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NONREVERSIBLE STATIONARY MEASURES
FOR EXCHANGE PROCESSES1

By Amine Asselah

ETH-Zentrum

We consider nonreversible exchange dynamics in Zd and prove that
the stationary, translation invariant measures satisfy the following prop-
erty: if one of them is a Gibbs measure with a summable potential �JR;
R ⊂ Zd�, then all of them are convex combinations of Gibbs measures with
the same potential, but different chemical potentials J�0�.

1. Introduction and result. We consider an exclusion process on the in-
finite lattice Zd. Each site contains at most one particle and each bond joining
adjacent sites is associated with a Poisson process of intensity ce�η�, a posi-
tive, translation invariant and finite range function of the configuration η in
� = �0;1�Zd . At the jump times of the Poisson process the contents of the two
sites are exchanged.

The existence of such a process is well known [see Liggett (1985), Chapter I].
For a simple symmetric exclusion process (i.e., ce ≡ 1), the extremal stationary
measures at density α are the product measures with this density [see Liggett
(1985), Chapter VIII]. Furthermore, in the translation invariant case, if the
process is reversible with respect to a Gibbs measure, then the canonical Gibbs
measures are the stationary ones [Holley (1972); Georgii (1979)].

Actually, the same results were obtained first for the stochastic Ising
model. More precisely, if the spin-flip dynamics is reversible with respect
to a Gibbs measure, then in one and two dimensions all the stationary
measures are Gibbs with the same potentials [Holley and Stroock (1977);
see Vanheuverzwijn (1981) for the analog for exchange dynamics]. In higher
dimensions, the translation invariant stationary measures are Gibbs with
the same potentials [Holley (1971)], whereas the problem is still open if one
drops translation invariance.

The next question concerns nonreversible dynamics. What are the relations
between stationary measures? A first result in this direction is as follows:
when, for any x;y ∈ Zd, the rate of exchanging site x and y does not depend
on the configuration, say, c�x;y� = p�0; y− x�, and satisfies for any t > 0,

∑
n≥1

tn

n!

(
p�n��x;y� + p�n��y;x�

)
> 0;

where p�n� is the nth convolution of p, then Liggett (1976) showed by coupling
methods that the extremal translation invariant stationary measures are the
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product measures of density α ∈ �0;1�. Another result concerns spin-flip pro-
cesses [Künsch (1984)]: if the rates are positive, finite range and if we know
a priori that one translation invariant, stationary measure is Gibbs with a
summable potential, then all translation invariant measures are Gibbs with
the same potential. We generalize the method used by Künsch (1984) to the
case of exchange processes. Also, our result extends the result of Liggett (1976)
to more general rates, via the relative entropy approach.

Theorem 1. LetP and µ be two translation invariant, stationary measures
for an exchange dynamics with generator (2.1). If P is a Gibbs measure with
a potential �JR� satisfying

∑
R30

�JR� <∞;(1.1)

then µ is a convex combination of Gibbs measures with the same potential
�JR; �R� > 1�, but different chemical potential J�0�.

This result is of interest in the context of hydrodynamic limits for nonre-
versible systems [Eyink, Lebowitz and Spohn (1996)]. There, one would like to
approximate a slowly varying density by a measure which would look locally
like a stationary measure. Thus, it is important to find the relation between
stationary measures at different densities. Our result says that in the trans-
lation invariant case, one goes from one stationary measure to another by
varying the chemical potential.

We follow, as Künsch did, an idea which goes back to Holley (1971): We
suppose that P is a stationary measure. Let µ be any measure and µt be its
image at time t under the dynamics. We form the relative entropy of µt with
respect to P when both measures are projected over a bounded domain, say 3.
The time derivative of the relative entropy can be divided into a subadditive
part, expected to grow like the volume of 3, and a part growing more slowly
(the boundary terms). Thus, if µ is stationary, the subadditive part must van-
ish. This in turn says that µ is a canonical Gibbs measure. Finally, a theorem
of Georgii (1979) identifies extremal canonical measures with grand canonical
measures at different chemical potentials.

The main difficulty, when using this approach, is to estimate the boundary
terms, which are here of a different nature than those encountered by Künsch.
However, we found it useful to introduce, like Künsch did, the rates �ĉe� of
the dual process: for instance, one special (to these models) and quite simple
observation is (3.6),

E

[ ∑
e∈�3n�

ĉe��F3n

]
−

∑
e∈�3n�

ce = o��3n��:

In Section 3, we prove Theorem 1, while in Section 4, we give an example
where our result brings some new information.
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2. Definitions and notations. Two sites x and y in Zd define a bond
e = �x;y� if they are one unit apart, that is, if

∑d
i=1 �xi − yi� = 1. If �ẽi; i =

1; : : : ; d� is a unit basis of Zd, then for i = 1; : : : ; d, ei denotes the bond �0; ẽi�.
For a subset X of Zd, �X� denotes the set of bonds with vertices in X, while
�X� denotes the number of sites in X.

The space of configurations � is equipped with the product topology and its
Borel σ-algebra. Let

3n = �−2n + 1;2n − 1�d;
3̃n = �−2n + n;2n − n�d;
3+n = 3n + �−1;1�d;

and letFn be the σ-algebra generated by �ηi; i ∈ 3n�. Also, the set of cylinders
in 3n is denoted by <n ≡ �0;1�3n .

Now, we define three operations on �x Te exchanges values of the pair of
sites e in η, that is, if e = �i; j�,

Te�η��i� = η�j�; Te�η��j� = η�i�
and

∀k 6= i; j Te�η��k� = η�k�y
σi flips only the ith coordinate of η, that is, σi�η��i� = 1 − η�i�; τi shifts by
i ∈ Zd, that is, τiη�j� = η�j+ i�.

A Gibbs measure µ associated with the potential �JR� is a probability
measure such that for any finite subset 3, for ζ ∈ � and η ∈ �0;1�3,

µ�η��F3c��ζ� =
1

Z3; ζ

exp
(
−

∑

R∩3 6=\

JR
∏

i∈R∩3
ηi

∏
i∈R∩3c

ζi

)
;

whereZ3; ζ is a normalizing factor. Furthermore, we assume that the potential
is translational invariant, that is, JR = JτiR. In this case, J�0� is called the
chemical potential.

A canonical Gibbs measure µ is a probability measure such that for any
finite subset 3, for ζ ∈ � and η ∈ �0;1�3,

µ

(
η��F3c;

∑
3

ηi = n
)
�ζ� =

I�∑3 ηi=n�
Z3; ζ; n

exp
(
−

∑

R∩3 6=\

JR
∏

i∈R∩3
ηi

∏
i∈R∩3c

ζi

)
:

The generator of our exchange process is

Lf�η� =
d∑
i=1

∑

j∈Zd

cei�τjη��f�Tei+jη� − f�η��;(2.1)

where ei + j is the translate of j units of the pair ei, and �cei; i = 1; : : : ; d�
are finite range functions.

A crucial assumption is that there are c and c positive constants such that

∀i = 1; : : : ; d; c ≤ cei ≤ c:(2.2)
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For simplicity, we have stated our result in the case of nearest neighbor ex-
changes; however, the whole argument goes almost unchanged for a process
where particles can jump within a finite range.

The relative entropy of the projection of any measure µ in the volume 3n,
with respect to P, is well defined,

Hn�µ� =
∑
η∈<n

µ�η� log
(
µ�η�
P�η�

)
;(2.3)

with the convention that 0 log�0� = 0. The measure µt is defined on <n by

∀η ∈ <n; µt�η� =
∫
St�Iη�dµ;

where St is the semigroup associated with L, and Iη is the indicator of the
cylinder η. Now,

dµt�η�
dt

=
∫
�
StL�Iη�dµ =

∑

e∈�3+n �

∫
�
ceIT−1

e �η� dµt −
∫
�
ceIη dµt:

It is convenient to define

0e�η� =
∫
�
ceI�η� dµ

and rewrite

dHn�µt�
dt

∣∣∣∣
t=0
=

∑
η∈<n

∑

e∈�3+n �

[
�T−1

e 0e − 0e� log
(
µ

P

)]
�η�:(2.4)

We note that, on �, T−1
e = Te. However, this is not so on <n: if j 6∈ 3n and

i ∈ 3n, then

∀η ∈ <n; T−1
e �η� =

(
η ∩ �ξ ∈ �x ξ�i� = ξ�j��

)

∪
(
σiη ∩ �ξ ∈ �x ξ�i� = 1− ξ�j��

)
:

(2.5)

3. Proof of Theorem 1. We first rewrite (2.4) so as to separate boundary
terms from the subadditive part,

dHn�µt�
dt

∣∣∣∣
t=0
=

∑
η∈<n

∑

e∈�3̃n�

[
�T−1

e 0e − 0e� log
(
µ

P

)]
�η� +R1 +R2(3.1)

with

R1 =
∑
<n

∑

�3+n �\�3n�
�T−1

e 0e − 0e� log
(
µ

P

)
�η�;

R2 =
∑
<n

∑

�3n�\�3̃n�
�T−1

e 0e − 0e� log
(
µ

P

)
�η�:

(3.2)
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Furthermore, if we define

gn�η� ≡
µ�η�
P�η� ; ∀η ∈ <n and F�x� = x�log�x� − 1� + 1;

then
∑
<n

∑

�3̃n�

[
T−1
e 0e log

(
µ

P

TeP

Teµ

)]
�η� = −

∑

�3̃n�

∫
ceTegnF

(
gn
Tegn

)
dP+R;(3.3)

where

R =
∑
η∈<n

∑

e∈�3̃n�

[
Te0e
Teµ

TeP

P
µ−Te0e

]
�η�:(3.4)

Now, we can rewrite (3.1) as

0 ≤
∑

e∈�3̃n�

∫
ce TegnF

(
gn
Tegn

)
dP ≤ −dHn�µt�

dt

∣∣∣∣
t=0
+R+R1 +R2:(3.5)

We now estimate R, R1 and R2. Then, Lemma 1 concludes the argument by
taking advantage of the convexity of the integrals which appear in (3.5).

Estimate for R. If R is given by (3.4), then R = O��∂3n��.
We first rewrite (3.4) as

R =
∑
η∈<n

∑

e∈�3̃n�

[
Te0e
Teµ

TeP

P
µ− 0e

]
�η�:

Choose n larger than the range of the rates. Then, thinking of the following
quantities as functions on <n, we have

Te0e
Teµ

= Tece; and
Te0e
Teµ

TeP

P
µ = Teceµ

TeP

P
= E

[
ĉe��Fn

]
µ; for e ∈ �3̃n�;

where �ĉe� are the rates of the dual process in L2�dP�,

ĉe = Tece
dTeP

dP
∀e ∈ �Zd�:

Thus,

∑

�3̃n�

Te0e
Teµ

TeP

P
µ− 0e =

(
E

[ ∑

�3̃n�
ĉe��Fn

]
−
∑

�3̃n�
ce

)
µ:

To obtain that R = O��∂3n��, we only need to show that

E

[ ∑

e∈�3̃n�
ĉe��Fn

]
−

∑

e∈�3̃n�
ce = o��3n��;(3.6)

where the conditional expectation is taken relative to P.
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Note that �ĉe� are uniformly bounded, positive and continuous. Now, for
f ∈ Fn,

∫
LfdP =

∫ ∑

�e∈3+n �
ce�Tef− f�dP =

∫ ∑

�3+n �
�ĉe − ce�fdP:

Now, because P is invariant and nonnull, E�∑e∈�3+n � ĉe − ce��Fn� = 0. Thus,

E

[ ∑

e∈�3̃n�
ĉe − ce��Fn

]
= E

[ ∑

e∈�3+n �\�3̃n�
ĉe − ce��Fn

]

and ∣∣∣∣E
[ ∑

e∈�3̃n�
ĉe��Fn

]
−

∑

e∈�3̃n�
ce

∣∣∣∣ ≤ 2d��ĉ�∞ + �c�∞��3n \ 3̃n�;

which yields (3.6) at once.

Estimate of R1. Fix a bond e = �i; j� with j 6∈ 3n and i ∈ 3n. Define
ηe = σiη ∩ �ξ ∈ �x Te�ξ� 6= ξ� and

Re =
∑
η∈<n
�T−1

e 0e − 0e� log
(
µ

P

)
�η�:

Thus, recalling (2.5),

Re =
1
2

∑
η∈<n
�0e�ηe� −T−1

e 0e�ηe�� log
(
µ

σiµ

σiP

P
�η�

)
:

Now, σiP/P is uniformly bounded. Indeed, ifN3 stands for the projection from
� to �0;1�3,

σiP

P
◦N3 = E

[
dσiP

dP
��F3

]
; P-a.s.

Also,

dσiP

dP
= exp

(
�1− 2ηi�

∑
R3i

JR
∏

a∈R\i
ηa

)

implies that
∣∣∣∣log

(
σiP

P
�η�

)∣∣∣∣ ≤
∑
R30

�JR� ≡K

and
∑
η∈<n

∣∣∣∣�T
−1
e 0e�ηe� − 0e�ηe���� log

(
σiP

P

)∣∣∣∣�η� ≤ 2cK
∑
η∈<n

µ�ηe� ≤ 2cK:

Now, it is easy to see that

T−1
e ηe = �σiη�e ⊂ η:
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Thus, by using symmetry,

Re ≤ cK+
∑

µ�η�≤µ�σi�η��
log

(
µ�σi�η��
µ�η�

) ∫
ceIη dµ:

Therefore,

Re ≤ cK+ c
∑

µ�η�≤µ�σi�η��
µ�η� log

(
µ�σi�η��
µ�η�

)
:

Now, the basic inequality

x log
(
A

x

)
≤ A
e

for x ≥ 0

implies that

Re ≤ c
(
K+ 1

e

)
;

and by summing e over �3+n �/�3n�, we obtain R1 = O��∂3��.

Estimate of R2. Rewrite R2 as

R2 =
∑
η∈<n

∑

e∈�3n�/�3̃n�

[
�Te0e − 0e� log

0e
Te0e

]
�η�

+ 1
2

∑
η∈<n

∑

e∈�3n�/�3̃n�

[
�Te0e − 0e� log

(
Te0e
Teµ

µ

0e

TeP

P

)]
�η�

≤
∑
η∈<n

∑

e∈�3n�/�3̃n�
Te0e log

(
Te0e
Teµ

µ

0e

TeP

P

)
:

(3.7)

Now,

sup
η∈<n

∣∣∣∣log
µ

0e
�η�

∣∣∣∣ ≤ max
(
� log�c��; � log�c��

)
≡K′:

Also, if R1�x;y� denotes �R\�x;y�� ∪ ��x;y�\R�,
TeP

P
◦N3 = E

[
dTeP

dP
��Fn

]

and

dTx;yP

dP
= exp

[
�ηx − ηy�

∑

�R∩�x;y��=1

JRηR1�x;y�

]

imply that
∣∣∣∣log

(
dTx;yP

dP

)∣∣∣∣ ≤ 2K and sup
η∈<n

∣∣∣∣log
(
TeP

P

)∣∣∣∣ ≤ 2K:
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Finally,

R2 ≤ 2c �K+K′���3n�\�3̃n��:(3.8)

Lemma 1. If µ is stationary and translation invariant, then for any m,

∀i = 1; : : : ; d; ∀η ∈ <m;
µ�Teiη�
µ�η� =

P�Teiη�
P�η� :(3.9)

Proof. By translation invariance we only need to show that for i=1; : : : ; d,

Dei
�gm� ≡

∫
cei
(
Tei
√
gm −

√
gm

)2
dP = 0:

The reason to introduce Dei
is its convexity, because ifm < n, gm = E�gn��Fm�,

we have

De�gm� ≤ De�gn�:
Using (3.5), the estimates for R;R1 and R2, the inequality F�x� ≥ �1−√x�2
for x ≥ 0 and translation invariance,

O��∂3n�� ≥
∑

e∈�3̃n�

∫
ce TegnF

(
gn
Tegn

)
dP ≥

∑

e∈�3̃n�
De�gn�

≥
∑

j∈3̃n

d∑
i=1

Dj+ei�τjgm� ≥
d∑
i=1

�3̃n�
2

Dei
�gm�;

(3.10)

and the result follows easily. 2

This tells us that µ is a canonical measure. A well known theorem of Georgii
(1979) implies that µ is a convex combination of grand canonical measures
with the same potential, but different chemical potential.

4. One example. There is a simple one-dimensional example where our
result applies. It appeared in Katz, Lebowitz and Spohn (1984). Let the po-
tential JR = −J if �R� = 2 and JR = 0 otherwise. Let G be the corre-
sponding set of Gibbs measures. Any rates which satisfy ci; i+1 = τic with
c = c�η−1; η0; η1; η2� and

c�0;1;0;1� = eJ/2c�1;1;0;0�;
c�1;1;0;1�+ c�0;1;0;0� = c�0;1;0;1�+ c�1;1;0;0�;

c�η0;1� = c�η� exp�J�η0−η1��η2−η−1�+E�η1−η0��
(4.1)

would make the generator invariant for any ν ∈ G. For some definite examples,
take

c�η−1; η0; η1; η2� = exp
(
−
[
J�η0η2 + η−1η1� +

E

2
�η1 − η0�

])
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or

c�η−1; η0; η1; η2� = exp
(
�η0 − η1�

[
J

2
�η2 − η−1� +

E

2

])
:

Then, Theorem 1 would say that this system has no other invariant measures.

Remark. A straightforward corollary of our proof and observations of Hol-
ley (1972) is that for any translation invariant initial measure µ and conver-
gent subsequence µtn , the limiting measure is necessarily a convex combina-
tion of Gibbs measures with the same potential as P; however, we do not know
if this limiting measure is stationary for the dynamics.
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