Erl�2;2�,
F1 ∼ Exp�1� and F0 ∼ Exp�0:4�. Since Erl�2;2� has increasing failure rate
[see Szekli (1995), page 17], so Erl�2;2� ≺icx Exp�1�. Thus,

F̂∗1

(
−γExp

(
c

N
− r

))
F̂0

(
−γExp

c

N

)
≤ F̂1

(
−γExp

(
c

N
− r

))
F̂0

(
−γExp

c

N

)
=1

and hence γErl ≥ γExp. A similar argument, together with Theorem E from
Szekli [(1994), page 17], proves the first inequality.

Table 1
Numerical comparisons of γ

cN 5 16:666 cN 5 33:333 cN 5 66:666

T1 N 5 30 N 5 50 N 5 85 N 5 100 N 5 150 N 5 200

Exp 1.5299 0.2999 0.6251 0.3 0.9 0.3
Erl 2.304 0.41 0.8786 0.41 1.294 0.41
Hyperexp 1.4677 0.2909 0.6043 0.291 0.8677 0.291
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APPENDIX

We now recall a theorem from the theory of Markov processes. The result
was used by Ethier and Kurtz (1993) and Fukushima and Stroock (1986). For
the proof, we refer also to Palmowski (1996). Let �Xt; t ≥ 0� be an E-valued
Markov process on ��;F ; �Ft�t≥0; �Px�x∈R�, where E is a Polish space. Here
�Ft�t≥0 is a filtration and let F = ∨

t≥0 Ft. We assume that realization of
X is cadlag. By Cb we denote the class of bounded and continuous functions
gx E→ R. We consider now the class D �A� of all functions g ∈ Cb such that
for some function g∗ ∈ Cb the process

Mg�t� = g�Xt� − g�x� −
∫ t

0
g∗�Xs�ds; t ≥ 0;

is a Px-martingale. The mapping g → g∗ defines the full generator of the
Markov process Xt and we denote it by g∗ = Ag. The class D �A� is called the
domain of the full generator A. For g1; g2 ∈ D �A� denote

�g1; g2�A�x� = �Ag1g2��x� − g1�x��Ag2��x� − g2�x��Ag1��x�;
provided g1g2 ∈ D�A �. The following result was proved in Ethier and Kurtz
[(1986), page 175].

Proposition A.1. If h ∈ D �A� and inf x h�x� > 0, then

Mt =
h�Xt�
h�x� exp

(
−
∫ t

0

Ah�Xs�
h�Xs�

ds

)
; t ≥ 0;

is a Px-martingale.

Define now a new probability on ��;F � as follows. Let Pt be the restriction
of P to Ft and define on Ft probability P̃tx = Mt dPtx for all t ≥ 0. Since
Mt is a martingale, the family of probabilities �P̃tx; t ≥ 0� is consistent.
From the Daniel–Kolmogorov theorem, we get that there exists the unique
probability P̃x such that for each t ≥ 0 the restriction of P̃x to Ft is P̃tx,
x ∈ R. Moreover, from Kunita (1976), the process X�t� is a Markov process on
��;F ; �Ft�t≥0; �P̃x�x∈E�.

Proposition A.2. Let h ∈ D �A� be such that gh ∈ D �A� for all g ∈ D �A�
and inf x h�x� > 0. Then the process X on ��;F ; �Ft�t≥0; �P̃x�x∈E� is a Markov
family with generator

Ãg�x� = Ag�x� + �h;g�A�x�
h�x�

and domain D �Ã� = D �A�.
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Kopociński, B. (1973). Zarys Teorii Odnowy i Niezawodności. PWN, Warszawa.
Kulkarni, V. G. (1994). Effective bandwidth for Markovian regenerative sources. Technical Re-

port UNC/OR/TR94-13, Dept. Operations Research, Univ. North Carolina, Chapel Hill.
Kulkarni, V. G. (1995). Fluid models for single buffer systems. In Advances in Queueing

(J. Dhashalow, ed.). CRC Press, Boca Raton, FL.
Kulkarni, V. and Rolski, T. (1994). Fluid model driven by an Ornstein–Uhlenbeck process.

Probab. Engrg. Inform. Sci. 8 403–417.
Kunita, H. (1976). Absolute continuity of Markov processes. Seminaire de Probabilites X. Lecture

Notes in Math. 511 44–75. Springer, Berlin.
Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models; An Algorithmic Approach.

Johns Hopkins Univ. Press.
Palmowski, Z. (1996). A note on the exponential change of measure. Manuscript, Mathematical

Institute, Wrocław Univ., 1996.
Palmowski, Z. and Rolski, T. (1996). A note on martingale inequalities for fluid models. Statist.

Probab. Lett. 31 13–21.
Shwartz, A. and Weiss, A. (1995). Large Deviations for Performance Analysis. Queues, Commu-

nications, and Computing. Chapman and Hall, London.
Stern, T. E. and Elwalid, A. I. (1991). Analysis of separable Markov-modulated rate models for

information handling systems. Adv. in Appl. Probab. 23 105–139.



540 Z. PALMOWSKI AND T. ROLSKI

Szczotka, W. (1980). Central limit theorem in D�0;∞� for breakdown processes. Probab. Math.
Statist. 1 49–57.

Szekli, R. (1995). Stochastic Ordering and Dependence in Applied Probability. Springer, New
York.

Whitt, W. (1993). Tail probabilities with statistical multiplexing and effective bandwidths in
multi-class queues. Telecommunication Systems 2 71–107.

Mathematical Institute
University of Wrocław
pl. Grunwaldzki 2/4
50-384 Wrocław
Poland
E-mail: zpalma@math.uni.wroc.pl

rolski@math.uni.wroc.pl


