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MARKOV NETWORK PROCESSES WITH STRING TRANSITIONS1

By Richard F. Serfozo and Bingyi Yang

Georgia Institute of Technology and CAPS Logistics, Inc.

This study introduces a Markov network process called a string-net.
Its state is the vector of quantities of customers or units that move among
the nodes, and a transition of the network consists of a string of instan-
taneous vector increments in the state. The rate of such a string tran-
sition is a product of a transition-initiation rate and a string-generation
rate. The main result characterizes the stationary distribution of a string-
net. Key parameters in this distribution satisfy certain “polynomial traf-
fic equations” involving the string-generation rates. We identify sufficient
conditions for the existence of a solution of the polynomial equations, and
we relate these equations to a partial balance property and throughputs
of the network. Other results describe the stationary behavior of a large
class of string-nets in which the vectors in the strings are unit vectors and
a string-generation rate is a product of Markov routing probabilities. This
class includes recently studied open networks with Jackson-type transi-
tions augmented by transitions in which a signal (or negative customer)
deletes units at nodes in one or two stages. The family of string-nets con-
tains essentially all Markov queueing network processes, aside from re-
versible networks, that have known formulas for their stationary distribu-
tions. We discuss old and new variations of Jackson networks with batch
services, concurrent or multiple-unit movements of units, state-dependent
routings and multiple types of units and routes.

1. Introduction. There are two major classes of Markov queueing net-
work processes that have known formulas for their stationary or equilibrium
distributions. One class consists of classical Jackson–Gordon–Newell–Whittle
processes; BCMP-Kelly processes with multiple types of units and routes; and
processes with state-dependent routings, batch services and concurrent or
multiple-unit movements [2, 3, 17, 22–25, 27, 29, 31, 32]. The other class
is the family of reversible Markov network processes [25, 32], including those
with multiple-unit movements [1, 28].

Recently, several more examples of Markov queueing network processes
with tractable stationary distributions have been identified [4, 8–14, 16, 18,
20, 21]. The novelty of these processes is that, in addition to the usual move-
ments of units after service completions as in Jackson networks, there are sig-
nals (sometimes called negative customers) that periodically trigger auxiliary
departures of units from the network. These departures are single- or double-
stage departures of single units (or vectors) randomly selected by Markov
probabilities. Although the resulting stationary distributions are similar in
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form to those of Jackson processes, the main parameters in the distribution are
obtained as solutions of a traffic equation that differs from the “linear” Jackson
traffic equations. The first example in this series is an open Jackson network
with single-server nodes and auxiliary deletions of size 1 or 2 (see Example 18).
This model was the subject of [11]–[14] and [16]. Then [8] extended this model
to more general services and deletion mechanisms (see Examples 17 and 19)
and gave insights on quasi-reversibility. The model was extended in [21] to one
or two-stage “batch” deletions and [6] and [7] gave further insights into similar
quasi-reversible networks. Other related references are [2, 3, 5, 19, 22, 26].

These studies suggest that there is a broader class of Markov queueing
network processes with tractable stationary distributions that contains these
new examples as well as the Jackson network processes. We introduce such a
class called Markov network processes with string transitions or string-nets for
short. In a string-net, a transition of the network is determined by a string of
vectors representing multistage subtractions or additions of vector quantities
at the nodes and all of this is done instantaneously in a transition. The strings
are randomly selected from an arbitrary family of variable length strings by
a general probability measure. Jackson networks have only “one-stage transi-
tions” represented by strings whose lengths are exactly one. The other newer
examples mentioned above have strings of length 1 or 2, and one example
has infinite strings of unit vectors selected by Markov probabilities. String-
nets cover a variety of networks with batch or concurrent movements of units
where the batch and related probabilities are determined by a string of infor-
mation. Additionally, unit movements need not be independent as in classical
networks. For instance, in “time-warp” parallel simulation programs, when the
processing gets out of sync, a message is passed among the processors (nodes)
to instantaneously delete superfluous data (units) they might have generated.

In a m-node string-net, the state of the network is a vector x = �x1; : : : ; xm�
that denotes the numbers of units at the nodes (Remark 27 explains that our
results also apply to multiple types of units). A transition of the network from
x to y has a rate of the form

∑
sa λsarsa�x;y�. The λsa is the rate (or prob-

ability or propensity) of selecting a string of vectors s and another add-on
vector a as the increments in the state. The rsa�x;y� is a system-dependent
transition-initiation rate that may represent service rates at the nodes plus
other transition information. With a slight abuse of notation, we call both of
these quantities “rates” even though they are only parts of the compound rate
λsarsa�x;y�. This compounding or weak coupling of the string-generation and
transition-initiation information also arises in the invariant measures (or sta-
tionary distributions) of the process. Namely, Theorem 1 gives necessary and
sufficient conditions for a string-net to have an invariant measure of the form
8�x�∏m

j=1w
xj
j . The 8 is determined solely by the transition-initiation rates

rsa�x;y�, and the parameters wj are a solution to certain polynomial equa-
tions involving the string-generation rates λsa. We give sufficient conditions
for the existence of a solution to these so-called traffic equations and show
that the equations are equivalent to equalities of certain average flows in the
network (a partial balance property). We also give a complete description of
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the stationary behavior of a large subclass of string-nets in which the vectors
in the strings are unit vectors generated by Markov probabilities.

The organization of our study is as follows. After defining string-nets in Sec-
tion 2, we characterize their invariant measures in Section 3 and discuss their
traffic equations in Section 4, where we also derive formulas for throughputs.
Section 5 shows how the results apply to string-nets whose strings consist
of only unit vectors; the traffic equations simplify considerably. Section 6 dis-
cusses string-nets in which all the strings are of length one; Jackson processes
are of this type. Sections 7 and 8 cover string-nets with unit-vector strings se-
lected by Markov probabilities, including multiple types of string selections.
The multiplicative structure of the probability of selecting a string is similar
to the multiplicative or compounding structure of reversible networks with
multiple-unit movements [28]. Section 8 also relates earlier examples in the
literature mentioned above to string-nets. Section 9 covers string-nets in which
at most two nodes are affected by a transition. Examples are batch-assembly
models and a “Jackson network with periodic clearing” in which a transition
might involve clearing out all units at a node. In Section 10, we discuss one-
dimensional Markov processes with string transitions; they are of interest by
themselves and may also be used to represent single nodes that form parts of
a network. We end by discussing how the results in this study apply to mul-
tiple types of units by simply appending another parameter to the network
data and formulas.

2. Definition of string-nets. The Markov network process with string
transitions that we shall study is defined as follows.

Consider a network in which discrete units (or customers) move among m
nodes (or service stations) where they are processed. The network may be
open or closed and several units may move at the same time. We will study
the stochastic process X=�X�t�x t≥0� that represents the numbers of units
at the respective nodes. The state space is a set E of m-dimensional vectors
x=�x1; : : : ; xm�, where xj denotes the number of units at node j. We place no
further assumptions on the form of E, and so our results apply to a variety
of network types, including the standard ones that are closed ��x� =x1 + · · · +
xm = N�, open with finite capacity ��x� ≤ N�, or open with infinite capacity
��x� <∞�. Negative numbers of units at nodes are also permissible. All of our
results also apply to multiple types of units that may change type as they
move; see Remark 27.

We assume that X is a Markov jump process and hence its behavior is
characterized by its transition rates

q�x;y� ≡ lim
t→0

t−1P�X�t� = y�X�0� = x�; x 6= y ∈ E:

The q�x;y� is the rate of a transition x → y (from x to y). The sojourn
time in state x is exponentially distributed with rate

∑
y6=x q�x;y� and at the

end of the sojourn, the process jumps to some state y ∈ E with probability
q�x;y�/∑y6=x q�x;y�.
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The dynamics of the network and the form of its transition rates are as
follows. Whenever the process is in state x, a typical transition will be to some
state of the form x− �s1 + · · · + sl� + a or x− �s1 + · · · + sk�, 1 ≤ k < l, where
the increment vectors a and si are in a set A and the string s = �s1; : : : ; sl�
is in a set S . The A is a finite set of m-dimensional vectors with negative
or nonnegative integer entries and A contains the zero vector 0. Positive and
negative entries in an increment vector stand for additions or deletions of
units (e.g., entries of 5 and −3 in positions j and j′ of an increment vector
mean that 5 units arrive to node j and 3 units depart from j′). The S is a
countable set of strings s = �s1; : : : ; sl�, where si ∈ A\�0� and l ≡ l�s� denotes
the string length. Let L ≤ ∞ denote the supremum of these string lengths.
Assume that S contains the empty or zero string, denoted by 0, whose length
is zero.

Associated with each string s ∈ S are its kth partial sum vectors

s�k� =
k∑
i=1

si; 0 ≤ k ≤ l;

where s�0� = 0 for the zero string. Denote the set of all partial sums of the
strings by S = �s�k�x 1 ≤ k ≤ l; s ∈ S �. Think of A as the set of allowable
increment vectors and S as the set of feasible strings of vectors from A that
can be subtracted in a transition. Then S (which contains A) is the entire
set of network increment vectors. For each x ∈ E and d;a ∈ S, we define the
vector Tdax = x−d+a, which may or may not be in E. A transition x→ Tdax
means that the vectors a and d are added and subtracted from x.

In terms of this notation, the transitions of the process X are as follows.
Whenever the process X is in state x, a transition is determined by a pair sa
in S ×A that results in one of the following l possibilities.

A complete sa-transition: x→ Ts�l�ax = x− �s1 + · · · + sl� + a.
A kth partial sa-transition: x→ Ts�k�0x = x− �s1 + · · · + sk�, 0 ≤ k < l:

Keep in mind that l, with s suppressed, is the length of the string s. Note
that the complete sa-transition uses a as well as the whole string s, but the kth
partial sa-transition uses only the part s1; : : : ; sk of s. Some of these transi-
tions may be infeasible as discussed below. Under the preceding assumptions,
each state x ∈ E is a linear combinations of vectors in A. Assume that the
standard m-dimensional unit vectors form a basis that generates the vectors
in A and E. This is not a restriction, since one can always represent these
vectors by a basis and the form of the basis is not important here.

We assume the rates of these string transitions are as follows.

Type of transition Rate

complete sa-transition x→ Ts�l�ax λsaφs�l��x�,
kth partial sa-transition x→ Ts�k�0x λsa�φs�k��x� −φs�k+1��x��.

These transition rates can be viewed as the compounding of two rates as
follows. The nonnegative λsa is the rate at which an sa-transition occurs, where
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λ00 = 0. In addition, within an sa-transition, φs�l��x� is the nonnegative rate
of subtracting the complete vector s�l� from x and adding a; and φs�k��x� −
φs�k+1��x� is the rate of subtracting exactly s�k� (the kth partial of s) from x,
where 0 ≤ k < l. A compounding of these two rates yields the transition rates
above. The motivation for these types of rates will become clearer as we cover
examples. For each d ∈ S, the φd is a nonnegative function on the space E.
For convenience, we extend its definition to all integer-valued m-dimensional
vectors by setting φd�x� = 0, for x 6∈ E.

The preceding description says that whenever the Markov process X is
in state x, the times to the next complete sa-transition and kth partial sa-
transition are independent, exponentially distributed with rates shown in the
table above. Then the time to the next x → y transition is exponentially
distributed and its rate q�x;y� is the sum of appropriate sa-transition rates.
That is, the transition rates of the process X are

q�x;y� =
∑
s; a

λsarsa�x;y�; y 6= x in E;(1)

where

rsa�x;y� = φs�l��x�1�y = Ts�l�ax�

+
l−1∑
k=0

�φs�k��x� −φs�k+1��x��1�y = Ts�k�0x�; x; y ∈ E:
(2)

Here 1�statement� denotes the indicator function that is 1 or 0 according as
the “statement” is true or false. All sums on s; a herein are for s ∈ S and
a ∈ A, unless specified otherwise and

∑−1
k=0 = 0. Since a transition x → y

is possible under several combinations of subtractions and additions, its rate
q�x;y� is a sum of rates, some of which may be 0 due to the λsa, φd or the
indicator functions being 0. The rate functions λsa and φd as well as the sets
A and S can have a variety of forms depending on the routing and service
rules of the network. For instance, for a closed network, the rate λsa can be
positive only if �s�k�� = �a− s�l�� = 0, for 1 ≤ k < l.

Note that the rate of the exponential sojourn time in state x is
∑
y6=x

q�x;y� =
∑
s; a

λsa�φ0�x� − rsa�x; x��:(3)

This follows since
∑
y∈E

rsa�x;y� = φ0�x�;(4)

which is due to the telescoping series in (2) and the fact that the sum of the
indicators over y is 1.

To complete the definition of the process, more assumptions are in order.
First, we assume that

∑
s λsa <∞ for each a ∈ A. This and the finiteness of A

ensure that the rate (3) is finite. Second, we adopt the standard assumption
that the process is irreducible on the spaceE (otherwise, we could letE denote
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a closed communicating class). Finally, we assume the family of rate functions
φd, d ∈ S, satisfy the following properties.

8-Reversibility. There exists a positive function 8 on E such that

8�Tadx�φd�Tadx� = 8�x�φa�x�;
x ∈ E; d ∈ S and a ∈ A with

∑
s

λsa > 0:(5)

Domination of φ0. If L ≥ 2, then φ0�x� ≥ φa�x�, for each x ∈ E and a ∈ A.
Note that the φd’s are 8-reversible if they are of the form

φd�x� = γ�x− d�/8�x�; d ∈ S; x ∈ E;(6)

for some function γ that is nonnegative on E and is 0 outside of E. This form,
which has been used in many of the studies mentioned in the introduction, can
also be used to incorporate state-dependent routing probabilities [27]. These
φd’s also satisfy the φ0-dominance assumption when γ is nonincreasing and
each vector a ∈ A is nonnegative.

We adopt the name “8-reversibility” because if the φd are 8-reversible, then
a Markov jump process with transition rates q̃�x;y� = ∑

d;a∈Aφd�x�1�y =
Tdax� is reversible with respect to 8 [i.e., 8�x�q̃�x;y� = 8�y�q̃�y;x�]. Note
that (5) implies φa�x� = 0 when Tadx 6∈ E for some d ∈ S, because φd�x′� = 0
when x′ 6∈ E. This says that an sa-transition in state x is not feasible or is
blocked if any one of the possible new states resulting from a complete or
partial transition is not in E.

From the 8-reversibility and φ0-dominance, it follows that

8�T0dx�φd+a�T0dx� = 8�x�φa�x� ≤ 8�x�φ0�x�
= 8�T0dx�φd�T0dx�; d ∈ S; a ∈ A:

Thus φd�x� ≥ φd+a�x�. This ensures that the rates in the second sum in (1)
are not negative.

We say that the process X defined above with rates (1) that satisfy the
preceding assumptions is a Markov network process with string transitions or
a string-net. The data for this process are E, A, S , L, �λsax s ∈ S ; a ∈ A�
and �φd�·�x d ∈ S�. To model an actual network with this process, one would
specify this data from the operational features of the network.

3. Invariant measures of string-nets. In this section, we characterize
invariant measures of the process X when the polynomial “traffic equations”
(8) have a solution. These are equations of certain traffic flows, and conditions
under which they have a solution are given in the next section.

In addition to the notation above, we denote the rate of all string transitions
with s as the initial segment by

3s =
∑
s′; a

λ�ss′�a; s ∈ S ;(7)
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where the string �ss′� denotes the concatenation of the strings s and s′. We
sometimes use 3�sa� for sa ∈ S , where 3�0a� ≡ 3a. We are now ready for our
main result.

Theorem 1. If there exist positive numbers w1; : : : ;wm that satisfy

η�a�
∑
s

l∏
k=1

η�sk�3�sa� =
∑
s

l∏
k=1

η�sk�λsa; a ∈ A0 ≡ A\�0�;(8)

where η�x� = ∏m
j=1w

xj
j and the sums in (8) are finite, then π�x� = 8�x�η�x�,

x ∈ E, is an invariant measure for the network process X. Furthermore, a
necessary and sufficient condition for the process to have an invariant measure
of this form is

∑
a∈A0

D�a��φ0�x� −φa�x�η�a�−1� = 0; x ∈ E;(9)

where D�a� denotes the right side of (8) minus its left side.

In the two-part measure π�x� = 8�x�η�x�, the 8 is determined only by the
φa’s, and η is determined only by the λsa’s. This product or “weak coupling”of 8
and η comes from the product of the φa’s and λsa’s in the transition rates q and
the8-reversibility of the φa’s. This weakly coupled distribution π is sometimes
called a product form distribution because η has a geometric product form.
Note that π is indeed a product form if 8 is, which is the case for the classical
Jackson network. However, π may be any measure on E [e.g., the network
with φd�x� = π�x− d�/π�x� and λsa ≡ 1, has π as an invariant measure].

From a key identity (11) in the proof below, it follows that the summation in
(9) times π�x� is the difference between the two sides of the balance equations
for the process X (this should be 0 for the balance equations to be satisfied).
Note that the summation is a weighted average of the differences D�a� of the
two sides of the traffic equations (8). The weights φ0�x�−φa�x�η�a�−1, which
arise in (11), do not seem to have any special meaning.

Proof. The balance equations that an invariant measure π must satisfy
are

π�x�
∑
y∈E

q�x;y� =
∑
y∈E

π�y�q�y;x�; x ∈ E:(10)

The usual convention is that q�x; x� = 0, but here we define q�x; x� =∑
s; a λsarsa�x; x�. This does not affect the equality and it simplifies some ex-

pressions.
Let L�x� and R�x� denote the left and right sides of (10), respectively,

and suppose π�x� = 8�x�η�x�. The proof will proceed as follows. A short
calculation yields L�x� = π0�x�30, and more complicated analysis of R�x�
yields the identity

L�x� = R�x� + π�x�
∑
a6=0

D�a��φ0�x� −φa�x�η�a�−1�:(11)
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From this it follows that if D�a� = 0, a ∈ A0, then L�x� = R�x�, x ∈ E,
and hence π is an invariant measure of the process. This proves the first
assertion of the theorem. Also, π is an invariant measure if and only if the
last summation in (11) is 0. This proves the second assertion of the theorem.

It remains to prove (11). Using the transition rate formulas (1), (2) and the
property x = Tdd′y if and only if y = Td′dx, it follows that the right side of
(10) is

R�x� =
∑
y∈E

π�y�
∑
s; a

λsarsa�y;x� =
∑
s; a

π�Tas�l�x�λsarsa�Tas�l�x; x�

=
∑
s; a

π�Tas�l�x�λsaφs�l��Tas�l�x�

+
∑
s; a

l−1∑
k=0

π�T0s�k�x�λsa�φs�k��T0s�k�x� −φs�k+1��Tsk+1s�k+1�x��:

(12)

Here we also use our convention that the functions π and φd are defined to
be zero outside of E and that T0s�k�x = Tsk+1; s�k+1�x. Now, the 8-reversibility
assumption and π�x� = 8�x�η�x� and η�x+ y� = η�x�η�y�, ensure that

π�Tadx�φd�Tadx� = π�x�φa�x�η�d�η�a�−1; x ∈ E; a ∈ A; d ∈ S:(13)

Applying this to (12), we obtain

R�x� = π�x�
∑
s; a

η�s�l��η�a�−1λsaφa�x�

+ π�x�
∑
s; a

λsa

l−1∑
k=0

η�s�k���φ0�x� −φsk+1�x��:
(14)

To proceed, we need a convenient expression for the last sum on s; a; k.
Note that s = 0 has no contribution to the sum, and hence we ignore it. Also,
any s 6= 0 can be written as the concatenation s = �s′as′′� for some s′; s′′ ∈ S
and a ∈ A0. Now, make the change-of-variables sk+1 = a and sa = �s′as′′�a′
and reverse the order of the summations and recall the definition of 3s. Then
the last sum in (14) becomes

∑
s′; a6=0

η�s′�l′��
∑
s′′; a′

λ�s′as′′�a′ �φ0�x� −φa�x��

=
∑
s

η�s�l��
∑
a6=0

3�sa��φ0�x� −φa�x��:
(15)

Substituting this in (14) and recalling that D�a� equals the right side of (8)
minus its left side, we arrive at

R�x� = π�x�
∑
a6=0

φa�x�η�a�−1D�a�

+ π�x�φ0�x�
∑
s

η�s�l��
[
λs0 +

∑
a6=0

3�sa�

]
:

(16)
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Next, note that the left side of the balance equation (10), in light of (4), is

L�x� = π�x�
∑
s; a

λsa
∑
y∈E

rsa�x;y�

= π�x�
∑
s; a

λsaφ0�x� = π�x�φ0�x�30:
(17)

Now, using the fact that s′ 6= 0 can be expressed as s′ = �sas′′� for some
s; s′′ ∈ S and a ∈ A0, we have the identity

∑
s

η�s�l��3s = 30 +
∑
s6=0

η�s�l��3s = 30 +
∑
s; a6=0

η�s�l��η�a�3�sa�:(18)

Also, by its definition, 3s = λs0 +
∑
a6=0�λsa + 3�sa��. Substituting this in the

left side of (18) and using terms from its right side yields

30 =
∑
a6=0

D�a� +
∑
s

η�s�l��
[
λs0 +

∑
a6=0

3�sa�

]
:(19)

Finally, substituting this in (17) and using (16) yields the identity (11). 2

4. Traffic equations, partial balance and throughputs. This section
begins with insights into the existence of solutions to the traffic equations.
Next, we show that the traffic equations are equalities of certain average
flows in the network (a partial balance property). The section ends with an
expression for throughputs at the nodes.

Note that the hypothesis of Theorem 1 (the first sentence) is actually two
hypotheses.

1. There are positive γa, a ∈ A0, that satisfy

γa
∑
s

l∏
k=1

γsk3�sa� =
∑
s

l∏
k=1

γskλsa; a ∈ A0;(20)

where γ0 = 1 and these sums are finite.
2. γa =

∏m
k=1w

aj
j , a ∈ A0, for some positive numbers w1; : : : ;wm.

Let us first consider hypothesis 1. With a slight abuse of notation, interpret
A0 as an ordered set and view γ ≡ �γa; a ∈ A0� as a vector. Write (20) as
γaga�γ� = ha�γ�, where ga�γ� and ha�γ� denote the summations on the left
and right sides of (20) as functions of γ. In other words, (20) is the same as
γ = f�γ�, where f�γ� = �fa�γ�x a ∈ A0� is the vector-valued function defined
by fa�γ� = ha�γ�/ga�γ� for γ in the region where the numerator is finite and
the denominator is not zero. Here a vector inequality γ ≤ γ means γa ≤ γa for
each a ∈ A0 and 0 and 1 are the vectors of all zeros and all ones.

From the preceding observations, it follows that the set of solutions to (20)
is equal to the set of fixed points of f. Here is a general criterion for the
existence of a solution to (20) [i.e., a sufficient condition for hypothesis 1].
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Theorem 2. If there are vectors 0 ≤ γ < γ such that 0 < ga�γ� <∞,

γ
a
ga�γ� < ha�γ� and ha�γ� < γaga�γ�; a ∈ A0;(21)

then there exists a vector γ that satisfies (20) and γ < γ < γ.

Proof. Let C = �γx γ ≤ γ ≤ γ�. Since ga�γ� and ha�γ� are increasing in
γ, it follows that all the terms in (21) are finite and

γ
a
< ha�γ�/ga�γ� ≤ fa�γ� ≤ ha�γ�/ga�γ� < γa; γ ∈ C; a ∈ A0:

Thus, f maps C into C. Also, f is clearly continuous. Then f has a fixed point
γ ∈ C by Brouwer’s fixed-point theorem. Furthermore, γ < γ < γ, because of
the strict inequalities in the preceding display. 2

Theorem 2 is a framework for obtaining specific conditions for a solution
to (20) in terms of the structure of the λsa’s. Examples are in the following
sections. The next result is a simpler version of Theorem 2 when ga�0� > 0
and the existence of γ is guaranteed.

Corollary 3. There exists a positive solution to the traffic equations (20)
if the following conditions hold:

(a) The set A∗ = �a ∈ A0x λ0a > 0� is not empty and, for each a ∈ A0\A∗,
there is a s ∈ S such that λsa > 0 and sk ∈ A∗, for 1 ≤ k ≤ l.

(b) There is a positive vector γ such that ga�γ� <∞ and ha�γ� < γaga�0�.

[Open networks typically satisfy (a) and γ = 1 is often adequate for (b).]

Proof. Let γ = �γ
a
x a ∈ A0� be a vector in �0; γ� such that γ

a
< λ0a/ga�γ�,

for a ∈ A∗ and

γ
a
<
∑
s

l∏
k=1

γ
sk
λsa1�sk ∈ A∗; 1 ≤ k ≤ l�/ga�γ�; a ∈ A0\A∗:

Assumptions (a) and (b) ensure that 0 < ga�γ� < ∞. Since ga�γ� and ha�γ�
are increasing in γ, it follows that (21) holds. Thus, the assertion follows by
Theorem 2. 2

Now, consider the hypothesis (2) that the solution γ to (20) has the geometric
form γa =

∏m
k=1w

aj
j , a ∈ A0, for some positive w1; : : : ;wm. This hypothesis is

satisfied for the large class of networks discussed in the next sections with
strings composed of unit vectors. For the general case, we have the following
observation. The problem is to determine when there are positive w1; : : : ;wm
that satisfy the linear equations

log γa =
m∑
j=1

aj logwj; a ∈ A0;(22)
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for known γa’s. From a standard property of linear algebra, we have the fol-
lowing result.

Remark 4 (Geometric solutions). LetM denote the matrix whose rows are
vectors in A0 and let M′ denote the matrix M augmented by the column
�log γa�a∈A0

. Then there is a solution w1; : : : ;wm to (22) if and only if M and
M′ have the same rank, which is at most m. If they have the same rank and
it is less than m, then there are an infinite number of solutions. Uniqueness
is not important for our purposes. However, the solution is unique if M and
M′ have the same rank m, which is true when A0 consists of m linearly
independent vectors. 2

We now justify that equations (8) are traffic equations. Throughout the
rest of this section, we assume that the network process X is ergodic with
stationary distribution π�x�= c8�x�η�x�, where η�x� = ∏m

j=1w
xj
j and the wj’s

satisfy (8). Equations (8) for a 6= 0 along with the identity (19) imply

∑
a6=0

λ0a =
∑
s6=0

η�s�l��
[
λs0 +

∑
a6=0

3�sa�

]
; x ∈ E:(23)

This is the traffic equation for a = 0.
Recall that by the ergodic theorem for Markov processes, the quantity∑
�x;y�∈C π�x�q�x;y� is the average number of x → y transitions of X per

unit time, where �x;y� ∈ C. This average number of C-transitions, which is a
limiting average, is also the expected number of C-transitions in a unit time
interval when the process is stationary.

We shall consider two types of transitions related to the traffic equations.
For a ∈ A and x ∈ E, let λ̃a�x� denote the average number of transitions of
X per unit time in which the vector a is added to the state x such that the
transition leads to the new state x + a. We call λ̃a�x� the rate of exits from
x via an a-addition. Similarly, let λ̂a�x� denote the rate of entrances into x
via an a-subtraction: the average number of transitions of X per unit time in
which the process enters state x (during a transition) from a subtraction of
the vector a. Here are expressions for these rates.

Proposition 5 (Partial balance). For each x ∈ E,

λ̃a�x� =





π�x�φ0�x�
∑
s

η�s�l��λsa; if a 6= 0;

π�x�φ0�x�
∑
s6=0

η�s�l��
[
λs0 +

∑
a6=0

3�sa�

]
; if a = 0;

(24)

λ̂a�x� =





π�x�φ0�x�η�a�
∑
s

η�s�l��3�sa�; if a 6= 0;

π�x�φ0�x�
∑
a6=0

λ0a; if a = 0:
(25)
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Hence, the traffic equations (8), (23) are equivalent to

λ̂a�x� = λ̃a�x�; a ∈ A; x ∈ E:(26)

Expression (26) says the average number of entrances into x via an a-
subtraction is equal to (or balanced with) the average number of exits out of
x via an a-addition. The equivalence between this balance (26) of traffic flows
and the equations (8), (23) is the reason why we call the latter traffic equations.
The equality (26) is sometimes called a partial balance property for the process
since it is the balance equation (10) for only a part of the summation. Note that
(26) also implies that, for each fixed state x, the average number of entrances
into x via any a-subtraction equals the average number of exits from x via
any a-addition [namely

∑
a∈A λ̂a�x� =

∑
a∈A λ̃a�x�]. A similar sum on x, for

a fixed a, says the average number of a-subtractions is equal to the average
number of a-additions, regardless of the state x.

Proof. First consider the case a 6= 0. A transition of X in which the vector
a is added to a state x such that the transition leads to the new state x + a
is necessarily a complete sa-transition that starts from x + s�l� and lands in
x+ a, for any s ∈ S . Then by the comment above on the ergodic theorem for
Markov processes,

λ̃a�x� =
∑
s

π�x+ s�l��λsaφs�l��x+ s�l��:

This reduces, in light of (13), to the first line in (24). Next, note that a transition
of X in which it enters state x (during a transition) due to a subtraction of
the vector a can only happen when the process is in state x + s�l� + a and
a �sas′�a′-string transition occurs causing the process to enter state x at the
stage in which a is subtracted. Arguing as above,

λ̂a�x� =
∑
s

π�x+ s�l� + a�
∑
s′; a′

λ�sas′�a′φs�l�+a�x+ s�l� + a�

=
∑
s

π�x+ s�l� + a�3�sa�φs�l�+a�x+ s�l� + a�;

and this reduces to the first line in (25).
Now, consider the case a = 0. Since 0-additions involve complete s0-

transitions and other partial transitions as well, we have

λ̃0�x� =
∑
s6=0

π�x+ s�l��φs�l��x+ s�l��
[
λs0 +

∑
a6=0

∑
s′; a′

λ�sas′�a′

]

and this reduces to the second line in (24). Also, the second line in (25) clearly
follows since 0-subtractions only involve complete 0a-transitions. Finally, a
glance at (24), (25) and the traffic equations (8) and (23) verifies that the
traffic equations are equivalent to (26). 2

A measure of a network’s performance is its throughput vector �λ̃1; : : : ; λ̃m�,
where λ̃j denotes the average number of units per unit time that enter node



MARKOV NETWORK PROCESSES 805

j. Since the process is ergodic, λ̃j is also the average number of departures
per unit time from j.

Proposition 6 (Throughputs at nodes). The throughput at node j is

λ̃j =
∑
s; a

αaλsa

(
a+j +

l∑
i=1

�sij�−
)
+
∑
s; a

λsa

l−1∑
k=0

�α0 − αsk+1�
k∑
i=1

�sij�−;(27)

where αa =
∑
x π�x�φa�x�, y+ = max�0; y� and y− = −min�0; y�.

Proof. By the ergodic theorem for Markov processes, λ̃j=
∑
x;y π�x� ×

q�x;y�f�x;y�, where f�x;y� describes the number of arrivals to j in an x→ y
transition. That is,

λ̃j =
∑
x

π�x�
∑
s; a

λsaφs�l��x�1�x− s�l� + a ∈ E�
[
a+j +

l∑
i=1

�sij�−
]

+
∑
x

π�x�
∑
s; a

λsa

l−1∑
k=0

�φs�k��x� −φs�k+1��x��1�x− s�k� ∈ E�
k∑
i=1

�sij�−:

Now, by two uses of 8-reversibility and the structure of π, we have
∑
x

π�x�φs�k��x�1�x− s�k�+a ∈ E� =
∑
x

π�Tas�k�x�φs�k��Tas�k�x�η�a�η�s�k��−1

=
∑
x

π�x�φa�x� = αa:

Similarly,
∑
x

π�x�φs�k+1��x�1�x− s�k+ 1� − sk+1 ∈ E� = αsk+1 :

Then applying these equalities to the two sums on x in the preceding display
yields (27). 2

5. Processes with unit-vector string transitions. This section de-
scribes the results above when the increments in the network are unit vectors
instead of general vectors.

Suppose X is an open network process and its increment vectors consist of
the m-dimensional unit vectors e1; : : : ; em and e0 = 0. We say that the process
has unit-vector string transitions. In this case, the unit vectors are associated
with the node numbers and it is convenient to let A = �0;1; : : : ;m� denote
the node numbers instead of the vectors. Then s = �s1; : : : ; sl� is a string of
node numbers, s�k� = ∑k

i=1 esi and the rates are λsj, j ∈ A. The transition
rates and results above are the same, aside from the change in notation from
vectors to node numbers. For instance, the traffic equations (8) are

wj
∑
s

l∏
k=1

wsk
∑
s′; j′

λ�sjs′�j′ =
∑
s

l∏
k=1

wskλsj; 1 ≤ j ≤m:(28)
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The following is a combination of Theorems 1 and 2 for unit-vector string
transitions. Consider (28) written as wjgj�w� = hj�w�, where gj�w� and
hj�w� denote the summations on the left and right sides of (28) as functions
of w = �w1; : : : ;wm�.

Theorem 7. Suppose there there are vectors 0 ≤ w < w such that 0 <
gj�w� <∞,

wjgj�w� < hj�w� and hj�w� < wjgj�w�; 1 ≤ j ≤m:
Then there is a vector w that satisfies (28) and w < w < w. Moreover, π�x� =
8�x�∏m

j=1w
xj
j , x ∈ E, is an invariant measure for the network process X.

Note that this result is simpler than Theorems 1 and 2 because wj plays
the role of γa in Theorem 2 and hence there is no issue of verifying that γa is
a product.

For closed networks, unit-vector transitions make sense only for the case of
one-stage transitions (L = 1). One can also define analogous unit-vector tran-
sitions when the set A of increment vectors consists of only the negative unit
vectors or it consists of a combination of negative and positive unit vectors.

We now derive expressions for throughputs and service rates. For the rest
of this section, assume that the network process X is ergodic and denote its
stationary distribution by π�x� = c8�x�∏m

j=1w
xj
j . Let µ̃j denote the average

number of departures per unit time from node j when the node is not empty.
The λ̃j and µ̃j are often called the effective arrival and service rates for node
j and the ratio λ̃j/µ̃j is the traffic intensity.

Proposition 8. For the network process X with unit-vector string transi-
tions,

λ̃j =
∑
x

π�x�φj�x�
∑
s

λsj and µ̃j = λ̃j
/∑

x

1�ej ≤ x�π�x�:

Proof. The first expression is an obvious special case of (27). By the strong
law of large numbers for Markov processes, the effective departure rate is

µ̃j =
∑
x

λ̂j�x�
/∑

x

1�ej ≤ x�π�x�;

which is the average number of departures from j per unit time divided by
the portion of time j is nonempty. Then

∑
x λ̂j�x� = λ̃j by Proposition 5. 2

Another important performance measure of the network is the average so-
journ or waiting time of a unit in a node j of the network. This average is
defined by Wj ≡ limn→∞ n

−1∑n
ν=1Wj�ν�, where Wj�ν� is the waiting time in

j of the νth unit to enter j. We will use the average number of units in j,
which is Lj ≡

∑
x xjπ�x�. The Little law for Markovian systems (Theorem 25)

in [30] yields the following result.
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Proposition 9 (Little law for waiting times). If the network has unit-vector
string transitions and the state space contains a vector x with xj = 0; then
Wj exists and Lj = λ̃jWj. Here λ̃j is necessarily finite, but Wj and Lj may
both be finite or infinite. This assertion for averages also holds for expected
values when the system is stationary (or in equilibrium). In this case, Lj is the
expected number of units in j, the λ̃j is the expected number of units that enter
j in a unit time interval and Wj is the expected sojourn time for an arbitrary
unit in j under the Palm probability that a unit enters j at time 0.

Similar Little laws apply to batch arrivals into j, but more information is
needed on how the “order of units” in a batch affect their individual service
times. In these cases, one can state a law for all units labeled as the kth unit
within a batch arriving into j—the Wj and Lj would be the average waiting
times and queue lengths for these kth arrivals and λ̃j would be the arrival
rate of batches into j of size k or more. The expected waiting time in a sector
(subset of nodes) in a Jackson network is described in [30]. To obtain similar
results for vector-transitions, one would need more information on where each
unit in a batch actually moves; the net number of movements is not adequate
to describe waiting times as it is under single-unit movements.

The computation of throughputs, average waiting times and other perfor-
mance parameters, even for a Jackson network, is difficult for a moderate-
sized network. However, since there is a closed-form expression for the sta-
tionary distribution of the network, one can compute these parameters by
Monte Carlo simulation as discussed in [29] (the Metropolis Markov chain or
other reversible chains are natural choices for the simulation vehicle).

6. Networks with one-stage transitions. This section shows how the
results above apply to string-nets in which all of the strings are exactly of
length 1: each transition involves only one pair of addition–subtraction vectors.
A Jackson network is a special case in which the increment vectors are unit
vectors.

Consider the process X with strings exactly of length 1, which implies
S = S = A. Then all transitions are of the form x→ Tdax, for d;a ∈ A, and
the transition rates (1) become

q�x;y� =
∑

d;a∈A
λdaφd�x�1�y = Tdax�; x 6= y in E:(29)

In other words, whenever the process is in state x, the time to its next poten-
tial move to Tdax via a da-transition is exponentially distributed with rate
λdaφd�x�. The 8-reversibility assumption implies that φa�x� = 0, if Tadx 6∈ E
for some d ∈ A with λda > 0. Note that the φ0-dominance assumption is not
relevant since L = 1. We call X a network process with one-stage batch tran-
sitions—the vectors in A are the allowable batch increments in the process.

The following is Theorem 1 for the network process X with one-stage batch
transitions and transition rates (29), where φd are 8-reversible.
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Theorem 10. If γ = �γax a ∈ A� is a positive vector, with γ0 = 1, that
satisfies

γa
∑
d∈A0

λad =
∑
d∈A0

γdλda; a ∈ A0;(30)

and γa =
∏m
j=1w

aj
j , a ∈ A0, for some positive w1; : : : ;wm, then π�x� =

8�x�∏m
j=1w

xj
j ; x ∈ E, is an invariant measure for the process X. Further-

more, a necessary and sufficient condition for an invariant measure of this
form is

∑
a∈A0

D�a�
[
φ0�x� −φa�x�

m∏
j=1

w
−aj
j

]
= 0; x ∈ E;

where D�a� denotes the right side of (30) minus its left side.

In this case, the traffic equations (8) reduce to (30) because in 3�sa�, the s
must be 0 since L = 1, and 3�0a� =

∑
d∈A λad.

Note that (30) is a balance equation for a Markov process on the finite set
A0 with transition rates λad and hence there exists a positive solution γ to
the equation. The solution is a geometric product form under the criterion in
Remark 4.

According to Proposition 5, the measure π in Theorem 10 satisfies the par-
tial balance property

π�x�
∑
d∈A0

q�x;Tadx� =
∑
d∈A0

π�Tadx�q�Tadx; x�1�Tadx ∈ E�;

a ∈ A0; x ∈ E:
(31)

Here are two examples of the preceding theorem.

Example 11 (Jackson network processes). Consider the special case of the
process X with one-stage transitions and unit-vector increments (the set of
allowable increments are the m unit vectors plus 0). Its transition rates are

q�x;Tjkx� = λjkφj�x�; j; k ∈ A ≡ �0;1; : : : ;m�;

where Tjkx = x − ej + ek. Such a transition is usually viewed as a single
unit moving from node j to node k, although this can also represent many
units moving at once as long as the “net movement” in the transition results
in one less unit at j and one more unit at k. The φj�x� is called the depar-
ture rate (or service rate) at node j when the network is in state x and λjk
is the rate of a unit moving from j to k. We call X a Jackson network pro-
cess with system-dependent service rates. In the classical case where φj�xj�
is a function of only xj, these functions are automatically 8-reversible with
8�x� = ∏m

j=1
∏xj
n=1φj�n�−1. The assumption that the process is irreducible
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is equivalent to λjk being an irreducible matrix. Then the traffic equations,
which are

wj
∑
k∈A

λjk =
∑
k∈A

wkλkj; 1 ≤ j ≤m;

have a positive solution w1; : : : ;wm. Therefore, Theorem 10 contains the well-
known result that π�x� = 8�x�∏m

j=1w
xj
j is an invariant measure. The process

also satisfies the partial balance condition (31).

Example 12 (Independent concurrent movements of units). Henderson
and Taylor [23] introduced the following network process (they used slightly
different transition rates that are normalized to be probabilities). Let X de-
note the network process with one-stage, batch transitions with rates (29),
where A denotes a set of m-dimensional vectors. For simplicity, assume the
network is closed (the open case is similar). In a da-transition in state x, think
of φd�x� as the rate at which the batch d is released from the network and
λda as the rate in which d is changed into the addition batch a. To describe
the units in these vectors by their node locations, we define

I �d� =
{

i = �i1; : : : ; i�d��x
�d�∑
n=1

1�in = j� = dj; 1 ≤ j ≤m
}
;

which is the set of possible node indices that “represent” d.
Assume the units in the batch d move concurrently such that rjk is the rate

(probability or propensity) for a single unit in the batch to move from j to k in
the node set �1; : : : ;m� and that rj1; k1

· · · rj�d�; k�d� is the rate that the released
batch j ∈ I �d� results in the batch addition k ∈ I �a�, where �d� = �a�. This
rate is a compounding of the single-unit rates. Then the rate of a da-transition
in state x is λdaφd�x�, where

λda =
∑

j∈I �d�

∑

k∈I �a�
rj1; k1

· · · rj�d�; k�d�; d; a ∈ A with �d� = �a�:

Note that the probability of d and a being generated is λda/
∑
a λda, and

if the rjk’s are probabilities with
∑m
k=1 rjk = 1 for each j, then

∑
a λda =

�d�!/d1! · · ·dm!.
Assume the rates rjk are irreducible in the sense that there are positive

w1; : : : ;wm, that satisfy

wj

m∑
k=1

rjk =
m∑
k=1

wkrkj; 1 ≤ j ≤m:

Define η�x� = ∏m
j=1w

xj
j . Because the wj’s satisfy the preceding equations, we

have

η�a�
∑
d∈A

λad =
∑

j∈I �a�

∑
k1;:::;k�a�

wj1
rj1; k1

· · ·wj�a�rj�a�; k�a�

=
∑

j∈I �a�

∑
k1;:::;k�a�

wk1
rk1; j1

· · ·wk�a�rk�a�; j�a� =
∑
d∈A

η�d�λda; a ∈ A0:
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Therefore, by Theorem 10 it follows that π�x� = 8�x�η�x�, x ∈ E, is an in-
variant measure for the process.

7. Networks with compound-rate string transitions. A large class of
network processes with string transitions are those in which the rate λsa of
a sa-string is a product or compounding of several rates representing micro
features of the network. This section illustrates this class with an example of
a network in which a string is generated by a Markov chain mechanism. The
ideas here readily extend to a variety of networks with compound-rate string
transitions.

Consider the m-node network that operates as follows. The network is open
and its state space consists of all m-dimensional vectors with nonnegative
integer-valued entries. Units enter the network at the nodes according to in-
dependent Poisson processes with respective rates λ1; : : : ; λm; a zero rate for
a node means it has no external arrivals. The services at each node j are
independent and exponentially distributed with rate µj. The results below
also apply, with minor modifications, to general 8-reversible service rates and
closed or open networks with other types of state spaces.

A transition of the network is triggered by the movement of a single unit.
An external arrival to a node just adds one unit to the node and no other
units move. On the other hand, a service completion at a node may trigger
a transition in which single units are successively deleted from a string of
nodes s1; : : : ; sν and, at the end, one unit might be added to some node j
in A ≡ �0;1; : : : ;m�. All of this occurs instantaneously and the number of
deletions ν ≤ L is a stopping index that may be random.

The procedure for such a transition triggered by a service completion is
as follows. Whenever a normal service completes at some node s1 ∈ A0 ≡
A\�0� (with rate µs1

), then with probability Qs1j
one unit moves to some node

j ∈ A and the procedure stops, or with probability Ps1s2
, one unit exits the

network from node s1 and a signal goes to node s2 ∈ A0 to delete a unit there
provided that node is not empty [

∑
j�Pij + Qij� = 1 for each i]. If node s2

is empty or if L = 1, the procedure stops. Otherwise, the preceding events
are repeated until stopping. That is, for each k ≥ 1, the departure from node
sk, with probability Qskj

, adds one unit to node j and stops the procedure;
with probability Psksk+1

, it triggers another departure from node sk+1 provided
this node is nonempty and, if node sk+1 is empty or k = L, the procedure
stops. Think of Pij as probabilities of “propagating new departures” and Qij

as probabilities of “quitting” (or stopping) the string deletions.
In summary of the preceding description, typical transitions of the network

are as follows:

1. An arrival into node j from outside the network: x→ x+ ej.
2. String deletions stopped because node sk+1 is empty or k = Lx x → x −
es1
− · · · − esk .

3. String deletions stopped by the quitting probability Qskj
x x→ x−es1

−· · ·−
esk + ej.
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As in the previous sections, we let X denote the stochastic process rep-
resenting the numbers of units at the nodes. The data for this process are
the arrival rates λ = �λ1; : : : ; λm�, service rates µ = �µ1; : : : ; µm�, maximum
string length L, and propagating and quitting probabilities Pij, Qij. Define
P = �Pij� and Q = �Qij� for i; j ∈ A0. We also assume that the inverse of the
matrix I −Q exists, where I denotes the identity matrix. We will frequently
use the vector

λ̃ = λ�I−Q�−1;

whose entries are effective arrival rates, as we will soon see.
We first justify that this network process is a string-net.

Proposition 13. Under the preceding assumptions,X is a Markov network
process with unit-vector string transitions and its associated traffic equation
(28) in matrix form is

µ
L−1∑
n=0

�WP�nW = λ+ µ
L−1∑
n=0

�WP�nWQ;(32)

where W is a diagonal matrix with diagonal entries w1; : : : ;wm.

Proof. Because of the Poisson arrivals and exponential service times, the
network process is clearly Markovian. The rates of its sj-transitions are λ0j =
λj and, for s 6= 0,

λsj = 3sQslj
; j 6= 0 and λs0 = 3s

[
Qsl0 + 1�l = L�

∑
i

Psli

]
;

where 3s = µs1

∏l−1
k=1Psksk+1

. Now, consistent with its definition in the last
section, 30 =

∑
j�λj+µj� and, for s 6= 0, 3s =

∑
s′; j λ�ss′�j, which is the rate of

all string transitions whose first part is s.
Next note that the departure rate functions have the special form φj�x� =

1�ej ≤ x� because they must satisfy

φs�k��x� −φs�k+1��x� = 1�0 ≤ x− s�k�; 0 6≤ x− s�k+ 1��:

Clearly, these φj’s are 8-reversible with 8�·� = 1 and the φ0-dominance as-
sumption is satisfied. Under these specifications, X is a Markov network pro-
cess with unit-vector string transitions.

In this setting, the traffic equations (28) reduce to (32) since

wj
∑
s

η�s�l��3�sj� =
∑
s6=0

µs1

l−1∏
k=1

wskPsksk+1
wj1�sl = j�=

(
µ
L−1∑
n=0

�WP�nW
)

j

;(33)

∑
s

η�s�l��λsj =
(
λ+ µ

L−1∑
n=0

�WP�nWQ
)

j

: 2(34)
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The following characterization of solutions to the traffic equation is anal-
ogous to Theorem 2. We will use wj = λ̃j/µj, 1 ≤ j ≤ m. Recall that
λ̃ = λ�I−Q�−1.

Theorem 14. (a) Suppose L = ∞ and
∑∞
n=0�PW�n <∞, where

wj = λ̃j/�µ+ λ̃P�j; 1 ≤ j ≤m:
Then w1; : : : ;wm is the unique solution to the traffic equation (32).

(b) Suppose L < ∞ and
∑∞
n=0�PW�n < ∞. Then there exists a solution w

to the traffic equation (32) in the open rectangle �0;w�. Futhermore, let wn

denote a sequence of vectors defined by w0 = 0 and wn+1 = h�wn�, where
h�w� = �h1�w�; : : : ; hm�w�� and

hj�w� = �λ̃+ µ�WP�LW�j/�µ+ λ̃P�j; w ∈ C ≡ �0;w�; 1 ≤ j ≤m:
Then wn is a nondecreasing sequence whose limit is the minimal solution to
the traffic equation (32) (any other solution is greater than or equal to this
limit).

Proof. First note that by subtracting the right side of (32) from its left
and dividing by I−Q, this traffic equation can be written as

µ
L−1∑
n=0

�WP�nW = λ̃:(35)

Now, assume the assumptions in part (a) hold. Multiplying both sides of
(35) on the right by the matrix �I − PW� yields µW = λ̃ − λ̃PW. That is,
�µ+ λ̃P�W = λ̃, for w ∈ C. This proves the assertion in part (a).

Next, assume L < ∞. Note that equation (35) is the same as f�w� = w,
where f�w� = �f1�w�; : : : ; fm�w�� is defined by

fj�w� = λ̃j
/(

µ
L−1∑
n=0

�WP�n
)

j

; w ∈ C; 1 ≤ j ≤m:

Clearly f is positive, continuous, nonincreasing and its range is contained
in C since 0 < f�w� < w. Then, by Brouwer’s fixed point theorem, f has
a fixed point in C and hence this point is a solution to the traffic equation
(35). Furthermore, this solution is in the open rectangle �0;w� since this set
contains the range of f.

For the rest of the proof, we need another representation of the traffic equa-
tion (35). Multiplying both sides of it on the right by the matrix �I−PW� yields

µ�I− �WP�L�W = λ̃− λ̃PW; w ∈ C:(36)

Writing this as �µ+ λ̃P�W = λ̃+µ�WP�LW and recalling the definition of h in
part (b), it is clear that the traffic equation (35) is equivalent to w = h�w�, for
w ≥ 0. Hence the solutions to (35) are the same as the fixed points of h. Since h
is non-decreasing, it follows by induction that wn is a nondecreasing sequence.
Then the limit w∗ = limn→∞wn exists. Now, as n→∞ in wn+1 = h�wn�, the
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continuity of h ensures that w∗ = h�w∗�. Thus w∗ is a solution to the traffic
equation (35). It remains to show that if w′ is any solution to the equation,
then w∗ ≤ w′. To prove this, it suffices to show that wn ≤ w′ for each n. But
this follows by induction, since w0 = 0 ≤ w′ and, assuming wn ≤ w′ for some
n, then wn+1 = h�wn� ≤ h�w′� = w′ because h is nondecreasing. 2

Obtaining a solution of the traffic equation by successively computing
wn+1 = h�wn� is very efficient; wn converges to its limit very fast.

The next result describes invariant measures for the network process and
it says that the process is ergodic if the arrival rates to the nodes are less than
the service capacities of the nodes.

Theorem 15. Suppose the vector w is a solution to the traffic equation (32)
and 0 < w < w. Then

∏m
j=1w

xj
j , x ≥ 0, is an invariant measure for the process

X. This process is ergodic if and only if 0 < w < 1. In particular, the process
is ergodic if λ̃ < µ, and, in case L = ∞, the process is ergodic if and only if
λ̃ < µ+ λ̃P. When the process is ergodic, its stationary distribution is

π�x� =
m∏
j=1

�1−wj�w
xj
j ; x ≥ 0:

In addition, λ̃ is the throughput vector and the vector of average numbers of
units that depart from the respective nodes per unit time when they are busy is

µ̃ =





µ+ λ̃P; if L = ∞;

µ
L∑
n=0

�WP�n; if L <∞:
(37)

Also, wj = λ̃j/µ̃j, which follows by the traffic equation, is the traffic intensity
at node j.

Proof. The first two assertions follow by Theorems 1 and 14 [recall that
8�·� = 1] and the fact that

∏m
j=1w

xj
j is finite if and only if wj < 1 for each j. If

λ̃ < µ (i.e., w < 1), then by Theorem 14 we know that there is a solution w to
the traffic equation that satisfies 0 < w < 1; hence the process X is ergodic.
The assertion for the case L = ∞ also follows by Theorem 14.

Now, assume that X is ergodic. By Proposition 5, we know that the effective
arrival rate to j is

∑
s η�sl�λsj. Then this rate equals λ̃j, since the equalities

of (33) and (34) along with (35) yield

∑
s

η�sl�λsj =
(
µ
L−1∑
n=0

�WP�nW
)

j

= λ̃j:

Next, observe that Proposition 8 says that the effective departure rate from
j is

λ̃j

/∑
x

1�ej ≤ x�π�x� = λ̃j/wj:
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Then this average equals µ̃j defined by (37) since µ̃j = w−1
j λ̃j by the traffic

equation (32). 2

8. Networks with multiple, compound-rate string transitions. In
this section, we discuss string-nets with compound-rate string transitions for
multiple types of string initiations. We also discuss processes in the literature
that are examples of string-nets.

Consider the network process X in the previous section with the following
generalizations:

1. There are multiple types of services or string initiations indexed by i ∈ I ,
and µ�i� = �µ1�i�; : : : ; µm�i�� denotes the type i service rates at the nodes.

2. A type i service completion generates a string of deletions and a possible
addition as before, but now the propagation and quitting probabilities de-
pend on the stage k and index i. Specifically, a kth departure from node
sk may trigger a departure from node sk+1 with probability Psksk+1

�i; k� or,
with probability Qskj

�i; k�, it may add one unit to j and then quit. With
no loss in generality, the maximum string length L is independent of i.

The following result is analogous to Theorem 15. The condition (40) for
ergodicity is that the arrival rates λ̃�I� into the nodes are less than the service
rates µ̃�0�.

Theorem 16. The process X described above is a string-net and its traffic
equation is µ̃�W�W = λ̃�W�, where

λ̃�W� = λ+
∑
i∈I

µ�i�
L−1∑
n=0

[ n∏
k=1

WP�i; k�
]
WQ�i; n+ 1�;(38)

µ̃�W� =
∑
i∈I

µ�i�
L−1∑
n=0

[ n∏
k=1

WP�i; k�
]
:(39)

If λ̃�W� < µ̃�0�W = ∑
i∈I µ�i�W for some m × m diagonal matrix W with

positive diagonal entries, then there is a solution w to the traffic equation in
�0;w�. In particular, if

λ̃�I� <
∑
i∈I

µ�i�;(40)

then there exists a solution w to the traffic equation in �0;1�, and hence the pro-
cessX is ergodic and its stationary distribution is π�x�=∏m

j=1�1−wj�w
xj
j ; x≥

0, and λ̃�W� and µ̃�W� are the effective arrival and service rate vectors.

Proof. The traffic equation µ̃�W�W = λ̃�W� is the obvious analogue of
(32). The rest of the proof follows similarly to that of Theorems 14 and 15
because a solution of the traffic equation is a fixed point of the vector-valued
function

f�w� = �λ̃�W�1/µ̃�W�1; : : : ; λ̃�W�m/µ̃�W�m�; w ∈ �0;w�: 2
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The rest of this section is devoted to examples of the preceding theorem.
We start with a case that can be treated as in the last section.

Example 17 (Homogeneous propagation and quitting probabilities). Con-
sider the process described above in which all the propagating and quitting
probabilities are Pjk and Qjk, respectively. Then the traffic equation is the
same as that in Proposition 13 with µ =∑i µ�i�. Consequently, the assertions
of Proposition 13 and Theorems 14 and 15 apply automatically. This model
with L = ∞ was studied in [8], but the authors did not establish the exis-
tence of the wj’s. We now know by Theorem 14 that the wj’s are given by
wj = λ̃j/�µ+ λ̃P�j, 1 ≤ j ≤m. We also now understand the model for L <∞,
which had not been considered before.

Another special situation of interest is when the propagating and quitting
matrices are homogeneous and equal to P and Q, respectively, after the first
stage. Then (38) and (39) reduce to

λ̃�W� = λ+
∑
i∈I

µ�i�
[
WQ�i;1� +WP�i;1�

L−2∑
n=0

�WP�nWQ
]
;(41)

µ̃�W� =
∑
i∈I

µ�i�
[
I+WP�i;1�

L−2∑
n=0

�WP�n
]
:(42)

The following are examples of this case.

Example 18 (Regular and negative units with two-stage strings). This ex-
ample was the subject of [11]–[13]. Consider the process described above in
which there are regular and negative units (types 1 and 2) with two-stage
strings (L = 2) that evolve as follows. Whenever a regular unit finishes a
service at node i with rate µ�1�i, it either enters a node j with probability
Q′ij for another service, or the unit becomes a negative unit and enters node
j with probability Pij. If this negative unit encounters no units at j, nothing
more happens. Otherwise, one unit is deleted from j and one regular unit
enters a node k with probability Qjk (entering k = 0 means the unit exits the
network). In addition, negative units from outside enter the nodes according
to independent Poisson processes with rates µ�2� = �µ�2�1; : : : ; µ�2�m�. If a
negative unit entering i encounters no units there, then nothing more hap-
pens; otherwise, one unit is deleted from i and one regular unit enters a node
k with probability Qjk. In terms of the notation above,

P�1;1� = P; Q�1;1� = Q′; Q�1;2� = Q = Q�2;1�;
P�1;2� = P�2;1� = P�2;2� = Q�2;2� = 0:

Then Theorem 16 applies with (41), (42) reduced to

λ̃�W�=λ+µ�1��WQ′+WPWQ�+µ�2�WQ; µ̃�W�=µ�1�+µ�2�+µ�1�WP:
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The sufficient condition for ergodicity is

�λ+ µ�1��Q′ +PQ� + µ�2�Q�j < �µ�1� + µ�2��j; 1 ≤ j ≤m:
This process was developed in [11], [13], [14]. The model in [11] assumed a
negative customer did not generate a regular service [i.e., Q�2;1� = 0], and
the existence of a solution to the traffic equations was established later in
[16]. The authors considered a fixed point for two types of traffic intensities
for positive and negative customers in traffic equations that are different from
ours but represent essentially the same flow balance. The model in [13] is the
one above with different notation and without the sufficient condition for ergo-
dicity. And the model in [14] incorporates the situation in which a signal at a
node may trigger a batch (instead of a single unit) to exit the network from
that node, similar to the model in the next section. Another extension to batch
arrivals as well as batch departures, comparable to those in the next section, is
in [21].

Example 19 (Regular and negative units with infinite strings). Consider
the process related to (41), (42) in which L = ∞ and all the propagation
and quitting probability matrices are P, Q except for those at the first stage.
Clearly

∑∞
n=0�WP�n = �I −WP�−1 exists for W ≤ I, provided that �I − P�−1

exists. In this case, Theorem 16 applies and the sufficient condition for ergo-
dicity is
(
λ+

∑
i∈I

µ�i��Q�i;1� +P�i;1��I−P�−1Q�
)

j

<
∑
i∈I

µ�i�j; 1 ≤ j ≤m:

Although we know the traffic equations have a solution, we cannot obtain a
closed-form expression for it as we did in Example 17. Chao and Pinedo [8]
studied the special case of this process with I = �1;2�, and P�2;1� = P and
Q�2;1� = Q, but they did not establish the existence of a solution to the traffic
equations.

9. String-nets with two-node batch transitions. In this section, we
discuss string-nets in which a transition involves a batch deletion at a single
node and a batch addition at another single node.

Suppose the string-net X is such that each element of A is of the form
a = nej and each nonzero string in S is of the form s = �ei · · · ei� (l copies of
ei), where 0 ≤ j ≤m, n ≥ 1 and l ≤ ∞. This means that for such a pair sa, the
complete and partial transitions are x→ x− lei+nej or x→ x−kei. We say
that X has two-node string transitions since exactly two nodes are affected
in a transition. We write λsa = λli; nj. Under an sa-transition with s = eiei : : :
and l = ∞, all units from node i would be cleared out and we denote its rate
simply by λ∞i. Such a “clearing” transition might represent a dispatching or
assembly of units (or a catastrophe [5]) that clears out all units at i. Here we
let γ = �γnjx 1 ≤ j ≤m; n ≥ 1� denote the vector γ in Theorem 2 and γ0j = 1.
Also, the summations on l are the conventional ones that do not include a
term for l = ∞; this term is treated separately.
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Theorem 20. For the network process X with two-node batch transitions,
the traffic equations (8) are

γnj

∞∑
l=0

γlj�rn+l; j + λ∞j� =
∑
li

γliλli; nj; 1 ≤ j ≤m; n ≥ 1;(43)

where rk; j ≡
∑
l′≥k

∑
n′j′ λl′j;n′j′ . If these equations have a solution of the form

γnj = wnj , for some positive w1; : : : ;wm, then π�x� = 8�x�∏m
j=1w

xj
j , x ∈ E, is

an invariant measure for the process.

Proof. This follows by Theorem 1, where the traffic equations (8) reduce
to (43) since, for any sa = li, nj, the 3�sa� = rn+l;j1�i = j� for l < ∞ and
3�sa� = λ∞j1�i = j� for l = ∞. 2

Here are a few examples.

Example 21 (Open Jackson process with periodic clearing). Suppose the
process X with two-node batch transitions has strings of only length 1 or ∞
andA=�e1; : : : ; em�. Then all transitions are standard Jackson types (x→x−
ei+ ej) or there is a clearing (x→ x−xiei). The rates of these transitions are

q�x; x− ei + ej� = φj�x�λi; j; q�x; x− xiei� = φi�x�λ∞i:(44)

We call X a Jackson network process with periodic clearing. Without loss in
generality, assume that λi; j is an irreducible matrix.

Theorem 22. Suppose the process X with transition rates (44) satisfies∑
x8�x� < ∞. Then it is ergodic and its stationary distribution is π�x� =

c8�x�∏m
j=1w

xj
j , x ∈ E, where w0 = 1 and w1; : : : ;wm in �0;1� satisfy the

traffic equations

wj

[∑
i

λj; i + λ∞j
∞∑
ν=0

wνj

]
=
∑
i

wiλi; j; 1 ≤ j ≤m:(45)

Furthermore, the effective arrival and service rates, λ̃j and µ̃j, for node j are
given by the sums on the right and left sides of (45), respectively.

Proof. First note that equations (45) are clearly a special case of the traffic
equations (43). We will consider (45) written as wjgj�w� = hj�w� and apply
Theorem 2 to justify that it has a solution. To this end, let w be a vector in
�0;1� that satisfies

wj
∑
i

λj; i =
∑
i

wiλi; j; 1 ≤ j ≤m:

Define A∗ = �jx λ0;j > 0�. This set is not empty because λi; j is irreducible.
Let w be a vector in �0;w� such that

wj < λ0; j/gj�w�; j ∈ A∗;
wj <

∑
i∈A∗

wiλij/gj�w�; j ∈ �1; : : : ;m�\A∗:
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From the definition of w and these inequalities, it follows that

wjgj�w� < hj�w� and hj�w� = wj
∑
i

λj; i < wjgj�w�; 1 ≤ j ≤m:

From these inequalities and Theorem 2, it follows that (45) has a solution
w ∈ �0;1�. Then the first assertion of the theorem follows by Theorem 1. Also,
Proposition 8 justifies, as in the proof of Theorem 15, that (45) is the same as
wjµ̃j = λ̃j. 2

Example 23 (Assembly networks). Consider the string-net described in
Theorem 22 with the following features. Units arrive to the nodes by in-
dependent Poisson processes with rates λ1; : : : ; λm. Services at node i are
exponential with rate µi. When a service at i completes, Ki units, if available
at i, are assembled into one unit and sent to node j with probability Qij. If
there are less than Ki units at i, then all the units at i are assembled into
one defective unit and discarded (sent to node 0). Then the process X that
represents the numbers of units at the nodes has two-node batch transitions.
Its traffic equations (43) are

wjµj

Kj−1∑
l=0

wlj = λj +
m∑
i=1

µiw
Ki

i Qij; 1 ≤ j ≤m:

Then Theorem 22 applies in this setting under the assumption that

λj +
m∑
i=1

µiQij < Kjµj;

which says that the service capacity at node j is greater than the arrival rate.
This model was introduced in [10] but did not establish the existence of a
solution to the traffic equation.

Example 24 (Batch assembly-transfer networks). Consider the preceding
assembly network with the following generalizations. Batches of units enter
the network at node j according to a Poisson process with rate λj, and aj�n� is
the probability that the batch is of size n. Services at node i are exponential
with rate µi and bi�l� is the probability that a batch of size l is requested;
Qli; nj is the probability that a batch of size l departing from i becomes a
batch of n units that enters node j. The resulting process is a string-net with
two-node batch transitions and

λ0; nj = λjaj�n�; λli; nj = µibi�l�Qli; nj; φnej�x� = 1�nej ≤ xj�:

By Theorem 20, its traffic equations (43) are

γnjµj

∞∑
l=0

γlj

∞∑
l′=n+l

bj�l′� = λjaj�n� +
m∑
i=1

µi

∞∑
l=1

γlibi�l�Qli; nj;

1 ≤ j ≤m; n ≥ 1:
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This process is the subject of [26] and [7], which gives insights into the process
when it does not have a stationary distribution.

10. Further examples. In this section, we describe one-dimensional pro-
cesses with string transitions. In addition to giving more insight into string
transitions, these processes for single nodes can be used as building blocks for
networks, comparable to quasi-reversible nodes that are coupled together to
form networks. We end by discussing how the results herein apply to multiple
types of units.

Example 25 (One-dimensional process with string transitions). Consider
the Markov network process X for the special case in which the network
consists of a single node. For simplicity, assume that the state space is E =
�0;1;2; : : :� and that each increment of a string transition is of unit length.
In this setting, a complete sa-transition is x→ x−s+a, and a kth partial sa-
transition is x→ x− k, where a ∈ �0;1� and the string s now denotes s unit
subtractions. Then the transition rates (1) of the process X are q�x; x+ 1� =
λ01φ0�x� and

q�x; x− k� =
∑
a=0;1

λk+a; a
[
φk+a�x� +φk�x� −φk+1�x�

)

= λk;0�2φk�x� −φk+1�x�� + λk+1;1φk�x�; 0 < k < x:

Theorem 1 justifies that π�x� = 8�x�wx is an invariant measure for the pro-
cess, where w > 0 satisfies

L−1∑
s=0

ws+13s+1 =
L∑
s=0

wsλs1;(46)

and 3s =
∑L
s′=s�λs′0+λs′1�. Clearlyw is the unique positive solution to (46) since

this equation is equivalent to
∑L
s=1w

s�λs0 + 3s+1� = λ01, which has a unique
solution. Note that the process is positive recurrent if and only if 0 < w < 1.
A special case of this model is as follows.

Example 26 (A simple production-inventory system). Consider a produc-
tion system whose cumulative output over time is a Poisson process with
rate λ. As the units are produced, they are put in inventory to satisfy ran-
dom demands. Let X�t� denote the quantity of units in inventory at time t.
Whenever there are x units in inventory, the time to the next demand has
an exponential distribution with rate µ and the demand is for k units with
probability pk, where k ≤ L. Also, the probability that the demand can be
satisfied is P�Z ≤ x − k�Z ≤ x�, where 1 ≤ k ≤ min�x;L�. Think of Z as a
nonnegative integer-valued random variable that denotes a feasible inventory
level. Then the process X is clearly a Markov process, its nonzero transition
rates are q�x; x+ 1� = λ and

q�x; x− k� = µpkP�Z ≤ x− k�Z ≤ x�; 1 ≤ k ≤ min�x;L�:
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An easy check shows that this process is a special case of the preceding ex-
ample in which

λs0 = 0; λ01 = λ; λk+1;1 = µpk; φk�x� = P�Z ≤ x�:

Therefore, π�x� = 8�x�wx, x ≥ 0, is a stationary distribution, where w is the
unique solution to

∑L
s=1w

s�ps + · · · + pL−1� = λ/µ.

Remark 27 (Multiple types of units). Networks with multiple types of
units are naturally represented by doubly indexed states x = �xcjx 1 ≤ j ≤
m; c ∈ C�, where xcj denotes the number of units of class or type c at node
j. The definition of string transitions extends to this setting by simply us-
ing double indices on the increment vectors, strings and rate functions (e.g.,
a = �acj� and λs;cj). Then all of the results herein apply.

For networks with unit-vector strings, a common assumption is that if a c-
unit at node j initiates a transition, then the transition rate (such as the ones
we have been discussing) is multiplied by the portion pcj�x� = xcj/

∑
c′ xc′j of

c-units at j. These functions are clearly 8′-reversible, where

8′�x� =
∏
c; j

∑
c′
xc′j!/xcj!:

In this case, the invariant measures for the network process are of the form
8′�x�8�x�∏cjw

xcj
cj . In other words, this multiplication by 8′�x� is the only

basic difference between the homogeneous unit and multiple unit processes.
This explains the presence of the product 8′�x� in distributions for multiple
units; see for instance [8] or [16].
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