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We study an investment decision problem for an investor who has
available a risk-free asset (such as a bank account) and a chosen risky
asset. It is assumed that the interest rate for the risk-free asset is zero.
The amount invested in the risky asset is given by an Itô process with
infinitesimal parameters µ�·� and σ�·�, which come from a control set. This
control set depends on the investor’s wealth in the risky asset. The wealth
can be transferred between the two assets and there are charges on all
transactions equal to a fixed percentage of the amount transacted. The
investor’s financial goal is to achieve a total wealth of a > 0. The objective
is to find an optimal strategy to maximize the probability of reaching a
total wealth a before bankruptcy. Under certain conditions on the control
sets, an optimal strategy is found that consists of an optimal choice of a
risky asset and an optimal choice for the allocation of wealth (buying and
selling policies) between the two assets.

1. Introduction. Consider a stochastic process �X;Y� satisfying the
stochastic differential equation

�1:1�
dX�t� = µ�t�dt+ σ�t�dW�t� + dL�t� − dU�t�;
dY�t� = −�1+ α�dL�t� + �1− λ�dU�t�

and the initial condition �X�0−�;Y�0−�� = �x;y�. Here �W�t�x t ≥ 0� is a
standard Brownian motion on some probability space ��;F ;P�, adapted to a
right-continuous filtration �Ft; t ≥ 0�. Each Ft is contained in F , is indepen-
dent of �W�t + s� −W�t�y s ≥ 0� and contains all P-null sets. The processes
µ�t� and σ�t� are assumed to be real valued, �Ft� adapted and to satisfy

�1:2�
∫ t

0
��µ�s�� + σ2�s��ds <∞ a.s. for every t > 0:

The processes L�t� and U�t� are assumed to be right continuous with left lim-
its (RCLL), nonnegative, nondecreasing and adapted to �Ft�. The quantities
α and λ are two positive constants and 0 < λ < 1.

In our optimal control problem, the processes µ�·�; σ�·�;L�·� and U�·� are
considered as control processes. We restrict our attention to those control pro-
cesses that yield nonnegative processes X�t� and Y�t� in (1.1). Furthermore,
if �X�t�;Y�t�� = �0;0� for some t > 0, then �X�t�;Y�t�� is absorbed at �0;0�.
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In our motivating examples, the process X�t� represents the amount in-
vested in a risky asset at time t, and Y�t� represents the amount in a risk-free
bank account (with zero interest rate). We allow transactions between X and
Y with proportional transaction costs. The real numbers α and λ account for
proportional transaction costs incurred whenever wealth is transferred from
one asset to the other. At a given time t, the nominal value of the risky in-
vestment is X�t�, but due to the transaction costs, the amount received by
the investor by selling the risky asset is �1−λ�X�t�. Hence, the effective total
wealth of the investor at time t is given by �1−λ�X�t�+Y�t�. The state �0;0�
for the �X;Y� process is considered to be the bankruptcy state. The processes
L�t� and U�t� represent the cumulative wealth transferred to and from the
risky asset during �0; t�, respectively. Note that

X�0� = x+L�0� −U�0�;
Y�0� = y− �1+ α�L�0� + �1− λ�U�0�

and �X�0�;Y�0�� may differ from �X�0−�;Y�0−�� because of a transaction at
time zero.

Let a > 0 be the finanical goal of the investor, where a > 0 is a positive con-
stant. The optimal control problem is to find processes µ�·�, σ�·�, L�·� and U�·�
to maximize the probability that the total wealth �1− λ�X�t� +Y�t� reaches
goal a before �X�t�;Y�t�� reaches the origin (i.e., to maximize the probability
that the total wealth reaches the financial goal a > 0 before bankruptcy).

There are no further restrictions on the processes L and U, but the possible
choices of µ and σ are determined by a collection �C�r�x 0 ≤ r ≤ a/�1− λ��
of nonempty subsets of R×R+. The controller is required to choose the pair
�µ;σ� at time t from the control set C�r� whenever X�t−� = r. More precisely,
we assume that �µ�t�; σ�t�� lies in C�X�t−�� for all t > 0.

Let 6�x;y� be the collection of all nonnegative processes ��X�t�;Y�t��x t ≥
0� described above and which are available to a controller with the initial
condition �X�0−�;Y�0−�� = �x;y�. Assume that 6�x;y� is nonempty for each
�x;y� with 0 ≤ �1− λ�x+ y ≤ a and define the value function V�x;y� by

�1:3� V�x;y�= sup
{
P��1−λ�X+Y reaches a before 0�x �X;Y� ∈6�x;y�

}
;

where ��1− λ�X+Y reaches a before 0] represents the event [there exists a
t > 0 such that �1 − λ�X�t� +Y�t� ≥ a and min�0; t��1 − λ�X�s� +Y�s� > 0].
The key to the definition of an optimal choice for �µ;σ� is the function

�1:4� ρ�x� = sup
{
µ

σ2
x �µ;σ� ∈ C�x�

}
for 0 ≤ x ≤ a

1− λ:

In a number of related optimal control problems [8, 10, 14], it has been proved
optimal to choose the controls �µ;σ� at each x so that µ/σ2 attains the supre-
mum ρ�x�. We conjecture that this choice of µ and σ remains optimal for a
more general class of problems than considered in this article. We will ver-
ify this under the assumption that ρ is a continuous decreasing function on
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�0; a/�1− λ��. This conjecture is also true when there are no transaction costs,
[i.e., λ = α = 0 in (1.1)] and this problem is treated in [8] under a more general
assumption that ρ is a continuous function.

Throughout this article we assume that the function ρ is continuous, de-
creasing and can be written in the form

�1:5� ρ�x� = µ0�x�
σ0�x�2

for 0 ≤ x ≤ a

1− λ:

Furthermore, µ0 and σ0 are continuous functions on �0; a/�1− λ��, σ0�x� > 0
for all x, and �µ0�x�; σ0�x�� belongs to C�x� for each x in �0; a/�1− λ��. These
[i.e., (1.4), (1.5) and that ρ is continuous decreasing] are the only assumptions
we impose on the control sets �C�x�x 0 ≤ x ≤ a/�1− λ��. These control sets
can be unbounded in general. The functions µ0 and σ0 will select the optimal
µ and σ .

To describe our optimal strategy, let us define the function ϕ�x� = S′�x� +
2ρ�x�S�x�−��1− λ�/�1+ α�� on the interval �0; a/�1− λ��. Here S is the scale
function and is given by S�x� =

∫ x
0 exp�−2

∫ r
0 ρ�u�du�dr and S′ is its deriva-

tive.
Case 1. If ϕ�a/�1− λ�� ≥ 0, then our optimal strategy is quite simple: choose

µ0 and σ0 to satisfy (1.5). Control the process X as a reflecting diffusion
process with coefficients �µ0; σ0� and with reflection at zero by choosing U to
be identically zero and L to be the local time process of X at origin.

Case 2. If ϕ�a/�1− λ�� < 0, then since ϕ is continuous, we can find a value c
on �0; a/�1− λ�� such that ϕ�c� = 0. Again choose µ0 and σ0 to satisfy (1.5). In
this case, it is optimal to keep the processX in the interval �0; c� as a reflecting
diffusion process with coefficients �µ0; σ0� and with reflections at 0 and c (with
a possible initial jump). More precisely, let �X�0−�;Y�0−�� = �x;y�. If 0 ≤
x ≤ c, then X process is a reflecting diffusion process with reflections at 0
and c and hence L and U are given by the local time processes of X at 0
and c, respectively. If x > c, then there is an initial jump to �X�0�;Y�0�� =
�c; y + �1 − λ��x − c�� and then the process follows the strategy defined for
the case 0 ≤ x ≤ c. In this case, L is the local time process of X at zero,
U�0� = x− c and U�t� −U�0� is the local time of X at c for t > 0. The details
are in Section 4.

There are only a few solvable optimal control problems with transaction
costs available in the literature [2, 3, 4, 13, 16]. Most of them are related to
utility maximization problems and use the standard financial model µ�x� = µx
and σ�x� = σx. Our objective function is quite different from theirs, but resem-
bles those studied in [8], [14] and [15]. In [3], Davis and Norman constructed
an optimal investment and consumption policy for a utility maximization prob-
lem with proportional transaction costs. They showed that the optimal trans-
action policy is to stay in a cone with a “local time” type transaction policy at
each boundary. Our optimal strategy is similar to that of [3]. But instead of
a cone, our optimal policy is to stay in a trapezoid. For a detailed account on
the available literature on the utility maximization problems with transaction
costs, we refer the reader to Section 1 of [13] and to [2].
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In the next section we describe two examples which motivate the results of
this article.

Similar to many optimal control problems in the literature, first we formu-
late an appropriate verification lemma in Section 3. The Hamilton–Jacobi–
Bellman equation related to our problem reduces to the form

�1:6� max
{
Qxx + 2ρ�x�Qx; Qx − �1+ α�Qy; �1− λ�Qy −Qx

}
= 0

on the region E = ��x;y�x x ≥ 0; a > y ≥ 0; �1− λ�x+ y ≤ a�, together with
the boundary conditions Q�x;y� = 1 if �1−λ�x+y = a and Q�0;0� = 0. With
our closed form expressions for the value function V, it is easy to see that V
is a C2-solution of the above Hamilton–Jacobi–Bellman equation. In Theorem
4.5, we observe that a free boundary for (1.6) is given by a vertical line x = c
where the constant c depends only on ρ; λ and α, but it does not depend on
the goal a. Furthermore, it is easy to verify the “principle of smooth fit” across
the line x = c by using the explicit closed form expressions for the value
function.

2. Two applications.

Example 1. Consider an investment model with one risky asset, which
we call a stock, and a risk-free bank account. The interest rate for the bank
account is zero. LetX1�t� be an investor’s holding in the stock at time t ≥ 0 and
Y1�t� be the amount in the investor’s bank account at time t ≥ 0. The investor
begins with an initial endowment X1�0−� = x; Y1�0−� = y. The funds can
be transferred between two assets for a transaction fee. This transaction cost
is proportional to the amount transferred and the constants of proportionality
are different for the two assets. Similarly to the problems studied in [3], [13],
we also assume that the cumulative transaction cost during �0; t� is a function
of bounded variation in t.

It is assumed that there is a constant δ > 0 so that X1�t� ≥ δ and Y1�t� ≥ 0
(no loans are allowed) for all t ≥ 0. [In particular, X1�0−� = x ≥ δ.] If X1�t� =
δ for some t, it is necessary to transfer funds from Y1 to keep X1 above the
value δ. Therefore �X1�t�;Y1�t�� = �δ;0� is considered as the bankruptcy
situation and hence �δ;0� is an absorbing state for the process �X1;Y1�. We
use the standard financial model [i.e., µ�t� = µ0X1�t� and σ�t� = σ0X�t� in
(1.1)] to represent X1�t� and Y1�t�. More precisely,

�2:1�
dX1�t� =X1�t��µ0 dt+ σ0 dW�t�� + dL�t� − dU�t�;

dY1�t� = −�1+ α�dL�t� + �1− λ�dU�t�;

and �X1�0−�;Y1�0−�� = �x;y�, where �W�t�x t ≥ 0� is a standard Brown-
ian motion adapted to a filtration �Ft� on a probability space ��;F ;P� and
L and U are nonnegative, adapted, right-continuous, nondecreasing control
processes. The constants µ0, σ0, α and λ are all known to the investor.
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Let g be the financial goal of the investor. The investor’s total wealth at
time t is given byZ1�t� = �1−λ�X1�t�+Y1�t�. [It is assumed g > �1−λ�x+y >
�1− λ�δ > 0.] The only available controls are the two increasing processes L
and U, and the investor’s objective is to maximize the probability that the
total wealth Z�t� reaches the goal of g dollars before bankruptcy.

Our results give an explicit solution to this problem when µ0 > 0. To make
use of Theorems 4.3, and 4.5, introduce the processes X�t� = X1�t� − δ and
Y�t� = Y1�t�.

Hence

�2:2�

dX�t� = �X�t� + δ��µ0 dt+ σ0 dW�t�� + dL�t� − dU�t�

dY�t� = −�1+ α�dL�t� + �1− λ�dU�t� and

�X�0−�;Y�0−�� = �x− δ;y�:
Introduce Z�t� = �1− λ�X�t� +Y�t� = Z1�t� − �1− λ�δ, and let a = g − �1−
λ�δ > 0. Now �X;Y� agree with (1.1) and the problem described before. In
this case, the collection of control sets �C�r�x 0 ≤ r ≤ a/�1− λ�� is given by
C�r� = ���r+δ�µ0; �r+δ�σ0�� for each 0 ≤ r ≤ a/�1− λ�. The control problem
here is to find an optimal choice for L and U to maximize the probability
that the Z�t� process reaches a before 0, that is, to maximize the probability
P�Z reaches a before 0��X�0−�;Y�0−�� = �x − δ;y��, where �Z reaches a
before 0] represents the event �Z�t� ≥ a and min�0; t�Z�s� > 0 for some t ≥
0�. Also notice that the event Z�t� = 0 is same as �X�t�;Y�t�� = �0;0�. To
describe the optimal choices which follow from our results, we introduce ρ0 =
µ0/σ

2
0 . Hence the function ρ�x� defined in (1.4) and (1.5) is given by [using

(1.2)],

�2:3� ρ�x� = ρ0

�x+ δ� :

Since µ0 > 0, the function ρ�x� is decreasing. The scale function S�x� for
the X-process in (2.2) is therefore defined by S�x� =

∫ x
0 exp�−2

∫ r
0 ρ�u�du�dr.

We introduce the function ϕ�x� by

�2:4� ϕ�x�=S′�x�+2ρ�x�S�x�−
(

1−λ
1+α

)
where S′ is the derivative of S:

Since ρ�x� is strictly decreasing, it is easy to check that ϕ is also strictly
decreasing.

One can easily check that

�2:5� ϕ�x�=





1
�1− 2ρ0�

(
δ

x+ δ

)2ρ0

− 2ρ0

�1− 2ρ0�

(
δ

x+ δ

)
−
(

1− λ
1+ α

)
;

if ρ0 6=
1
2
;

(
δ

x+ δ

)(
1− log

(
δ

x+ δ

))
−
(

1− λ
1+ α

)
; if ρ0 =

1
2
:
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Hence ϕ�a/�1− λ�� = ϕ�g/�1− λ� − δ� and

ϕ

(
g

�1− λ� −δ
)
=





1
�1− 2ρ0�

( �1− λ�δ
g

)2ρ0

− 2ρ0

( �1− λ�δ
g

)
−
(

1− λ
1+ α

)
;

if ρ0 6=
1
2
;

( �1− λ�δ
g

)[
1− log

( �1− λ�δ
g

)]
−
(

1− λ
1+ α

)
; if ρ0 =

1
2
:

If ϕ�a/�1− λ�� ≥ 0, it follows from Theorem 4.3, that it is optimal to choose
U�t� ≡ 0 and L�t� to be the local time process for X�t� reflecting at the origin.

If ϕ�a/�1− λ�� < 0, since ϕ�0� = �λ+ α�/�1+ α� > 0 and ϕ is strictly
decreasing, there is a unique point c such that 0 < c < a/�1− λ� and ϕ�c� = 0.
Theorem 4.5 implies that if X�0−� = �x− δ� ≤ c, then it is optimal to run the
X process as a reflecting diffusion process with reflecting barriers at x = 0
and x = c. Hence, an optimal choice for L and U processes is to take L�·� to be
the local time process of X at the origin and U�·� to be the local time process
of X at the point c. If X�0−� = �x − δ� > c and Y�0−� = y, initially jump to
X�0� = c; Y�0� = y+�1−λ���x−δ�− c� and then follow the optimal strategy
described above.

The constraint X1�t� ≥ δ > 0 is essential for two reasons. First, if δ = 0,
then ρ�x� defined in (1.4) and (2.3) is not continuous on �0; a/�1− λ�� (in fact,
it is unbounded near the origin), and hence it will not satisfy our assumptions
in (1.5). Second, if δ = 0 and µ0 ≥ σ2

0/2, then the choice L�t� ≡ 0, U�t� ≡ 0
is an optimal choice, since it yields X�t� > 0 for all t, supt>0X�t� = +∞, and
the value function V�x;y� ≡ 1 for all �x;y�.

Our next example is closely related to an example encountered by Browne
[1]. This leads to an “incomplete market” due to the correlation of two Brow-
nian motions involved here. For a more detailed description of the model, we
refer to [1].

Example 2. Consider a firm, such as a property liability insurance com-
pany or a pension management company, having a risk obligation and wishing
to achieve a certain financial goal before going bankrupt. The firm is obligated
to a risk process R�t�, which is the revenue from the obligation minus claims
up to time t. The firm can store its cash reserves in an interest-free bank
account or invest in a risky asset, which we call a stock. The price process of
the stock at time t is given by S�t�. We assume it is possible to transfer funds
between the stock and the bank account with proportional transaction costs.

This model without transaction costs and with a different objective was
studied by Browne [1]. Also [1] gives details and related references about
the diffusion approximation theory for the net claims process and the wealth
process of such an insurance company.
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The processes R�t� and S�t� satisfy

�2:6� dR�t� = δdt+ βdW1�t�
and

�2:7� dS�t� = S�t��θdt+ bdW2�t��;
where δ;β; θ and b are constants. Here W1�t� and W2�t� are two correlated
standard Brownian motions on some probability space ��;F ;P� adapted to
a right continuous filtration �Ftx t ≥ 0�. Their correlation coefficient is r and
E�W1�t�W2�t�� = rt. Each Ft is contained in F , and is independent of the
increments ��W1�t + s� −W1�t�; W2�t + s� −W2�t��y s ≥ 0� and contains all
P-null sets.

Let f be an investment policy and consider Xf�t� to be the amount invested
in the stock at time t under the policy f. For any policy f, we assume that
Xf�t� ≥ 0, so that the company does not borrow money to invest in the stock.
Hence

�2:8� dXf�t� =Xf�t��θdt+ bdW2�t�� + dR�t� + dLf�t� − dUf�t�;
where Lf�·� and Uf�·� are adapted, right-continuous, nondecreasing control
processes and represents the transactions from and to the bank account, re-
spectively. The amount Yf�t� in the bank account at time t is nonnegative and
satisfies

�2:9� dYf�t� = −�1+ α�dLf�t� + �1− λ�dUf�t�;
where α and λ are constants. Equation (2.8) can be rewritten in the form

dXf�t� = �δ+ θXf�t��dt+
√
β2 + 2rbβXf�t� + �bXf�t��2 dB�t�

+ dLf�t� − dUf�t�;
where �B�t�x t ≥ 0� is a Brownian motion adapted to the filtration �Ft� and
the increment process �B�t + s� − B�t�x s ≥ 0� is independent of Ft (Protter
[12], page 80). Under a policy f, the total wealth of the company at time t is
given by

�2:10� Zf�t� = �1− λ�Xf�t� +Yt�t�;
subjected to the available controlled transaction processes Lf�·� and Uf�·�.
The objective of the company is to reach a goal of financial level a before
reaching a bankruptcy state Zf�t� = 0 for some t > 0. Hence it would like to
maximize the probability P�Zf reaches a before 0�Xf�0−� = x; Yf�0−� = y�.

With our setting, the control sets in this example are described by
C�z� = ��δ + θz;

√
β2 + 2rbβz+ b2z2�� for each 0 ≤ z ≤ a/�1− λ�. In

this situation, the function ρ defined in (1.4) can be written as ρ�z� =
�δ+ θz�/�β2 + 2rbβz+ b2z2� for 0 ≤ z ≤ a/�1− λ�. Using our results in
Section 4, we are able to derive optimal strategies for Lf and Uf, when ρ is
decreasing.
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3. A verification lemma. It is convenient to formulate the problem
in two dimensions with the state space E = ��x;y�x x ≥ 0; a > y ≥ 0;
�1 − λ�x + y ≤ a� where the x- and y-coordinates represents the processes
X�t� and Y�t�, respectively.

Let �X;Y� be an available process in 6�x;y�, τ be any stopping time and
ϕ�x;y� be a function which is twice continuously differentiable on an open set
in �2 which contains the set E. Then Itô’s rule for RCLL semi-martingales
(e.g., [9], [11]; see also equation (4.7) of [13]) applied to ϕ�X�t�;Y�t�� yields,

�3:1�

ϕ�X�t ∧ τ�;Y�t ∧ τ��

= ϕ�X�0−�;Y�0−�� +
∫ t∧τ

0

∂ϕ

∂x
�X�s−�;Y�s−��σ�s�dW�s�

+
∫ t∧τ

0

(
1
2
σ2�s�∂

2ϕ

∂x2
+ µ�s�∂ϕ

∂x

)
�X�s−�;Y�s−��ds

+
∫ t∧τ

0

(
∂ϕ

∂x
− �1+ α�∂ϕ

∂y

)
�X�s−�;Y�s−��dLc�s�

+
∫ t∧τ

0

(
�1− λ�∂ϕ

∂y
− ∂ϕ
∂x

)
�X�s−�;Y�s−��dUc�s�

+
∑

0≤s≤t∧τ
�ϕ�X�s�;Y�s�� − ϕ�X�s−�;Y�s−���;

where

Lc�t� ≡ L�t� −
∑

0≤s≤t
�L�s� −L�s−��;

Uc�t� ≡ U�t� −
∑

0≤s≤t
�U�s� −U�s−��

and

t ∧ τ = min�t; τ�:
Notice that the processes Lc�·� and Uc�·� denote the continuous parts of

L�·� and U�·� respectively.
Now we formulate a verification lemma, which will be adequate for our

purposes.

Lemma 3.1. Let Q�x;y� be a function defined on an open set G which con-
tains the set E. Assume that:

(i) Q is a nonnegative twice-differentiable function on the set E;
(ii) Q�0;0� = 0; Q�x;y� ≥ 1 if �1− λ�x+ y = a, and �x;y� is in E;

(iii) max��∂2Q/∂x2� + 2ρ�x��∂Q/∂x�; �∂Q/∂x� − �1+ α��∂Q/∂y�; �∂Q/∂y� −
�1− λ��∂Q/∂x�� ≤ 0 and ∂Q/∂x ≥ 0 on E, where ρ is given by (1.4).

Then Q�x;y� ≥ V�x;y� for every �x;y� in E, where V is the value function
defined in (1.3).
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Remark 3:2. (i) Proof of this verification lemma is similar to that of [14].
(ii) Since α > 0; 0 < λ < 1, condition (iii) of the lemma implies that ∂Q/∂x

and ∂Q/∂y are both nonnegative.

Proof. Let �x;y� be in E and �X;Y� belong to 6�x;y�. Then �X;Y� sat-
isfies (1.1). Introduce the stopping time τ by

�3:2�
τ = inf

{
t ≥ 0x �1− λ�X�t� +Y�t� ≥ a or �X�t�;Y�t�� = �0;0�

}

= +∞ otherwise:

Let any �a; b� in E. If l > 0 such that �a+ l; b−�1+α�l� also in E, then from
condition (iii) of the lemma, we have

�3:3� Q�a+ l; b− �1+ α�l� −Q�a; b� ≤ 0:

Similarly, if l > 0 such that �a− l; b+ �1− λ�l� also in E then

�3:4� Q�a− l; b+ �1− λ�l� −Q�a; b� ≤ 0:

Thus (3.3) and (3.4) yield

�3:5� Q�X�s�;Y�s�� −Q�X�s−�;Y�s−�� ≤ 0 for all s ≥ 0:

We apply Itô’s lemma to Q�X�t�;Y�t�� as in (3.1). We use condition (iii) of
the verification lemma and (3.5) to obtain

E�Q�X�t ∧ τ�;Y�t ∧ τ���

≤Q�x;y�+E
[∫ t∧τ

0

1
2
σ2�s�

(
Qxx+2

µ�s�
σ2�s�Qx

)
�X�s−�;Y�s−��ds

]
:

(3.6)

By assumption (iii), we know ∂Q/∂x ≥ 0 on E. Hence, using (1.4), we get

�3:7�

(
Qxx + 2

µ�s�
σ2�s�Qx

)
�X�s−�;Y�s−��

≤ �Qxx + 2ρ�X�s−��Qx��X�s−�;Y�s−��:
However, the expression in the right-hand side is less than or equal to zero,
from condition (iii) of the verification lemma. This together with (3.6) yields

E�Q�X�t ∧ τ�;Y�t ∧ τ��� ≤ Q�x;y�:
Now employing conditions (i) and (ii) of the verification lemma and applying

Fatou’s lemma, it follows that

�3:8� P��1− λ�X�τ� +Y�τ� ≥ a��X�0−�;Y�0−�� = �x;y�� ≤ Q�x;y�:
Taking the supremum over all available processes in 6�x;y� in the left-hand

side of (3.8), we derive

V�x;y� ≤ Q�x;y�:
This complete the proof. 2

In the next section we employ this verification lemma to prove the optimal-
ity of our chosen candidate for an optimal strategy.
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4. Optimal strategies. Consider the function ρ�·� given in (1.4). We de-
fine the corresponding scale function S�·� by

�4:1� S�x� =
∫ x

0
exp

(
−2

∫ r
0
ρ�u�du

)
dr for 0 ≤ x ≤ a

�1− λ� :

Let us introduce a candidate for an optimal strategy which we call “timid
play.” In this strategy the controller always uses µ0�·� and σ0�·� given in (1.5)
for the infinitesimial drift and diffusion coefficients, respectively. The process
U�t� defined in (1.1) is chosen to be identically zero, and the process L�·� in
(1.1) is chosen to be the local time process of X�t� process at the origin. More
precisely, timid play is represented by the process �X∗;Y∗� which satisfies

�4:2�
dX∗�t� = µ0�X∗�t��dt+ σ0�X∗�t��dW�t� + dL�t� and

dY∗�t� = −�1+ α�dL�t�;

where W�t� is a one-dimensional Brownian motion, and L�·� is the local time
process of X∗ at the origin. This strategy is introduced in [14] and is optimal
for the problems considered in [8] and [14]. Next, we introduce the total wealth
process Z∗ by

�4:3� Z∗�t� = �1− λ�X∗�t� +Y∗�t�:

Our next lemma gives the pay-off probability from the timid-play strategy.

Lemma 4.1. Let �X∗;Y∗� be the timid-play strategy defined above and Z∗

be as given in (4.3). Define Q�x;y� by

�4:4� Q�x;y� = P
[
Z∗ reaches a before 0��X∗�0−�;Y∗�0−�� = �x;y�

]
;

then

�4:5�
Q�x;y� = 1−

(
1− S�x�

S��a− y�/�1− λ��

)

× exp
(
− 1

1+ α
∫ y

0

1
S��a− r�/�1− λ�� dr

)
;

where S is the scale function defined in (4.1).

Proof. Let �X∗;Y∗� be the solution to (4.2). Introduce the stopping time
τ by

τ = inf
{
t ≥ 0x Z∗�t� ≥ a or �X∗�t�;Y∗�t�� = �0;0�

}

= +∞ otherwise.

Then τ is finite a.s., since L�·�, the local time for X∗ approaches infinity as t
goes to infinity.
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Consider the differential equation

�4:6�

∂2Q

∂x2
�x;y� + 2ρ�x�∂Q

∂x
�x;y� = 0 for all �x;y� in E;

∂Q

∂x
�0; y� − �1+ α�∂Q

∂y
�0; y� = 0 for 0 < y < ay

Q�x;y� = 1 if �1− λ�x+ y = a and �x;y� is in E and

Q�0;0� = 0:

Equation (4.6) can be solved explicitly; the solution is given by (4.5). Next
we apply Itô’s lemma (3.1) to Q�X∗�t ∧ τ�;Y∗�t ∧ τ�� to obtain

E
[
Q�X∗�t ∧ τ�;Y∗�t ∧ τ����X∗�0−�;Y∗�0−�� = �x;y�

]
= Q�x;y�:

Since 0 ≤ Q ≤ 1, by letting t tend to infinity and using the bounded conver-
gence theorem, we obtain

E
[
Q�X∗�τ�;Y∗�τ����X∗�0−�;Y∗�0−�� = �x;y�

]
= Q�x;y�:

Hence using the boundary data for Q, (4.4) and (4.5) follow. 2

In our next lemma, we discuss some properties of a function ϕ which are
very important in establishing our optimal strategies. Let

�4:7� ϕ�x� = S′�x� + 2ρ�x�S�x� −
(

1− λ
1+ α

)
for 0 ≤ x ≤ a

1− λ;

where S is given by (4.1) and S′ is the derivative of S.

Lemma 4.2. Consider the function ϕ defined by (4.7) on �0; a/�1− λ��. Then

(i) ϕ�0� > 0;
(ii) ϕ is decreasing on �0; a/�1− λ��.

Proof. (i) ϕ�0� = �λ+ α�/�1+ α� > 0 since S�0� = 0 and S′�0� = 1, where
S is given by (4.1).

(ii) First we consider the case where ρ is differentiable. Since ρ is decreasing,
it yields ρ′�x� ≤ 0 on �0; a/�1− λ��. Using the fact that S′′�x�+2ρ�x�S′�x� = 0,
by direct computation it yields ϕ′�x� = 2ρ′�x�S�x� ≤ 0. Hence ϕ is decreasing
on �0; a/�1− λ��.

For the general case, first we approximate ρ by a sequence of functions �ρn�
such that (a) each ρn is continuous and decreasing on �0; a/�1− λ��, differen-
tiable on �0; a/�1− λ�� and (b) limn→∞ ρn�x� = ρ�x� for 0 ≤ x ≤ a/�1− λ�. Now
we define Sn�x� for ρn analogous to (4.1). It is evident that limn→∞Sn�x� =
S�x� and limn→∞S

′
n�x� = S�x�. Hence we introduce �ϕn� by

ϕn�x� = S′n�x� + 2ρn�x�Sn�x� −
(

1− λ
1+ α

)
for 0 ≤ x ≤ a

1− λ:
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Then limn→∞ ϕn�x� = ϕ�x� on �0; a/�1− λ��, and from the above argument
it follows that ϕ′n�x� = 2ρ′n�x�Sn�x� ≤ 0, and hence each ϕn is decreasing.
Therefore ϕ�x� is also decreasing on �0; a/�1− λ��. 2

Next, in Theorem 4.3 we prove that the “timid-play” strategy is indeed
optimal under the assumption ϕ�a/�1− λ�� ≥ 0. Theorem 4.5 gives an optimal
strategy if ϕ�a/�1− λ�� < 0.

Theorem 4.3. Assume that

(i) the function ρ defined in (1.4) is decreasing on �0; a/�1− λ��;
(ii) ϕ�a/�1− λ�� ≥ 0 where ϕ is given by (4.7).

Then the “timid-play” strategy is optimal.

Proof. With the explicit formula for Q given in (4.5), Q can be easily
extended to an open set G containing E. Therefore, to prove timid play is
optimal, it is enough to verify conditions (i), (ii) and (iii) of the verification
lemma. Conditions (i) and (ii) are evident from the formula (4.5) for Q. It
remains to verify condition (iii).

The requirement ∂Q/∂x ≥ 0 on E is obvious from (4.5).
Since the scale function S satisfies the differential equation S′′�x� +

2ρ�x�S′�x� = 0 on �0; a/�1− λ��, using (4.5), one can directly verify that

�4:8� ∂2Q

∂x2
�x;y� + 2ρ�x�∂Q

∂x
�x;y� = 0 for �x;y� in the interior of E:

Next, let us verify that ��∂Q/∂x� − �1+ α��∂Q/∂y�� ≤ 0 on E.
First we assume that ρ�·� is differentiable on �0; a/�1− λ�� and ρ′�x� ≤ 0,

since ρ is decreasing. Notice that (4.5) can be written in the form

�4:9� Q�x;y� = A�y�S�x� +B�y�;
where

�4:10� A�y� = 1
S��a− y�/�1− λ�� exp

(
− 1

1+ α
∫ y

0

1
S��a− r�/�1− λ�� dr

)

and

�4:11� B�y� = 1−S
(
a− y
1− λ

)
A�y�:

Hence
(
∂Q

∂x
− �1+ α�∂Q

∂y

)
�x;y�

= A�y�S�x�
[(
S′�x� − 1
S�x�

)

− ���1+ α�/�1− λ��S
′��a− y�/�1− λ�� − 1�

S��a− y�/�1− λ��

]
:

(4.12)
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Introduce g�x� = �S′�x� − 1�/S�x� on �0; a/�1− λ�� and notice that g′�x� =
�S′�x�/S�x�2��1 − S′�x� − 2ρ�x�S�x��. Set h�x� = S′�x� + 2ρ�x�S�x�. Then
h�0� = S′�0� = 1 and h′�x� = 2ρ′�x�S�x� ≤ 0 on �0; a/�1− λ��. In the
above computations for g′ and h′, we have used S′′�x� + 2ρ�x�S′�x� = 0 on
�0; a/�1− λ��. Now, since h is decreasing, and h�0� = 1, we have h�x� ≤ 1 on
�0; a/�1− λ�� and therefore g′�x� > 0 on �0; a/�1− λ��. This implies that g is
increasing.

Hence

�4:13�

S′�x� − 1
S�x� ≤ S

′��a− y�/�1− λ�� − 1
S��a− y�/�1− λ��

≤ ��1+ α�/�1− λ��S
′��a− y�/�1− λ�� − 1

S��a− y�/�1− λ�� on E;

since x ≤ �a− y�/�1− λ� on E and S and S′ are nonnegative.
Consequently, (4.12) and (4.13) imply that

�4:14�
(
∂Q

∂x
− �1+ α�∂Q

∂y

)
�x;y� ≤ 0 on E:

To remove the differentiability assumption, we follow the same approximation
procedure as in the proof of Lemma 4.2. Hence (4.14) remains true for any
decreasing ρ.

It remains to verify

�4:15�
(
�1− λ�∂Q

∂y
− ∂Q
∂x

)
�x;y� ≤ 0 on E:

Using (4.9), (4.10) and (4.11), and by a direct computation, we get

�4:16�
(
�1− λ�∂Q

∂y
− ∂Q
∂x

)
�x;y� = A�y�S�x�

[
f�x� − f

(
a− y
1− λ

)]
;

where f�x� = ���1−λ�/�1+α��−S′�x��/S�x� for 0 < x ≤ a/�1−λ�. Therefore,
to obtain (4.15) it is sufficient to show that f is increasing on �0; a/�1− λ��.

However, f′�x� = �S′�x�/�S�x��2�ϕ�x� on �0; a/�1− λ�� where ϕ is given in
(4.7). By Lemma 4.2, ϕ is decreasing on �0; a/�1− λ��; hence ϕ�x� ≥ ϕ�a/�1−
λ�� and ϕ�a/�1 − λ�� ≥ 0 from assumption (b). Consequently f′ ≥ 0, and f is
increasing on �0; a/�1− λ��. This yields (4.15) on E.

The inequalities (4.8), (4.14) and (4.15) verify condition (iii) of the verifi-
cation lemma. Therefore it follows that Q�x;y� ≥ V�x;y� on E, where Q is
given by (4.5) and V is the value function given by (1.3). But �X∗;Y∗� belongs
to 6�x;y� and hence Q�x;y� ≤ V�x;y� on E.

This enables us to conclude that Q�x;y� = V�x;y� on E and hence the
timid play is optimal. 2

Finally, we consider the situation ϕ�a/�1− λ�� < 0, where ϕ is given by
(4.7). In this case, our optimal strategy is more complicated than the timid
play strategy.
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First, notice that since ϕ is decreasing, ϕ�0� > 0 and ϕ�a/�1− λ�� < 0,
there is a point c such that 0 < c < a/�1− λ� and ϕ�c� = 0. By integrating the
differential equation S′′�x� + 2ρ�x�S′�x� = 0 and using the form of ϕ in (4.7),
it can be easily shown that the point x = c is unique if ρ is strictly decreasing.
Furthermore, if ϕ�c1� = ϕ�c2� = 0 and c1 < c2 then ρ is constant on �c1; c2�.
In this case, we may choose any point c satisfying ϕ�c� = 0, and the pay-off
probability from our candidate for an optimal strategy remains the same for
any c between c1 and c2. We use this point c to describe our candidate for the
optimal strategy.

In this strategy, the controller always uses µ0�·� and σ0�·� given in (1.5), for
the infinitesimal drift and diffusion coefficient respectively. If the initial data is
�x;y� and if 0 ≤ x ≤ c, then the processes L and U defined in (1.1) are chosen
to be the local time processes of X process with the reflection barriers at the
origin and at x = c, respectively. If x > c, then at time 0, make an initial jump
for the �X;Y� process from �x;y� to �c; y+�1−λ��x− c�� and then follow the
strategy described for the case 0 ≤ x ≤ c. Therefore, for simplicity, we consider
the initial position to be �c; y + �1 − λ��x − c�� if x > c. Hence the candidate
�X∗;Y∗� for our optimal strategy satisfies

�4:17�
dX∗�t� = µ0�X∗�t��dt+ σ0�X∗�t��dW�t� + dL�t� − dU�t�;
dY∗�t� = −�1+ α�dL�t� + �1− λ�dU�t�

with the initial condition

�4:18� �X∗�0�;Y∗�0�� = �x ∧ c; y+ �1− λ��x− c�+�;
and W�t� is a one-dimensional Brownian motion, L and U are the local time
processes of the reflecting diffusion process X∗ at origin and x = c, respec-
tively.

We compute the pay-off probability from the �X∗;Y∗� process in our next
lemma.

Lemma 4.4. Let �X∗;Y∗� be the strategy defined in (4.17) and (4.18). Define
Q�x;y� by

�4:19� Q�x;y� = P
[
Z∗ reaches a before 0��X∗�0�;Y∗�0�� = �x;y�

]
;

where Z∗ represents the total wealth process and is given by Z∗�t� = �1 −
λ�X∗�t� +Y∗�t�, for all t ≥ 0. Introduce y0 = a− �1− λ�c. Then

�4:20� Q�x;y�=





U�x;y�
U�c; y0�

; if 0≤x≤ c; 0≤y≤y0 and �x;y� in E;

1− S�c�A�y0�
U�c; y0�

(
1− S�x�

S��a−y�/�1−λ��

)
g�y�;

if y≥y0 and �x;y� in E;

U�c; y+�1−λ��x− c��
U�c; y0�

; if x≥ c and �x;y� in E,
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where A�y� = exp�−2ρ�c�/�1− λ�y�, g�y� = exp��−1/�1+ α��
∫ y
y0

1/S��a− r�/
�1 − λ��dr�;U�x;y� = A�y�S�x� + 1/�1+ α�

∫ y
0 A�r�dr and S is the scale

function defined in (4.1).

Proof. First we consider 0 ≤ x ≤ c; 0 ≤ y ≤ y0 and �x;y� in E. With this
initial condition �x;y�, notice that �X∗;Y∗� can reach the line �1−λ�x+y = a
only at �c; y0�. Hence we solve the differential equation

�4:21�

∂2Q

∂x2
�x;y� + 2ρ�x�∂Q

∂x
�x;y� = 0 for 0 < x < c; 0 < y < y0;

and �x;y� in Ey
∂Q

∂x
�0; y� − �1+ α�∂Q

∂y
�0; y� = 0; 0 < y < y0y

�1− λ�∂Q
∂x
�c; y� − ∂Q

∂y
�c; y� = 0; 0 < y < y0y

Q�c; y0� = 1 and

Q�0;0� = 0:

This gives the formula Q�x;y� = U�x;y�/U�c; y0� as in (4.20). To verify
(4.19), we introduce the quitting time τ0 by

�4:22�
τ0 = inf

{
t ≥ 0x Z∗�t� ≥ a or �X∗�t�;Y∗�t�� = �0;0�

}

= +∞ otherwise:

Notice that τ0 is finite a.s., since σ0�x� > 0 for all x and the local time pro-
cess L approaches infinity as t tends to infinity. Furthermore, �X∗�τ0�;Y∗�τ0��
is equal to �0;0� or �c; y0�. To obtain (4.19), we apply Itô’s rule to Q�X∗�t ∧
τ0�;Y∗�t ∧ τ0�� and use (4.21) similarly to the proof of Lemma 4.1. We leave
the details to the reader.

Next, we consider the case y > y0 and �x;y� in E. Since �X∗;Y∗� has
continuous sample paths for t > 0, introduce the stopping time τ1 by

�4:23�
τ1 = inf

{
t ≥ 0x �1− λ�X∗�t� +Y∗�t� = a or Y∗�t� = y0

}
:

= +∞ otherwise:

Again, τ1 is also finite since σ0�x� > 0 for all x and L�t� approaches infinity
as t tends to infinity. Next we solve

�4:24�

∂2Q

∂x2
�x;y� + 2ρ�x�∂Q

∂x
�x;y� = 0 if y > y0 and �x;y� in Ey

∂Q

∂x
�0; y� − �1+ α�∂Q

∂y
�0; y� = 0 if y > y0y

Q�x;y� = 1 if y > y0 and �1− λ�x+ y = ay

Q�x;y0� =
U�x;y0�
U�c; y0�

if 0 ≤ x ≤ c:
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The solution to (4.24) gives the formula in (4.20) for y ≥ y0 and �x;y� in E.
To verify (4.19), again we apply Itô’s rule (3.1) toQ�X�t∧τ0∧τ1�;Y�t∧τ0∧τ1��,
as in Lemma 4.1. By letting t go to infinity, we obtain

�4:25� E�Q�X∗�τ0 ∧ τ1�; Y∗�τ0 ∧ τ1����X∗�0−�;Y∗�0−��= �x;y��=Q�x;y�:
Using the boundary conditions in (4.24), the left-hand side of (4.25) is equal

to

�4:26� E
[
I�τ0≤τ1;Z

∗�τ0�=a� + I�τ0>τ1�Q�X
∗�τ1�;Y∗�τ1��

]
:

However, on the set �τ0 > τ1�; �X�τ1�;Y�τ1�� = �0; y0� and it follows that

�4:27� E
[
I�τ0>τ1�Q�X

∗�τ1�;Y∗�τ1��
]
= E

[
I�τ0>τ1�Q�0; y0�

]
:

Now Q�0; y0� is known from the previous case and (4.19) holds at �0; y0�.
Therefore, by invoking the strong Markov property at τ1, we obtain

�4:28�
E
[
Iτ0>τ1�Q�0; y0�

]
= E

[
I�τ0>τ1�E

[
I�Z∗�τ0�=a�Fτ1

]]

= E
[
I�τ0>τ1;Z

∗�τ0�=a�
]
:

Combining (4.26), (4.27) and (4.28), we obtain

Q�x;y� = E
[
I�Z∗�τ0�=a�

]
and hence (4.19) follows:

If the initial position �x;y� in E is such that x > c, then at time 0, the
�X∗;Y∗� process jumps to �c; y+ �1− λ��x− c��.

Hence

P
[
Z∗ reaches a before 0��X∗�0−�;Y∗�0−�� = �x;y�

]

= P
[
Z∗ reaches a before 0��X∗�0�;Y∗�0�� = �c; y+ �1− λ��x− c��

]

= Q�c; y+ �1− λ��x− c��:
This completes the proof of Lemma 4.4. 2

Finally, we are ready to prove the optimality of the �X∗;Y∗� process in-
troduced in Lemma 4.4, for the case ϕ�a/�1− λ�� < 0 where ϕ is given in
(4.7).

Theorem 4.5. Assume that:

(i) ρ, defined in (1.4), is decreasing on �0; a/�1− λ��;
(ii) ϕ�a/�1− λ�� < 0 where ϕ is given in (4.7).

Then the strategy described in Lemma 4.4 is optimal and the value function
V�x;y� is equal to Q�x;y� given in (4.20).

Remark 4:6. Since we have a closed form expression for Q�x;y� in (4.20),
by direct computation, one can verify the continuity of ∂Q/∂x, ∂Q/∂y and
∂2Q/∂x2 across the switching curve x = c. Condition ϕ�c� = 0 is essential in
this verification. Therefore, the “principle of smooth fit” holds for this problem.
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Proof. Similar to the proof of Theorem 4.3, it is enough to verify the as-
sumptions of the verification lemma. By (4.20), Q can be smoothly extended
to an open set containing E. Also, assumptions (i) and (ii) of the verification
lemma can be verified directly. It remains to verify only assumption (iii). Con-
dition ∂Q/∂x ≥ 0 on E follows directly from (4.19).

Step 1. To show �∂2Q/∂x2�+ 2ρ�x��∂Q/∂x� ≤ 0: if x < c, then since S′′�x�+
2ρ�x�S′�x� = 0 and hence �∂2U/∂x2� + 2ρ�x��∂U/∂x� = 0 where U is given in
(4.20), it easily follows that �∂2Q/∂x2�+2ρ�x��∂Q/∂x� = 0 for x < c and �x;y�
in E. If x > c then

�4:29� Q�x;y� = U�c; y+ �1− λ��x− c��
U�c; y0�

from (4.20) and U�c; y0� > 0. Therefore it is enough to verify �∂2R/∂x2� +
2ρ�x��∂R/∂x� ≤ 0 for x > c, where

�4:30� R�x;y� = U�c; y+ �1− λ��x− c��:

By a direct computation, it follows that

∂2R

∂x2
�x;y� + 2ρ�x�∂R

∂x
�x;y� = 2S′�c��ρ�x� − ρ�c��A�y+ �1− λ��x− c��:

Since ρ is decreasing, S′ and A are positive, it follows that the right hand side
is less than or equal to zero. Furthermore, ∂Q/∂x and ∂2Q/∂x2 are continuous
across the line x = c and hence �∂2Q/∂x2� + 2ρ�x��∂Q/∂x� ≤ 0 on E.

Step 2. To show �∂Q/∂x��x;y� − �1+ α��∂Q/∂y��x;y� ≤ 0 on E:

(a) If 0 ≤ x < c and 0 ≤ y ≤ y0, by (4.20), and direct computation we get

∂Q

∂x
�x;y� − �1+ α�∂Q

∂y
�x;y� = A�y�

U�c; y0�

[
S′�x� + 2

(
1+ α
1− λ

)
ρ�c�S�x� − 1

]
:

Now introduce H�x� = S′�x� + 2��1+ α�/�1− λ��ρ�c�S�x� − 1 for 0 ≤ x ≤ c.
Clearly H�0� = 0 and H�c� = −��λ+ α�/�1− λ��S′�c� < 0. Now first
we assume ρ is differentiable, so ρ′�x� ≤ 0 and H′′�x� + 2ρ�x�H′�x� =
−2ρ′�x�S′�x� ≥ 0. Hence by a maximum principle for ordinary differential
equations, ([11], page 2) it follows that H�x� ≤ 0 for 0 ≤ x ≤ c. To remove
the differentiability assumption on ρ, one can approximate ρ by a sequence
of differentiable, decreasing functions �ρn� with ρ′n�x� ≤ 0 on �0; c�. Then
Hn�x� can be analogously defined and Hn�0� = 0 and Hn�c� < 0 for large n.
Therefore, one can apply the maximum principle to Hn�x� and let n tend to
infinity to conclude H�x� ≤ 0 on �0; c�.

Hence we have �∂Q/∂x��x;y� − �1+ α��∂Q/∂y��x;y� ≤ 0 if 0 ≤ x < c, and
0 ≤ y ≤ y0.

(b) If x > c and �x;y� in E, then by (4.29) and (4.30), we have

∂Q

∂x
�x;y� − �1+ α�∂Q

∂y
�x;y� = − �λ+ α�

U�c; y0�
∂U

∂y
�c; y+ �1− λ��x− c�� < 0:
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(c) If y>y0 and �x;y� in E, then by (4.20) and a direct computation we get

∂Q

∂x
�x;y� − �1+ α�∂Q

∂y
�x;y�

= S�c�A�y0�g�y�
U�c; y0�S��a− y�/�1− λ��

×
[
S′�x� − 1
S�x� − ���1+ α�/�1− λ��S

′��a− y�/�1− λ�� − 1�
S��a− y�/�1− λ��

]
;

where A�·�; g�·� and U�·; ·� are positive functions defined in (4.20). Then the
right-hand side is less than or equal to zero as shown in (4.13). Since ∂Q/∂x
and ∂Q/∂y are continuous across the line x = c, the inequality also holds on
x = c.
Hence �∂Q/∂x��x;y� − �1+ α��∂Q/∂y��x;y� ≤ 0 on E.

Step 3. To show �1− λ��∂Q/∂y��x;y� − �∂Q/∂x��x;y� ≤ 0 on E:

(a) If 0 ≤ x ≤ c and 0 ≤ y ≤ y0, then �1 − λ��∂Q/∂y��x;y� −
�∂Q/∂x��x;y� = �A�y�/U�c; y0��J�x� where A�·� and U�·; ·� are given in
(4.20) and J�x� = ��1− λ�/�1+ α�� − 2ρ�c�S�x� − S′�x� for 0 ≤ x ≤ c. Now
J�0� = ��1− λ�/�1+ α��−1 < 0;J�c� = 0 and J′�x� = 2�ρ�x�−ρ�c��S′�x� ≥ 0.
Hence J�x� ≤ 0 on �0; c� and �1− λ��∂Q/∂y� − �∂Q/∂x� ≤ 0 for 0 ≤ x ≤ c and
0 ≤ y ≤ y0.

(b) If x > c then by (4.20), we see that Q�x;y� is a function of �1− λ�x+ y
and hence �1− λ��∂Q/∂y� − �∂Q/∂x� = 0.

(c) If y > y0, by direct computation one can observe that

�1−λ�∂Q
∂y
�x;y�− ∂Q

∂x
�x;y�= S�c�A�y0�g�y�

U�c; y0�S��a−y�/�1−λ��

[
f�x�−f

(
a−y
1−λ

)]
;

where f�x� = ���1−λ�/�1+α��−S′�x��/S�x� for 0 ≤ x ≤ �a− y�/�1− λ�. Then
as shown in the argument following (4.16), the function f is increasing. Hence
�1 − λ��∂Q/∂y��x;y� − �∂Q/∂x��x;y� ≤ 0 if y > y0 and �x;y� in E. Again,
we use the continuity of ∂Q/∂x and ∂Q/∂y across the line x = c to verify the
inequality on the line x = c.

Now Steps 1, 2 and 3 together imply condition (iii) of the verification lemma.
Hence we can conclude that Q�x;y� ≥ V�x;y� for all �x;y� in E. But �X∗;Y∗�
is in 6�x;y�, therefore Q�x;y� ≤ V�x;y� on E. Consequently, �X∗;Y∗� is an
optimal strategy and Q�x;y� = V�x;y�.

This completes the proof. 2

REFERENCES

[1] Browne, S. (1995). Optimal investment policies for a firm with a random risk process:
exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20 937–
958.

[2] Cvitanic, J. and Karatzas, I. (1996). Hedging and portfolio optimization under transaction
costs: a martingale approach. Math. Finance 6 133–165.



1330 A. P. N. WEERASINGHE

[3] Davis, M. H. A. and Norman, A. R. (1990). Portfolio selection with transaction costs. Math.
Oper. Res. 15 676–713.

[4] Davis, M. H. A., Panas, V. G. and Zariphopolou, T. (1993). European option pricing with
transaction costs. SIAM J. Control Optim. 31 470–493.

[5] Fleming, W. H. and Soner, H. M. (1993). Controlled Markov Processes and Viscosity Solu-
tions. Springer, Berlin.

[6] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed.
Springer, New York.

[7] Lions, P. L. and Sznitman, A.-S. (1984). Stochasatic differential equations with reflecting
boundary conditions. Comm. Pure Appl. Math. 37 511–537.

[8] McBeth, D. W. and Weerasinghe, A. (1995). Optimal singular control strategies for con-
trolling a process to a goal. Preprint.
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