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ON CONVERGENCE RATES OF GIBBS SAMPLERS FOR
UNIFORM DISTRIBUTIONS

By Gareth O. Roberts1 and Jeffrey S. Rosenthal2

University of Cambridge and University of Toronto

We consider a Gibbs sampler applied to the uniform distribution on a
bounded region R ⊆ Rd. We show that the convergence properties of the
Gibbs sampler depend greatly on the smoothness of the boundary of R.
Indeed, for sufficiently smooth boundaries the sampler is uniformly ergodic,
while for jagged boundaries the sampler could fail to even be geometrically
ergodic.

1. Introduction. This paper considers the use of Gibbs samplers applied
to the uniform distribution on a bounded open region R ⊆ Rd. We shall show
that, subject to C2 smoothness of the boundary of R, such Gibbs samplers are
always uniformly ergodic. We shall also show that, even with certain types of
“pointy” boundaries, the Gibbs samplers are still geometrically ergodic.

By way of contrast, it has recently been shown by Bélisle (1997) that if the
boundary of R is sufficiently irregular, then the Gibbs sampler can converge
arbitrarily slowly. Our results thus complement those of Bélisle.

We note that our interest in Gibbs samplers arises partially from our in-
terest in “slice sampler” or “auxiliary variable” algorithms, whereby sampling
from a complicated �d− 1�-dimensional density f is achieved by applying the
Gibbs sampler to the uniform distribution on the d-dimensional region under-
neath the graph of f. Thus, Gibbs samplers for uniform distributions promise
to be a very important subject in the future. For further details, see Higdon
(1997), Damien, Wakefield and Walker, (1997), Mira and Tierney (1997) and
Roberts and Rosenthal (1997b).

We begin with some definitions. Let R ⊆ Rd be a bounded open connected
region in d-dimensional Euclidean space, and let π�·� be the uniform distri-
bution on R [i.e., π�A� = λ�A ∩ R�/λ�R� for Borel sets A ⊆ Rd, where λ is
d-dimensional Lebesgue measure]. Let X�0� be some random variable taking
values in R. The random-scan Gibbs sampler proceeds as follows. Given a
point X�n� ∈ Rd, it chooses In+1 ∈ �1;2; : : : ; d� uniformly at random. It then
chooses X�n+1� uniformly from the one-dimensional set

{(
X
�n�
1 ; : : : ;X

�n�
I−1; y;X

�n�
I+1; : : : ;X

�n�
d

)
y y ∈ R

}
∩R;

that is, from the intersection of R with a line through X�n� parallel to the ith
coordinate axis. This process is repeated for n = 0;1;2; : : : :

Received July 1997; revised January 1998.
1Supported in part by EPSRC of the U.K.
2Supported in part by NSERC of Canada.
AMS 1991 subject classifications. Primary 60J05; secondary 62M05.
Key words and phrases. Gibbs sampler, Markov chain, Monte Carlo, slice sampler, uniform

distribution, curvature.

1291



1292 G. O. ROBERTS AND J. S. ROSENTHAL

Remark. Other versions of this algorithm are available. For example, in-
stead of choosing a single coordinate In+1 to update, it is possible to update all
d coordinates in sequence, one at a time; this is the deterministic-scan Gibbs
sampler. Also the Gibbs sampler may be defined for nonuniform distributions
by sampling from the full conditional distributions on the one-dimensional sets
instead of sampling uniformly. For further details, see, for example, Gelfand
and Smith (1990), Smith and Roberts (1993) and Tierney (1994).

The random-scan Gibbs sampler algorithm thus implicitly defines Markov
chain transition probabilities L �X�n+1� �X�n��. It is easily checked that the
resulting Markov chain is reversible with respect to π�·�. Furthermore,
the Markov chain is easily seen to be π-irreducible and aperiodic. Thus,
from the general theory of Markov chains on general state spaces [see, e.g.,
Nummelin (1984), Meyn and Tweedie (1993) and Tierney (1994), Section 3],
we will have that

∥∥L �X�n�� − π�·�
∥∥ ≡ sup

A⊆Rd

∣∣P�X�n� ∈ A� − π�A�
∣∣→ 0; n→∞:

(Here � · · · � is the total variation distance metric.)
A natural question is the rate at which this convergence takes place. It is

shown by Bélisle (1997) that, without further restrictions on R, this conver-
gence can be arbitrarily slow: for any sequence �bn� converging to 0, Bélisle
shows that R and X�0� can be chosen so that �L �X�n��−π�·�� ≥ bn for all suffi-
ciently large n. However, it is reasonable to expect that if regularity conditions
are imposed on R, then convergence will be faster.

Recall [cf. Meyn and Tweedie (1993) and Tierney (1994)] that a Markov
chain with state space X and stationary distribution π�·� is geometrically
ergodic if there is ρ < 1, a subset X0 ⊆ X with π�X0� = 1 and Mx X0 → R
such that

∥∥L �X�n� �X�0� = x0� − π�·�
∥∥ ≤M�x0�ρn; n ∈ N; x0 ∈ X0:

The chain is uniformly ergodic if it is geometrically ergodic with M constant
(or, equivalently, with M bounded above). We note that geometric or uniform
ergodicity ensures that the chain does not converge arbitrarily slowly in the
sense of Bélisle.

In this paper, we shall show that for certain regions R (e.g., if the boundary
of R is C2), the corresponding Gibbs sampler is uniformly ergodic (Section 2).
For slightly less regular regions R, the Gibbs sampler is still geometrically
ergodic (Section 3).

2. Uniform ergodicity. In this section we shall derive conditions on R
which ensure uniform ergodicity of the corresponding random-scan Gibbs sam-
pler for the uniform distribution on R.

We recall [see, e.g., Nummelin (1984) and Meyn and Tweedie (1993)] that,
given a Markov chain on a state space X , a subset C ⊆ X is small [or
�n0; a; ν�-small] if for some n0 ∈ N, a > 0, and probability distribution ν�·�
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on X , we have

Pn0�x; ·� ≥ a ν�·�; x ∈ C:
We note that if B ⊆ C and C is small, then B is also small (with the same
n0, a and ν). We further recall [cf. Meyn and Tweedie (1993), Theorem 16.0.2]
that a Markov chain is uniformly ergodic if and only if the entire state space
X is small, that is, if and only if the above condition is satisfied with C = X .

We begin with a simple lemma.

Lemma 1. Let R be a bounded region in Rd, and let C be a d-dimensional
rectangle which lies entirely inside R. Then C is small for the Gibbs sampler
on the uniform distribution on R (with either random- or deterministic-scan).

Proof. If C has widths a1; a2; : : : ; ad and if R is bounded by a rectangle
with widths A1;A2; : : : ;Ad, then the deterministic-scan Gibbs sampler start-
ing inside C is clearly at least

∏
i�ai/Ai� times the uniform measure on C. For

random-scan, we just need an extra factor of d!/dd, which is the probability
that the first d directions chosen include each direction precisely once. We
thus obtain that

PDS�x; ·� ≥
( d∏
i=1

ai
Ai

)
UC�·� and PRS�x; ·� ≥ �d!/dd�

( d∏
i=1

ai
Ai

)
UC�·�;

where PDS and PRS are the deterministic-scan and random-scan Gibbs sam-
plers, respectively, and where UC is the uniform distribution on C. 2

To make use of this lemma, we require a general result about small sets. [A
similar result is presented in Meyn and Tweedie (1993), Proposition 5.5.5(ii).]

Proposition 2. For an irreducible aperiodic Markov chain, the finite union
of small sets (each of positive stationary measure) is small.

Proof. By induction, it suffices to consider just two small sets. Suppose
that C1 is �n1; ε1; ν1�-small, and that C2 is �n2; ε2; ν2�-small.

By irreducibility, since π�C2� > 0, there is m ∈ N and δ > 0, such
that ν1P

m�C2� ≡
∫
RP

m�x;C2�ν1�dx� ≥ δ. It follows that Pn1+m+n2�x; ·� ≥
ε1δε2ν2�·� for x ∈ C1. Also Pn2�x; ·� ≥ ε2ν2�·� ≥ ε1δε2ν2�·� for x ∈ C2. Thus,∑∞
n=1P

n�x; ·� ≥ ε1δε2ν2�·� for x ∈ C1 ∪ C2. Hence, C1 ∪ C2 is “petite” in the
sense of Meyn and Tweedie [(1993), page 121].

Then by irreducibility and aperiodicity, it follows [cf. Meyn and Tweedie
(1993), Theorem 5.5.7] that C1 ∪C2 must be small. 2

We now put these results together. For x ∈ Rd, we shall write B�x; ε� for
the open L∞ cube centered at x of radius ε, that is,

B�x; ε� =
{
y ∈ Rdy xi − ε < yi < xi + ε; i = 1;2; : : : ; d

}
:
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Theorem 3. Let R be a bounded open connected region in Rd. Let Rε be
the set of all x ∈ R such that B�x; ε� lies entirely inside R; that is,

Rε =
{
x ∈ Rdy B�x; ε� ⊆ R

}
:

Then Rε is small for the random-scan Gibbs sampler for the uniform distribu-
tion on R.

Proof. Let K be the closure of Rε. Then K is compact, and dist�K;RC� ≥
ε/2 > 0. Put an open L∞ cube of radius ε/2 around each point of K. By
compactness, K is contained in a finite union of these open L∞ cubes, that is,
K ⊆ B�x1; ε/2� ∪ · · · ∪B�xr; ε/2� for some x1; : : : ;xr ∈K. By the lemma, each
B�xi; ε/2� is small. By the proposition, their finite union is also small (since
the connectedness of R implies the irreducibility of the Gibbs sampler). Since
K is contained in this finite union, and since Rε ⊆K, therefore K and Rε are
small, too. 2

This immediately implies the following theorem.

Theorem 4. Let R be a bounded open connected region of Rd. Suppose
there is m ∈ N, ε > 0 and δ > 0 such that

Pm�x;Rε� ≥ δ; x ∈ R

(where P is the corresponding random-scan Gibbs sampler). Then P is uni-
formly ergodic.

Proof. From the previous theorem, we have Pn0�x; ·� ≥ aν�·� for all x ∈
Rε, for some n0, a > 0 and ν�·�. Then Pn0+m�x; ·� ≥ δaν�·� for all x ∈ R. The
result follows. 2

We conclude this section by studying a particular case in which we can ver-
ify the conditions of the above theorem, namely for regions R whose bound-
aries are sufficiently smooth. We begin by showing that all such regions have
the property that there is a fixed a > 0 such that every point in their closure is
contained in some ball of radius a lying entirely inside the region. Intuitively,
by rolling a radius-a soccer ball around the interior of R, we could touch every
point in the closure of R.

Lemma 5. Let R be a bounded open region in Rd whose boundary is a
�d− 1�-dimensional C2 manifold. Write R for the closure of R. For x ∈ R, let

η�x� = sup
{
r > 0y x ∈ D�y; r� for some y ∈ R such that D�y; r� ⊆ R

}
;

where D�y; r� = �z ∈ Rdy ∑d
i=1�zi − yi�2 < r2� is an L2-ball centered at y.

Then there is a > 0 such that η�x� ≥ a for all x ∈ R.
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Proof. It clearly suffices to consider only points x ∈ ∂R, where ∂R is the
boundary of R: indeed we have inf x∈R η�x� = inf x∈∂R η�x�, since any x ∈ R
which is not in one of the radius-a circles touching the boundary is at least a
distance a away from all boundary points.

Since ∂R is C2, for each x ∈ ∂R the curvatures of all geodesics in ∂R passing
through x have a finite supremum K�x�. Furthermore, by compactness of ∂R,
there is K <∞ such that K�x� ≤K for all x ∈ ∂R. This means that, given an
L2 ball of radius ≤ 1/K which is tangent to ∂R at x, the boundary ∂R does
not curve enough to intersect this ball at any point of ∂R (aside from x itself)
whose geodesic distance to x along ∂R is less than or equal to 1/K. That is,
such L2 balls can only intersect ∂R at x and at points whose geodesic distance
to x along ∂R is at least 1/K. Now, by compactness, there is a positive smallest
distance from x to the other points of intersection. We conclude that η�x� > 0,
for each x ∈ ∂R.

To continue, we write S�x; r� for the L2 ball (i.e., sphere) of radius r which
is tangent to ∂R at the point x ∈ ∂R. Now, since ∂R is a manifold, therefore
each x ∈ ∂R has a neighborhood N �x� on which ∂R is diffeomorphic to Rd−1.
If y ∈ ∂R is sufficiently close to x, then S�y;η�x�− δ� is entirely contained in
the union of N �x� and S�x; η�x�� (for appropriate small δ). But from this it
follows that lim infy→x η�y� ≥ min�η�x�;1/K�.

Hence, we see that the function min�η�x�;1/K� is both positive and lower
semi-continuous on x ∈ ∂R. Hence, again by compactness, it has a positive
minimum on ∂R. The result follows. 2

To make use of this lemma, we need a second lemma.

Lemma 6. Consider the random-scan Gibbs sampler for the uniform distri-
bution on R ⊆ Rd. Suppose there is a > 0 such that η�x� ≥ a for all x ∈ R,
with η�x� as in Lemma 5. Then for any fixed sufficiently small ε > 0, there is
δ > 0 such that P�x;Rε� ≥ δ for all x ∈ R.

Proof. Given x ∈ R, let y ∈ R be such that x ∈ D�y; a� ⊆ R. [Such
y exists since η�x� ≥ a.] Let u = �y − x�/�y − x� be the unit vector from x
towards y.

Now, we have
∑d
i=1�ei · u�2 = 1, where �ei� are the standard unit basis.

Hence there is some coordinate i with ei · u ≥ 1/
√
d. It follows that there are

δ′ > 0 and a′ < a which depend on d but not on x, such that if the chain starts
at x and updates the ith coordinate, it has probability at least δ′ of ending up
within a′ of y. Hence, since we had probability 1/d of choosing to update the
ith coordinate, it follows that P�x;D�y; a′�� ≥ δ′/d, for all x ∈ R. Also, note
that D�y; a′� ⊆ Rε with ε = a−a′. Hence, setting δ = δ′/d and ε = a−a′, the
result follows. 2

Remark. This lemma makes use of the fact that we are using the random-
scan Gibbs sampler. For the deterministic-scan Gibbs sampler, the situation
is in fact more complicated. For example, suppose R ⊆ R2 contains the unit
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ball in R2 and also contains an open neighborhood of the point �10;−1�. Sup-
pose the deterministic-scan Gibbs sampler begins at the point �0;−0:99� and
first updates the x coordinate. This could bring it to near �10;−1� or some
other faraway point, and this is very difficult to control. (By contrast, for the
random-scan Gibbs sampler, we would have probability 1/2 of updating the y
coordinate first, in which case we might happily move to near the origin, and
thus definitely be inside Rε.) On the other hand, if R is assumed to be convex,
then no such difficulties arise, and our proof goes through with minor changes
to the case of the deterministic-scan Gibbs sampler.

Combining Lemma 6 with Theorem 4, we immediately obtain the following
theorem.

Theorem 7. LetR be a bounded open connected region in Rd, whose bound-
ary is a �d − 1�-dimensional C2 manifold (or, such that η�x� ≥ a > 0 for all

x ∈ R as in Lemma 6). Then the random-scan Gibbs sampler for the uniform
distribution on R is uniformly ergodic.

Remarks.

1. Based on Theorem 7, it is not surprising that the slowly mixing examples
studied by Bélisle (1997) involve regions which do not have C2 boundaries
(see, e.g., his Figure 3).

2. Theorem 7 is somewhat analogous to results about the spectral gap of the
Laplacian for Brownian motion in a region; see, for example, Bañuelos and
Carroll (1994) and references therein.

Finally, we note the following. Even if we do not have η�x� ≥ a > 0 for
all x ∈ R, we may still have uniform ergodicity. For example, if the boundary
of R has some nondifferentiable “pointy” regions (e.g., the vertices, if R is
an irregular polygon), but if these pointy regions are angled such that their
apexes each contain some coordinate direction (i.e., some line segment parallel
to some coordinate axis), then the conditions of Theorem 4 are still satisfied
since there is probability bounded away from 0 of leaving the pointy region in a
single step. (Similarly, if the apex boundary is exactly parallel to a coordinate
direction, then there is probability bounded away from 0 of leaving in two
steps.) However, if the pointy regions are “tilted” so that their apex does not
contain a coordinate direction, not even on its boundary, then the chain is
clearly not uniformly ergodic; indeed, the closer the chain is to the vertex point,
the longer it will take the chain to move away from this point. Nevertheless,
we shall see in the next section that such chains are still geometrically ergodic.

3. Geometric ergodicity. In this section we consider regions R ⊆ Rd

which do not have a C2 boundary. For such regions, the results of the previous
section do not apply, and, indeed, the Gibbs samplers for such regions may
not be uniformly ergodic in general. However, we are able to show that they
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are still geometrically ergodic, in certain cases. For simplicity we concentrate
primarily on the two-dimensional case d = 2, though we also provide one
three-dimensional result.

We begin with the case where R is a triangle. We recall from the previous
section that, if the triangle is such that all vertices have apex which contains
a coordinate direction, then the associated Gibbs sampler is uniformly ergodic.
Thus, we instead consider the case where one of the vertices is “tilted” and
does not contain a coordinate direction.

Proposition 8. Let R ⊆ R2 be the width-1 triangle with lower angle θ and
upper angle φ, that is,

R =
{
�x;y� ∈ R2y 0 < x < 1; x tan�θ� < y < x tan�φ�

}
;

where 0 < θ < φ < π/2. Then the Gibbs sampler (with either random- or
deterministic-scan) for the uniform distribution on R is geometrically ergodic.

Proof. We recall from the previous section that the subset C = ��x;y� ∈
Ry x > tan�θ�/ tan�φ��, say, is small for the Gibbs sampler. Thus, by stan-
dard Markov chain theory [see, e.g., Nummelin (1984) and Meyn and Tweedie
(1993), Theorem 15.0.1], we will be done if we can find a drift function Vx R→
�1;∞� and λ < 1 such that

PV�x;y� ≡
∫
R
V�z�P��x;y�; dz� ≤ λV�x;y�; �x;y� ∈ R\C:

To continue, we consider the drift function V�x;y� = 1/x. To compute
PV�x;y�, for ease of computation we shall focus on the deterministic-scan
Gibbs sampler on R which updates first the y coordinate and then the x coor-
dinate, rather than on the random-scan Gibbs sampler. This is not a restriction
since it is known [see, e.g., Roberts and Rosenthal (1997a), Proposition 5] that
if the deterministic-scan Gibbs sampler is geometrically ergodic, then so is the
random-scan Gibbs sampler.

We compute that, for the deterministic-scan Gibbs sampler, if �x;y� 6∈ C;

PV�x;y� = 1
x tan�φ� − x tan�θ�

×
∫ x tan�φ�

x tan�θ�

1
w cot�θ� −w cot�φ�

∫ w cot�θ�

w cot�φ�
V�z;w�dzdw

= λV�x;y�;

where

λ = λ�θ;φ� = �log�cot�θ�/ cot�φ���2/��tan�φ� − tan�θ���cot�θ� − cot�φ���:

(Note that we actually have equality here, even though we only require an
inequality.) Now, we have λ�θ;φ� < 1 whenever 0 < θ < φ < π/2; indeed, if
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we set f�ε� = λ�θ; θ+ ε�; then to second order in ε, as ε→ 0+, we have

f�ε� ≈ 1− ε2/�3 sin2�2θ�� < 1:

The geometric ergodicity follows. 2

It is possible to combine Proposition 8 with the results of Section 2. For
example, we have the following theorem.

Theorem 9. Suppose R is a region in R2 whose boundary is a one-
dimensional C2 manifold except at a finite number of points. Suppose further
that in a neighborhood of each of these exceptional points, R coincides with
a triangle (as in Proposition 8). Then the random-scan Gibbs sampler for the
uniform distribution on R is geometrically ergodic.

Outline of Proof. As noted at the end of Section 2, the Gibbs sampler
is uniformly ergodic except near those exceptional points whose vertices are
“tilted,” that is, have apexes which do not contain any coordinate direction.
For such tilted vertices, it is possible to choose ε > 0 small enough that R\Rε

breaks up into a finite number of connected components, one near each excep-
tional point, such that it is impossible to get from one of these components to
another in a single step. Once we have done that, then we define a drift func-
tion V to be equal to 1 on Rε, and equal to the appropriate drift function (as
in the proof of Proposition 8) on each of the different connected components of
R \Rε. Then, separately from each connected component, the Gibbs sampler
has geometric drift back to the small set Rε. Hence, as in Proposition 8, the
result follows. 2

Similar results are available for higher-dimensional regions R having “ver-
tices” on the boundary. We illustrate this with a particular example, a “tilted
cone” with base at the origin, tilted so that it does not contain any coordinate
direction.

Proposition 10. Suppose R ⊆ R3 is the tilted cone

R =
{
�x;y; z� ∈ R3y 0 < x < 1; z2 + �αx− y�

2

1+ α2
< c
�x+ αy�2

1+ α2

}
;

for some α > 0 and 0 < c < 1. Then the Gibbs sampler (with either random- or
deterministic-scan) for the uniform distribution on R is geometrically ergodic.

Proof. We use the same drift function V�x;y; z� = 1/x as before. We
consider the deterministic-scan Gibbs sampler which updates first z, then y,
and then x. [The corresponding result for the random-scan Gibbs sampler
then follows once again from Roberts and Rosenthal (1997a), Proposition 5.]
Clearly updating z does not change the value of V, so it suffices to consider
the effect of updating x and y conditional on a fixed value of z.
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Now, conditional on z = 0, the point �x;y� is restricted to the triangle

R ∩ �z = 0� =
{
�x;y;0� ∈ R3y x tan�θ� < y < x tan�φ�

}
;

for some 0 < θ < φ < π/2. Furthermore, conditional on a particular value of
z 6= 0, the point �x;y� is restricted to a hyperbola lying inside (and asymptotic
to) the triangle R ∩ �z = 0�, whose proximity to this triangle depends on z.

To proceed, let Pz0
be the two-dimensional random-scan Gibbs sampler for

the uniform distribution on R∩�z = z0�, that is, which acts on the coordinates
x and y while leaving the value of z fixed at z = z0. Then P0 is the usual two-
dimensional random-scan Gibbs sampler on the triangleR∩�z = 0�, and hence
by Proposition 8, P0 is geometrically ergodic with P0V�x;y; z� ≤ λV�x;y; z�
for some λ < 1.

Now, we claim that for any choice of z0 ∈ R such that R ∩ �z = z0� is
nonempty, we have Pz0

V�x;y; z0� ≤ P0V�x;y; z0�. Indeed, for fixed z0 we
have

�†� Pz0
V�x;y; z� = 1

y2�x� − y1�x�
∫ y2�x�

y1�x�

1
x2�w� − x1�w�

∫ x2�w�

x1�w�
�1/z�dzdw;

where y1�x�, y2�x�, x1�w�, and x2�w� are defined by

R ∩ ��x; t�y t ∈ R� = ��x; t�y y1�x� < t < y2�x��

and

R ∩ ��t;w�y t ∈ R� = ��t;w�y x1�x� < w < x2�x��:

It is furthermore verified that there are functions d�x� and D�y� (which also
depend on θ, φ, and z0) such that

y1�x� = x cot�θ� + d�x�y y2�x� = x cot�φ� − d�x�y

x1�y� = y tan�φ� +D�y�y x2�y� = y tan�θ� −D�y�y

that is, the interval �x1�y�; x2�y�� is symmetrically embedded in the interval
�y cot�φ�; y cot�θ�� [and similarly for �y1�x�; y2�x��].

To show that Pz0
V ≤ P0V, we observe that, for fixed 0 < a < b and

0 ≤ k < �b − a�/2, the quantity 1/�b− a− 2k�
∫ b−k
a+k �1/z�dz as a function of k

is maximized at k = 0. Applying this observation twice to �†� shows that
Pz0

V�x;y; z� ≤ P0V�x;y; z� as desired.
It follows that the deterministic-scan Gibbs sampler on R is again geomet-

rically ergodic, with at least as small a value of λ as the corresponding value
from Proposition 8. 2

Finally, we turn our attention to showing that certain Gibbs samplers are
not geometrically ergodic. We begin with a result, following Lawler and Sokal
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(1988), which may be viewed as a generalization of Roberts and Tweedie
(1996), Theorem 5.1.

Lemma 11. Let P�x; ·� be the transition probabilities for a Markov chain
on a state space X , having stationary distribution π�·�. Suppose that, for any
δ > 0, there is a subset A ⊆ X with 0 < π�A� < 1 such that

∫
AP�x;AC�π�dx�
π�A�π�AC� < δ:

Then the Markov chain is not geometrically ergodic.

Proof. We use the notion of conductance or Cheeger’s constant, as in
Lawler and Sokal (1988). Recall that this is defined by

K = inf
A⊆R

∫
AP�x;AC�π�dx�
π�A�π�AC� ;

where the infimum is taken over all measurable subsets of R, and the integral
is taken with respect to the stationary distribution π�·�. It follows from Lawler
and Sokal (1988) that for a reversible Markov chain (such as the random-
scan Gibbs sampler), we have K > 0 if and only if the Markov chain is
geometrically ergodic. But the hypothesis of the lemma implies that K = 0.
Hence the chain is not geometrically ergodic. 2

Now, Proposition 8 considers the case where R ⊆ R2 has a pointed vertex
which subtends a positive angle. One can still ask about the case where R
has a “sharpened” vertex, that is, a vertex whose two adjoining boundary
curves are asymptotically tangent. For such a case, it turns out that the Gibbs
sampler is not geometrically ergodic, as the following result shows.

Proposition 12. Let R ⊆ R2 be the width-1 “sharpened” triangle with
lower angle θ and power α, that is,

R =
{
�x;y� ∈ R2y 0 < x < 1; x tan�θ� < y < �x+ xα� tan�θ�

}
;

where 0 < θ < π/2 and 1 < α < ∞. Then the Gibbs sampler (with either
random- or deterministic-scan) for the uniform distribution on R is not geo-
metrically ergodic.

Proof. We shall show the result for the random-scan Gibbs sampler; the
result for the deterministic-scan Gibbs sampler then follows from, for example,
Roberts and Rosenthal (1997a), Proposition 5.

We shall apply Lemma 11. To that end, let A ⊆ R be defined by

A =
{
�x;y� ∈ Ry y < �ε+ εα� tan�θ�

}
;
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where ε > 0. Then we note that for �x;y� ∈ A, we have P��x;y�;AC� = 0
unless x > ε. Now, it is seen by inspection that

π��x;y� ∈ Ay x > ε� = ε2α tan�θ�/�R�:
Hence,

∫
A
P�x;AC�π�dx� ≤

∫
A

1�x>ε��z�π�dz� = ε2α tan�θ�/�R�:

On the other hand, we have

π�A� >
∫ ε

0
tan�θ� tα dt/�R� = tan�θ� εα+1/�α+ 1��R�:

It follows that, if we choose ε small enough so that π�AC� ≤ 1/2, then
∫
AP�x;AC�π�dx�
π�A�π�AC� ≤ 2 εα−1/�1+ α�:

Since α > 1, this converges to 0 as ε→ 0+. Hence it can be made arbitrarily
small, and the result follows from Lemma 11. 2

Acknowledgements. We thank Radford Neal for discussing these mat-
ters with us. We thank a referee for a very helpful report.

REFERENCES
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