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PERTURBATION ANALYSIS AND MALLIAVIN CALCULUS

By L. DECREUSEFOND

Ecole Nationale Supérieure des Télécommunications

Using the Malliavin calculus, we give a unified treatment of the
so-called perturbation analysis of dynamic systems. Several applications
are also given.

1. Introduction. Given a marked point process (MPP for short) N whose
law depends on a parameter § € ® Cc R and a functional F of the sample
paths of N, the so-called perturbation (or sensitivity) analysis is concerned
with the evaluation of the derivative with respect to 6 of E, [ F(N)], where E,
is the expectation under P,, the law of N for the value 6 of the parameter. In
other words, the objective is to compute (or at least to find some estimates of)
the sensitivity of the mean value of F with respect to a slight change in the
law of N. The simplest but generic example follows.

ExamMpPLE 1. Given a standard Poisson process N of intensity # and a
functional of it, say F = N, for ¢ fixed, how can we compute d/d6 E,[N,]?
The result is straightforward here since we know that E,[ N,] = 0¢, but what
happens for a more complex functional?

There are several motivations for being interested in such a question: the
main reasons are the applications to optimization and control of systems; see,
for instance, Devetsikiotis, Wael, Freebersyser and Townsend (1993). The
concept of perturbation analysis was introduced in a paper by Ho and Cao
(1983) and has been addressed by many authors [Glasserman (1990); Glynn
(1987); Heidelberger (1987); Ho, Cao and Cassandros (1983); Reiman and
Weiss (1989a, b); Suri and Zazanis (1988); Suri (1989)], mainly in the context
of queuing networks. There are essentially three ways to handle this problem:
the so-called infinitesimal perturbation analysis (IPA), rare perturbation
analysis (RPA) and likelihood ratio method (LRM). Our motivation here is not
to discuss these methods in detail, but to show how they can be seen as a part
of the stochastic calculus of variations. This theory, initiated by Malliavin
(1978) in the context of the Brownian motion, aims to define a differential
calculus for stochastic processes mimicking the differential calculus of usual
numerical functions; see, for example, Usttinel (1995) and references therein.
Besides the aesthetics of this new point of view, the known results of the
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Malliavin calculus also allow us to obtain somewhat deeper results in pertur-
bation analysis.

Section 2 contains a brief description of IPA and RPA and a rather detailed
description of the LR method. Actually, this latter approach plays a key role
to exhibit relationships between the stochastic calculus of variations and the
sensitivity analysis. Section 3 and 4 are devoted to the Malliavin calculus for
marked point processes and to its applications to perturbation analysis.
Precisely, in Section 3, we define a Malliavin derivative by a variational
approach and in Section 4, we define a difference operator using the chaos
decomposition of some random measures. Both the Malliavin derivative and
the difference operator share the so-called formula of stochastic integration
by parts, which is central to our work. In Section 5, we mention two results
which can be connected to the theory developed in this paper.

2. Methods of the perturbation analysis. Let E be a Lusin space
(for practical purposes E = R? is sufficient) and let Q) be the space of simple
(i.e., there is at most one jump at a time), locally finite (i.e., the number of
jumps in each compact time interval is almost surely finite), integer-valued
measures on [0, T'] X E, where T can be a fixed deterministic time or T = +o;
for details on marked point processes, see, for instance, Jacod (1979). A
generic sample path w € () is thus of the form X, ., §, , ), where {¢,,n > 0}
is a strictly increasing sequence of nonnegative reals (¢, represents the nth
jump time) and z, belongs to E for any n (z, is the mark associated to the
nth jump). 6, is fixed and P, is called the nominal probability. {7, ¢t > 0} is
the canonical filtration,

Fy = {9, 0}, Z:g{ t/ w(ds,dz),sst,Be%(E)}
0B

and & is the predictable o-field on Q X [0,T'] X E. We recall that A € Q X
[0, T'] is said to be evanescent whenever its projection 7(A) = {w; 3¢ € [0, T'],
(w, t) € A} is P, negligible. For any 6 € O, we denote by y, the P, compensat-
ing measure of the canonical process, that is, the predictable random
measure such that for any nonnegative and -measurable process Y, the
process

./t,/;EY(w’s’ z)(w— y)(ds, dz)

0

is a P, local martingale. For technical reasons (see Remark 2.1), we hereafter
assume the following hypothesis.

HypoTHESIS 1. The process

N (0,0) = [ [ w(ds,dz)
0 “E
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is square-integrable,

sup EO[NtZ] < oo,
¢<T

and quasi-left-continuous; for any given time t, v, ({t} X E) = 0.

Going back to the roots of differential calculus, computing a derivative

boils down to computing

. -1
(1) lim (60— 6,) "' (E,[F] — E, [F]).

)
Both TPA and RPA are based on suitable alterations of the nominal sample
path in order to obtain a modified process of law P,. The second step consists
of exactly expressing the right-hand-side difference in (1) and then being able
to pass to the limit. Let us illustrate these two methods by some examples.

ExamPLE 1 (Continued). Despite its simplicity, let us have another look at
the Poisson process. The rare perturbation analysis [see Brémaud (1992);
Brémaud and Vazquez-Abad (1992)] originates from the remark that we can
obtain a Poisson process of intensity as close as we want to 6, by “decreasing”
thinning. Namely, the derivative of the expectation of a functional F with
respect to the mean intensity 0 of the underlying process at 6 = 6, is
obtained by considering

1
061 ;141;111 EEBOP[F((U) _F((Up)],

where o, is a p-thinning of w: each jump of  is kept, independently from

the others, with probability p and E, is the expectation taken under the
probability measure dP, ® (p§; + (1 jp)éo)@N. If we apply this to F = N,,
it is intuitively clear and easy to show that given N,(w), N(w) — N(w,) is
distributed as a binomial law of parameters N,(w) and 6,(1 — p), so that we

clearly have

(%EG[Nt])e=eo =t.

We see that the principle itself induces that RPA is essentially meaningful
for the Poisson process and for the so-called light traffic analysis—the part of
perturbation analysis which is dedicated to the analysis of the sensitivity of
F when the mean intensity of the underlying process goes to 0.

ExampLE 2. Consider a G/GI/1 queue with mean service time 6 and
distribution function G,. Let F' be the average waiting time for the first K
customers, that is, F = K- 'YK | W,, whose mean value we want to differen-
tiate with respect to 6 at 6 = 6,. The evolution of the queue is fully described
by (T, Z,), n > 1}, where T, is the arrival time of the nth customer and Z,
is its service time. In a simulation of this queue, when 6 = 6, the sequence
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Zf Zg
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=

F1G. 1. The IPA principle. Top: The nominal path; bottom: the altered path with the same jump
times but different values of jumps.

{Z,, n > 0} can be generated by taking Z, = G, '(U,), where Udif{Un, n > 0}
is a sequence of independent random variables, uniformly distributed over
[0, 1]. Following IPA principle, a perturbed path is generated with the same
sequence U, but with nth service time Z! equal to G, *(U,) (see Figure 1). In
our example, IPA is known to work for the G/M /1 queue (i.e., the limit can
be computed) and we have [see L’Ecuyer (1990); Suri and Zazanis (1988)]

K

d 1 K
(2) (%EH[F])0=H = K_GOEO"[Z )y Z;

i=1 jEB;

where B; is the set containing customer i and all the customers that precede
him in the same busy period.

It appears from the two previous examples that these two approaches
require a very fine knowledge of the sample paths of the underlying process
for the difference of expectations which appeared in (1) to be calculated. The
LR method does not present a priori this default, but on the other hand it
implies some restrictions on the “possible” differentiations.

In order for the LR method to be applicable, it is necessary that for each 0,
P, is locally absolutely continuous with respect to P, , that is, for any ¢ > 0,
the restriction of P, to &% is absolutely continuous with respect to the
restriction of P, to Z,. From Jacod [(1979), pages 265-273], it is necessary
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and sufficient that the following conditions hold:
Cl. P,<P,on %,
C2. There exists a nonnegative, Z#-measurable process Y, such that

v(ds,dz) =Y,(w,s,z)y,(ds,dz).

C3. The process
t—C, = ‘/:fE(l - \/?o)zvgo(ds,dz)

satisfies P,(C, < 4+) = 1 for any ¢ > 0.

Set S, = inf{¢, C, > n} (with the convention that S, = +« if C, <n for
any t). Whenever C1-C3 hold, we have

dP,
dP,

— 70.706
=2 Z,
7

(3)
where Z! "ifg(fot [ (Yi(w,5,2) = D)0~ 1,)(ds, d2),

for ¢t < limsup, S, and Z, = 0 otherwise, where

20 dP,
dP, |-

and for any local martingale M = {M,, ¢ > 0}, {£(M,), t > 0} is the solution of
the stochastic differential equation

R, =1+ ['R, dM,.
0

REMARK 2.1. In the preamble, we assumed once and for all that N is
quasi-left-continuous under P,. The main reason for this is that without this
hypothesis, the conditions required to have local absolute continuity are too
intricate.

REMARK 2.2. Note that a simpler but sufficient condition for C3 to hold is
that [cf. Jacod (1979), page 273]

(C3") Eo[exp(gfonExf(s,z)ugo(ds,dz)) < 4o,

THEOREM 1 (LRM principle). Assume that conditions C1-C3 hold and
assume that the following two hypotheses are satisfied:

HypOoTHESIS 2. There exists a neighborhood 7°(6,) € ® of 0,, a pre-
dictable process h independent of 6, a constant ¢ > 0 and a family of
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predictable processes R, satisfying
(4) Yy(w,t,2) =1+ (60— 0))h(w,t,z)(1 +Ry(w,t,2))
for any 6 € 7°(6,), for any (¢, 2), Py-a.e.,
d ¢ 2 2
(5) E(/o /Eh(w,s,z) (1+R,(w,s,2)) veo(ds,dz)) <c,

for any 6 € 7°(0,), for any t, Py-a.e.,
(6) Ry(w,s,z)> —1, dP, ® v, (ds,dz) a.e., forany 6 € 7°(6,),

R, tends to 0 when 6 goes to 0,, in the sense that

(7) lim EO[/OTfEh(w,s,z)zRe(w,s,z)ZV%(ds,dz)] — 0.

6 0o
HypoTHESIS 8. For any 0 € 7°(6,), Z§ = 1; see Remark 2.4.

Then, for any square integrable, #-measurable functional F, we have
d ¢
(8) (d—eE(,[F])HO - EO[FfO fEh(w,s,z)(w - VGO)(ds,dz)}.

PrOOF. Since F is Z-measurable, by the Girsanov theorem [see (3)] and
Hypothesis 3,

(;9 O[F]) =0,

(9) + lim (0 — 6,) "Eo[FZz§(2! - 1)]

0— 0,

lim (0 — 6,) "Eo[F(Z) - 1)]

0— 6,

= lim (60— 6,) 'E [F(Z! - 1)].

0— 0,

For any 6, the process {M" [0 [e(Y; — D(w — y, Nds, dz), t > 0} is a martin-
gale whose P-Doob—Meyer process is

(M°, M), = (6 - eo)zfo"‘fEh(w,s,z)z(1 + Ry(w,5,2)) y(ds, dz).

Hence, using Ruiz de Chavez (1983) and condition (5) of Hypothesis 2, we
have the L?*(P,) expansion

o ! (f f(Y(w 5,2) — 1)(@— ,)(ds, dz)

=1+ ¥ (M),

n>0
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where
(Mte)(n) _ j;)t(M:,)(n_l)dMse
and
1)) ¢
(M) = ] [ (Holw,5,2) = 1) = n,)(ds, dz).
Hence,

(0= 6,) 'Eo[F(Z! - 1)]
= EO[Ff(:fEh(w, s,2)(w— ygo)(ds,dz)]

+ EO[FfOthh(w,s,z)Rg(w,s,z)(w - vgo)(ds,dz)}

(0= 00) ¥ (0 00)" Eg| F- (317)")].
n=2

By condition (7), the second summand of the last equation tends to 0 when 6
goes to 6,. Moreover, by condition (5), for any n > 2,
Zl

- EOM (1" [ a¢me, M”)s]

2
EO[|(MtB)(n) ] =E0 /‘(Msg)(n—l) dMSg

t
0

< c[tE0[|(M;’)(”“|2] ds.
0

Thus by induction,

(n) 2 (Ct)n
EOU(M;)) ] = n!
and
=< n—2 0 (fl)
sup Y. (60— 6,) EO[F-(Mt) ] < oo,
07 (6y) n=2
Hence,

06— 6

lim (0 — 6,) "Eo[F(Z! - 1)] = EO[Fftf hw,s,z)(w— VGO)(ds,dz)]
0'E
and the proof is complete. O

REMARK 2.3. The proof can also be done when the time interval is
random. Let S be a stopping time and let F' be F;-measurable. Then we have

(5 BLFY), = Ba[F [ [ 05,220 n)(ds.de)],
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provided that

< oo,

Eo[exp(%j:;j;IQZ(s,z)um(ds,dz))

REMARK 2.4. In the perturbation analysis literature, one often aims to
work under stationary regime. This would a priori prevent us from taking
Zg = 1 since there is no reason for P, to coincide with P, on %, when these
probabilities need to be stationary. Actually, another way to define “perturba-
tion analysis in stationary regime” consists of assuming that the system has
reached its equilibrium and that we analyze the sensitivity after a sudden
change in the driving parameters. In that case, P, 1is still the equilibrium
distribution, but P, is not and we can fix Z{ to be equal to 1. This is implicitly
the situation in the current literature on sensitivity analysis because of
the difficulty arising when handling the first expectation on the right-hand
side of (9).

ExampPLE 1 (Continued). Consider again Example 1. E is reduced to a
singleton and the compensating measure under P, is given by

y(ds) = 0ds.

All the conditions imposed in Theorem 1 are satisfied with 2 = 6, provided
that we work on a fixed time interval [0, T']. Note that Theorem 1 is thus an
extension of Theorem 1 in Reiman and Weiss (1989b).

ExaMPLE 2 (Continued). As usual in the representation of queues by
marked point processes, the marks represent the service times, in particular
E = R". The P, compensating measure is given here by

y(ds,dz) = f(w, s) dsG,(dz).
Assume furthermore that G,(dz) = g(0, z) ds, where g(6,z) > 0 for any
(0, z). We get
g(0,2)
8(b,y,2)

Hence, in view of Hypothesis 2, we have to assume that g is twice differen-
tiable with respect to 6, that dg/d0 belongs to L*(R, G,(dz)) and that
3%g/30? is bounded. In this case, one should take

y(ds,dz) = v, (ds, dz).

_1 98
h(s,z) = 8(0o,2) = —-(0y,2).

In order for condition C3’ to be satisfied on the random interval [0, T ], one
should assume (as we do hereafter) that there exists £ > 0 such that

J
Eo[exp(ej;TKng(Bo,z)_l (9—§((90,2)2f(w,s)2 dsdz || < +,

where Ty is the arrival time of the Kth customer.
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In Example 1, when applying (8) to the Poisson process, we get for any F
F,-measurable,

4 win)

de =E0[F'f0th(8)(w— Vgo)(ds)}

h - EO[F- foth(s) st},

where i = 6;' and N is the compensated Poisson process, that is, N, = N, —
0,¢. Written this way, the latter expectation is nothing but one of the terms
appearing in the so-called stochastic integration by parts formula. It turns
out that integration by parts formulas are the core of the Malliavin calculus
and that is why perturbation analysis can be naturally seen as a part of this
latter theory. For instance, in case of the Poisson process, define, for any
“nice” functional F' and any A € L?[0, 1], the random variable DF(%) by

DF(h) = /OI(F(w +8,) — F(w))h(s) ds.
We then have
(10) EO[F- /Oth(s) dNS} — E,[DF(h)].

This formula is the key point of this work: there exist at least three sensible
ways to define DF(h) in the sense that all of them are such that (10) holds;
hence, all three of them give new expressions of the derivative we aim to
compute. The rest of this paper is devoted to showing how DF(h) can be
defined and how these definitions are related and can be applied to sensitivity
analysis.

3. A variational approach. In this section, we assume that y, still
satisfies Hypothesis 1, but also the following hypothesis:

HypoTHESIS 4. We have
,(ds,dz) = q(w, s, z)n(dz) ds,

where 1 is a Radon measure on E, q is a predictable process and there exists
m > 0 and Q(s, z) € L}(ds ® n(dz)) such that

m=<q(w,s,z) <Q(s,z),

for any s, z and P,-almost everywhere.
By L?D(P0 ® VOO), we mean the set of predictable processes such that

E, fo h(w,s,z) v (ds,dz)| < +o.
0o 'E 0
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Remember that for such a process. By the Cauchy—Schwarz inequality,

EO[ j;)TfEh(w,s,z)w(ds,dz) l

< 9E,

fOTfEh(w’ s,2)(w— v,)(ds, dz)

(an ; ZEO[ ]

<2(1+ y,([0,T] x E))EO[[OTfEh(w, s, z)zvgo(ds,dz)}

fonEh( w,s,z)y(ds,dz)

<2(1+ EO[NI?])EO[[OT/E}L(w, s,2) n,(ds, dz)].

DEFINITION 3.1. By /# we denote the Hilbert space of deterministic pro-
cesses h(s, z) such that

IIhIIEydif/OT [E(h(s, 2)" + h(s,2)")Q(s, 2)n(dz) ds < +,

where

h(t,z) = foth(s, z2)Q(s, z) ds.

LEMMA 1. Step functions, that is, functions of the form
n-1

Z ail[ti’tiJrl)(s)lBi(z)?

i=1
where for any i, t; < t;,,, B, € B(E) and «o; € R are dense in 7.

12

Proor. Let f be orthogonal to all step functions, for any ¢,,¢, and any
B e #(E),

/;)Tj;gf(t,z)j;le(r,z)dr 1,(2)Q(¢, z)n(dz) dt

— _/tt fElB(z)f(t,z)Q(t,z)n(dz) dt.
Hence dr almost surely,
fOTfA(t,z)Q(t,z)dt-j;le(r,z)dr = —/;Zlf(t,z)Q(t,z)dt,
Taking £, = 0 and ¢, = T, one gets
[OTf(t, 2)Q(t,2) dt- (fOTQ(r,z) dr + 1) ~ 0.

Since Q is positive, f is identically zero (dt-a.e.) which in turn implies that
I£llz=0. O
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Denote by . the set of functionals of the form
T T
F=f([ | fi(s)gu(z)o(ds, dz),.... [ [ f(s)g.(2)w(ds,dz)],
0 “E 0o 'E

where f is a bounded twice differentiable function with bounded derivatives,
f:g; belongs to # and f; is continuously differentiable with bounded deriva-

13

tive foreach i = 1,...,n.

DEFINITION 3.2. For any functional F €. and any A €%, DF(h) is
defined by

DF(h) = - ¥ j—;(fonEfl(s)gl(z)w(ds,dz),...,

i=1

(12) j;)TfEfn(S)gn(Z)w(ds,dz))

Xf()Tj;ﬂ’(s)gi(z)(m /Osh(r, z2)q(w,r,2) dr)
Xw(ds,dz).
THEOREM 2. For any F €., there exists d > 0 such that
E,||DF(h)[*] < dE,[IAl2],
for any predictable process h such that for any o, h(w, - ,-) belongs to #.

ProOF. Since F belongs to ., ¢q is lower bounded, and using (11), there
exists ¢ > 0,

E,||DF(h)[’]

2
T 1 s
Sn'CEO /0'[Em/;h(r,z)q(w,r,z)drw(ds,dz)
n-c T A 2
< —E h(r, ds,d
| [ i) s, o)
n-c 2
< — lalla,
m

where c¢ is a generic constant. O
As an easy consequence of the definition, we have the following lemma.

LEMMA 2. For any F,G €.%, FG belongs to % and
D(FG)(h) = F-DG(h) + G-DF(h).

We now aim to prove the stochastic integration by parts formula, that is,

E,[DF(h)] = EO[F/OTfEh(s,z)(w— n,)(ds, dz)|.
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Consider
v(w,t,z) = ftq(w, s, 2) ds.
0

For (w, z) fixed, the map ¢ » v(w, ¢, z) is an increasing function. Hence we
can consider its right inverse defined by
v N (w,t,z) =inf{r > 0,v(w,r,2z) =t}.

Define

vi(w,t,2) = vl(a), '/:(1 + (60— 0y)h(s,2))q(w,s,2)ds, z| —t.

For any h €. and nonpositive, consider the map 7, from ( into itself,

where 7w is the random measure defined by

Jf Lo.0()15(2) 7w (ds, dz)
(13)
= f/ 1[0,”(3 + vl (s, 2))13(z)w(ds,dz),

for any B in %#(E) and any ¢ € [0,T]. Actually, 7/ is the process which
jumps at time s + v(w, s, z) with mark z if and only if © jumps at time s
with mark z.

Let Q, be the probability measure defined by dQ, = Z dP, on 7, where

50 dit

A —g((o— Oo)fonEh(s,z)(w— v )(ds, dz)).

THEOREM 3. For any 0 > 6, and any h €%, h nonpositive, the law of the
marked point process 7w under Q, is the same as the law of w under P,,.

PrOOF. Since h € Li,(P0 ® ), by condition C3', the probability measure
Q, is well defined and the process

Ztg = EO[Z;" | 7 ]
_ g((e = 00) [ [ h(s,2)(o~ ,)(ds,dz)
0'E
is a square-integrable martingale.
The process v is left-continuous and since A is negative, it is adapted

(and nonpositive); hence it is predictable so that 7w is well defined. Consider
the martingale M:

M, = [[(1+ (60— 00)h(s,2) L, 1un(s + vi(s,2),2)(@ = 1,)(ds, d2).
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We have
fot(Z;’)‘ld[M*’,ze]s
= [[(1+ (0= 00)h(s,2))15(2) L (s + v} (,5,2))
X(1=(1+ (60— 00)h(s,2)) ' )o(ds,dz)
= [[(1+ (0= 00)h(s,2))15(2) g (s + V) (@, 5,2))0(ds, dz)

— 7/w([0,¢] X B).
Thus

My - fot(z:)‘ld[Mf’,ze]s

nw([0,¢] X B) — [[(1+ (8~ 6y)h(s,2))14(2)
X1 (s + v (@,s,2))y(ds,dz)
w([0,¢] X B) ~ [[(1+ (6~ 60)h(s,2))15(z)

X1, (s + v (w,5,2))q(w,s,z) dsdz.

(14)

By the definition of v/,
def L t
V()= o(t +vf(w,t,2)) = [(1+ (0 00)h(s,u))q(w,s,2) ds.
0
Hence, on one hand,

IV
—-(8) = (1+ (0= 00)h(2,2))q(w, ¢, 2)

and on the other hand,

A% . vl
W(t) =q(o,t +v)(w,t,z),2)|1+ W(w,t,z) )

Thus, using the change of variable u = s + v}, s, z) in (14), we get
My~ [(Z0) d[ M, 2'], = 7w([0,¢] X B) = 5,([0,] X B).
0
Then M/ — [§(Z))"'d[M’, Z°], is a Q, martingale, so ¥, is the Q, compen-

sating measure of 7). This means that the Q,-law of 7w is the same as the
law of w under Py; cf. Jacod (1979), page 86. O
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DermNiTION 3.3. A functional F:( — R is smooth whenever, for any
h €%, there exists a square-integrable random variable, denoted by DF(h)
such that

911330(9 — 0) (F(w) — F(7)w) — (6 — 6,)DF(h)) =0,

where the limit is taken in L*(P,).

THEOREM 4. Any F €.% is smooth and for any h € %#.
DF(h) = DF(h).

Proor. Consider the case when f = x and n = 1. Using the Taylor expan-
sion at order 1 and 2,

T
E90 /;) f;fl(s)(gl(2+v£(w,s,z))—gl(z))w(ds’dz)
T vk 2
_(0_00)10 éfl(s)g&(z) &eo(w,S,Z)w(ds,dz) w
(15)

< 2E0[ /OTfE(gl(z + ) (w,5,2)) —gy(2)

~gi(2)vf(@, 5, 2))fi(s) w(ds, dz)

Zl

+2E,

[ ] Ae)

h

v
X|vi(w,s,2)— (60— HO)a—:’(w,s,z))w(ds,dz)

T

2
)

y
Y

T
<20 A IZE||[ [ vl (.5, 2)0(ds, d2)

fOT/Ev(,h(a), s,2)w(ds,dz)

4
T

n 2
+2 f181 1 Ep

vagh(s,z)w(ds,dz)

2

0

T

[ vi(w,s,2)0(ds, dz)
E

0
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2 T h
+ YL E v (w,s,z
| A Eo|| [ [ ol (@.s,2)

h

d vy
—(0- Oo)ﬁ—;(w, s,z)|w(ds, dz)

By the usual derivation rules,

&vgig Jdv ¢ d -1
P (w,t,2) 0:00— {%(a},foq(a},s,z) s,z)}

X/th(s, z)q(w,s,z)ds
0

=q(o,t, z)_1 fth(s, z)q(w, s, z) ds.
0

Hence, by the Taylor expansion again,

h
N d Vg,
vo(w,s,2) — (60— OO)W(w,s,z)

s|v€h(a),s,z) - v(,};(a),s,z)| +

2 t
< Elg_ 00|f f |h(s,2)|Q(s,2)ds,

since ve = 0. Thus, by dominated convergence, it follows that

. -1 h 0’)09}2
Jim (0= 00) [0 (5,2) = (0= 09) S (5.2)| =
in L*(P, ® v,,) and thus the three expectations on the right-hand side of (15),
when divided by (6 — 6,)?, tend to 0 as 6 goes to 6,. Hence in this case,
DF(h) = DF(h).

In the general case, denote by X7 ; F/(h) the right-hand side of (12). We
have, by the second order Taylor expansion,

T

i s)gi(z)(T,,hw — w)(ds,dz) — F]

E,

P(r/w) ~F(w) = (0~ 0) L F,

of |2

< d sup

i

||

X ) Eo[ !
i=1 0
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2
% f

dx; dx;|

+d sup
i,J

|

where d is a constant. Using the first part of this proof, the result follows. O

x Y E,
i=1

fOT/Eﬂ(s)gi(z)(fghw ~ w)(ds,dz) — F/(h)

THEOREM 5 (Stochastic integration by parts). For any F €. and for any
h €%,

(16) E,[DF(h)] = EO[F/TI h(s,z)(w— vgo)(ds,dz)].
0o ’'E
Proor. Theorems 3 and 4 induce that

(17) E,[F] = EO[F(TG%)%((H - eo)fOTfEh(s,z)(w - VGO)(ds,dz))],

for any F €. and any negative element & of Z Formula (16) follows by
differentiating (17) with respect to 6. By linearity, (16) holds for the step
element A of 7 Since, by Theorem 2,

E,[|DF(h) | < cB[IRIZ],

and by the Cauchy—Schwarz inequality,
2

Eo|F [* [ (s, 2)(w— v,)(ds, dz)
=), |

< EO[FZ]EO[fOTfEh(s, z)zv{,o(ds,dz)]

< E,[F2]E[IIl%],

it follows by the density of step functions in # (see Lemma 1) that (16) holds
true for any h €7 O

THEOREM 6. The set .% is dense in L*(P,).

Proor. There exists {B,, n > 0} a sequence of compact sets of E such
that U, B, = E and n(B,) < +x, for any n. Let {¢,, n > 0} be an enumera-
tion of [0, T'] N Q. The canonical filtration is generated by the set

{j(-)TfEl[o,ti)(s)lgj(z)(u(ds,dz)’ ij> O},

Let ¢ be a bijection from N X N onto N and

def
F =

G = O—{fOT/;Z1[0yti)(s)lBj(z)w(ds,dz), i,jsuchthat (i, ) < n}
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Since 7, = V,.Z,, by the martingale convergence theorem, for any F € L*(P,),

n n’

the sequence {E[F | %], n > 0} converges to F in L*(P,). Moreover, by
Doob’s lemma, there exists f measurable from R” into R such that

E| F|7] =f(/OTfE1[0’ti)(s)13j(z)w(ds, dz),i,jst. ¢(i,j) <n|.

It is then classical to approximate E [ F | Z,] and thus F by a sequence of
elements of .. O

COROLLARY 1. For any h € %, the map F — DF(h) is closable.

Proor. Let{F,, n = 1} be a sequence of . such that F, converges to 0 in
L*(P,) and for any h €.#, DF,(h) converges to a limit denoted by {(%). For
any G €.%,

E [{(h)-G]

lim E,[DF,(h)G]
n— +w

= lim (Eo[D(F,G)(h)] ~ E,[F,DG(h)])

n—

lim (EO[FnG/OT[Eh(s,z)veo(ds,dz) — E,[F,DG(h)]

n— +ow
=0.
Since . is dense in L*(P,), {(h) = 0 Py-a.e. O
DEFINITION 3.4. The set D, ; is the closure of . for the m-topology defined
by its converging sequences as the sequence {F,, n > 0} of elements of .

converges for the ~topology to F whenever {F,, n > 0} tends to F in L? and
DF (h) converges weakly in L? for any h €.%.

PROPOSITION 1. For any F € D, , and any h €%,
E,[DF(h)] = EO[F-fo h(s,z)(w — u,)(ds,dz)|.
o ’E

Proor. Formula (16) holds for F €. (which is known to be smooth);
hence by a limiting procedure, it still holds for F' in D, ;. O

PROPOSITION 2. For any functionals F in D, , and any function ¢ in
Z2(R) with bounded derivatives, we have
(18) D,(F)(h) = ¢'(F)DF(h).

ProoF. For F €.%, it is clear that ¢(F) still belongs to . and by the
usual derivation rules,

D,(F)(h) = ¢'(F)DF(h).
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Let F € D, , and {F,, n > 0} a sequence of elements of . converging to F in
D, ;. We have

Eo[|¢(F,) — e(F)[] <l ¢’ |2Eo[|E, — FI]
and
|Eo[Ge'(F)DF(h) — G¢'(F,) DF,(h)]|
<ll¢'ll. [Eo[G(DF(h) — DF,(h))]|;
hence ¢(F) is the limit in Dy ; of (¢,(F), n > 1) and (18) is true. O

Formula (18) and a limiting procedure yield the following proposition.

ProPOSITION 3. If Fisin D, y, then |F| and F*= max(0, F) belong to D, ,
and

D|F|(h) = DF(h)(l{F>0} - 1(F<O))7
DF*(h) = DF(h)1(z. ),
(20) DF(h)l(F=0} = 0.

(19)

Proof. Let F, = yF? + 1/n. Then (F,), converges a.s. to |F| as n goes
to +o and from (18), F, belongs to D, ; and

F F
VF%+ 1/n VF2+ 1/n
Now we see that |[DF,(h)ll;2p, are bounded uniformly with respect to n;
hence there exists a weakly convergent subsequence (DF, (h)), in LA(Py).
Since DF, (h) converges almost surely to DF(h)1z. o, — Lz <), it follows
that |F'| belongs to D, , with

DIF|=DF(h)(1. o = Lip<g)-

Since F*= (F + |F])/2, it follows that
DF*(h) = %(DF(h)(l{F>O} +1poo+ Lg_g) + DF(h)(1ips o) — 1(F<0)))

= DF(h)(l{F> ot %I(F:O))‘
If F is nonnegative, F = F* almost surely. Thus

DF(h)l(p_q = 3DF ()15 q);

hence DF(h)1_,, = 0. In general,

DF(h)1z_q, = (DF"(h) — DF ™ (h))1 5 _ol iz _g = 0.

DF,(h) = DF(h) = DF(h)1 . o

Reporting this result in the current expression of DF*(h) yields (19). O

ReEMARK 3.1. The key result of this part is in fact Theorem 3. Indeed,
thanks to it, we are able to find the convenient expression of DF(h) for
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regular functionals. By convenient expression, we mean here that (16) should
hold. By looking deeper in the previous construction, one should realize that
the main idea [which comes from Bismut (1983)] is the construction of a
family of perturbations {7}, 8 € ®} of the sample paths and a new probability
measure P, such that, for any 6, the modified process 7,0 under the new law
P, has the same law as the original process under the reference probability
P, ; see (17). We have in fact two main possibilities to find 7' either it is
obtained by modifying the jumps magnitude (see Bismut (1983); Bass and
Cranston (1986); Bichteler and Jacod (1983); Norris (1987); Privault (1994)]

or by changing the jumps times [see Decreusefond (1994); Privault (1994)].

We have worked here with the transformations obtained by changing the
jump times, but the same lines can be followed for the other approach.
Modifying the jump magnitudes is meaningful only when 7 is the Lebesgue
measure (this implies that E = R?). The unique change is the definition of .%
and of the derivative of an element of .%.

DEFINITION 3.5 (Perturbing jump magnitudes). Assume that n(dz) = dz,
where dz is the Lebesgue measure on R. Denote by .# the set of functionals
of the form

F=f(fOTfEﬁ(s)gl(z)w(ds,dz>,...,fOTfEfn<s)gn<z>w(ds,dz> ,

where f is a bounded twice differentiable function with bounded derivatives,
f;g; belongs to Z and g, is continuously differentiable with bounded deriva-
tive foreach i =1,..., n.

For any functional F €. and any h €%, DF(h) is defined by

DF(h)

= £ ([T no)ee)ods,de),...

=1

fOT-/;Efn(S)gn(Z)w(ds, dz))

X OTfEﬂ(S)gE(Z)(m/th(s,u)q(w,s,u) du)w(ds,dz).

The sequel follows without any difference. When we have the choice
between the two possibilities, the main difference between the two ap-
proaches lies in the set of differentiable functionals. For instance, when
altering the jump times, the functional w — N,(®) (i.e., the number of jumps
up to time #) does not belong to D, ;. Conversely, when changing the jump
magnitudes, this functional belongs to the associated space D, ;.

ExamPLE 2 (Continued). Recall that F' is the average waiting time of the
first K customers and assume enough regularity for g. The waiting time of
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the ith customer is given by the well known formula W, = (W,_, + Z, — (T, —
T._)". For any i, it is clear that the functionals Z,(w) and Ty (w) — T;_ ()
belong to D, ; and then that W, is also in D, ; with

13

(21)  DW(h) = {DW,_,(h) + DZ,(h) = D(T; = T;_1)(h)} - Ly,» o)-

Let «; = supjsi{j, W, = 0}, that is, k; is the index of the customer who
initiates the busy period the ith customer belongs to. Since for «;, <! <1,
W, > 0 and W, = 0, by iteration of (21), we get
DW,(h) = ¥ DZ(h) — D(T, ~ T, ,)(h).
JEB;
Moreover, for the perturbation we are considering, D(Tj - Tj_l)(h) =0 be-
cause we only modify the jump magnitudes and

. _1 &v(,h
DZi(h) = — lim (6 — 6y) v(T;, Z;) = —|— (T, Z;)
6- 0, a0

0= 10,

_ -1 [Z; ﬁg
= g(0,,%) foa—e(eo,u)g(eo,u)du.

Hence, we obtain

~1 2; 08
Y 8(00,2) " [0 (00,1)8(00, u) du

JEB;

L EF ! v g
PRI

Note that when Z, is exponentially distributed with parameter 6~!, we have
1z, 08
g(00,2) " [0 (80, 1) 8(6, u) du =

so that we obtain a generalization of (2).

i

6,

)

Viewing IPA as a part of the stochastic analysis enables us to answer the
following conjecture: experimental data tend to prove that estimates deduced
from IPA have a lower variance than those obtained with LRM. For a given
perturbation A, we know that IPA works for smooth functionals and that

(5 ElF1) =B DR
On the other hand, by LRM, we get
(%EB[F]) =EO[F[OTfEh(s,z)(w— veo)(ds,dz)}.

0=10,

— Y0

From a statistical point of view, we can estimate the derivative (d/d6)E/[ F]
by averaging either DF(h) or the product of F [l [, h(s, 2)(w — v, Nds, dz)
over a large number of sample paths. Comparing the variances of these two
estimates is thus comparing E [ DF(h)?] and

|

E,|F?

[" [ 1,220 = w,)(ds, d2)
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For F constant, DF is null and then if one method yields estimates with
lower variances, it has to be IPA. Nevertheless, for F' = ¢(F}), F; smooth and
¢ in @2, we have

T

o] F2 /Eh(s,z)(w— u,)(ds, dz)

0

< lloll? Eo[fonEh(s,z)zvgo(ds,dz)],
whereas
EO[DF(h)Z] = E0[|¢’(F1)|2 |DF1(h)|2]~

Since we can choose ¢ bounded but with an arbitrary large derivative, it is
easy to see that we can achieve a lower variance for some estimates originat-
ing from LRM.

4. Chaos decomposition and applications. A rather different ap-
proach to define DF(h) consists of using the so-called chaos decomposition. To
distinguish this object from that previously defined, the new object will be
denoted by DF(h).

We denote by L%(P, ® 1,2") [respectively, L (P, ® »>")] the Hilbert space
of deterministic real-valued functions (respectively, real-valued predictable
processes) defined on (R*® E)" [respectively, Q X (R*X E)"] which are
square-integrable for the measure P, ® ®/",, (ds;, dz,); that is,

I fulsiznns,2,)" @ wy(ds;, dzy) | < +.
i=1

RYXE)"

Let S {(sl,... D) E0,T]", 0<s, < -+ <s; <T} The nth order inte-
gral I () of a determlmstlc funct1on f, € L*(P, ® ") [ie., f, belongs to
L%(P, ® 12") and is symmetrical] is defined by

L(f)En! [ Fulsizi.es,, )®(w—v(,)(dsl,dz)

S, XE"

When f, belongs only to L%(P, ® 1,°"), we set I,(f,) =L £.), where f, is
the symmetrization of f, defined by

fn(slazl"'wsnfzn) = ; ZE fn(sa(l)’20’(1)""’80'(n)>20'(n))
* ges,

and 3, is the group of the permutations of {1,..., n}. Define C, = R and
C, = span{L,(h), h € IA(Py @ u2")},

where span{ -+ } represents the LZ(P(,O) closure of the vector space spanned by
{---}. Define also €, = R and

¢, =C,0(%® ®%,_,),
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where © denotes the orthogonal complementation with respect to the canoni-
cal scalar product on L*(P, ).

DEFINITION 4.1. A marked point process of P, compensating measure ,_
admits a chaos decomposition if and only if

L*(P,) = @ %,.
n>0

It is a challenging (and open) question to characterize processes which
admit a chaos decomposition. Known results indicate that this property holds
for Poisson processes and for Markov chains whose state space is a discrete
group such that the jumps (differences between two consecutive states) can
take only a finite number of values; see Biane (1989). We no longer need
Hypotheses 2 or 4, but we now need another hypotheses:

HyporHESIS 5. We have
’p,)= D e,
n>0
In this case, each square-integrable functional F can be written

nx>1

where f, € L(P, ® y°") and the series converges in L*(P,).

DEFINITION 4.2. We denote by Dom D the subset of L2(P,) of functionals
F =%1=,I(f,) such that the series

I fsiznns,.2,) @ Vgo(w,dsi,dzi)]
i=1

[0, +=]*XE™
converges. For F € Dom D, we define DF(w), the L2(P, ® u, ) process:
DF(w): (s,2) = D, .F(0) = ¥ nl,_i(f.(,s,2)).

n>1

(23) )Y n’E,

PROPOSITION 4. Let # be defined by

%’d:ef{g(fo h(s,z)(o— VGO)(dS,dZ)),
0o ’E
(24)
d ¢ 9
h such that EfofEh(s,z) 1, (ds,dz) <c,Pya.e.
Every element F of # satisfies (23) and
(25) D, ,F(w) = F(w)h(s, z).

ProoF. From Ruiz de Chavez (1983), we have

ép(-/;)TfEh(S,Z)(w— Vgo)(ds,dz)) =1+ ) %I,,(h@”);

nx>1
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hence,

%’(/Tj;gh(s,z)(w - VOO)(ds,dz))

0
n

= 21 — Lo (R ) (s, 2)
=g(f0 fEh(s,z)(w— V(,O)(ds,dz))-h(s,z). O

DEFINITION 4.3. For any F € Dom D and any predictable process h €
Li(P0 ® Voo), let

DF(h)(0) < [" [ B, . F(w)h(w,s,2)y(ds,dz).
0o “E
Then we have the following theorem:

THEOREM 7. For any FeDomD and any predictable process h €
L2(P, ® ),

E,[DF(h)] = [ f fh(w s,2)(w— 1,)(ds,dz)|.

ProoF. For any ¢t > 0, set S, =S, N[0, t]” and define

ri(rem < [ n £(5:52) ® (= n,)(ds;, dz,).

Stxgn i=1
For any F given by

—#| [ [ f(s.2)(w— u,)(ds, dz)],
1, |

we have
EO[fOTfE]ijZF(w)h(w,s,z)vgo(ds,dz)}
= g %EO[/OTfEf(s,z)h(w,s,z)z,j(f®<"1>)V90(ds,dz)]
+e 1
= X Gy Bl ] LA T ) ) s, )

x[OTfEh(w,s,z)(w - veo)(ds,dz)}
- X B[00 [ s, 20 = n) 05, do)|

- EO[F]OTfEh(w,s, N (w— VHO)(ds,dz)].
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Hence the result holds for F' in .# and by density it also holds for F €
Dom D. O

DEFINITION 4.4. For any square-integrable functional F, define the dif-
ference operator A by

A, F(0)EF(0+a,,) - F(o),

for any s, z, where w + §, , is the measure o plus a jump at time s of
mark z.

THEOREM 8. Let P, satisfy Hypothesis 5. The relation

Eo[fonE(As’zF)h(w,s,z)voo(ds,dz)}

=Eo|F- [" [ h(w,s,2)(w - y,)(ds,dz)
=1, |

holds for any square-integrable F and any predictable h € L?,(P0 ® v, ) if and
only if v, is deterministic; that is, w is a compound Poisson process.

Proor. If y, is deterministic, the result follows from Nualart and Vives
(1988). In the converse direction, let f be in L%(P,; ® , ). Then we have

EO[LT‘QAS,Z(/;TfEf(t,v)(w — vao)(dt,dv))g(s,z)vgo(ds,dz)]
= EO[/;T'/;Ef(t’v)(w_ VBO)(dt’dv) ‘fOTng(S, Z)((U— VGO)(ds,dz)]
_ EO[fOTfEf(S,z)g(s,z)ugo(ds,dz)]

for any g € L%(P, ® v, ). It follows by identification that

Ao [ [ At o) (0= )(dt dv) = f(s, 2).

Since

AS’ZfOTfEf(t,v)w(dt, dv) = f(s, 2),

we obtain

A fT/f(t,v)V(,(dt,dv) =0 foranys, z.
2*\Jo JE 0

As a consequence, for any g predictable in Li(PO ® voo), we have

0 =EO[/;)TfEAS’ZfOTj;Ef(t,v)Voo(dt,dv)-g(s,z)veo(ds,dz)}

=EO[jOT[Ef(t,u)v,,o(dt,du)fOT]Eg(s,z)(w— vf,o)(ds,dz)}.
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By the chaos decomposition property, we know that any square-integrable
functional F' can be written

F=E|[F] + fOTng(s,z)(w— w)(dt, dv),

where g is predictable and belongs to Li(P0 ® ). Hence, for any F € LA(P,),

EO[F/;TfEf(t,v)Veo(dt,dv)] =EO[F]EO[fOTfEf(t,v)veo(dt,dv) .

Since f belongs to L%(P, ® v,), [¢ [z [(¢,v)y,(dt, dv) belongs to L*(P,)
and it follows that the variance of [ [z f(t,v)y, (d¢, dv) is zero for any
f € L2(y,); thus v, is deterministic. O

ExamPLE 2 (Continued). We keep the framework of Example 2 except that
we now work on [0, ¢] and the functional F is the virtual waiting time at time
t denoted by W,. We also assume that the P, compensating measure is
deterministic so that we can apply all the previous considerations. By (8) and
Theorem 8, we know that

(0],

When we add a jump at time s and mark z to the nominal path, W,(w) is
increased by (z — [/ 1y (,)_0; du)”; hence,

d T t Tog
(%EO[Wt])eﬁO:EO[/(‘) fE(z—'/; Ly, _o du) %(Oo,z)dsdz}.

5. Related works.

=EOUOTfEAS’ZWt f(s)g(oo,z)dsdz].

0

5.1. Palm—Khinchin expansions, When 1, is deterministic, it follows
from Theorem 8 that, for any F € D, ; and % -measurable,

(26) (i E(,[F]) = Eo[flf (F(0+8,,) —F(w))h(s,z)y(ds, dz)].
de 0=10, o ’E ’ 0
This formula was obtained in Baccelli, Klein and Zuyev (1995), Moller and
Zuyev (1996) and Zuyev (1993). We denote by w , the measure coinciding with
o up to time s and with no atoms after. Whenever F belongs to span .Z, F is
continuous in 0 in the sense that lim, , , F(w ) exists and is independent of
the particular representation of F: we denote by F(0) this limit. Formally,
take w to be the null path in the chaos expansion of an element of span ..
The random part in each multidimensional integral vanishes and we only
keep

EJ[F]=F0©)+ X (-1)"" [[ (D, D, .F)©0) i@l u(ds;, dz;).

nx>1 S,XE"
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This formula is very similar to the factorial moment expansion of Blaszczyszyn
(1995), which is itself an extension of the Palm—Khinchin formula. More
precisely, the terms in both formulas are the same, but our approach does not
give the convergence of the series—we have here only an L? convergence
where Blaszczyszyn obtains a pointwise convergence (with the additional
hypothesis of stationarity).

5.2. Rare perturbation analysis. On the other hand, (26) is also the
common point to rare perturbation analysis and to the other methods of
perturbation analysis. As mentioned previously, RPA consists of perturbing
the nominal path by a sequence of decreasing thinning:

d . 1
(%EG[F])Q% =6, Lim ﬁ1'<:90,1,[F(w) ~ F(w,)].

We now limit our considerations to the case of a Poisson process on the time
interval [0, 1], of intensity 6,, with independent and identically distributed
marks independent of the jump times. We have

By, p[F(@) = F(y)] = L By [ (F(w) = F(0))Ljo-,-]

Conditionally to |w|, the random variable |w — wpl is binomially distributed

with parameters (|w|, 1 — p), so that, by the Cauchy—Schwarz inequality, we
see that all the terms with j greater than 2 vanish when we take the limit.
Hence,

d 1
(d_ﬂ Eo[F])GOO =6;! ;l_)ml ﬁ Eeo,p[(F( w) = F( wp))l{\w|:|wp|+1)]‘

Moreover, a compound Poission process of the type we are dealing with can
be written as the superposition of two independent compound Poisson pro-
cesses of the same type with respective intensities 6, p and 6,(1 — p). Hence,
we can write

E"O’P[(F(‘”) B F(wp))1(|m\=|wp\+1}]
- fQXQ(F( w1+ wy) = F(w1))L,, -1y By, (@1) dPy - (@3).

It is known that conditionally to {|w,| = 1}, the distribution of the jump time
of w, is uniform over [0, 1]; hence,

EHO;P[(F((D) - F(wp))1(|m\=|wp\+1>]
= 951P(1—p)00(|w2| = 1)

x/ﬂ

[ (F 01+ 6,.) = F(w))n(ds,d2) | dB (o).
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Thus, when we take the limit, we get

1
0, lim 1—E00’p[F(w) ~ F(0,)]

p>1 1 —p

= 0B (Fo) 5, = Flo)uds. d2)].

We then observe that this latter term is nothing but the right-hand side of
formula (26), since here h = 6.
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