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TWO CONVERGENCE PROPERTIES
OF HYBRID SAMPLERS

BY GARETH O. ROBERTS AND JEFFREY S. ROSENTHAL1

University of Cambridge and University of Toronto

Ž .Theoretical work on Markov chain Monte Carlo MCMC algorithms
has so far mainly concentrated on the properties of simple algorithms,
such as the Gibbs sampler, or the full-dimensional Hastings]Metropolis
algorithm. In practice, these simple algorithms are used as building blocks
for more sophisticated methods, which we shall refer to as hybrid sam-

Žplers. It is often hoped that good convergence properties e.g., geometric
.ergodicity, etc. of the building blocks will imply similar properties of the

hybrid chains. However, little is rigorously known.
In this paper, we concentrate on two special cases of hybrid samplers.

In the first case, we provide a quantitative result for the rate of conver-
gence of the resulting hybrid chain. In the second case, concerning the
combination of various Metropolis algorithms, we establish geometric
ergodicity.

1. Introduction. Theoretical work on Markov chain Monte Carlo
Ž .MCMC algorithms has so far mainly concentrated on the properties of
simple algorithms such as the Gibbs sampler or the full-dimensional
Hastings-Metropolis algorithm. This is understandable since even these sim-
ple algorithms are difficult to analyse and are still not fully understood. In
practice, these simple algorithms are used as building blocks for more sophis-
ticated methods, which we shall refer to as hybrid samplers. It is often hoped
that good convergence properties of the building blocks will translate to
properties of the building blocks will translate to properties of the hybrid
chains; however, to date, very little work has been done to try and make
these arguments rigorous. This article attempts to build on the results of

Ž .Roberts and Rosenthal 1997 , which considered geometric ergodicity proper-
ties of hybrid chains in terms of their constituent component algorithms.

In this paper, we concentrate on two special cases, where we can make
more practical geometric ergodicity statements. In the first case, we are
actually able to give a quantitative result for the rate of convergence of the
resulting hybrid algorithm, although this is at the expense of imposing a very
strong uniform type of geometric ergodicity on the constituent component
algorithms. In the second case, we consider hybrid chains arising from
combining various Metropolis algorithms, and adapt results of Roberts and

Ž .Tweedie 1996 to establish geometric ergodicity.
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Ž .2. Preliminaries. Recall that, given a probability distribution p ? on
the state space XX s XX = XX = ??? = XX , the usual deterministic-scan Gibbs1 2 k

Ž .sampler DUGS is the Markov kernel P s Q Q ??? Q , where Q is the1 2 k i
Markov kernel which replaces the ith coordinate by a draw from
Ž < � 4 .p dx x , leaving x fixed for j / i. The random-scan Gibbs sampleri j j/ i j

Ž . Ž .RSGS , given by P s 1rk Ý Q , is sometimes used instead. These arei i
wstandard Markov chain Monte Carlo techniques see, e.g., Gelfand and Smith

Ž . Ž . Ž .x1990 ; Smith and Roberts 1993 ; Tierney 1994 .
Ž < � 4 .Often the full conditionals p dx x may be easily sampled, so thati j j/ i

DUGS or RSGS may be efficiently run on a computer. However, sometimes
this is not feasible. Instead, one can define new operators P which are easilyi
implemented, such that P n converges to Q as n ª `. This is the method ofi i

w‘‘variable-at-a-time Metropolis]Hastings’’ or ‘‘Metropolis within Gibbs’’ cf.
Ž . Ž . Ž .Tierney 1994 , Section 2.4; Chan and Geyer 1994 , Theorem 1; Green 1994 ;

Ž .xMetropolis, Rosenbluth, Rosenbluth, Teller and Teller 1953 . Such samplers
w Ž .xprompt the following definition taken from Roberts and Rosenthal 1997 .

Ž .DEFINITION. Let C s P , P , . . . , P be a collection of Markov kernels on1 2 k
a state space XX . The random-scan hybrid sampler for C is the sampler
defined by

1
P s P q ??? qP .Ž .RS 1 kk

In addition to the mentioned variable-at-a-time Metropolis]Hastings algo-
rithms, such hybrid samplers often arise when larger MCMC algorithms are
‘‘constructed’’ out of smaller ones. For example, if the P are themselvesi
RSGS samplers, then the random-scan hybrid sampler would correspond to
building a large Gibbs sampler out of smaller ones. Similarly, if the P arei
themselves Metropolis]Hastings algorithms, then the hybrid sampler can

Ž .again be viewed as a Metropolis]Hastings algorithm, but with in general a
w Ž .xsingular proposal distribution cf. Tierney 1995 ; this is considered further

in Section 4.
Theoretical properties of such hybrid samplers were considered in Roberts

Ž . Ž .and Rosenthal 1997 . In particular, it was shown Theorem 6 that if, for a
wparticular model, RSGS is geometrically ergodic in an appropriate sense say,

2Ž .x Ž .n w 2Ž .xin L p and if P ª Q as n ª ` again, say, in L p , then thei i
resulting random-scan hybrid sampler would again be geometrically ergodic.

However, such a result leads to further questions. First, is it possible to
provide any quantitative bounds for these hybrid samplers? Second, can
geometric ergodicity be established for, say, Metropolis]Hastings algorithms
w 2Ž .xwhich are ergodic but do not converge in L p ?

The first of these questions is addressed in the next section, and the second
is addressed in the final section of this paper.
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3. Strong uniform ergodicity and quantitative bounds. An impor-
tant and difficult problem in the theory of MCMC algorithms is to provide
quantitative bounds on their distance to stationarity after a finite number of
steps. Such bounds can then be used to determine how long to run the
algorithm in practice, to achieve sufficient accuracy of results. While there

whave been some successes with this approach see, e.g., Meyn and Tweedie
Ž . Ž .x1994 ; Rosenthal 1995 , the question of quantitative bounds in general
remains problematic.

In this section, we provide quantitative bounds on convergence rates for
hybrid samplers, under a strong hypothesis about uniform convergence of the
constituent Markov chains. We recall that a Markov chain is uniformly

5 NŽ . Ž .5ergodic if there is N g N and r - 1 such that P x, ? y p ? F r for allvar
w Ž . xx g XX , or equivalently cf. Meyn and Tweedie 1993 , Theorem 16.0.2 , if

5 nŽ . Ž .5sup P x, ? y p ? ª 0 as n ª `.varx g XX

Ž .DEFINITION. A Markov chain P ?, ? on a state space XX , with stationary
Ž . Ž .distribution p ? , is N, « -strongly uniformly ergodic for some N g N and

« ) 0 if

P N x , ? G «p ? , x g XX .Ž . Ž .

For such a chain, it follows that for n G 0,

P Nq n x , ? s P N x , dy P n y , ? G «p dy P n y , ? s «p ? .Ž . Ž . Ž . Ž . Ž . Ž .H H
Ž .In particular, P is also k, « -strongly uniformly ergodic for any k G N.

w Ž .It also follows immediately see, e.g., Meyn and Tweedie 1993 , Theorem
x 5 tNŽ . Ž .5 Ž .t16.0.2 that P x, ? y p ? F 1 y « for t s 1, 2, . . . , for any x g XX ;var

thus, strong uniform ergodicity implies uniform ergodicity. The converse to
this implication is considered in the following proposition.

PROPOSITION 1. In general, a uniformly ergodic Markov chain need not be
strongly uniformly ergodic. However, if a Markov chain is both uniformly
ergodic and reversible, then it is strongly uniformly ergodic.

PROOF. For a counterexample, let XX be the set of all nonnegative inte-
1Ž . Ž .gers, and set P n, 0 s P n, n q 1 s for all n g XX . Then this Markov2

chain is easily seen to be uniformly ergodic, but not strongly uniformly
ergodic.

Suppose now that the Markov chain is reversible. By uniform ergodicity,
nŽ . Ž .we have that P x, ? G «n ? for all x g XX , for some n g N, « ) 0 and

w Ž . xprobability measure n on XX cf. Meyn and Tweedie 1993 , Theorem 16.0.2 .
Then, by reversibility,

p dx P n x , dy s p dy P n y , dx G p dy «n dx , x , y g XX ,Ž . Ž . Ž . Ž . Ž . Ž .
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nŽ . Ž .Ž . Ž .so that P x, dy G « dnrdp x p dy . Choose A : XX and d ) 0 such that
Ž .Ž . Ž . w Ž . xdnrdp x ) d for all x g A, and p A ) 0 so that n A ) 0 . Then for any

2 Ž .z g XX , setting K s « dn A ) 0, we have

P 2 n z , dy G P n z , A inf P n x , dy G «n A «dp dy s Kp dy ,Ž . Ž . Ž . Ž . Ž . Ž .
xgA

as required. I

REMARK. It is easily seen that being strongly uniformly ergodic is equiva-
wlent to the existence of a strong stationary time cf. Aldous and Diaconis

Ž .x1987 which is independent of the process itself.

We now use strong uniform ergodicity to establish quantitative bounds on
certain hybrid samplers. We adopt the notation

x s x , . . . , x , x , . . . , x ,Ž .yi 1 iy1 iq1 k

XX s XX = ??? = XX = XX = ??? = XXyi 1 iy1 iq1 k

and
U � 4 � 4 � 4 � 4x s x = ??? = x = XX = x = ??? = x .yi 1 iy1 i iq1 k

Ž .THEOREM 2. Let p ? be a probability distribution on a state space XX s
XX = ??? = XX . For 1 F i F k, let N g N and « ) 0 be given and let P be a1 k i i i
Markov kernel on XX which fixes coordinates other than i. Assume that for

< U Ž < . Ž .each x g XX , P has stationary distribution p ? x and is N , « -xyi yi i yi i iyi

strongly uniformly ergodic. Assume further that RSGS, with stationary distri-
Ž . Ž .bution p ? , is N9, « 9 -strongly uniformly ergodic. Then the random-scan

Ž .Ž . Ž .hybrid sampler P s 1rk P q ??? qP is N#, «# -strongly uniformly er-RS 1 k
godic, where

� 4 N 9 yN 9Žmax 1F iF k�Ni4y1.N# s N9 max N , «# s « 9 min « k .� 4i i
1FiFk 1FiFk

REMARKS. We emphasise that this theorem requires the associated RSGS
to be strongly uniformly ergodic; this may not be easy to verify in practice.
We also note that, as seen from the proof, this result is rather crude for large
values of N and N9; it is most useful when N s ??? s N s N9 s 1.i 1 k

PROOF. As usual, let Q be the Markov kernel which replaces the ithi
Ž < .coordinate by a draw from p dx x , leaving x fixed.i yi yi

It follows from the hypotheses that

P n x , ? G « Q x , ? , n G N , i s 1, 2, . . . , k ,Ž . Ž .i i i i

and
N 91

Q x , ? q ??? qQ x , ? G « 9p ? .Ž . Ž . Ž .Ž .1 kk
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Then
� 4N 9max Ni1� 4N 9max NiP x , ? s P x , ? q ??? qP x , ?Ž . Ž . Ž . Ž .Ž .RS 1 kk

N 9ymax �N 4 max �N 4 max �N 4i i iG k P x , ? q ??? qP x , ?Ž . Ž .Ž .1 k

N 91
yŽmax �N 4y1.i � 4G k min « Q x , ? q ??? qQ x , ?Ž . Ž .i 1 kž /k

G kyN 9Žmax �Ni4y1.min « N 9 « 9p ? ,Ž .� 4i

giving the result. I

It follows immediately that
tN# t5 5P x , ? y p ? F 1 y «# , t s 1, 2, . . . .Ž . Ž . Ž . Ž .varRS

In particular, if N9 s N s ??? s N s 1, then N# s 1 and «# s1 k
� 4 5Ž .tŽ . Ž .5 Ž � 4.t« 9min « , so that P x, ? y p ? F 1 y « 9min « .var1F iF k i RS i

4. Hybrid Metropolis chains. In this section, we consider hybrid sam-
plers whose constituent chains P each arise from a symmetric random-walki

w Ž . Ž .Metropolis algorithm see Metroplis et al. 1953 ; Hastings 1970 ; Smith and
Ž .xRoberts 1993 on the ith coordinate. These hybrid samplers may themselves

be regarded as Metropolis algorithms, but with singular proposal distribu-
w Ž .xtions cf. Tierney 1995 . We shall prove that, under appropriate conditions,

the hybrid samplers will be geometrically ergodic. Our proof uses the theory
of drift and minorization conditions for general Markov chains, as in Num-

Ž . Ž .melin 1984 or Meyn and Tweedie 1993 , and follows an argument similar to
Ž .Roberts and Tweedie 1996 . Specifically, we shall eventually show that all

Žbounded sets are small for P and that for an appropriate function V whichRS
. Ž . Ž .will need to depend on the dimension k , we have lim sup P V x rV x<x < ª` RS

w Ž . Ž . Ž .- 1. Recall the definition Pf x s Hf y P x, dy and that a set C is small
Ž .for P if there is n g N, « ) 0 and a probability measure n ? , such that

nŽ . Ž . xP x, ? G «n ? for all x g C.
1 ŽLet p be a positive C density with respect to k-dimensional Lebesgue

. kmeasure for a probability distribution on the state space R . For 1 F i F k,
wlet P be a symmetric random-walk Metropolis algorithm with respect toi

Ž .xp ? on the ith coordinate. Thus, started from the k-vector x, the proposal in
the ith direction is given by x q Z e , where e denotes the ith coordinatei i i

Ž .vector and where Z is drawn from a symmetric increment density q y withi i
respect to one-dimensional Lebesque measure; this proposal is then accepted

Ž Ž . Ž ..with probability min 1, p x q Z e rp x . We shall assume for simplicityi i
that for each i, there exist positive constants « and d such thati i

< <1 q y G « for y - d .Ž . Ž .i i i

Finally, we let P be as in Section 2.RS
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k Ž . � Ž . Ž .4Given x g R , let A x s z; z s ye and p x q z G p x and leti i
Ž . � Ž . Ž .4 Ž .R x s z; z s ye and p x q z - p x . In other words, A x representsi i i

Ž .the set of points which if proposed would always be accepted, whereas R xi
represents those which are rejected with positive probability. We will also

Ž . � Ž .4need the reflected set, yA x s x; yx g A x .i i
We introduce the following conditions on p . We will assume that p is

bounded, that for sufficiently small d ) 0 we have

2 p 1yd x dx - `Ž . Ž .H
kR

and that we have the ‘‘asymptotically exponentially decreasing tails’’ condi-
tion

< <3 lim inf = log p x ) 0.Ž . Ž .
< <x ª`

Ž .For each x, let k x denote the maximum curvature of all geodesic curves
� Ž . Ž .4 w Ž .through the surface y; p y s p x at the point x see, e.g., Boothby 1986

x Ž .for the relevant definitions . We assume that k x is well defined, at least for
< <sufficiently large x . We further assume that

4 lim k x s 0,Ž . Ž .
< <x ª`

that

< <5 lim sup = log = log p x - `Ž . Ž .Ž .
< <x ª`

and that

d d
p x p x q yeŽ . Ž .i

6 lim sup y F 0Ž . H d dž /Ž .R x p x y ye p xŽ . Ž .< < ix ª` i

� 4 Žfor all i, where e denotes the orthogonal coordinate set along which thei
.P ’s sample .i

Ž . Ž .ydWe introduce the drift function V x s p x . It turns out that we will
Ž .need to choose a value of d sufficiently small not only to satisfy 2 , but also

to satisfy a condition on the next calculation.

PROPOSITION 3. For all P ,i

P V x F r d V x ,Ž . Ž . Ž .i

Ž . Ž .Ž1yd .r dwhere r d s 1 q 1 y d d, for all x g XX . Hence, for all « ) 0, there is
Ž .d with 0 - d - « , such that 1 - r d - 1 q « .

Ž .PROOF. Considering separately the cases where the proposal is to R xi
Ž .and is rejected so the value of V is unchanged , where the proposal is to

Ž . Ž . ŽR x and is accepted and where the proposal is to A x and is necessarilyi i
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.accepted , we have that
P V x p x q yeŽ . Ž .i is q y 1 y dyŽ .H i ž /V x p xŽ . Ž .Ž .R xi

yd
p x q ye p x q yeŽ . Ž .i iq q y dyŽ .H i yd ž /p xŽ .Ž .R x p xŽ .i

yd
p x q yeŽ .iq q y dyŽ .H i ydŽ .A x p xŽ .i

s q y I x q ye dy,Ž . Ž .H i i
R

where
1yd¡1 y p z rp x q p z rp x , z g R x ,Ž . Ž . Ž . Ž . Ž .Ž . i~I z sŽ . d¢ p x rp z , z g A x .Ž . Ž . Ž .Ž . i

Ž . Ž . Ž . Ž . Ž .We claim that I z F r d for all z g R x j A x . Indeed, I z F 1i i
Ž . Ž . Ž .on A x by definition. Furthermore, setting w s p z rp x , we have that fori
Ž . Ž . 1ydz g R x , I z s 1 y w q w with 0 F w F 1. This is maximised at w si

Ž .1r d Ž .1 y d with maximising value r d above. The inequality follows.
Ž .The second statement is immediate since lim r d s 1. Id x 0

LEMMA 4. All bounded subsets of Rk are small for P .RS

Ž . k Ž .PROOF. By 1 , it is easy to see that P x, ? has a nontrivial continuousRS
component with respect to k-dimensional Lebesgue measure. Call this contin-

Ž . Ž .uous component s x, ? , say. Note that by 1 , for suitable constants « and d ,
we have

< <s x, x q y G « , whenever y F d for 1 F i F k .Ž . i

Now, since p is positive and continuous, it is bounded away from zero on
w x kcompact intervals. It follows that the set yd , d is small. By taking

convolutions, it follows that for any N g N, there is « 9 ) 0 such that the
Ž . k NŽ .continuous component s x, ? of P x, ? satisfiesN RS

< <s x, x q y G « 9, whenever y F Ndr2 for 1 F i F k .Ž .N i

w x kHence, the set yNdr2, Ndr2 is small. The result follows since any bounded
w x kset C is contained in yNdr2, Ndr2 for some sufficiently large N. I

Ž . Ž .THEOREM 5. Suppose conditions 2 ] 6 are satisfied. Then the random-
scan hybrid chain P is geometrically ergodic.RS

The following lemma is needed for the proof of Theorem 5. We shall write
Ž . Ž .n x for the outward normal to the contour manifold through x; that is,

y= log p xŽ .
n x s .Ž .

< <= log p xŽ .
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Ž . � 4 kLEMMA 6. Assume 4 holds and let x ª ` be a sequence in R . Thenj
for all y g R,

< <7 lim n x q ye y n x s 0.Ž . Ž . Ž .j i j
jª`

Moreover, suppose that
lim inf n x ? e ' c ) 0Ž .j i 1

jª`

< Ž . <and letting c s lim inf = log p x , then for all y g R,2 jª` j


8 lim inf log p x q ye G c c .Ž . Ž .j i 1 2 yjª`

It follows that for y - 0, we have that

p x q yeŽ .j i yc c1 29 lim sup F e ,Ž .
p xŽ .jª` j

and for y G 0,
p x q yeŽ .j i yc c1 210 lim inf G e .Ž .

p xjª` Ž .j
Finally, if c ) 0, then2

11 lim R x s y`, 0Ž . Ž . Ž .i j
jª`

in the sense that 1 ª 1 pointwise.R Žx . Žy`, 0.i j

Ž .Identical results exist for the case where lim sup n x ? e - 0. Thesejª` j i
results are easily written down by replacing e by ye .i i

Lemma 6 provides most of what is needed for the proof of Theorem 5. The
only complications arise where c c can take the value 0.1 2

Ž .PROOF OF LEMMA 6. Statement 7 follows directly from the curvature
condition, since it implies that the contours of the density at two locations x

< <and z for x and z large and for x y z small are approximately parallel to
Ž . Ž .each other otherwise they would intersect . Statement 8 now follows from

the equation


< <log p x q ye s = log p x q ye n x q ye ? e .Ž . Ž . Ž .i i j i i y
Ž . Ž . Ž .Statements 9 , 10 and 11 then follow easily. I

Ž .PROOF OF THEOREM 5. Because of Lemma 4 and by 2 , which ensures that
1Ž . w Ž .V g L p for sufficiently small d, it suffices see, e.g., Nummelin 1984 ,

Ž .Proposition 5.21; Meyn and Tweedie 1993 , Theorem 15.0.1, Roberts and
Ž .xTweedie 1996 to demonstrate that

P V xŽ .RS
lim sup - 1.

V xŽ .< <x ª`
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� 4So, for contradiction, suppose that we have a sequence of points x , withj
< <x ª `, such thatj

P V xŽ .RS j
lim inf G 1.

V xiª` Ž .j
Ž . Ž .By taking a subsequence if necessary, we can and do assume that n x j

converges to a limiting direction f. There must be at least one coordinate
direction e with f ? e / 0. By renumbering the coordinates as necessary andi i
replacing e by ye if necessary, we can assume that 1 F n F k is such thati i
e ? f ) 0 for 1 F i F n, but that f is orthogonal to e for n q 1 F i F k.i i

Ž . Ž . Ž .We take d sufficiently small so that r d - 2k y 1 r 2k y 2 . We com-
< <pute that for large enough x we have

1ydP V x p x q ye p x q yeŽ . Ž . Ž .i i is 1 y q q y dyŽ .H i1ydž /V x p xŽ . Ž .Ž .R x p xŽ .i

d
p xŽ .

q q y dyŽ .H idŽ .A x p x q yeŽ .i i

12Ž .

s T x q T xŽ . Ž .1 j 2 j

say, where

1yd d
p x q ye p x q yeŽ . Ž .j i j i

T x s 2 y 1 y 1 y q y dyŽ . Ž .H1 j i1yd dž / ž /Ž .R x p x p xŽ . Ž .i j j

and
d d

p x p x q yeŽ . Ž .j j i
T x s q y dy y q y dy.Ž . Ž . Ž .H H2 j i id dŽ . ŽŽ .A x R xp x q ye p xŽ . Ž .i ij i j

Now
d

p xŽ .0 j
lim sup T x s lim sup q y dyŽ . Ž .H2 j idž y` p x y yeŽ .jª` jª` j i

d
p x q yeŽ .0 j iy q y dy F 0.Ž .H id /y` p xŽ .j

Ž .Here the equality follows from 11 and the dominated convergence theorem
Ž . Ž .since the integrand is bounded , and the inequality follows from 6 . Let

Ž . Ž . < Ž . <c s lim inf n x ? e . By 3 , c s lim inf = log p x ) 0. Therefore,1 jª` j i 2 jª` j
Ž . Ž .from 10 and 11 , at least for 1 F i F n,

0 0 dc c y Ž1yd .c c y1 2 1 2lim inf T x F 2 q y dy y 1 y e 1 y e q y dyŽ . Ž . Ž . Ž . Ž .H H1 j i i
jª` y` y`

- 1,
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0 Ž .since H q y dy s 1r2 by symmetry. Therefore, for 1 F i F n,y` i

13 lim sup P V x rV x - 1, 1 F i F n.Ž . Ž . Ž .i j j
j

� 4 < Ž . < Ž .To finish, consider the sequence a , where a s = log p x . By 3 ,j j j
Ž .lim inf a ) 0 s 0. Therefore again by subsequencing if necessary , we canj j

Ž xassume that a ª a for some a g 0, ` . We need to consider separately thej ` `

cases where a is finite or infinite.`

Ž . Ž Ž . Ž ..If a - `, then by 5 , we have for i ) n that lim p x q ye rp x s` jª` j i j
Ž . Ž . Ž .1 for all y g R since e ? f s 0 , so that lim P V x rV x s 1. Therefore,i jª` i j j

Ž . Ž . Ž .by 13 , lim sup P V x rV x - 1 for a contradiction.jª` RS j j
Ž .If a s `, then for i F n, all proposed jumps into R x are asymptotically` i j

w Ž .x Ž . w Ž .xrejected by 9 and all jumps to A x are asymptotically accepted by 10 .i j
Ž Ž . Ž ..Specifically, for i F n, lim p x q ye rp x s 0 for y - 0 andjª` j i j

Ž Ž . Ž .. Ž .lim p x q ye rp x s ` for y ) 0. It follows that the integrand in 12jª` j i j
Ž . Ž .converges to 1 y , and since the integrands in 12 are uniformly boundedŽy`,0.

w Ž .xby r d , we have by the dominated convergence theorem that

P V x 1Ž . 0i j
lim sup s q y dy s .Ž .H iV x 2Ž . y`jª` j

It follows from Proposition 3 that
kP V x 1 P V xŽ . Ž .RS j i j

lim sup s lim sup ÝV x k V xŽ . Ž .jª` jª`j jis1

n r d k y n 1 r d k y 1Ž . Ž . Ž . Ž .
F q F q

2k k 2k k
1 k y 1 2k y 1Ž . Ž .

- q s 1,
2k k 2k y 2Ž .

for a contradiction in this case. I

REMARK. The nature of the proof of Theorem 5 suggests that explicit
wbounds on the total variation distance from stationarity cf. Meyn and Tweedie

Ž . Ž .x1994 ; Rosenthal 1995 may be obtainable in this case, though we do not
pursue that here.
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