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PERTURBATION ANALYSIS AND MALLIAVIN CALCULUS

BY L. DECREUSEFOND

École Nationale Superieure des Telecommunications´ ´ ´
Using the Malliavin calculus, we give a unified treatment of the

so-called perturbation analysis of dynamic systems. Several applications
are also given.

Ž .1. Introduction. Given a marked point process MPP for short N whose
law depends on a parameter u g Q ; R and a functional F of the sample

Ž .paths of N, the so-called perturbation or sensitivity analysis is concerned
w Ž .xwith the evaluation of the derivative with respect to u of E F N , where Eu u

is the expectation under P , the law of N for the value u of the parameter. Inu

Ž .other words, the objective is to compute or at least to find some estimates of
the sensitivity of the mean value of F with respect to a slight change in the
law of N. The simplest but generic example follows.

EXAMPLE 1. Given a standard Poisson process N of intensity u and a
w xfunctional of it, say F s N for t fixed, how can we compute drdu E N ?t u t

w xThe result is straightforward here since we know that E N s u t, but whatu t
happens for a more complex functional?

There are several motivations for being interested in such a question: the
main reasons are the applications to optimization and control of systems; see,

Ž .for instance, Devetsikiotis, Wael, Freebersyser and Townsend 1993 . The
concept of perturbation analysis was introduced in a paper by Ho and Cao
Ž . w Ž .1983 and has been addressed by many authors Glasserman 1990 ; Glynn
Ž . Ž . Ž .1987 ; Heidelberger 1987 ; Ho, Cao and Cassandros 1983 ; Reiman and

Ž . Ž . Ž .xWeiss 1989a, b ; Suri and Zazanis 1988 ; Suri 1989 , mainly in the context
of queuing networks. There are essentially three ways to handle this problem:

Ž .the so-called infinitesimal perturbation analysis IPA , rare perturbation
Ž . Ž .analysis RPA and likelihood ratio method LRM . Our motivation here is not

to discuss these methods in detail, but to show how they can be seen as a part
of the stochastic calculus of variations. This theory, initiated by Malliavin
Ž .1978 in the context of the Brownian motion, aims to define a differential
calculus for stochastic processes mimicking the differential calculus of usual

¨ Ž .numerical functions; see, for example, Ustunel 1995 and references therein.¨
Besides the aesthetics of this new point of view, the known results of the
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Malliavin calculus also allow us to obtain somewhat deeper results in pertur-
bation analysis.

Section 2 contains a brief description of IPA and RPA and a rather detailed
description of the LR method. Actually, this latter approach plays a key role
to exhibit relationships between the stochastic calculus of variations and the
sensitivity analysis. Section 3 and 4 are devoted to the Malliavin calculus for
marked point processes and to its applications to perturbation analysis.
Precisely, in Section 3, we define a Malliavin derivative by a variational
approach and in Section 4, we define a difference operator using the chaos
decomposition of some random measures. Both the Malliavin derivative and
the difference operator share the so-called formula of stochastic integration
by parts, which is central to our work. In Section 5, we mention two results
which can be connected to the theory developed in this paper.

2. Methods of the perturbation analysis. Let E be a Lusin space
Ž d .for practical purposes E s R is sufficient and let V be the space of simple
Ž . Ži.e., there is at most one jump at a time , locally finite i.e., the number of

.jumps in each compact time interval is almost surely finite , integer-valued
w xmeasures on 0, T = E, where T can be a fixed deterministic time or T s q̀ ;

Ž .for details on marked point processes, see, for instance, Jacod 1979 . A
� 4generic sample path v g V is thus of the form Ý d , where t , n ) 0n) 0 Ž t , z . nn n

Žis a strictly increasing sequence of nonnegative reals t represents the nthn
. Žjump time and z belongs to E for any n z is the mark associated to then n
. � 4nth jump . u is fixed and P is called the nominal probability. FF , t ) 0 is0 0 t

the canonical filtration,

t� 4FF s B, V , FF s s v ds, dz , s F t , B g BB EŽ . Ž .H H0 t ½ 5
0 B

w xand PP is the predictable s-field on V = 0, T = E. We recall that A g V =
w x Ž . � w x0, T is said to be evanescent whenever its projection p A s v; 't g 0, T ,
Ž . 4w, t g A is P negligible. For any u g Q, we denote by n the P compensat-0 u u

ing measure of the canonical process, that is, the predictable random
measure such that for any nonnegative and PP-measurable process Y, the
process

t
Y v , s, z v y n ds, dzŽ . Ž . Ž .H H u

0 E

Ž .is a P local martingale. For technical reasons see Remark 2.1 , we hereafteru

assume the following hypothesis.

HYPOTHESIS 1. The process

tdef
N s v , t ¬ v ds, dzŽ . Ž .H Ht

0 E
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is square-integrable,
2sup E N - q̀ ,0 t

tFT

Ž� 4 .and quasi-left-continuous; for any given time t, n t = E s 0.u0

Going back to the roots of differential calculus, computing a derivative
boils down to computing

y1 w x w x1 lim u y u E F y E F .Ž . Ž . Ž .0 u u 0uªu 0

Both IPA and RPA are based on suitable alterations of the nominal sample
path in order to obtain a modified process of law P . The second step consistsu

Ž .of exactly expressing the right-hand-side difference in 1 and then being able
to pass to the limit. Let us illustrate these two methods by some examples.

Ž .EXAMPLE 1 Continued . Despite its simplicity, let us have another look at
w Ž .the Poisson process. The rare perturbation analysis see Bremaud 1992 ;´

Ž .xBremaud and Vazquez-Abad 1992 originates from the remark that we can´ ´
obtain a Poisson process of intensity as close as we want to u by ‘‘decreasing’’0
thinning. Namely, the derivative of the expectation of a functional F with
respect to the mean intensity u of the underlying process at u s u is0
obtained by considering

1
y1u lim E F v y F v ,Ž . Ž .0 u p0, p1 y ppª1

where v is a p-thinning of v: each jump of v is kept, independently fromp
the others, with probability p and E is the expectation taken under theu0, p

Ž Ž . .mNprobability measure dP m pd q 1 y p d . If we apply this to F s N ,0 1 0 t
Ž . Ž . Ž .it is intuitively clear and easy to show that given N v , N v y N v ist t t p

Ž . Ž .distributed as a binomial law of parameters N v and u 1 y p , so that wet 0
clearly have

d
w xE N s t .u tž /du usu 0

We see that the principle itself induces that RPA is essentially meaningful
for the Poisson process and for the so-called light traffic analysis}the part of
perturbation analysis which is dedicated to the analysis of the sensitivity of
F when the mean intensity of the underlying process goes to 0.

EXAMPLE 2. Consider a GrGIr1 queue with mean service time u and
distribution function G . Let F be the average waiting time for the first Ku

customers, that is, F s Ky1ÝK W , whose mean value we want to differen-is1 i
tiate with respect to u at u s u . The evolution of the queue is fully described0

�Ž . 4by T , Z , n G 1 , where T is the arrival time of the nth customer and Zn n n n
is its service time. In a simulation of this queue, when u s u , the sequence0
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FIG. 1. The IPA principle. Top: The nominal path; bottom: the altered path with the same jump
times but different values of jumps.

defy1� 4 Ž . � 4Z , n G 0 can be generated by taking Z s G U , where U s U , n G 0n n u n n0

is a sequence of independent random variables, uniformly distributed over
w x0, 1 . Following IPA principle, a perturbed path is generated with the same

u y1Ž . Ž .sequence U, but with nth service time Z equal to G U see Figure 1 . Inn u n
Žour example, IPA is known to work for the GrMr1 queue i.e., the limit can

. w Ž . Ž .xbe computed and we have see L’Ecuyer 1990 ; Suri and Zazanis 1988

Kd 1
w x2 E F s E Z ,Ž . Ý Ýu u j0ž /du Kuusu 00 is1 jgBi

where B is the set containing customer i and all the customers that precedei
him in the same busy period.

It appears from the two previous examples that these two approaches
require a very fine knowledge of the sample paths of the underlying process

Ž .for the difference of expectations which appeared in 1 to be calculated. The
LR method does not present a priori this default, but on the other hand it
implies some restrictions on the ‘‘possible’’ differentiations.

In order for the LR method to be applicable, it is necessary that for each u ,
P is locally absolutely continuous with respect to P , that is, for any t G 0,u u 0

the restriction of P to FF is absolutely continuous with respect to theu t
wŽ . xrestriction of P to FF . From Jacod 1979 , pages 265]273 , it is necessaryu t0
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and sufficient that the following conditions hold:

C1. P < P on FF .u 0 0

C2. There exists a nonnegative, PP-measurable process Y such thatu

n ds, dz s Y v , s, z n ds, dz .Ž . Ž . Ž .u u u 0

C3. The process
2t

t ¬ C s 1 y Y n ds, dzŽ .'H H ž /t u u 0
0 E

Ž .satisfies P C - q̀ s 1 for any t G 0.u t

� 4 ŽSet S s inf t, C G n with the convention that S s q̀ if C - n forn t n t
.any t . Whenever C1]C3 hold, we have

dPu u us Z ? Z0 tdP0 FFt3Ž .
def t

uwhere Z s EE Y v , s, z y 1 v y n ds, dz ,Ž . Ž . Ž .Ž .H Ht u u 0ž /0 E

for t F lim sup S and Z s 0 otherwise, wheren n t

dPdef uuZ s0 dP0 FF0

� 4 � Ž . 4and for any local martingale M s M , t G 0 , EE M , t G 0 is the solution oft t
the stochastic differential equation

t
yR s 1 q R dM .Ht s s

0

REMARK 2.1. In the preamble, we assumed once and for all that N is
quasi-left-continuous under P . The main reason for this is that without this0
hypothesis, the conditions required to have local absolute continuity are too
intricate.

REMARK 2.2. Note that a simpler but sufficient condition for C3 to hold is
w Ž . xthat cf. Jacod 1979 , page 273

T1 2C39 E exp Y s, z n ds, dz - q̀ .Ž . Ž . Ž .H H0 u u2 0ž /0 E

Ž .THEOREM 1 LRM principle . Assume that conditions C1]C3 hold and
assume that the following two hypotheses are satisfied:

Ž .HYPOTHESIS 2. There exists a neighborhood VV u ; Q of u , a pre-0 0
dictable process h independent of u , a constant c ) 0 and a family of
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predictable processes R satisfyingu

4 Y v , t , z s 1 q u y u h v , t , z 1 q R v , t , zŽ . Ž . Ž . Ž . Ž .Ž .u 0 u

Ž . Ž .for any u g VV u , for any t, z , P -a.e.,0 0

d t 225 h v , s, z 1 q R v , s, z n ds, dz F c,Ž . Ž . Ž . Ž .Ž .H H u u 0ž /dt 0 E

Ž .for any u g VV u , for any t, P -a.e.,0 0

6 R v , s, z ) y1, dP m n ds, dz a.e., for any u g VV u ,Ž . Ž . Ž . Ž .u 0 u 00

R tends to 0 when u goes to u , in the sense thatu 0

T 2 27 lim E h v , s, z R v , s, z n ds, dz s 0.Ž . Ž . Ž . Ž .H H0 u u 0uªu 0 E0

Ž . uHYPOTHESIS 3. For any u g VV u , Z s 1; see Remark 2.4.0 0

Then, for any square integrable, FF -measurable functional F, we havet

d tw x8 E F s E F h v , s, z v y n ds, dz .Ž . Ž . Ž . Ž .H Hu 0 u 0ž /du usu 0 E0

w Ž .xPROOF. Since F is FF -measurable, by the Girsanov theorem see 3 andt
Hypothesis 3,

d y1 uw xE F s lim u y u E F Z y 1Ž . Ž .u 0 0 0ž /du uªuusu 00

y1 u uq lim u y u E FZ Z y 1Ž . Ž .0 0 0 t
uªu 0

9Ž .

y1 us lim u y u E F Z y 1 .Ž . Ž .0 0 t
uªu 0

def
u t� Ž .Ž .Ž . 4For any u , the process M s H H Y y 1 v y n ds, dz , t G 0 is a martin-t 0 E u u 0

gale whose P -Doob]Meyer process is0

t 22 2u u² :M , M s u y u h v , s, z 1 q R v , s, z n ds, dz .Ž . Ž . Ž . Ž .Ž .H Ht 0 u u 0
0 E

Ž . Ž .Hence, using Ruiz de Chavez 1983 and condition 5 of Hypothesis 2, we
2Ž .have the L P expansion0

tdefuZ s EE Y v , s, z y 1 v y n ds, dzŽ . Ž . Ž .Ž .H Ht u u 0ž /0 E

Ž .nus 1 q M ,Ž .Ý t
n)0
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where
tŽ . Ž .n ny1u u uM s M dMŽ . Ž .Ht sy s

0

and
tŽ .1uM s Y v , s, z y 1 v y n ds, dz .Ž . Ž . Ž .Ž .Ž . H Ht u u 0

0 E

Hence,
y1 uu y u E F Z y 1Ž . Ž .0 0 t

t
s E F h v , s, z v y n ds, dzŽ . Ž . Ž .H H0 u 0

0 E

t
q E F h v , s, z R v , s, z v y n ds, dzŽ . Ž . Ž . Ž .H H0 u u 0

0 E
q`

Ž .nny2 uq u y u u y u E F ? M .Ž . Ž . Ž .Ý0 0 0 t
ns2

Ž .By condition 7 , the second summand of the last equation tends to 0 when u
Ž .goes to u . Moreover, by condition 5 , for any n G 2,0

22 tŽ . Ž .n ny1u u uE M s E M dMŽ . Ž .H0 t 0 s s
0

2t Ž .ny1u u u² :s E M d M , MŽ .H s0 s
0

2t Ž .ny1uF c E M ds.Ž .H 0 s
0

Thus by induction,
n

2 ctŽ .Ž .nuE M FŽ .0 t n!
and

q`
Ž .nny2 usup u y u E F ? M - q̀ .Ž . Ž .Ý 0 0 t

Ž .ugVV u ns20

Hence,

ty1 ulim u y u E F Z y 1 s E F h v , s, z v y n ds, dzŽ . Ž . Ž . Ž .Ž . H H0 0 t 0 u 0uªu 0 E0

and the proof is complete. I

REMARK 2.3. The proof can also be done when the time interval is
random. Let S be a stopping time and let F be FF -measurable. Then we haveS

d Sw xE F s E F h v , s, z v y n ds, dz ,Ž . Ž . Ž .H Hu 0 u 0ž /du usu 0 E0
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provided that

S1 2E exp Y s, z n ds, dz - q̀ .Ž . Ž .H H0 u u2 0ž /0 E

REMARK 2.4. In the perturbation analysis literature, one often aims to
work under stationary regime. This would a priori prevent us from taking
Zu s 1 since there is no reason for P to coincide with P on FF when these0 u u 00

probabilities need to be stationary. Actually, another way to define ‘‘perturba-
tion analysis in stationary regime’’ consists of assuming that the system has
reached its equilibrium and that we analyze the sensitivity after a sudden
change in the driving parameters. In that case, P is still the equilibriumu 0

distribution, but P is not and we can fix Zu to be equal to 1. This is implicitlyu 0
the situation in the current literature on sensitivity analysis because of
the difficulty arising when handling the first expectation on the right-hand

Ž .side of 9 .

Ž .EXAMPLE 1 Continued . Consider again Example 1. E is reduced to a
singleton and the compensating measure under P is given byu

n ds s u ds.Ž .u

All the conditions imposed in Theorem 1 are satisfied with h ' uy1 provided0
w xthat we work on a fixed time interval 0, T . Note that Theorem 1 is thus an

Ž .extension of Theorem 1 in Reiman and Weiss 1989b .

Ž .EXAMPLE 2 Continued . As usual in the representation of queues by
marked point processes, the marks represent the service times, in particular
E s Rq. The P compensating measure is given here byu

n ds, dz s f v , s ds G dz .Ž . Ž . Ž .u u

Ž . Ž . Ž .Assume furthermore that G dz s g u , z ds, where g u , z ) 0 for anyu

Ž .u , z . We get
g u , zŽ .

n ds, dz s n ds, dz .Ž . Ž .u u 0g u , zŽ .0

Hence, in view of Hypothesis 2, we have to assume that g is twice differen-
2Ž Ž ..tiable with respect to u , that ­ gr­u belongs to L R, G dz and thatu 0

­ 2 gr­u 2 is bounded. In this case, one should take

­ gy1h s, z s g u , z u , z .Ž . Ž . Ž .0 0­u

w xIn order for condition C39 to be satisfied on the random interval 0, T , oneK
Ž .should assume as we do hereafter that there exists « ) 0 such that

­ gTK y1 2 2E exp « g u , z u , z f v , s ds dz - q̀ ,Ž . Ž . Ž .H H0 0 0ž /­u0 E

where T is the arrival time of the K th customer.K
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Ž .In Example 1, when applying 8 to the Poisson process, we get for any F
FF -measurable,t

d tw xE F s E F ? h s v y n dsŽ . Ž . Ž .Hu 0 u 0ž /du usu 00

t ˜s E F ? h s dN ,Ž .H0 s
0

y1 ˜ ˜where h ' u and N is the compensated Poisson process, that is, N s N y0 t t
u t. Written this way, the latter expectation is nothing but one of the terms0
appearing in the so-called stochastic integration by parts formula. It turns
out that integration by parts formulas are the core of the Malliavin calculus
and that is why perturbation analysis can be naturally seen as a part of this
latter theory. For instance, in case of the Poisson process, define, for any

2w x Ž .‘‘nice’’ functional F and any h g L 0, 1 , the random variable DF h by

1
DF h s F v q d y F v h s ds.Ž . Ž . Ž . Ž .Ž .H s

0

We then have

t ˜10 E F ? h s dN s E DF h .Ž . Ž . Ž .H0 s 0
0

This formula is the key point of this work: there exist at least three sensible
Ž . Ž .ways to define DF h in the sense that all of them are such that 10 holds;

hence, all three of them give new expressions of the derivative we aim to
Ž .compute. The rest of this paper is devoted to showing how DF h can be

defined and how these definitions are related and can be applied to sensitivity
analysis.

3. A variational approach. In this section, we assume that n stillu0

satisfies Hypothesis 1, but also the following hypothesis:

HYPOTHESIS 4. We have

n ds, dz s q v , s, z h dz ds,Ž . Ž . Ž .u0

where h is a Radon measure on E, q is a predictable process and there exists
Ž . 1Ž Ž ..m ) 0 and Q s, z g L ds m h dz such that

m F q v , s, z F Q s, z ,Ž . Ž .

for any s, z and P -almost everywhere.0
2 Ž .By L P m n , we mean the set of predictable processes such thatp 0 u 0

T 2E h v , s, z n ds, dz - q̀ .Ž . Ž .H H0 u 0
0 E
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Remember that for such a process. By the Cauchy]Schwarz inequality,
2

T
E h v , s, z v ds, dzŽ . Ž .H H0

0 E

2
T

F 2E h v , s, z v y n ds, dzŽ . Ž . Ž .H H0 u 0
0 E

2
T

q 2E h v , s, z n ds, dzŽ . Ž .H H0 u 0
0 E

11Ž .

T 2w xF 2 1 q n 0, T = E E h v , s, z n ds, dzŽ . Ž .Ž .Ž . H Hu 0 u0 0
0 E

T 22F 2 1 q E N E h v , s, z n ds, dz .Ž . Ž .Ž . H H0 T 0 u 0
0 E

DEFINITION 3.1. By HH we denote the Hilbert space of deterministic pro-
Ž .cesses h s, z such that

def T 2 22 ˆ5 5h s h s, z q h s, z Q s, z h dz ds - q̀ ,Ž . Ž . Ž . Ž .Ž .HH H H
0 E

where
t

ĥ t , z s h s, z Q s, z ds.Ž . Ž . Ž .H
0

LEMMA 1. Step functions, that is, functions of the form
ny1

a 1 s 1 z ,Ž . Ž .Ý i w t , t . Bi iq1 i
is1

Ž .where for any i, t - t , B g BB E and a g R are dense in HH.i iq1 i i

PROOF. Let f be orthogonal to all step functions, for any t , t and any0 1
Ž .B g BB E ,

T t1f̂ t , z Q r , z dr 1 z Q t , z h dz dtŽ . Ž . Ž . Ž . Ž .H H H B
0 E t0

t1s y 1 z f t , z Q t , z h dz dt .Ž . Ž . Ž . Ž .H H B
t E0

Hence dh almost surely,
T t t1 1f̂ t , z Q t , z dt ? Q r , z dr s y f t , z Q t , z dt .Ž . Ž . Ž . Ž . Ž .H H H

0 t t0 0

Taking t s 0 and t s T, one gets0 1

T T
f̂ t , z Q t , z dt ? Q r , z dr q 1 s 0.Ž . Ž . Ž .H Hž /0 0

ˆ Ž .Since Q is positive, f is identically zero dt-a.e. which in turn implies that
5 5f s 0. IHH
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Denote by SS the set of functionals of the form
T T

F s f f s g z v ds, dz , . . . , f s g z v ds, dz ,Ž . Ž . Ž . Ž . Ž . Ž .H H H H1 1 n nž /0 E 0 E

where f is a bounded twice differentiable function with bounded derivatives,
f g belongs to HH and f is continuously differentiable with bounded deriva-i i i
tive for each i s 1, . . . , n.

Ž .DEFINITION 3.2. For any functional F g SS and any h g HH, DF h is
defined by

n ­ f T
DF h s y f s g z v ds, dz , . . . ,Ž . Ž . Ž . Ž .Ý H H 1 1ž­ x 0 Eiis1

T
f s g z v ds, dzŽ . Ž . Ž .H H n n /0 E12Ž .

s1T X= f s g z h r , z q v , r , z drŽ . Ž . Ž . Ž .H H Hi i ž /q v , s, zŽ .0 E 0

=v ds, dz .Ž .
THEOREM 2. For any F g SS , there exists d ) 0 such that

2 25 5E DF h F dE h ,Ž . HH0 0

Ž .for any predictable process h such that for any v, h v, ? , ? belongs to HH.

Ž .PROOF. Since F belongs to SS , q is lower bounded, and using 11 , there
exists c ) 0,

2E DF hŽ .0

2
s1T

F n ? cE h r , z q v , r , z dr v ds, dzŽ . Ž . Ž .H H H0 q v , s, zŽ .0 E 0

n ? c 2T ˆF E h r , z n ds, dzŽ . Ž .H H0 u2 0m 0 E

n ? c 25 5F h ,H2m
where c is a generic constant. I

As an easy consequence of the definition, we have the following lemma.

LEMMA 2. For any F, G g SS , FG belongs to SS and
D FG h s F ? DG h q G ? DF h .Ž . Ž . Ž . Ž .

We now aim to prove the stochastic integration by parts formula, that is,
T

E DF h s E F h s, z v y n ds, dz .Ž . Ž . Ž . Ž .H H0 0 u 0
0 E
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Consider

t
v v , t , z s q v , s, z ds.Ž . Ž .H

0

Ž . Ž .For v, z fixed, the map t ¬ v v, t, z is an increasing function. Hence we
can consider its right inverse defined by

vy1 w , t , z s inf r G 0, v v , r , z s t .� 4Ž . Ž .
Define

th y1v v , t , z s v v , 1 q u y u h s, z q v , s, z ds, z y t .Ž . Ž . Ž . Ž .Ž .Hu 0ž /0

For any h g HH and nonpositive, consider the map t h from V into itself,u

where t hv is the random measure defined byu

1 s 1 z t hv ds, dzŽ . Ž . Ž .HH w0 , t . B u

13Ž .
s 1 s q v h s, z 1 z v ds, dz ,Ž . Ž . Ž .Ž .HH w0 , t . u B

Ž . w x hfor any B in BB E and any t g 0, T . Actually, t v is the process whichu
hŽ .jumps at time s q v v, s, z with mark z if and only if v jumps at time su

with mark z.
uLet Q be the probability measure defined by dQ s Z dP on FF , whereu u T u T0

TdetuZ s EE u y u h s, z v y n ds, dz .Ž . Ž . Ž . Ž .H HT 0 u 0ž /0 E

THEOREM 3. For any u G u and any h g HH, h nonpositive, the law of the0
marked point process t hv under Q is the same as the law of v under P .u u 0

2 Ž .PROOF. Since h g L P m n , by condition C39, the probability measurep 0 u 0

Q is well defined and the processu

u uZ s E Z N FFt 0 T t

t
s EE u y u h s, z v y n ds, dzŽ . Ž . Ž . Ž .H H0 u 0ž /0 E

is a square-integrable martingale.
The process v h is left-continuous and since h is negative, it is adaptedu

Ž . hand nonpositive ; hence it is predictable so that t v is well defined. Consideru

the martingale M:

M s 1 q u y u h s, z 1 s q v h s, z , z v y n ds, dz .Ž . Ž . Ž . Ž . Ž .Ž . Ž .HHt 0 w0, t .=B u u 0
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We have

t y1u u uw xZ d M , ZŽ .H ss
0

s 1 q u y u h s, z 1 z 1 s q v h v , s, zŽ . Ž . Ž . Ž .Ž . Ž .HH 0 B w0, t . u

y1
= 1 y 1 q u y u h s, z v ds, dzŽ . Ž . Ž .Ž .ž /0

s 1 q u y u h s, z 1 z 1 s q v h v , s, z v ds, dzŽ . Ž . Ž . Ž . Ž .Ž . Ž .HH 0 B w0, t . u

h w xy t v 0, t = B .Ž .u

Thus

t y1u u u uw xM y Z d M , ZŽ .H st s
0

h w xs t v 0, t = B y 1 q u y u h s, z 1 zŽ . Ž . Ž .Ž . Ž .HHu 0 B

=1 s q v h v , s, z n ds, dzŽ . Ž .Ž .w0 , t . u u 0

14Ž .

h w xs t v 0, t = B y 1 q u y u h s, z 1 zŽ . Ž . Ž .Ž . Ž .HHu 0 B

=1 s q v h v , s, z q v , s, z ds dz .Ž . Ž .Ž .w0 , t . u

By the definition of v h,u

tdef hV t s v t q v v , t , z s 1 q u y u h s, u q v , s, z ds.Ž . Ž . Ž . Ž . Ž .Ž .Ž . Hu 0
0

Hence, on one hand,

­ V
t s 1 q u y u h t , z q v , t , zŽ . Ž . Ž . Ž .Ž .0­ t

and on the other hand,

­ V ­ v h
uht s q v , t q v v , t , z , z 1 q v , t , z .Ž . Ž . Ž .Ž .u ž /­ t ­ t

hŽ . Ž .Thus, using the change of variable u s s q v v, s, z in 14 , we getu

t y1u u u u hw x w x w xM y Z d M , Z s t v 0, t = B y n 0, t = B .Ž . Ž .Ž .H st s u u 0
0

u tŽ u .y1 w u u xThen M y H Z d M , Z is a Q martingale, so n is the Q compen-t 0 s s u u u0

sating measure of t hv. This means that the Q -law of t hv is the same as theu u u

Ž .law of v under P ; cf. Jacod 1979 , page 86. I0



PERTURBATION AND MALLIAVIN CALCULUS 509

DEFINITION 3.3. A functional F: V ª R is smooth whenever, for any
Ž .h g HH, there exists a square-integrable random variable, denoted by DF h

such that
y1 hlim u y u F v y F t v y u y u DF h s 0,Ž . Ž . Ž . Ž .Ž .Ž .0 u 0

uªu 0
u)u 0

2Ž .where the limit is taken in L P .0

THEOREM 4. Any F g SS is smooth and for any h g HH.

DF h s DF h .Ž . Ž .

PROOF. Consider the case when f ' x and n s 1. Using the Taylor expan-
sion at order 1 and 2,

T hE f s g z q v v , s, z y g z v ds, dzŽ . Ž . Ž . Ž .Ž .Ž .H Hu 1 1 u 10
0 E

2h­ vT uX 0y u y u f s g z v , s, z v ds, dzŽ . Ž . Ž . Ž . Ž .H H0 1 1 ­u0 E
15Ž .

T hF 2E g z q v v , s, z y g zŽ . Ž .Ž .H H Ž0 1 u 1
0 E

2
X hyg z v v , s, z f s v ds, dzŽ . Ž . Ž . Ž ..1 u 10

T Xq2E f s g zŽ . Ž .H H0 1 1
0 E

2h­ vu 0h= v v , s, z y u y u v , s, z v ds, dzŽ . Ž . Ž . Ž .u 0ž /­u

2
T2X hF 2 f g E v v , s, z v ds, dz ;Ž . Ž .H H1 1 0 u`

0 E

T hv v , s, z v ds, dz G 1Ž . Ž .H H u
0 E

4
T2Y hq2 f g E v s, z v ds, dz ;Ž . Ž .H H1 1 0 u`

0 E

T hv v , s, z v ds, dz F 1Ž . Ž .H H u
0 E
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T2X hq f g E v v , s, zŽ .H H1 1 0 u`
0 E

2h­ vu0y u y u v , s, z v ds, dz .Ž . Ž . Ž .0 ­u

By the usual derivation rules,

y1h­ v ­ v tu0 v , t , z s v , q v , s, z ds, zŽ . Ž .H½ 5ž /ž /­u ­u 0usu 0

t
= h s, z q v , s, z dsŽ . Ž .H

0

ty1s q v , t , z h s, z q v , s, z ds.Ž . Ž . Ž .H
0

Hence, by the Taylor expansion again,

h­ vu0hv v , s, z y u y u v , s, zŽ . Ž . Ž .u 0 ­u
h­ vu0h hF v v , s, z y v v , s, z q u y u v , s, zŽ . Ž . Ž . Ž .u u 00 ­u

2 t
F u y u h s, z Q s, z ds,Ž . Ž .H H0m 0 E

since v h ' 0. Thus, by dominated convergence, it follows thatu0

­ v h
uy1 0hlim u y u v s, z y u y u s, z s 0Ž . Ž . Ž . Ž .0 u 0ž /­uuªu 0

2Ž . Ž .in L P m n and thus the three expectations on the right-hand side of 15 ,0 u 0
Ž .2when divided by u y u , tend to 0 as u goes to u . Hence in this case,0 0

Ž . Ž .DF h s DF h .
n XŽ . Ž .In the general case, denote by Ý F h the right-hand side of 12 . Weis1 i

have, by the second order Taylor expansion,

2n
XhE F t v y F v y u y u F hŽ . Ž . Ž .Ž . Ý0 u 0 i

is1

2
­ f

F d sup
­ xi i `

2n
T Xh= E f s g z t v y v ds, dz y F hŽ . Ž . Ž . Ž .Ž .Ý H H0 i i u i

0 Eis1
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22­ f
qd sup

­ x ­ xi , j i j `

4n
T Xh= E f s g z t v y v ds, dz y F h ,Ž . Ž . Ž . Ž .Ž .Ý H H0 i i u i

0 Eis1

where d is a constant. Using the first part of this proof, the result follows. I

Ž .THEOREM 5 Stochastic integration by parts . For any F g SS and for any
h g HH,

T
16 E DF h s E F h s, z v y n ds, dz .Ž . Ž . Ž . Ž . Ž .H H0 0 u 0

0 E

PROOF. Theorems 3 and 4 induce that

Thw x17 E F s E F t v EE u y u h s, z v y n ds, dz ,Ž . Ž . Ž . Ž . Ž .Ž . H H0 0 u 0 u 0ž /0 E

Ž .for any F g SS and any negative element h of HH. Formula 16 follows by
Ž . Ž .differentiating 17 with respect to u . By linearity, 16 holds for the step

element h of HH. Since, by Theorem 2,
2 25 5E DF h F cE h ,Ž . HH0 0

and by the Cauchy]Schwarz inequality,
2

T
E F h s, z v y n ds, dzŽ . Ž . Ž .H H0 u 0

0 E

T 22w xF E F E h s, z n ds, dzŽ . Ž .H H0 0 u 0
0 E

22 5 5w xF E F E h ,HH0 0

Ž . Ž .it follows by the density of step functions in HH see Lemma 1 that 16 holds
true for any h g HH. I

2Ž .THEOREM 6. The set SS is dense in L P .0

� 4PROOF. There exists B , n G 0 a sequence of compact sets of E suchn
Ž . � 4that D B s E and h B - q̀ , for any n. Let t , n G 0 be an enumera-n n n n

w xtion of 0, T l Q. The canonical filtration is generated by the set

T
1 s 1 z v ds, dz , i , j G 0 .Ž . Ž . Ž .H H w0 , t . B½ 5i j

0 E

Let c be a bijection from N = N onto N and

Tdef
FF s s 1 s 1 z v ds, dz , i , j such that c i , j F n .Ž . Ž . Ž . Ž .H Hn w0, t . B½ 5i j

0 E
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2Ž .Since FF s E FF , by the martingale convergence theorem, for any F g L P ,T n n 0
� w x 4 2Ž .the sequence E F N FF , n G 0 converges to F in L P . Moreover, by0 n 0

Doob’s lemma, there exists f measurable from Rn into R such that

Tw xE F N FF s f 1 s 1 z v ds, dz , i , j s.t. c i , j F n .Ž . Ž . Ž . Ž .H H0 n w0, t . Bi jž /0 E

w xIt is then classical to approximate E F N FF and thus F by a sequence of0 n
elements of SS . I

Ž .COROLLARY 1. For any h g HH, the map F ¬ DF h is closable.

� 4PROOF. Let F , n G 1 be a sequence of SS such that F converges to 0 inn n
2Ž . Ž . Ž .L P and for any h g HH, DF h converges to a limit denoted by z h . For0 n

any G g SS ,

E z h ? G s lim E DF h GŽ . Ž .0 0 n
nªq`

s lim E D F G h y E F DG hŽ . Ž . Ž .Ž .0 n 0 n
nªq`

T
s lim E F G h s, z n ds, dz y E F DG hŽ . Ž . Ž .H H0 n u 0 n0ž /nªq` 0 E

s 0.
2Ž . Ž .Since SS is dense in L P , z h s 0 P -a.e. I0 0

DEFINITION 3.4. The set D is the closure of SS for the t-topology defined2, 1
� 4by its converging sequences as the sequence F , n G 0 of elements of SSn

� 4 2converges for the t-topology to F whenever F , n G 0 tends to F in L andn
Ž . 2DF h converges weakly in L for any h g HH.n

PROPOSITION 1. For any F g D and any h g HH,2, 1

T
E DF h s E F ? h s, z v y n ds, dz .Ž . Ž . Ž . Ž .H H0 0 u 0

0 E

Ž . Ž .PROOF. Formula 16 holds for F g SS which is known to be smooth ;
hence by a limiting procedure, it still holds for F in D . I2, 1

PROPOSITION 2. For any functionals F in D and any function w in2, 1
2Ž .CC R with bounded derivatives, we have

18 D F h s w9 F DF h .Ž . Ž . Ž . Ž . Ž .w

Ž .PROOF. For F g SS , it is clear that w F still belongs to SS and by the
usual derivation rules,

D F h s w9 F DF h .Ž . Ž . Ž . Ž .w
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� 4Let F g D and F , n G 0 a sequence of elements of SS converging to F in2, 1 n
D . We have2, 1

2 2 2E w F y w F F w9 E F y FŽ . Ž . `0 n 0 n

and
E Gw9 F DF h y Gw9 F DF hŽ . Ž . Ž . Ž .0 n n

F w9 E G DF h y DF h ;Ž . Ž .Ž .` 0 n

Ž . Ž Ž . . Ž .hence w F is the limit in D of w F , n G 1 and 18 is true. I2, 1 n

Ž .Formula 18 and a limiting procedure yield the following proposition.

< < q Ž .PROPOSITION 3. If F is in D , then F and F s max 0, F belong to D2, 1 2, 1
and

< <D F h s DF h 1 y 1 ,Ž . Ž . Ž .�F ) 04 �F - 04

DFq h s DF h 1 ,Ž . Ž . �F ) 04

19Ž .

20 DF h 1 s 0.Ž . Ž . �Fs04

2 Ž . < <'PROOF. Let F s F q 1rn . Then F converges a.s. to F as n goesn n n
Ž .to q̀ and from 18 , F belongs to D andn 2, 1

F F
DF h s DF h s DF h 1 .Ž . Ž . Ž .n �F / 042 2' 'F q 1rn F q 1rn

5 Ž .5 2Now we see that DF h are bounded uniformly with respect to n;L ŽP .n 0

Ž Ž .. 2Ž .hence there exists a weakly convergent subsequence DF h in L P .n k 0k
Ž . Ž .Ž .Since DF h converges almost surely to DF h 1 y 1 , it followsn �F ) 04 �F - 04k

< <that F belongs to D with2, 1

< <D F s DF h 1 y 1 .Ž . Ž .�F ) 04 �F - 04

q Ž < <.Since F s F q F r2, it follows that
1qDF h s DF h 1 q 1 q 1 q DF h 1 y 1Ž . Ž . Ž .Ž . Ž .Ž .�F ) 04 �F - 04 �Fs04 �F ) 04 �F - 042

1s DF h 1 q 1 .Ž . Ž .�F ) 04 �Fs042

If F is nonnegative, F s Fq almost surely. Thus
1DF h 1 s DF h 1 ;Ž . Ž .�Fs04 �Fs042

Ž .hence DF h 1 s 0. In general,�Fs04

DF h 1 s DFq h y DFy h 1 q 1 y s 0.Ž . Ž . Ž .Ž .�Fs04 �F s04 �F s04

qŽ . Ž .Reporting this result in the current expression of DF h yields 19 . I

REMARK 3.1. The key result of this part is in fact Theorem 3. Indeed,
Ž .thanks to it, we are able to find the convenient expression of DF h for
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Ž .regular functionals. By convenient expression, we mean here that 16 should
hold. By looking deeper in the previous construction, one should realize that

w Ž .xthe main idea which comes from Bismut 1983 is the construction of a
� h 4family of perturbations t , u g Q of the sample paths and a new probabilityu

measure P such that, for any u , the modified process t hv under the new lawu u

P has the same law as the original process under the reference probabilityu

Ž . hP ; see 17 . We have in fact two main possibilities to find t : either it isu u0
Ž Ž .obtained by modifying the jumps magnitude see Bismut 1983 ; Bass and

Ž . Ž . Ž . Ž .xCranston 1986 ; Bichteler and Jacod 1983 ; Norris 1987 ; Privault 1994
w Ž . Ž .xor by changing the jumps times see Decreusefond 1994 ; Privault 1994 .

We have worked here with the transformations obtained by changing the
jump times, but the same lines can be followed for the other approach.
Modifying the jump magnitudes is meaningful only when h is the Lebesgue

Ž d .measure this implies that E s R . The unique change is the definition of SS
and of the derivative of an element of SS .

Ž . Ž .DEFINITION 3.5 Perturbing jump magnitudes . Assume that h dz s dz,
where dz is the Lebesgue measure on R. Denote by SS the set of functionals
of the form

T T
F s f f s g z v ds, dz , . . . , f s g z v ds, dz ,Ž . Ž . Ž . Ž . Ž . Ž .H H H H1 1 n nž /0 E 0 E

where f is a bounded twice differentiable function with bounded derivatives,
f g belongs to HH and g is continuously differentiable with bounded deriva-i i i
tive for each i s 1, . . . , n.

Ž .For any functional F g SS and any h g HH, DF h is defined by

DF hŽ .
n ­ f T

s y f s g z v ds, dz , . . . ,Ž . Ž . Ž .Ý H H 1 1ž­ x 0 Eiis1

T
f s g z v ds, dzŽ . Ž . Ž .H H n n /0 E

z1T X= f s g z h s, u q v , s, u du v ds, dz .Ž . Ž . Ž . Ž . Ž .H H Hi i ž /q v , s, zŽ .0 E y`

The sequel follows without any difference. When we have the choice
between the two possibilities, the main difference between the two ap-
proaches lies in the set of differentiable functionals. For instance, when

Ž . Žaltering the jump times, the functional v ¬ N v i.e., the number of jumpst
.up to time t does not belong to D . Conversely, when changing the jump2, 1

magnitudes, this functional belongs to the associated space D .2, 1

Ž .EXAMPLE 2 Continued . Recall that F is the average waiting time of the
first K customers and assume enough regularity for g. The waiting time of
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Ž Žthe ith customer is given by the well known formula W s W q Z y T yi iy1 i i
..q Ž . Ž . Ž .T . For any i, it is clear that the functionals Z v and T v y T viy1 i i iy1

belong to D and then that W is also in D with2, 1 i 2, 1

21 DW h s DW h q DZ h y D T y T h ? 1 .� 4Ž . Ž . Ž . Ž . Ž . Ž .i iy1 i i iy1 �W ) 04i

� 4Let k s sup j, W s 0 , that is, k is the index of the customer whoi jF i j i
initiates the busy period the ith customer belongs to. Since for k - l F i,i

Ž .W ) 0 and W s 0, by iteration of 21 , we getl k i

DW h s DZ h y D T y T h .Ž . Ž . Ž .Ž .Ýi j j jy1
jgBi

Ž .Ž .Moreover, for the perturbation we are considering, D T y T h s 0 be-j jy1
cause we only modify the jump magnitudes and

­ vh
uy1 hDZ h s y lim u y u v T , Z s y T , ZŽ . Ž . Ž . Ž .j 0 u i i i iž /­uuªu 0 usu 0

­ gZiy1s g u , Z u , u g u , u du.Ž . Ž . Ž .H0 i 0 0­u0

Hence, we obtain
Kd 1 ­ gZy1 jw xE F s E g u , Z u , u g u , u du .Ž . Ž .Ž .Ý Ý Hu 0 0 j 0 0ž /du K duusu 00 is1 jgBi

Note that when Z is exponentially distributed with parameter uy1, we havei

­ g ZZ iy1 jg u , Z u , u g u , u du s ,Ž . Ž .Ž . H0 j 0 0du u0 0

Ž .so that we obtain a generalization of 2 .

Viewing IPA as a part of the stochastic analysis enables us to answer the
following conjecture: experimental data tend to prove that estimates deduced
from IPA have a lower variance than those obtained with LRM. For a given
perturbation h, we know that IPA works for smooth functionals and that

d
w xE F s E DF h .Ž .u 0ž /du usu 0

On the other hand, by LRM, we get
d Tw xE F s E F h s, z v y n ds, dz .Ž . Ž . Ž .H Hu 0 u 0ž /du usu 0 E0

Ž . w xFrom a statistical point of view, we can estimate the derivative drdu E Fu

Ž . T Ž .Ž .Ž .by averaging either DF h or the product of F H H h s, z v y n ds, dz0 E u 0

over a large number of sample paths. Comparing the variances of these two
w Ž .2 xestimates is thus comparing E DF h and0

2
T2E F h s, z v y n ds, dz .Ž . Ž . Ž .H H0 u 0

0 E
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For F constant, DF is null and then if one method yields estimates with
Ž .lower variances, it has to be IPA. Nevertheless, for F s w F , F smooth and1 1

w in CC 2, we haveb

2
T2E F h s, z v y n ds, dzŽ . Ž . Ž .H H0 u 0

0 E

T 225 5F w E h s, z n ds, dz ,Ž . Ž .` H H0 u 0
0 E

whereas
2 22E DF h s E w9 F DF h .Ž . Ž . Ž .0 0 1 1

Since we can choose w bounded but with an arbitrary large derivative, it is
easy to see that we can achieve a lower variance for some estimates originat-
ing from LRM.

4. Chaos decomposition and applications. A rather different ap-
Ž .proach to define DF h consists of using the so-called chaos decomposition. To

distinguish this object from that previously defined, the new object will be
ˆ Ž .denoted by DF h .

2 Ž mn. w 2 Ž mn.xWe denote by L P m n respectively, L P m n the Hilbert spaced 0 u p 0 u0 0

Žof deterministic real-valued functions respectively, real-valued predictable
. Ž q .n w Ž q .n xprocesses defined on R m E respectively, V = R = E which are

n Ž .square-integrable for the measure P m m n ds , dz ; that is,0 u i iis1 0

n
2E f s , z , . . . , s z n ds , dz - q̀ .Ž . Ž .HH m0 n 1 1 n n u i i0

q n is1Ž .R =E

def n�Ž . w x 4Let S s s , . . . , s g 0, T , 0 - s - ??? - s - T . The nth order inte-n 1 n n 1
Ž . 2Ž mn. wgral I f of a deterministic function f g L P m n i.e., f belongs ton n n s 0 u n02 Ž mn. xL P m n and is symmetrical is defined byd 0 u 0

n
def

I f s n! f s , z , . . . , s , z v y n ds , dz .Ž . Ž . Ž . Ž .HH mn n n 1 1 n n u i i0
n is1S =En

2 mn ˆ ˆŽ . Ž . Ž .When f belongs only to L P m n , we set I f s I f , where f isn d 0 u n n n n n0

the symmetrization of f defined byn

1
f̂ s , z , . . . , s , z s f s , z , . . . , s , zŽ . Ž .Ýn 1 1 n n n s Ž1. s Ž1. s Žn. s Žn.n! sgSn

� 4and S is the group of the permutations of 1, . . . , n . Define C s R andn 0

2 mnC s span I h , h g L P m n ,Ž .½ 5Ž .n n d 0 u 0

2� 4 Ž .where span ??? represents the L P closure of the vector space spanned byu0
� 4??? . Define also CC s R and0

CC s C ] CC [ ??? [ CC ,Ž .n n 0 ny1
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where ] denotes the orthogonal complementation with respect to the canoni-
2Ž .cal scalar product on L P .u 0

DEFINITION 4.1. A marked point process of P compensating measure nu u0 0

admits a chaos decomposition if and only if

L2 P s CC .Ž . [u n0
nG0

Ž .It is a challenging and open question to characterize processes which
admit a chaos decomposition. Known results indicate that this property holds
for Poisson processes and for Markov chains whose state space is a discrete

Ž .group such that the jumps differences between two consecutive states can
Ž .take only a finite number of values; see Biane 1989 . We no longer need

Hypotheses 2 or 4, but we now need another hypotheses:

HYPOTHESIS 5. We have

L2 P s CC .Ž . [u n0
nG0

In this case, each square-integrable functional F can be written

w x22 F s E F q I f ,Ž . Ž .Ý0 n n
nG1

2 Ž mn. 2Ž .where f g L P m n and the series converges in L P .n d 0 u 00

ˆ 2Ž .DEFINITION 4.2. We denote by Dom D the subset of L P of functionals0
q` Ž .F s Ý I f such that the seriesns0 n n

n

2 223 n E f s , z , . . . , s , z n v , ds , dzŽ . Ž . Ž .HHÝ m0 n 1 1 n n u i i0
n n is1n w x0, q` =E

ˆ ˆ 2Ž . Ž .converges. For F g Dom D, we define DF v , the L P m n process:p 0 u 0

ˆ ˆDF v : s, z ¬ D F v s nI f ?, s, z .Ž . Ž . Ž . Ž .Ž .Ýs , z ny1 n
nG1

PROPOSITION 4. Let MM be defined by
def T

MM s EE h s, z v y n ds, dz ,Ž . Ž . Ž .H H u½ 0ž /0 E
24Ž .

d t 2h such that h s, z n ds, dz - c, P -a.e.Ž . Ž .H H u 0 50dt 0 E

Ž .Every element F of MM satisfies 23 and

ˆ25 D F v s F v h s, z .Ž . Ž . Ž . Ž .s , z

Ž .PROOF. From Ruiz de Chavez 1983 , we have
1T mnEE h s, z v y n ds, dz s 1 q I h ;Ž . Ž . Ž . Ž .ÝH H u n0ž / n!0 E nG1
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hence,
T

D̂ EE h s, z v y n ds, dzŽ . Ž . Ž .H Hs , z u 0ž /0 E

n
mny1s I h h s, zŽ . Ž .Ý ny1n!nG1

T
s EE h s, z v y n ds, dz ? h s, z . IŽ . Ž . Ž . Ž .H H u 0ž /0 E

ˆDEFINITION 4.3. For any F g Dom D and any predictable process h g
2 Ž .L P m n , letp 0 u 0

def Tˆ ˆDF h v s D F v h v , s, z n ds, dz .Ž . Ž . Ž . Ž . Ž .H H s , z u 0
0 E

Then we have the following theorem:

ˆTHEOREM 7. For any F g Dom D and any predictable process h g
2 Ž .L P m n ,p 0 u 0

TˆE DF h s E F h v , s, z v y n ds, dz .Ž . Ž . Ž . Ž .H H0 0 u 0
0 E

t w x nPROOF. For any t G 0, set S s S l 0, t and definen n
nn

deft mŽn.I f s f s , z v y n ds , dz .Ž . Ž . Ž .Ž . HH Ł mn i i u i i0
is1 is1t nS =En

For any F given by
T

F s EE f s, z v y n ds, dz ,Ž . Ž . Ž .H H u0ž /0 E

we have
T ˆE D F v h v , s, z n ds, dzŽ . Ž . Ž .H H0 s , z u 0

0 E
q` n T s mŽny1.s E f s, z h v , s, z I f n ds, dzŽ . Ž . Ž .Ž .Ý H H0 n u 0n! 0 Ens1

q` 1 T s mŽny1.s E f s, z I f v y n ds, dzŽ . Ž . Ž .Ž .Ý H Hu n u0 0n y 1 !Ž . 0 Ens1

T
= h v , s, z v y n ds, dzŽ . Ž . Ž .H H u0

0 E
q`

Tmns E I f ? h v , s, z v y n ds, dzŽ . Ž . Ž .Ž .Ý H H0 n u 0
0 Ens1

T
s E F h v , s, z v y n ds, dz .Ž . Ž . Ž .H H0 u 0

0 E
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Hence the result holds for F in MM and by density it also holds for F g
ˆDom D. I

DEFINITION 4.4. For any square-integrable functional F, define the dif-
ference operator D by

def
D F v s F v q v y F v ,Ž . Ž . Ž .s , z s , z

for any s, z, where v q d is the measure v plus a jump at time s ofs, z
mark z.

THEOREM 8. Let P satisfy Hypothesis 5. The relation0

T
E D F h v , s, z n ds, dzŽ . Ž . Ž .H H0 s , z u 0

0 E

T
s E F ? h v , s, z v y n ds, dzŽ . Ž . Ž .H H0 u 0

0 E
2 Ž .holds for any square-integrable F and any predictable h g L P m n if andp 0 u 0

only if n is deterministic; that is, v is a compound Poisson process.u 0

PROOF. If n is deterministic, the result follows from Nualart and Vivesu0
Ž . 2 Ž .1988 . In the converse direction, let f be in L P m n . Then we haved 0 u 0

T T
E D f t , v v y n dt , dv g s, z n ds, dzŽ . Ž . Ž . Ž . Ž .H H H H0 s , z u u0 0ž /0 E 0 E

T T
s E f t , v v y n dt , dv ? g s, z v y n ds, dzŽ . Ž . Ž . Ž . Ž . Ž .H H H H0 u u0 0

0 E 0 E

T
s E f s, z g s, z n ds, dzŽ . Ž . Ž .H H0 u 0

0 E
2 Ž .for any g g L P m n . It follows by identification thatd 0 u 0

T
D f t , v v y n dt , dv s f s, z .Ž . Ž . Ž . Ž .H Hs , z u 0

0 E

Since
T

D f t , v v dt , dv s f s, z ,Ž . Ž . Ž .H Hs , z
0 E

we obtain
T

D f t , v n dt , dv s 0 for any s, z .Ž . Ž .H Hs , z u 0ž /0 E
2 Ž .As a consequence, for any g predictable in L P m n , we havep 0 u 0

T T
0 s E D f t , v n dt , dv ? g s, z n ds, dzŽ . Ž . Ž . Ž .H H H H0 s , z u u0 0

0 E 0 E

T T
s E f t , v n dt , dv g s, z v y n ds, dz .Ž . Ž . Ž . Ž . Ž .H H H H0 u u0 0

0 E 0 E
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By the chaos decomposition property, we know that any square-integrable
functional F can be written

Tw xF s E F q g s, z v y n dt , dv ,Ž . Ž . Ž .H H0 u 0
0 E

2 Ž . 2Ž .where g is predictable and belongs to L P m n . Hence, for any F g L P ,p 0 u 00

T Tw xE F f t , v n dt , dv s E F E f t , v n dt , dv .Ž . Ž . Ž . Ž .H H H H0 u 0 0 u0 0
0 E 0 E

2 Ž . T Ž . Ž . 2Ž .Since f belongs to L P m n , H H f t, v n dt, dv belongs to L Pd 0 u 0 E u 00 0
T Ž . Ž .and it follows that the variance of H H f t, v n dt, dv is zero for any0 E u 02 Ž .f g L n ; thus n is deterministic. Ip u u0 0

Ž .EXAMPLE 2 Continued . We keep the framework of Example 2 except that
w xwe now work on 0, t and the functional F is the virtual waiting time at time

t denoted by W . We also assume that the P compensating measure ist 0
Ž .deterministic so that we can apply all the previous considerations. By 8 and

Theorem 8, we know that

d Tw xE W s E D W f s g u , z ds dz .Ž . Ž .H H0 t 0 s , z t 0ž /du usu 0 E0

Ž .When we add a jump at time s and mark z to the nominal path, W v ist
Ž t .qincreased by z y H 1 du ; hence,s �W Žv .s04u

qd ­ gT tw xE W s E z y 1 du u , z ds dz .Ž .H H H0 t 0 �W s04 0už /ž /du ­uusu 0 E s0

5. Related works.

5.1. Palm]Khinchin expansions. When n is deterministic, it followsu0ˆfrom Theorem 8 that, for any F g D and FF -measurable,2, 1 1

d 1w x26 E F sE F vqd yF v h s, z n ds, dz .Ž . Ž . Ž . Ž . Ž .Ž .H Hu 0 s , z u 0ž /du usu 0 E0

Ž .This formula was obtained in Baccelli, Klein and Zuyev 1995 , Moller and
Ž . Ž .Zuyev 1996 and Zuyev 1993 . We denote by v the measure coinciding with< s

v up to time s and with no atoms after. Whenever F belongs to span MM, F is
Ž .continuous in 0 in the sense that lim F v exists and is independent ofsª 0 < s

Ž .the particular representation of F: we denote by F 0 this limit. Formally,
take v to be the null path in the chaos expansion of an element of span MM.
The random part in each multidimensional integral vanishes and we only
keep

n
ny1 ˆ ˆw xE F s F 0 q y1 D ??? D F 0 n ds , dz .Ž . Ž . Ž . Ž .HHÝ mž /0 s , z s , z u i i1 1 n n 0

n is1nG1 S =En
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This formula is very similar to the factorial moment expansion of Blaszczyszyn
Ž .1995 , which is itself an extension of the Palm]Khinchin formula. More
precisely, the terms in both formulas are the same, but our approach does not
give the convergence of the series}we have here only an L2 convergence

Žwhere Blaszczyszyn obtains a pointwise convergence with the additional
.hypothesis of stationarity .

Ž .5.2. Rare perturbation analysis. On the other hand, 26 is also the
common point to rare perturbation analysis and to the other methods of
perturbation analysis. As mentioned previously, RPA consists of perturbing
the nominal path by a sequence of decreasing thinning:

d 1
y1w xE F s u lim E F v y F v .Ž . Ž .u 0 u , p p0ž /du 1 y ppª1usu 0

We now limit our considerations to the case of a Poisson process on the time
w xinterval 0, 1 , of intensity u , with independent and identically distributed0

marks independent of the jump times. We have
`

E F v y F v s E F v y F v 1 .Ž . Ž . Ž . Ž .Ž .Ýu , p p u , p p � < vyv <sj40 0 p
js0

< < < <Conditionally to v , the random variable v y v is binomially distributedp
Ž < < .with parameters v , 1 y p , so that, by the Cauchy]Schwarz inequality, we

see that all the terms with j greater than 2 vanish when we take the limit.
Hence,

d 1
y1w xE F s u lim E F v y F v 1 .Ž . Ž .Ž .u 0 u , p p � < v <s < v <q140 pž /du 1 y ppª1usu 0

Moreover, a compound Poission process of the type we are dealing with can
be written as the superposition of two independent compound Poisson pro-

Ž .cesses of the same type with respective intensities u p and u 1 y p . Hence,0 0
we can write

E F v y F v 1Ž . Ž .Ž .u , p p � < v <s < v <q140 p

s F v q v y F v 1 dP v dP v .Ž . Ž . Ž . Ž .Ž .H 1 2 1 � < v <s14 u p 1 u Ž1yp. 22 0 0
V=V

� < < 4It is known that conditionally to v s 1 , the distribution of the jump time2
w xof v is uniform over 0, 1 ; hence,2

E F v y F v 1Ž . Ž .Ž .u , p p � < v <s < v <q140 p

y1 < <s u P v s 1Ž .0 Ž1yp.u 20

1
= F v q d y F v n ds, dz dP v .Ž . Ž . Ž . Ž .Ž .H H H 1 s , z 1 u u p 10 0ž /

V 0 E
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Thus, when we take the limit, we get

1
y1u lim E F v y F vŽ . Ž .0 u , p p01 y ppª1

1y1s u E F v q d y F v n ds, dz .Ž . Ž . Ž .Ž .H H0 u , p 1 s , z 1 u0 0
0 E

We then observe that this latter term is nothing but the right-hand side of
Ž . y1formula 26 , since here h ' u .0
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