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PIECEWISE CONSTANT TRIANGULAR COOLING
SCHEDULES FOR GENERALIZED SIMULATED

ANNEALING ALGORITHMS

BY CECILE COT1 AND OLIVIER CATONI´
Ecole Normale Superieure´

We investigate how to tune a generalized simulated annealing algo-
rithm with piecewise constant cooling schedule to get an optical conver-
gence exponent. The optimal convergence exponent of generalized
simulated annealing algorithms has been computed by Catoni and Trouve.´
It is reached only with triangular sequences of temperatures, meaning
that different finite sequences are used, depending on the time resource

Ž .available for computations expressed by an overall number of iterations .
We show first that it is possible to get close to the optimal convergence
exponent uniformly over suitably bounded families of energy landscapes
using a fixed number of temperature steps. Then we show that, letting the
number of steps increase with the time resource, we can build a cooling
schedule which is universally robust with respect to the convergence
exponent: a fixed triangular sequence of temperatures gives an optimal
convergence exponent for any energy landscape. Piecewise constant tem-
perature sequences are often used in practice: in favourable cases, the use
of the same temperature during a large number of iterations allows
tabulating the exponential penalties appearing in the transition matrix,
thus sparing a significant amount of computer time. The proofs we give
rely on Freidlin and Wentzell’s closed formulas for the exit time and point
from subdomains of time homogeneous Markov chains.

1. Introduction. This paper deals with global optimization algorithms
which simulate Markov processes with a finite but large state space E,
namely, the generalized Metropolis and simulated annealing algorithms.
These algorithms are used to search for global minima of an energy function

Žw x w x.U defined on E 22 , 15 . Their laws of evolution depend on a global
parameter T, called the temperature. The marginal distributions of the
simulated Markov chains concentrate around the global minima of the energy
function as temperature is lowered and the number of iterations is accord-
ingly increased.

In the case of the Metropolis dynamic, the temperature is constant during
the relaxation. We establish optimal convergence properties towards states of
minimal energy when T is low enough.

Simulated annealing is a method to speed up the Metropolis algorithm.
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The temperature is gradually lowered as the relaxation proceeds. The perfor-
mance of simulated annealing depends on the way the temperature is cooled
down while the algorithm is running. Good ways to cool down the tempera-
ture depend on some critical quantities related to the energy landscape
Ž .E, U and the connectivity of the dynamic used.

Among the pioneering works on simulated annealing is the paper by
w xGeman and Geman 17 , which introduced this algorithm as a tool for

statistical image processing and proved convergence results for it. They chose
Ž .an annealing schedule of the type T k s Crlog k and proved convergence

for C large enough. This cooling schedule is far from optimal, even for an
optimal choice of the constant C. The optimal value for C can be found in

Ž w x w x w x w x w xvarious papers using different methods of proof see 19 , 20 , 23 , 12 , 21 ,
w x w x w x.30 , 3 and 4 .

Rates of convergence for simulated annealing algorithms can be estab-
lished in different ways. Two main approaches dominate: the semigroup

w xapproach initiated in 20 and the large deviation approach initiated by
Freidlin and Wentzell in their book about random perturbations of dynamical

w xsystems 16 .
The optimal exponent of the convergence rate of decreasing cooling sched-

w xules is established in 6 for reversible simulated annealing processes and in
w x w x27 in the general nonreversible case. It is shown in 5 that the cooling
schedules optimizing the marginal distribution after N iterations are trian-

Ž N .gular sequences of temperatures T , where all the temperaturesn ns1, . . . , N

are chosen as a function of the horizon N. Exponential cooling schedules of
Ž N . Ž Ž ..nthe form T s A r N are proved to be almost optimal for a propern

Ž . w x w x Ž w x.choice of the function r N in 6 , 23 see also 10 . We propose here two
other types of cooling schedules. They are both piecewise constant triangular
sequences of the exponential form

Ž . Ž .ky1 r ry1T N N NŽ .minNT s T N for k y 1 - n F k ,Ž . Ž .n max ž /T N r rŽ .max

k s 1, . . . , r ,

where r is the number of temperature steps and N is the total number of
iterations to be performed.

Ž .In the first cooling schedule, the number of steps r N s r is independent
Ž .of N. We show that in this situation, for a proper choice of T N andmax

Ž .T N , we miss the optimal convergence exponent by a factor which tendsmin
to one when r tends to infinity uniformly on suitably bounded subsets of
energy landscapes.

Ž .In the second cooling schedule, we let r N be a function of N. We remark
Ž . Ž .first that choosing T N and T N as previously, we can, for a suitablemax min

Ž .choice of r N , get the optimal convergence exponent uniformly on bounded
Ž .subsets of energy landscapes. Then we see that taking r N a little larger

Ž .than necessary, we can let T N s T be a constant independent of Nmax max
Ž .and get, for a proper but fixed choice of T N , the optimal convergencemin
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exponent for any energy landscape. This is how we build a second cooling
schedule which can be said to be ‘‘universally robust’’ with respect to the
convergence exponent.

From the technical point of view, we first prove results about the rate of
w xconvergence of the generalized Metropolis chain in the spirit of 8 . This proof

rests on Freidlin and Wentzell’s closed formulas giving the mean value of the
exit time from subdomains of the energy landscape and the invariant distri-
bution. Then we apply these results to each step of a piecewise constant
cooling schedule. The purpose of each step is to reach with a probability close
to one a state below a given energy level, which has to be linked in a proper
way with the temperature. The best strategy would consist ideally in tuning
the temperature as a function of the maximum energy barrier which has to
be jumped over to get down from one target energy level to the other. This
strategy, however, requires a precise knowledge of the energy landscape and
would lead to nonrobust choices of the temperature sequence. In order to get
a robust cooling schedule, needed for practical applications, we proceed as if
the energy landscape were of homogeneous difficulty. The difficulty of the
energy landscape is by definition the inverse of its optimal convergence

Ž w x.exponent. It is the maximum ratio between the depth of the cycles see 16
of the state space and their ground state energy above the minimum, the
cycles containing the global ground states being excluded. To choose a robust
cooling schedule, we proceed as if all the cycles had the same ratio. This leads
naturally to considering a geometrical sequence of target energy levels,
corresponding to a geometrical sequence of temperature. The nice thing in
this construction is that the sequence of target energy levels is not a parame-
ter of the cooling schedule; it is only a tool in the proof and, as it turns out, we
can show that the same sequence of temperatures gives an optimal conver-
gence exponent for different energy landscapes by tuning the target energy

Ž .sequence differently, as a function of the real changing and unknown
difficulty. We show in this way that the chain reaches lower and lower energy
levels with an almost optimally close-to-one probability, until it reaches a
global ground state.

In all this discussion, convergence rates are measured by the rate of
decrease of the probability to be above a given energy level after a given
number of iterations. Although it is not the only possible notion of conver-

Žgence the minimum energy level reached along the whole trajectory could
.also be considered , it has proved to be a meaningful one to compare algo-

rithms in full generality, that is, without making special assumptions about
the state space.

2. Formalizing the problem.

2.1. The generalized Metropolis chain. Let E be a finite space. We
Ž Nconsider a family of time homogeneous Markov chains on E, FF s E ,

Ž . .X , BB, P indexed by a positive parameter b, called the inversen ng N b b g Rq
temperature.
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Ž . NMore precisely, we consider the coordinate process X , on E definedn ng N

Ž . N Ž y1Ž Ž .. .by X x s x , for any x g E . We define BB s s X PP E , n g N , the sn n n
Ž . Ž .field generated by X . We consider a family of probability distributions Pn b

Ž N .on E , BB indexed by b. Under each distribution P the coordinate processb

ŽŽ . .is a Markov chain. The Markov chain X , P is entirely characterized oncen b
y1 Ž . Ž .we give its initial law P ( X g MM E and its transitions kernel p x, y sb 0 1 b

Ž .P X s y N X s x .b n ny1
We suppose that the transitions of P are ‘‘rare,’’ meaning thereby thatb

they obey some large deviation principle with speed b, and rate function
� 4 Ž .V: E = E ª R j q̀ , namely that the following hypothesis LDP a holdsq

for some positive constant a:

1 ; x , y g E = E, ; b g R ,Ž . Ž . q

a exp yb V x , y F p x , y F ay1 exp yb V x , y .Ž . Ž . Ž .Ž . Ž .b

The rate function V is often called the communication cost function. We
assume also that V is irreducible, which means that

; x , y g E = E, ' i , . . . , i , i s x , i s y ,0 r 0 r

V i , i q ??? qV i , i - `.Ž . Ž .0 1 ry1 r

ŽŽ . .Under these assumptions, X , P is called a generalized Metropolis chain.n b

It is a family of irreducible Markov chains indexed by b g R . To charac-q
Ž .terize the corresponding family m of invariant probability measures,b b g Rqw x Ž .let us introduce, following 16 , for any subset W of E, the set G W of all

oriented graphs over E such that the following hold.

1. There is no arrow starting from the points of W.
2. Each point of E _ W is the initial point of exactly one arrow.
3. There is no cycle in the graph or equivalently, for each point x in E _ W,

there is a path in the graph leading from x to W.

Ž . Ž . Ž .Then, if we put p g s Ł p u, v , g g G W , the invariant proba-b Žu, v .g g b

bility measure m can be expressed asb

Ý p gŽ .g g GŽ� x4. b
m x s ,Ž .b Ý Ý p gŽ .y g E g g GŽ� y4. b

Ž . Ž . Žwhich proves the following lemma where V g s Ý V u, v . It is aŽu, v .g g
w x .special case of Lemma 3.2, page 178 of 16 .

< <LEMMA 2.1. There is a positive constant b depending only on a and E
such that for any x g E, any b g R ,q

2 beyb UŽ x . F m F by1eyb UŽ x . ,Ž . b

where

U x s min V g y min min V g .Ž . Ž . Ž .
Ž� 4. ygE Ž� 4.ggG x ggG y
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Lemma 2.1 is an approximate Gibbs formula in which U plays the role of a
‘‘virtual energy function.’’

It is also possible, and often easier, to characterize U in terms of paths.
w x w xThis is the weak reversibility condition of Hajek 19 and Trouve 28 . Let´

Ũ: E ª R be any candidate energy function. For any x, y g E, let

r
G s g , r g N*, g s x , g s y ,Ž .� 4x , y i 0 ris0

be the set of all paths joining x to y. Let

˜H x , y s min max U g q V g , gŽ . Ž . Ž .Ũ iy1 iy1 i
ggG is1, . . . , rx , y

˜ w xbe the elevation function corresponding to U. It is proved in 27 that
˜ ˜ ˜U s U y U if and only if the elevation function corresponding to U ismin

symmetric:

3 H x , y s H y , x , x , y g E.Ž . Ž . Ž .˜ ˜U U

Ž . Ž .REMARK. A sufficient condition to have 3 is that ; x, y g E, V x, y -
Ž . Ž . Ž Ž . Ž ..q Ž .` « V y, x - `, and that V x, y s U y y U x whenever V x, y - `.

This is the case for the ‘‘classical’’ Metropolis and simulated annealing
algorithms, the first ones which have been studied.

Ž . Ž .2.2. The generalized simulated annealing chain. Let b s b? n ng N

be an arbitrary nondecreasing sequence of inverse temperatures.
Ž NWe consider the corresponding nonhomogeneous Markov chain RR s E ,

Ž . .X , BB, P on E with transitions defined byn ng N Ž b .?

P X s y N X s x s p x , y ,Ž . Ž .Ž b . n ny1 b? n

Ž .where p is a family of transition matrices satisying the sameb b g Rq
hypothesis as in the previous paragraph.

We call RR a generalized simulated annealing chain.

3. An upper bound for the marginal distributions of the general-
ized Metropolis chain. We will find the time needed for the generalized
Metropolis chain to reach the basin of attraction of the global minima of U.
For this purpose, we will first prove a general lemma about the entrance time
in arbitrary subdomains of E. From this we will get an upper bound for the
marginal distributions of the generalized Metropolis chain. It will allow us to
give its optimal rate of convergence.

Ž .For any subset A of E, we let t A be the first hitting time of A:

� 4t A s inf n g N N X g A .Ž . n
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We let

H A s max min H x , y y U xŽ . Ž . Ž .U
xgA ygE_A

1
s max lim log E t E _ A N X s xŽ .Ž .b 0bxgA bªq`

s max min V g y min V gŽ . Ž .
xgA Ž . ŽŽ . � 4.ggG E_A ggG E_A j x

Ž w x w x w x w x w x .be the depth of A see 27 , 29 , and 6 , 8 or 11 for further explanations .
It is clear from this definition that the depth of a domain is a nonnegative
quantity.

Ž w x .We recall see 16 , page 182 that

Ý Ý p gŽ .y g E _ A g g G Ž Aj � y4. bx , yE t A N X s x s ,Ž .Ž .b 0 Ý p gŽ .g g GŽ A. b

Ž . Ž .where G W is the set of graphs g g G W which lead from x to y, whenx, y
Ž . Ž .x g E _ W and y g W, and where, by convection, G W s G W .y, y

ŽLEMMA 3.1 Estimate for the entrance time in an arbitrary subdomain of
. < <E . There exists a positive constant c, depending only on a and E , such

that, for any proper subdomain A of E, A / E and A / B, any n g N, any
inverse temperature b ) 0,

max P t A ) n N X s x F exp y cn exp ybH E _ A ,Ž . Ž .Ž .Ž .Ž .b 0
xgE_A

? @ � 4where r s max n g Z N n F r is the integer part of the real number r.

PROOF. Let A ; E, A / E, A / B. Let n g N, and b ) 0. For any
integer k,

? @nrk
max P t A ) n N X s x F max P t A ) k N X s yŽ . Ž .Ž . Ž .b 0 b 0ž /

xgE_A ygE_A

? @nrk1
F max E t A N X s y .Ž .Ž .b 0ž /k ygE_A

Using the hypothesis about the upper bound and lower bound of the
Ž .transition kernel 1 , we see that for some constant C depending only on a

< <and E ,

max E t A N X s y F C exp bH E _ A .Ž . Ž .Ž .Ž .b 0
ygE_A

From this we get an upper bound for the law of entrance in the subset A,
independent of the initial point:

n C
max P t A ) n N X s x F exp log exp bH E _ A .Ž . Ž .Ž .Ž .b 0 ž /ž /k kxgE_A
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Ž Ž . .Choosing the least integer k such that k G C exp bH E _ A q 1 , we get

max P t A ) n N X s x F exp y nc exp ybH E _ AŽ . Ž .Ž .Ž .Ž .b 0
xgE_A

Ž .where the constant c s 1r eC q 1 only depends on the cardinality of the
state space and on the constant a. I

The next lemma will use the first critical depth of the energy landscape,
Ž . Ž .which is defined to be H V s H E _ arg min U .1

ŽLEMMA 3.2 Upper bound for the marginal distributions of the generalized
.Metropolis chain . There exists a constant d ) 0, depending only on a and

< <E such that, for any inverse temperature b ) 0, the generalized Metropolis
chain P satisfies the following condition: for all n g N, and all y g E,b

n
max P X s y N X s x F exp y exp ybH V q d exp ybU y .Ž . Ž . Ž .Ž .Ž .b n 0 1ž /dxgE

Ž .COROLLARY 3.3 On the probability of failure of the minimization . There
< <exists a constant d9 ) 0, depending only on a and E , such that for any

energy level h ) 0 and any inverse temperature b ) 0, the generalized
Ž .Metropolis chain X satisfies, for all n g N,n ng N

n
max P U X G h N X s x F exp y exp ybH V q d9 exp ybh .Ž . Ž . Ž .Ž . Ž .b n 0 1ž /d9xgE

REMARK. A similar result could have been obtained using spectral gap
estimates. For instance, it is well known that in the reversible case, that is,
when

m x p x , y s m y p y , x , x , y g E,Ž . Ž . Ž . Ž .b b b b

we have

1r2
m AŽ .

P X g A N X s x y m A F exp ycn exp ybL ,Ž . Ž . Ž .Ž .b n 0 b ž /m xŽ .

< <where c depends only on a and E and where

L s max H x , y y U x y U y G H V .Ž . Ž . Ž . Ž .U 1
x , y

Ž .In order to replace L by H V and to cover the nonreversible case, it is1
necessary to use some technical tricks, such as pasting some states together

Žand considering a new process based on a symmetrized transition matrix see
w x w x w x w x w x w x w x.14 , 13 , 18 , 24 , 25 , 26 or 8 . There are also some minor differences
between the results we give here and those obtained by the spectral gap

Ž Ž ..1r2approach, since we avoid here an extra 1rm x term. On the other hand,
in some situations, Poincare estimates for the spectral gap give a better´



C. COT AND O. CATONI382

control on the dependence of the constants with the size of the state space.
< <The dependence in E given by the Freidlin and Wentzell approach is crude;

this is why we did not make it explicit in this paper.

PROOF OF LEMMA 3.2. Let B s arg min U be the ‘‘bottom’’ of E, let n g N,
b ) 0 and y g E _ B. We have

max P X s y N X s xŽ .b n 0
xgE

F max P t B ) n N X s xŽ .Ž .b 0
xgE_B

q max P X s y , X s z , t B F n N X s x .Ž .Ž .Ý b n t ŽB . 0
xgEzgB

Using Lemma 3.1 to estimate from above the law of the entrance time in
the bottom of E, we find

max P X s y N X s x F exp y nc exp ybH VŽ .Ž . Ž .Ž .b n 0 1
xgX

q max P X s y N X s z .Ž .b k 0
zgB , kgN

We can transform the second member of the upper bound, using the
following remark: let

P X s t N X s zŽ .b n 0
f t s , t g E.Ž .n m tŽ .b

Ž . Ž .Each f u is a convex combination of f t , t g E. Indeed, we havenq1 n

m t m tŽ . Ž .b b
f t p t , u s f u with p t , u s 1.Ž . Ž . Ž . Ž .Ý Ýn b nq1 bm u m uŽ . Ž .b btgE tgE

Thus we find
1

max f t F max f t s ,Ž . Ž .n 0 m ztgE tgE Ž .b

and therefore for any y and z g E,

m yŽ .b
P X s y N X s z F .Ž .b n 0 m zŽ .b

Ž .After using the lower bound and upper bound of the invariant measure 2
stated in Lemma 2.1, we finally find the expected upper bound of the
probability of failure:

max P X s y N X s x F exp y nc exp ybH VŽ . Ž .Ž .Ž .b n 0 1
xgE

q by2 max exp yb U y y U zŽ . Ž .Ž .Ž .
zgB

n
F exp y exp ybH V q d exp ybU y ,Ž . Ž .Ž .Ž .1ž /d



PIECEWISE CONSTANT COOLING SCHEDULES 383

where the constant d only depends on the cardinality of the state space and
on the constant a. The corollary is straightforward. I

4. A lower bound for the marginal distributions of the generalized
Metropolis chain. In this paragraph, we will use the decomposition of the
state space into cycles introduced by Freidlin and Wentzell. Let us recall that
P ; E is a cycle if it is a component of one of the equivalence relations

RR s x , y g E2 : H x , y F l j x , x : x g E , l g R.� 4Ž . Ž . Ž .� 4l U

w x w x w xFor more details on the cycle decomposition, see 8 , 27]29 or 11 .

< <LEMMA 4.1. There exists a constant C ) 0 depending only on a and E ,
such that for any cycle P of E, there exists an inverse temperature b such0
that for any b G b , any n, and any x g P,0

1
P t E _ P ) n N X s x G exp yCn exp ybH P ,Ž . Ž .Ž .Ž .Ž .b 0 C

Ž .where, as in the previous section, H P is the depth of P.

COROLLARY 4.2. There exists a positive constant K depending only on a
< < Ž Ž . � 4.and E , there exist an inverse temperature b and h g U E _ 0 such that0 0

Ž Ž . x x.for any b G b , any h g U E l 0, h , any n,0 0

max P U X G h N X s xŽ .Ž .b n 0
xgE

1
G exp y Kn exp ybH V k exp ybh .Ž . Ž .Ž .Ž .Ž .1K

Ž . Ž .PROOF. Let P be a cycle in E such that P l B s B and H P s H V .1
Ž .Let h s min U x and let P s E _ P.0 x g P

Ž Ž . x x.We have for any x g P, any h g U E l 0, h ,0

P U X G h N X s x G P t P ) n N X s x .Ž . Ž .Ž . Ž .b n 0 b 0

So, with a direct application of Lemma 4.1, we get a first lower bound:

1
P U X G h N X s x G exp yCn exp ybH V .Ž . Ž .Ž . Ž .Ž .b n 0 1C

Another lower bound can be obtained, using the fact that

m y s m x P X s y N X s xŽ . Ž . Ž .Ýb b b n 0
xgE

F max P X s y N X s xŽ .b n 0
xgE
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Ž .and the lower bound 2 for the invariant probability at temperature b.
< <Indeed, we get that for some constant b ) 0 depending only on a and E ,

max P U X G h N X s x s max P X s y N X s xŽ . Ž .Ž . Ýb n 0 b n 0
xgE xgEŽ .y , U y Gh

G b exp yb min U y .Ž .ž /Ž .y , U y Gh

We end the proof by choosing the constant in the corollary to be equal to
K s C k by1. I

PROOF OF LEMMA 4.1. Let P be a cycle in E and x a point in P; let
P s E _ P. We have

P t P F n N X s x F min P t P F n N X s yŽ . Ž .Ž . Ž .b 0 b 0
ygP

q max P X / y N X s x .Ž .b t ŽP j � y4. 0
ygP

Then we use the property of cycles, which states that we visit with a large
probability any point before leaving; this proves that, for b large enough, we
have

1min P X s y N X s x G .Ž .b t ŽP j � y4. 0 2
ygP

We use the remark that

q` 1
P t P ) kn N X s x G E t P N X s x ,Ž . Ž .Ž . Ž .Ý b 0 b 0 nks0

and that
q` q` k

P t P ) kn N X s x F max P t P ) n N X s yŽ . Ž .Ž . Ž .Ý Ýb 0 b 0ž /ygPks0 ks0

1
F

min P t P F n N X s yŽ .Ž .y g P b 0

so that, using the expression of the expectation of the exit time out of P given
Ž .by Freidlin and Wentzell and the hypothesis 1 about the lower bound and

upper bound of the transition kernel, we find that there exists a constant
< <c ) 0 depending only on a and E such that

n
min P t P F n N X s y FŽ .Ž .b 0
ygP max E t P N X s xŽ .Ž .x g P b 0

F nc exp ybH P .Ž .Ž .
1Ž Ž . .Finally we find a lower bound for P t P ) n N X s x of the form yb 0 2

Ž Ž ..nc exp ybH P when b is large enough.
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Using the Markov property, we have for any integer k,

u vnrk
P t P ) n N X s x G min P t P ) k N X s x .Ž . Ž .Ž . Ž .b 0 b 0ž /

xgP

?Ž . Ž Ž ..@We end the proof by choosing k s 1r4c exp bH P , so that for b large
enough we have

n 1
log y kc exp ybH P G y log 4 1 q 4cn exp ybH P . IŽ . Ž . Ž .Ž . Ž .Ž .ž /k 2

5. Optimal rate of convergence of Metropolis algorithms. We de-
duce from these bounds the optimal convergence rate of the generalized
Metropolis dynamic.

ŽTHEOREM 5.1 Optimal convergence rate of the generalized Metropolis
.algorithm . For any state space E, any irreducible function V defined on E,

Ž .for any transition kernel satisfying 1 , the associated generalized Metropolis
< <chain is such that there exists a constant d ) 0, depending only on a and E ,

such that for any h ) 0 and any N, putting

1 N h N
b N s log y log log q 1 ,Ž . ž /ž /H V d H V dŽ . Ž .1 1

we have

Ž .hrH V1dh
max P U X G h N X s x F d log N .Ž .Ž .b ŽN . N 0 ž /NH VxgE Ž .1

An immediate consequence is that

Ž .hrH V1dh
inf max P U X G h N X s x F d log N .Ž .Ž .b N 0 ž /NH Vb)0 xgE Ž .1

Furthermore, there exists another constant d9 ) 0, depending only on a and
Ž Ž . � 4. Ž .E, there exists h g U E _ 0 depending also on V , such that for any0

Ž .0 - h F h , h g U E , for N large enough, we have0

Ž .hrH V1d9h
inf max P U X G h N X s x G d9 log N .Ž .Ž .b N 0 ž /NH Vb)0 xgE Ž .1

So, for the best temperature and the worst initial point of the Metropolis
ŽŽ . .hr H1ŽV .dynamic, the speed of convergence is at best of order 1rN log N .

Ž . Ž .When h g U E is small enough, the convergence speed obtained with b N
is almost optimal for the large deviation criterion

1 h
lim y log max P U X G h N X s x s .Ž .Ž .b ŽN . N 0log N H VNªq` xgE Ž .1
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PROOF. The upper bound is deduced from Corollary 3.4 and the lower
Ž .bound from Corollary 4.2. The inverse temperature b N has been chosen

such that both terms in the upper bound of Corollary 3.4 are of the same
order. In the case of the lower bound, to deal with the case when b - b in0
Corollary 4.2, we remark that the second term of the lower bound given in
Corollary 4.2 holds without condition on b. I

6. Rate of convergence of simulated annealing with a piecewise
constant triangular cooling schedule. The theorems of this paragraph
will be derived from the following technical proposition.

PROPOSITION 6.1. For any a and E, there exists a constant c ) 0 such that
for any irreducible rate function V defined on E, any transition kernel

Ž .satisfying 1 , any h ) 0, any couple of integers r, N, such that r divides N,
Ž . Ž .any decreasing sequences l , h , any increasing se-k ks0, . . . , ry1 k ks0, . . . , ry1

Ž .quence g , such that:k ks0, . . . , ry1

Ž .i h F h;ry1
Ž . Ž .ii l G 1 q D h for all k s 1, . . . , r, wherek ky1

H x , y y U xŽ . Ž .U
D s D E, V s max min ,Ž .

U xxgE_B ygB Ž .
the generalized simulated annealing chain stopped at iteration number N
with cooling schedule

N N
Nb s g , k - n F k q 1 , k s 0, . . . , r y 1,Ž .n k r r

satisfies

P N U X G h N X s xŽ .Ž .Ž b . N 0

cN
F 1 q exp yg l y hŽ .Ž .1 1 0ž /r

N
= exp y exp yg H V q c exp yg hŽ . Ž .Ž .0 1 0 0ž /ž /rc

ry1 N
q 1 q c exp yg g y hŽ .Ž .Ý k k ky1ž /rks2

N y1
= exp y exp yg l 1 q 1rDŽ .Ž .ky1 ky1ž /ž rc

qc exp yg hŽ .ky1 ky1 /
N y1qexp y exp yg l 1 q 1rD q c exp yg h .Ž . Ž .Ž .ry1 ry1 ry1 ry1ž /rc

We will deduce from this proposition the two following theorems.
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THEOREM 6.2. For any a and E, there exists a constant c ) 0 such that for
any irreducible rate function V defined on E, any transition kernel satisfying
Ž . Ž . Ž .1 , any constants d, H and D satisfying d G c, H G H V and D F D E, V ,1

Ž .for any constant 0 - h F H V rD, for any integers r, N such that r divides1
N and Nrr G d, the generalized simulated annealing chain stopped at time N
with cooling schedule

N N
Nb s g , k - n F k q 1 , k s 0, . . . , r y 1,Ž .n k r r

Ž .krr y1
1 N 1 N H

g s log y log 1 q logk ž /ž / ž /hD rd D rd hD

satisfies

y1 r r y1Ž .HrhD Drd
Nmax P U X G h N X s x F cdrŽ .Ž .Ž b . N 0 ž /NxgE

y1 r rŽ .Ž .1q1rD HrhD1 N
= 1 q log .ž /ž /D rd

Two noticeable choices for the number of steps r are worth being mentioned:
y1Ž . Ž .i If we choose r s D log HrhD rD log N, then the probability of fail-
Ž .2Ž1q1r D . y1r Dure is at most of order O log N N . For this first optimization, the

number of steps increases like log N and their length increases like Nrlog N.
Ž . u Ž . Ž .v Žii If we choose r s log HrhD rlog 1 q a independently of N where

.a ) 0 is a small parameter , the probability of failure is at most of order
Ž .1r DŽ1qa .Ž .Ž1q1r D .rŽ1qa .1rN log N .

Ž .REMARKS. i In order to get the optimal exponent of convergence, we need
Ž .not know the exact value of D, H V and c, but only some bounds for these1

quantities. This shows that this type of cooling schedule is robust. However,
this is still only a theoretical result, since it says absolutely nothing about the
way to estimate the constant c, and therefore to choose the constant d which
is a parameter of the schedule and plays an important role in the upper
bound given for the probability of failure. The equations show that the
estimation of H can be very rough, since it is ‘‘killed’’ by a 1rr exponent. As

Ž .for D, since D E, V is a supremum, it is easy to see that, in the case when
D ) D, the theorem still holds with D replaced by D.

Ž .ii We can understand from this theorem why simulated annealing speeds
up the Metropolis dynamic.

When the parameter r is properly chosen, the main exponent of the
Ž Ž ..probability of failure namely 1rD or 1rD 1 q a does not depend on the

precision h with which we want to get close to the minima of the energy U,
whereas in the case of the Metropolis algorithm, this exponent is equal to

Ž .hrH V and tends to zero when h does.1
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In the case when we want to find out an exact ground state, simulated
annealing will be asymptotically faster then the Metropolis algorithm when

Žthe level h being next to the ground state energy level which we set to zero
. Ž . Ž .by convention is such that h - H V rD. Indeed in this case, hrH V is the1 1

optimal convergence exponent for Metropolis and

Ž .1rD hrH V11 1
<ž / ž /N N

when N is large.

Ž .THEOREM 6.3 Universally robust cooling schedule . With the same nota-
tions, for any a ) 0 and E there exists a constant C ) 0 such that for any
irreducible function V, any g ) 0, any parameter « ) 0, any large enough M,0
putting

ky1y«
g s g 1 q log M ,Ž .Ž .k 0

1q2 «r s log M ,Ž .
N s Mr ,

we have

Ž .2 1q« q1rDy1r D Ž1q1r D .
Nmax P U X G h N X s x F M C log M ,Ž . Ž .Ž .Ž b . N 0

xgE

and therefore

Ž .Ž .2 1q« 1q1rDy1r D Ž1q1r D .
Nmax P U X G h N X s x F N C log N .Ž . Ž .Ž .Ž b . N 0

xgE

REMARK. We state this less precise theorem to show that it is possible to
get the optimal convergence exponent with a fixed cooling schedule, indepen-
dent of the energy landscape, when the number of steps r is allowed to be a
function of N. However, it should be noticed that it is a somewhat theoretical
result, since the minimal value M of M, for which the bound given in the0

Žtheorem starts to hold, depends on the energy landscape that is on a, E and
.V .

PROOF OF PROPOSITION 6.1. Let us fix N and d ) 0.
Let us put l s q̀ and introduce the events0

N N
BB s U X q V X , X F l , n g N, k F n - k q 1 ,Ž . Ž . Ž .k n n nq1 k½ 5r r

AA s BB l U X - h .� 4Ž .k k Žkq1.Ž Nr r . k

and the short notation P for P N .N Ž b .?
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For any initial point x in E,

P U X G h N X s x F P U X G h N X s xŽ . Ž .Ž . Ž .N N 0 N N ry1 0

ry1

F 1 y P AA N X s xFN k 0ž /
ks0

ry1 ky1

F P AA l AA N X sx qP AA N X sx .Ž .Ý FN k l 0 g 0 00ž /
ks1 ls0

Applying Corollary 3.4 to the finite generalized Metropolis chain
Ž . < <X , we know that there exists a constant c depending only on En 0 F nF Nr r
and a such that

N
yg h0 0P U X ) h N X s x F exp y exp yg H V q ce .Ž .Ž .Ž .Ž .g Nr r 0 0 0 10 ž /rc

Furthermore, for k G 1,

P AA , AA , . . . , AA N X s xŽ .N k 0 ky1 0

s P BB , AA , . . . , AA N X s xŽ .N k 0 ky1 0

q P U X G h , BB , AA , . . . , AA N X s x .Ž .Ž .N Žkq1.ŽNr r . k k 0 ky1 0

And for all y g E,

P X s y , BB , AA , . . . , AA N X s xŽ .N Žkq1.ŽNr r . k 0 ky1 0

F max P X s y , BB N X s zŽ .N Žkq1.Ž Nr r . k k ŽNr r .
Ž .z , U z -hky1

N
F max P X s y , t C ) N X s z ,Ž .g Nr r z 0k ž /rŽ .z , U z -hky1

Ž .where C denotes the smallest cycle containing z such that l - H C qz k z
Ž . Ž .U C , and t C denotes the exit time from C .z z z

Ž . Ž .Observe that U C s 0, since if we had U C ) 0, then we would havez z
Ž . Ž . Ž .Ž . Ž .also U C q H C F U z 1 q D F h 1 q D F l . This would contra-z z ky1 k

dict the definition of C . Note that C is a cycle of communication level atz z
most equal to l . We need to control the probability of paths of length Nrrk

Ž .which do not get out of C . Consider the Markov chain Y defined on thez n ng N

Ž .restricted state space C , whose transition matrix P Y s y N Y s y sz n 2 ny1 1
Ž .q y , y for any y , y in C is defined by1 2 1 2 z

p y , y , when y / y ,Ž .g 1 2 1 2kq y , y sŽ .1 2 ½ 1 y Ý q y , y , otherwise.Ž .y g C 1 33 z

Ž .This new Markov chain is simply the previous chain X reflected on then ng N

boundary of C . Merely by the fact that for any y , y g C ,z 1 2 z

<0 F p y , y F q y , yŽ . Ž .C =Cg 1 2 1 2z zk
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we can write

N
P X s y , t C ) N X s z F P Y s y N Y s z .Ž .Ž .g Nr r z 0 Nr r 0k ž /r

Furthermore, the new transitions q obey some large deviation principle with
Ž .rate function V restricted to C and the chain Y is irreducible. Thus, sincez n

Ž .C is a cycle of minimal energy, the energy of Y is exactly U restrictedz n
to C .z

Ž .Applying Lemma 3.2 to Y , we see that there exists a constant c ) 0,n
< <depending only on a and E such that

P X s y , BB , AA , . . . , AA N X s xŽ .N Žkq1.ŽNr r . k 0 ky1 0

N
F max exp y exp yg H C , V q c exp yg U y .Ž . Ž .Ž . Ž .k 1 z kž /rc˜Ž .z , U z -hky1

Ž . Ž .y1Furthermore, we see that H C , V F 1 q 1rD l , coming back to the1 z k
Ž . � Ž . Ž . 4definition of H C , V s max H C , C cycle, C ; C , U C ) 0 , and observ-1 z z

ing that for any cycle C strictly included in C , with positive energy, we havez
Ž .Ž . Ž . Ž . Ž .H C 1 q 1rD F H C q U C F l . Thus, bounding H C , V in the previ-k 1 z

ous inequality, we find

P X s y , BB , AA , . . . , AA N X s xŽ .N Žkq1.ŽNr r . k 0 ky1 0

y1N 1
F exp y exp yg l 1 qk k ž /ž /ž /rc D

q c exp yg U y .Ž .Ž .k

Ž < <.For the same reason, there exists a constant c a, E such that we have also

P U X G h , BB , AA , . . . , AA N X s xŽ .Ž .N Žkq1.ŽNr r . k k 0 ky1 0

y1N 1
F exp y exp yg l 1 qk k ž /ž /ž /rc D

q c exp yg h .Ž .k k

Furthermore,

P BB , AA , . . . , AA N X s xŽ .N k 0 ky1 0

s P BB N X s zÝ ž /N k k ŽNr r .
Ž .z , U z -hky1

=P X s z , AA , . . . , AA , BB N X s xŽ .N k ŽNr r . 0 ky2 ky1 0
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and

P BB N X s zž /N k k ŽNr r .

Ž .Ž .kq1 Nrr

F P U X q V X , X ) l N X s zŽ . Ž .Ž .Ý g n n nq1 k k ŽNr r .k
Ž .nsk Nrr

Ž .Ž .kq1 Nrr

s P X s u N X s z p u , vŽ .Ž .Ý Ý g n k ŽNr r . gk k
Ž . Ž . Ž .nsk Nrr U u qV u , v )lk

Ž .Ž .kq1 Nrr m uŽ .gkF p u , v .Ž .Ý Ý gkm zŽ .gŽ . Ž . Ž .nsk Nrr U u qV u , v )l kk

Ž . Ž .Thus, applying inequalities 1 and 2 on the transition matrix and the
invariant measure, we finally find that there exists a constant c only depend-

< <ing on a and E such that

N
P BB N X s z F c exp yg l y U z .Ž .Ž .Ž .ž /g k k ŽNr r . k kk r

We then deduce that for a constant c big enough, for any z such that
Ž .U z - h ,ky1

P BB N X s z P X s z , AA , . . . , AA , BB N X s xŽ .ž /g k k ŽNr r . N k ŽNr r . 0 ky2 ky1 0k

y1N N 1
F c exp yg l y U z exp y exp yg l 1 qŽ .Ž .Ž .k k ky1 ky1 ž /½ ž /ž /r rc D

qc exp yg U zŽ .Ž .ky1 5
y1N N 1

F c exp yg l y h exp y exp yg l 1 qŽ .Ž .k k ky1 ky1 ky1 ž /½ ž /ž /r rc D

qc exp yg h .Ž .ky1 ky1 5
Ž < <.Thus for a constant c a, E big enough,

P BB , AA , . . . , AA N X s xŽ .g k 0 ky1 0k

y1N N 1
F c exp yg l y h exp y exp yg l 1 qŽ .Ž .k k ky1 ky1 ky1 ž /ž /ž /žr rc D

qc exp yg h .Ž .ky1 ky1 /
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Finally, we find the following upper bound of the probability of failure: for
any initial point x in E,

P U X G h N X s xŽ .Ž .N N 0

ry1 N
F c exp yg l y hŽ .Ž .Ý k k ky1½ rks1

y1N 1
= exp y exp yg l 1 qky1 ky1 ž /ž /ž /ž rc D

qc exp yg hŽ .ky1 ky1 /
y1N 1

qexp y exp yg l 1 q q c exp yg hŽ .k k k kž / 5ž /ž /rc D

N
q exp y exp yg H V q c exp yg h . IŽ . Ž .Ž .0 1 0 0ž /rc

PROOF OF THEOREM 6.2. Let us define, in order to simplify formulas,

1 N 1 N
a s log y 1 q D log 1 q log ,Ž . ž /ž /rD rd D rd

1rr
H

r s ž /hD

and put

a
h s ,k gk

l s q̀ ,0

1 1 N
l s 1 q log y log 1 q a .Ž .k ž / ž /g D rdk

Ž . Ž .Note that r ) 1 and that a F 1rD log Nrrd since we chose h small enough
Ž .such that H V rh G D. Indeed, we have1

1 N 1 N
a F log F log .

rD rd D rd

Ž . Ž . Ž .Note also that l G 1 q D h G h , since a F 1rD log Nrrd and thatk ky1 ky1
Ž . Ž .h and l are geometrical decreasing sequences.k k F ry1 k k F ry1
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Moreover, h F h, sincery1

a 1rD log Nrrd y 1 q D log 1 q 1rD log NrrdŽ . Ž . Ž .Ž .Ž .Ž .1yr yrh s r srry1 g 1rH log Nrrd y log 1 q 1rD log NrrdŽ . Ž .Ž .Ž .Ž .Ž .0

H
yrF r F h ,

D

Ž . Ž .thus conditions i and ii given in Proposition 6.1 are satisfied.
Coming back to the definitions of h and l , we check that for any d ) c,k k

y1rDN N1q1rDexp yg l y h s d 1 q a exp arŽ . Ž . Ž .Ž .k k ky1 ž /r rd
1q1rD1 q a

s d .ž /1 q 1rD log NrrdŽ .Ž .

Ž . Ž .Using the inequality a F 1rD log Nrrd , we find that

N
exp yg l y h F d.Ž .Ž .k k ky1r

We also have

y1N 1
exp y exp yg l 1 qk k ž /ž /ž /rc D

N y1F exp y exp yg l 1 q 1rD q 1Ž .Ž .k kž /rd

F exp yaŽ .
and

N
exp y exp yg H VŽ .Ž .0 1ž /rc

N
F exp y exp yg H V q 1Ž .Ž .0 1ž /rd

N N 1 N
F exp y exp ylog q log 1 q log q 1ž /ž /rd rd D rd

1 N
F exp y log F exp ya .Ž .

D rd

Ž . Ž . Ž Ž . . ŽFinally, exp yg h s exp ya . Thus, P U X G h N X s x F r 1 qk k N N 0
.Ž . yacd 1 q c e , and we end the proof of the theorem by changing the value of c

Ž .2into 1 q c . I
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PROOF OF THEOREM 6.3. Let us fix M and g . Put0

y1y«
r s 1 q log M ,Ž .

g s g r k ,k 0

1q2 «r s log M ,Ž .
N s Mr ,

with parameter « ) 0, and put also

l s q̀ ,0

l s lrr k ,k

h s arr k ,k

with
1 1 M 1

l s 1 q log y log log M ,ž / ž /ž /g D c D0

1 1 M 1 1
a s log y 1 q log log M .ž / ž /ž /g r D c D D0

Ž . Ž .To justify the tuning of parameters, we need to check conditions i and ii
Ž .of Proposition 6.2. Condition i , h F h, which can be also written asry1

ry1 r Ž .a F hr , is satisfied for large enough M since we have r s O M . Condi-
Ž . Ž . Ž .tion ii , l G 1 q D h , which can also be written as l G 1 q D ra , isk ky1

also satisfied. We end the proof by substituting the values of g , l and hk k k
into Proposition 6.1. I

7. Conclusion. We showed in this paper how to tune piecewise constant
cooling schedules to make the logarithm of the probability of failure after N
iterations have the optimal asymptotic equivalent when N tends to infinity.
Although this asymptotic performance can be achieved by a fixed ‘‘robust’’
triangular cooling schedule chosen independently of the minimization prob-
lem to be solved, our results should not disguise the fact that in practice and
for a given N and a given energy landscape, a suitable choice of the three

Ž . Ž . Ž .parameters T N , T N and r N in the general formulamin max

Ž . Ž Ž . .ky1 r r N y1T N N NŽ .minNT s T N , k y 1 F n - k ,Ž . Ž .n max ž /T N r N r NŽ . Ž . Ž .max

can save a lot of computer time.
Beyond the theoretical properties we proved here, the strength of this

widely used type of schedule comes from the fact that it has a simple
parametric form depending on three parameters only. Therefore an interest-

Ž .ing direction of research would be to estimate efficient values for T N ,min
Ž . Ž .T N and r N from independent trials of length N, using some kind ofmax

stochastic gradient update rule. This makes sense in practice, since the use of
multiple independent trials is known to be efficient in this context, even when
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an optimal choice of the temperature schedule is known from the beginning
Ž w x w x w xsee 1 , and also 7 and 9 for a discussion of repeated optimization

.schemes . Another approach to adaptive tuning of the temperature, inter-
w xpreted as an energy transformation, can be found in 7 .

Of interest also is the fact that good performances can be achieved with a
Ž . Ž .choice of r N independent of N Theorem 6.2 , and that nearly optimal ones

Ž .can be reached with a slowly increasing choice of r N . This means that each
constant temperature step will be large when N is large, and is of practical

Ž .importance when the number of values taken by the rate function V x, y is
small. Indeed, in this case, the values of eyb V Ž x, y . can be tabulated once for
each step, and this can save a lot of time in the computation of the transition
probabilities. This favourable situation is encountered with the noisy Ising

Ž w x.model see 2 , and more generally with Potts’ models, widely used in image
analysis applications.
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