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ON THE STORAGE CAPACITY OF HOPFIELD
MODELS WITH CORRELATED PATTERNS

By Matthias Löwe

Universität Bielefeld

We analyze the storage capacity of the Hopfield model with correlated
patterns �ξνi �. We treat both the case of semantically and spatially corre-
lated patterns (i.e., the patterns are either correlated in ν but independent
in i or vice versa). We show that the standard Hopfield model of neural
networks with N neurons can store N/�γ logN� or αN correlated patterns
(depending on which notion of storage is used), provided that the corre-
lation comes from a homogeneous Markov chain. This answers the open
question whether the standard Hopfield model can store any increasing
number of correlated patterns at all in the affirmative. While our bound
on the critical value for α decreases with large correlations, the critical γ
behaves differently for the different types of correlations.

1. Introduction. The study of neural networks has been a major topic
of research in mathematics, physics and computer science during the past
15 years.

Basically a model of a neural network consists of a labeled and possibly ori-
ented graph G = �V;E� together with a set S with card�S� ≥ 2 to describe the
set of neurons (by V), the synapses connecting these neurons (by E) and the
activity of each of the neurons (by a variable σi ∈S for i∈V). Moreover, the in-
formation to be stored is encoded in so-called patterns ξµ, µ = 1; : : : ;M�N�,
each of the ξµ itself being a sequence of ξµi ∈ S, i = 1; : : : ;N. Finally, to make
the neural net capable of adapting to different sequences of patterns, we have
to introduce a set of variables Jij, ij ∈ E called the synaptic efficacies and
describing the strength of interaction between the neurons at sites i and j.
It is commonly assumed that the variable Jij is measurable with respect to
the set �ξµi ; ξ

µ
j ; µ = 1; : : : ;M�N�� (so-called locality of the weights Jij). The

basic idea now behind this set-up is to define a Hamiltonian HN�σ� on SN,
such that the Monte Carlo dynamics governed by this Hamiltonian eventually
converges to one of M�N� states close to the original patterns.

One of the classical and best understood examples of a neural network is the
so-called Hopfield model [14]. Although originally introduced by Pastur and
Figotin [22] as a simplified model of a spin-glass, this model achieved much of
its interest by its reinterpretation as an auto-associative memory by Hopfield
and may therefore rightly be called the Hopfield model. Here the graph G is
the complete graph KN on N vertices, S = �−1;+1�, corresponding to the
fact that a neuron may be either switched “on” or “off” and the weights Jij
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are given by “Hebb’s learning rule,” that is, the formula

Jij x=
1
N

M�N�∑
µ=1

ξ
µ
i ξ

µ
j :

One of the most important advances due to [14] has been to understand that
this set-up corresponds to a Hamiltonian HN given by

HN�σ� x= −
1
2

N∑
i; j=1

Jijσiσj = −
1

2N

N∑
i; j=1

M�N�∑
µ=1

ξ
µ
i ξ

µ
jσiσj:(1)

Note that (1) may be rewritten in the very convenient form

HN�σ� = −
N

2

M�N�∑
µ=1

�mµ
N�σ��2 = −

N

2
��mN�σ���22;(2)

where ��mN�σ���22 is the l2-norm of the so-called overlap vector

mN�σ� x= �mµ
N�σ��µ=1;:::;M�N� =

(
1
N

N∑
i=1

σiξ
µ
i

)

µ=1;:::;M�N�
:

Note that mN�σ� may be regarded as an index for how much a configuration
is correlated to one of the given patterns (large absolute values of a component
of mN�σ� corresponding to large correlations). Also observe that (2) makes it
plausible—at least for M x= M�N� small enough—that the minima of HN

are located close to the patterns ξµ (notice that this is trivially fulfilled, if the
patterns are orthogonal, that is, if mν

N�ξµ� = δµ; ν�:
Indeed, much of the recent work on the Hopfield model can be summarized

under the aspect of making precise and mathematically verifying this last
statement. To this end, in most of the papers it has been assumed that the
ξ
µ
i are unbiased i.i.d. random variables, that is, that P�ξµi = +1� = P�ξµi =
−1� = 1

2 for all i and µ independently of all the other ξνj.
Hopfield [14] had already discovered by computer simulations that in this

case there is a value αc > 0 such that if M�N� ≤ αcN, almost all patterns are
memorized, whereas for M�N� > αcN the Hopfield model tends to “forget” all
of the patterns and therefore one may rightly speak about a storage capacity
of the Hopfield model. The numerical value of αc found by Hopfield was close
to 0.14. This finding with a similar value for αc has been supported by nonrig-
orous analytical computations (including the notorious replica-trick) by Amit,
Gutfreund and Sompolinsky in [2] and [3] (for the current state of the art con-
cerning the replica method, see [15]). The first rigorous results concerning the
storage capacity of the Hopfield model were by McEliece, Posner, Rodemich
and Venkatesh [18], showing that if one focuses on exact reproduction of the
patterns, the memory capacity of the Hopfield model is only in the order of
const.�N/ logN� where the constant ranges between 1/2 and 1/6 and mainly
depends on whether one is interested in “almost sure” results or in results
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holding with “probability converging to one” (see the corresponding results in
Section 2; also see the survey paper [23]).

On the other hand, Newman [21] showed rigorously that, if small errors
are tolerated, the Hopfield model is able to successfully retrieve a number of
patterns M proportional to the number of neurons N, and his (lower) bound
on the constant αc was αc ≥ 0:056. This bound recently has been improved
by Loukianova [16] to αc ≥ 0:071 and by Talagrand [25, 26] to αc ≥ 0:08 by
a refined use of Newman’s technique. But to verify Hopfield’s value for αc
rigorously and to give a good picture of what happens above this bound still
remains a major open problem and only very few results on this subject are
available (see [17] and [26]).

However, nowadays the Hopfield model is well understood in the regime
where the patterns are chosen independently and their number is “small”
compared to the number of neurons (also in the case of nonzero tempera-
tures). The corresponding analysis has been carried out in a series of papers
by Bovier and Gayrard, partially in collaboration with Picco [8, 9, 10, 5, 7].
Another milestone certainly has been set in a recent paper, [26], especially for
what concerns the validity of the so-called replica–symmetric solution in the
Hopfield model. For a comprehensive review over the rapid development in
this area during the last few years and a particularly nice proof of the validity
of the replica-symmetric solution, we refer the reader to [6]. In this context, of
course, a result due to Gentz [12] should be mentioned where a central limit
theorem for the overlap parameter in this model is proved.

Now in most realistic situations the patterns are not at all independent (see,
e.g, [19]). Indeed, there are at least two sensible ways to introduce correlations
among the patterns. One is to consider spatial correlation, that is, to choose
the patterns correlated in i but independent in µ, which may be interesting
when, for example, thinking about the patterns as images to be stored. The
other way is to choose sequentially or semantically correlated patterns, which
means that the dependency now enters via µ only. This situation might be
useful as a very simple model for patterns with some sort of causal relations,
as, for example, films (for a Hopfield model with deterministic sequences of
i.i.d. patterns, see [24]).

In both situations the picture is less clear than in the “i.i.d. case.” It seems
that the idea of encoding correlated patterns first was mentioned in [11] and
[1]. Some investigations based on heuristic arguments claim that correlations
among the patterns can only increase the storage capacity of the Hopfield
model [20, 27]. This may be supported by the fact that in terms of infor-
mation content a sequence of correlated patterns contains less information
than a sequence of uncorrelated ones. On the other hand—based on a signal-
noise-analysis for biased data—some other authors (see, e.g., [28]) argue that
the Hopfield model cannot store any increasing (in N) amount of correlated
patterns. The basic idea behind this argument is that in the presence of corre-
lations among the patterns the cross-talk terms between two patterns become
nonvanishing, and therefore the noise created by these cross-talk terms be-
comes large compared to the signal coming from a single pattern.
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In this paper we will show that both effects may occur depending on the
notion of storage and the type of dependencies we consider. In the case of
semantically correlated data (which in our case come from a Markov chain),
we will see that the numbers of patterns we can store such that all of them are
fixed points of the retrieval dynamics is an increasing function of the strength
of the correlation, while our bound on the storage capacity decreases in the
strength of the correlation, if we define it in the sense of [21].

The situation of spatially correlated patterns may be considered to be even
more interesting but definitely is also more challenging because the Hamilto-
nian for a fixed edge ij depends linearly on ξ

µ
i ξ

µ
j (more precisely it depends

on the sum of these variables), but for a fixed pattern µ it is a quadratic form
in ξ

µ
i [see (1)]. We also will treat the case of spatially correlated patterns in

this paper, again provided that the correlations stem from a homogeneous
Markov chain (corresponding to one-dimensional images). We show that the
Hopfield model can store N/�γ logN� or even αcN spatially correlated pat-
terns (depending on the notion of storage capacity). Here the lower bounds on
the constants 1/γ and αc are decreasing with an increasing strength of the
correlation.

This paper has three further sections. Section 2 contains the basic set-up,
including a definition of the two notions of storage capacity we use and a
description of the homogeneous Markov chains we have in mind. Moreover,
we state our main results. Section 3 will contain some auxiliary lemmata.
Section 4 is devoted to the proofs.

2. The set-up and the main results. In this section we will mainly
state our results on the storage capacity of the Hopfield model with correlated
patterns.

First, let us briefly explain the two different concepts we are dealing with.
The idea behind the first notion of storage capacity is that a possible retrieval
dynamics is a Monte Carlo dynamics at zero temperature working as follows:
Choose a site i at random. Flip the spin σi, if flipping lowers the energy (the
Hamiltonian) and let the spin σi be unchanged otherwise. On a more formal
level we define the gradient dynamics T on the energy landscape on �−1;+1�
induced by HN via

Tix σi 7→ sgn

(
N∑
j=1
j6=i

σjJij

)
;

where sgn is the sign function. The mapT is then defined byT�σ� x= �Ti�σi��i.
We will call a configuration σ = �σi�i≤N stable if it is a fixed point of T, that is,

σi = sgn

(
N∑
j=1
j6=i

σjJij

)
for all i = 1; : : : ;N;
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which means that σ is a local minimum of the Hamiltonian. The storage
capacity in this concept is defined as the greatest number of patterns M x=
M�N� such that all the patterns ξν are stable in the above sense almost surely
or with probability converging to one. [Here and in the following the notion
“almost surely” refers to the probability measure on the space of all sequences
of patterns (of infinite length) while in “probability converging to one” the
convergence is with N→∞.]

The other approach to storage capacity is due to [2] and has rigorously
been analyzed in [21]. It takes into consideration that we are possibly willing
to tolerate small errors in the restoration of the patterns. So we are satisfied if
the retrieval dynamics converges to a configuration which is not too far away
from the original patterns. Thus in this concept a pattern ξν is called stable
if it is close to a local minimum of the Hamiltonian or, in other words, if it
is surrounded by a sufficiently high energy barrier. Technically speaking, we
will call ξν stable if there exist ε > 0 and δ > 0 such that

inf
σ∈Sδ�ξν�

HN�σ� ≥HN�ξν� + εN:(3)

Here the set Sδ�ξν� (over which the infimum is taken) is the Hamming sphere
of radius δN centered in ξν. Again we will use the notion of storage capacity
for the maximal number M�N� of patterns such that (3) holds true for all ξν

almost surely.
Before we can state our result, we have to describe the form of correlations

we are going to study. We will differentiate between spatial and semantical
correlations.

For the semantical correlations we will assume that the random variables
�ξµi �i∈N; µ∈N are independent for different i and for fixed i form a Markov chain
in µ with initial distribution

P�ξ1
i = x1

i ; i = 1; : : : ;N� = 2−N for all x1
i ∈ �−1;1�(4)

and transition probabilities

P�ξµi = x
µ
i �ξνj = xνj; j = 1; : : : ;N; ν = 1; : : : ; µ− 1�

= P�ξµi = x
µ
i �ξ

µ−1
i = xµ−1

i � = Q�x
µ−1
i ; x

µ
i �:

(5)

Similarly, for the case of spatial correlations we will assume that the ran-
dom variables �ξµi �i∈N; µ∈N are independent for different µ and for fixed µ form
a Markov chain in i with initial distribution

P�ξµ1 = x
µ
1 ; µ = 1; : : : ;M� = 2−M for all xµ1 ∈ �−1;1�(6)

and transition probabilities

P�ξµi = x
µ
i �ξνj = xνj; j = 1; : : : ; i− 1; ν = 1; : : : ;M�

= P�ξµi = x
µ
i �ξ

µ
i−1 = x

µ
i−1� = Q�x

µ
i−1; x

µ
i �:

(7)
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In (5) and (7) Q denotes a symmetric 2× 2 matrix with entries

Q =
(

p 1− p
1− p p

)
;

where 0 < p < 1 (note that p = 1
2 is the case of independent patterns).

Let us also mention that for the spatial correlations we have used the no-
tation and set-up of a Markov chain to stress the similarity with the case of
semantically correlated patterns and since it is more convenient. However, let
us mention that this set-up is equivalent to that of a one-dimensional homoge-
neous Markov random field (see, e.g., [13], Chapter 3), which maybe somewhat
closer to the usual modeling of an image.

With these definitions, our results concerning the storage capacity for cor-
related patterns read as follows.

Theorem 2.1. Assume the random patterns ξµ fulfill (4) and (5) and sup-
pose that M�N� =N/�γ logN�.

Then the following assertions hold true.

(i) If γ > 48p�1− p��p2 + �1− p�2�,

P

(
lim inf
N→∞

(M�N�⋂
µ=1

Tξµ = ξµ
))
= 1y

that is, the patterns are almost surely stable.
(ii) If γ > 32p�1− p��p2 + �1− p�2�,

P

((M�N�⋂
µ=1

Tξµ = ξµ
))
= 1−RN

with limN→∞RN = 0; that is, all the patterns are stable with probability
converging to one.

(iii) If γ > 16p�1− p��p2 + �1− p�2� for every fixed µ = 1; : : : ;M�N�,
P�Tξµ = ξµ� = 1−RN

with limN→∞RN = 0; that is, every fixed pattern is stable with probability
converging to one.

Theorem 2.2. Assume the random patterns ξµ satisfy (6) and (7) and sup-
pose that M�N� =N/�γ logN�.

Then the following assertions hold true.

(i) If γ > 3�p2 + �1− p�2�/p�1− p�,

P

(
lim inf
N→∞

(M�N�⋂
µ=1

Tξµ = ξµ
))
= 1y

that is, the patterns are almost surely stable.
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(ii) If γ ≥ 2�p2 + �1− p�2�/p�1− p�,

P

((M�N�⋂
µ=1

Tξµ = ξµ
))
= 1−RN

with limN→∞RN = 0; that is, all the patterns are stable with probability
converging to one.

(iii) If γ > p2 + �1− p�2/p�1− p� for every fixed µ = 1; : : : ;M�N�,
P�Tξµ = ξµ� = 1−RN

with limN→∞RN = 0; that is, every fixed pattern is stable with probability
converging to one.

Note that 1/γ→∞ as p→ 0 or p→ 1 in the case of semantical correlations
(i.e., the storage capacity increases with large correlations) while 1/γ→ 0 as
p → 0 or p → 1 in the case of spatial correlations (implying a decrease of
the bound on the storage with large correlations). Also notice that for p = 1/2
(the case of independent patterns) the bounds coincide with the well-known
bounds for the Hopfield model with i.i.d. patterns (see [18], [23]).

Let us now turn to the second notion of storage capacity. We will see that
if small errors are tolerated, the Hopfield model indeed can store a number
of spatially correlated patterns M proportional to the number of neurons N.
The behavior of the critical value αc will depend on the strength and type of
the correlation and αc decreases with an increasing correlation (this basically
means that our bounds on αc behave in such a way).

Theorem 2.3. Suppose that the random patterns fulfill (4) and (5). There
exists an αc x= αSEM

c > 0 (depending on p) such that if M�N� ≤ αcN, then
there are ε > 0 and 0 < δ < 1/2 such that

P

(
lim inf
N→∞

(M�N�⋂
µ=1

⋂

σ∈Sδ�ξµ�
�HN�σ� ≥HN�ξµ� + εN�

))
= 1;

where Sδ�ξµ� is the Hamming sphere of radius δN centered in ξν.

Similarly for the case of spatial correlations, we have the following theo-
rems.

Theorem 2.4. Suppose that the random patterns fulfill (6) and (7). There
exists an αc x= αSPA

c > 0 (depending on p) such that if M�N� ≤ αcN, then there
are ε > 0 and 0 < δ < 1/2 such that

P

(
lim inf
N→∞

(M�N�⋂
µ=1

⋂

σ∈Sδ�ξµ�

(
HN�σ� ≥HN

(
ξµ
)
+ εN

)))
= 1;

where Sδ�ξµ� is the Hamming sphere of radius δN centered in ξν.
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3. Preliminaries. This section contains a number of preparatory results
for the proofs contained in the final section. The first collects two purely ana-
lytical statements.

Lemma 3.1. (i) For all 0 < p < 1 and all t ∈ R,

p exp�−2�1− p�t� + �1− p� exp�2pt� ≤ cosh��1+ �2p− 1��t�:(8)

(ii) Let xi ∈ R; i = 1; : : : ;N with
∑N
i=1 xi = 0 and

∑N
i=1 x

2
i ≤ 1. Then

N∏
i=1

�1− xi� ≥ 1−
N∑
i=1

x2
i :(9)

Proof. Part (i) is a simple exercise. For (ii), note that K x= �x ∈ RNx∑N
i=1 xi = 0

∑N
i=1 x

2
i ≤ 1� is a compact subset of RN and therefore the function

f�x� =
N∏
i=1

�1− xi� +
N∑
i=1

x2
i

assumes its minimum in some a ∈K. We have to show that f�a� ≥ 1. If a = 0
we are done.

If a 6= 0 then, since a ∈K, there are j 6= k with aj 6= ak. Define a′ by

a′i =





ai; i 6= j; k;
aj + ak

2
; i = j; k:

Note that a′ ∈K by convexity. Moreover,

f�a′� =
(

N∏
i=1
i6=j; k

�1− ai�
)(

1− aj + ak
2

)2

+
N∑
i=1
i6=j; k

a2
i +

1
2
�aj + ak�2

=
N∏
i=1

�1− ai� +
1
4

(
N∏
i=1
i6=j; k

�1− ai�
)
�aj − ak�2 +

N∑
i=1

a2
i −

1
2
�aj − ak�2

= f�a� + 1
4

(
N∏
i=1
i6=j; k

�1− ai�
)
�aj − ak�2 −

1
2
�aj − ak�2:

Since f�a′� ≥ f�a�,
(

N∏
i=1
i6=j; k

�1− ai�
)
≥ 2;
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implying that

f�a� ≥ 2�1− aj��1− ak� + a2
j + a2

k

= 1+ �1− �aj + ak��2 ≥ 1: 2

Note that (ii) of Lemma 3.1 can and actually will be used for giving a lower
bound on the determinant of Id−A where A is some symmetric matrix with
trace 0.

Lemmas 3.2 and 3.3 show how to center quadratic forms of one or more
homogeneous Markov chains on �−1;+1�. These lemmas are given here to
make the proofs in the following section more transparent.

Lemma 3.2. Assume that �Yi�i∈N is a homogeneous Markov chain on
�−1;+1� with transition matrix

R =
(

q 1− q
1− q q

)

starting in equilibrium; that is, P�Y1 = +1� = P�Y1 = −1� = 1
2 : LetA = �ai; j�

be a symmetric N×N matrix with ai; i = 0 for all i = 1; : : : ;N Define

Yi =
{
Yi − �2q− 1�Yi−1; if i ≥ 2;

Y1; otherwise.
(10)

Then

N∑
i; j=1

ai; jYiYj =
N∑

i; j=1

bi; jYiYj + 2
∑

1≤i<j≤N
�2q− 1�j−iai; j;(11)

where

bi; j =
j−i−1∑
k=0

N−j∑
l=0

�2q− 1�k+lai+k; j+l(12)

for i < j, bi; j = bj; i for i > j and finally bi; i = 0 for all i.

Proof. First, note that due to the symmetry ai; j = aj; i and bi; j = bj; i
together with ai; i = bi; i = 0 for all i we only have to show that

∑
1≤i<j≤N

ai; jYiYj =
∑

1≤i<j≤N
bi; jYiYj +

∑
1≤i<j≤N

�2q− 1�j−iai; j:(13)

This will be done by induction. For N = 2 we have
∑

1≤i<j≤N
ai; jYiYj = a1;2Y1Y2 = a1;2Y1Y2 + �2q− 1�a1;2Y1Y1

= b1;2Y1Y2 + �2q− 1�a1;2

=
∑

1≤i<j≤N
bi; jYiYj + �2q− 1�a1;2:
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Now suppose (13) was already shown for N−1. To prove it for N we calculate
∑

1≤i<j≤N
ai; jYiYj =

∑
1≤i<j≤N−1

ai; jYiYj +
∑

1≤i<N
ai;NYiYN

=
∑

1≤i<j≤N−1

ai; jYiYj +
∑

1≤i<N
ai;NYiYN

+ �2q− 1�
∑

1≤i<N−1

ai;NYiYN−1 + �2q− 1�aN−1;N

=
∑

1≤i<j≤N−1

a
�1�
i; jYiYj +

∑
1≤i<N

bi;NYiYN

+ �2q− 1�aN−1;N;

(14)

where we have set

a
�1�
i; j =

{
ai; j; if 1 ≤ i < j ≤N− 2;

ai;N−1 + �2q− 1�ai; n; if 1 ≤ i < j =N− 1:

Applying the induction hypotheses to the first summand in (14) leads to
∑

1≤i<j≤N−1

a
�1�
i; jYiYj

=
∑

1≤i<j≤N−1

j−i−1∑
k=0

N−j−1∑
l=0

�2q− 1�k+la�1�i+k; j+lYiYj

+
∑

1≤i<j≤N−1

�2q− 1�j−ia�1�i; j

=
∑

1≤i<j≤N−1

( j−i−1∑
k=0

N−j−2∑
l=0

�2q− 1�k+lai+k; j+l

+
j−i−1∑
k=0

�2q− 1�k+N−1�ai+k;N−1 + �2q− 1�ai+k;N�
)
YiYj

+
∑

1≤i<j≤N−2

�2q− 1�j−iai; j

+
∑

1≤i<N−1

�2q− 1�N−i−1�ai;N−1 + �2q− 1�ai;N�

=
∑

1≤i<j≤N−1

bi; jYiYj +
∑

1≤i<j≤N−2

�2q− 1�j−iai; j

+
∑

1≤i<N−1

�2q− 1�N−i−1�ai;N−1 + �2q− 1�ai;N�
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such that together with the above calculations,
∑

1≤i<j≤N
ai; jYiYj =

∑
1≤i<j≤N

bi; jYiYj +
∑

1≤i<j≤N
�2q− 1�j−iai; j: 2

Lemma 3.3. Let �Yµ�µ∈N0
and �Zµ�µ∈N0

be independent and homogeneous
Markov chains on �−1;+1�, both with transition matrix

R =
(

q 1− q
1− q q

)
;

starting in 1; that is, P�Y0 = +1� = P�Z0 = +1� = 1:
Similarly to (10) let Y

µ
and Z

µ
denote the centered versions of Yµ and Zµ;

that is,

Y
µ = Yµ − �2q− 1�Yµ−1 if µ ≥ 1(15)

and

Z
µ = Zµ − �2q− 1�Zµ−1 if µ ≥ 1:(16)

Then

k∑
µ=1

YµZµ =
k∑

µ1; µ2=1

aµ1; µ2
Y
µ1
Z
µ2 +

k∑
µ=1

aµ;0�Y
µ +Zµ� +

k−1∑
n=0

�2q− 1�2n;(17)

where

aµ1; µ2
x=

k−max�µ1; µ2�∑
n=0

�2q− 1�2n+�µ1−µ2�(18)

for µ1; µ2 ≥ 0, �µ1; µ2� 6= �0;0�. Note that aµ1; µ2
= aµ2; µ1

.

Proof. Observe that

YµZµ = YµZµ + �2q− 1�
(
Yµ−1Zµ +YµZµ−1)+ �2q− 1�2Yµ−1Zµ−1:

Hence

k∑
µ=1

YµZµ =
k∑
µ=1

k−µ∑
n=0

�2q− 1�2nYµZµ

+
k∑
µ=1

k−µ∑
n=0

�2q− 1�2n+1(Yµ−1Zµ +YµZµ−1)+
k−ν−1∑
n=0

�2q− 1�2n:

Centering also the variables in the second sum on the right-hand side above
gives

k∑
µ=1

YµZµ =
k∑

µ1; µ2=1

aµ1; µ2
Yµ1 Zµ2 +

k∑
µ=1

aµ;0
(
Yµ +Zµ

)
+
k−ν−1∑
n=0

�2q− 1�2n: 2
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Finally, we show how to compute the moment generating function of a sum
of random variables of the above type.

Lemma 3.4. Assume that �Yi�i∈N is a homogeneous Markov chain on
�−1;+1� with transition matrix

R =
(

q 1− q
1− q q

)

starting in equilibrium; that is, P�Y1 = +1� = P�Y1 = −1� = 1
2 : Then for

t ∈ �0;1� and q ≥ 1/2 and every 1 ≤ i ≤ k there is a constant C such that

E

(
exp

(
−t

k∑
j=1
j6=i

YiYj

))

≤ exp
(
−t 2q− 1

2�1− q� �2−�2q−1�k−i−�2q−1�i−1�
)

× exp
(
t2

2�k− 1�q�1− q�− �2q−1��2−�2q−1�k−i−�2q−1�i−1�
4�1− q�2

+Ckt3
)
:

Proof. By decomposing the exponential we obtain that

E

(
exp

(
−t

k∑
j=1
j6=i

YiYj

))

=
∑

yj=−1;+1

P�Y1=y1�P�Y2=y2�Y1=y1� · · ·P�Yi=yi�Yi−1=yi−1�

×P�Yi+1 = yi+1�Yi = yi� · · ·P�Yk = yk�Yk−1 = yk−1�

× exp

(
−t

k∑
j=1
j6=i

yiyj

)

= 1
2

∑
yj=−1;+1;

j6=i

R�y1; y2� exp�−ty1� · · ·R�yi−1;1� exp�−tyi−1�

×R�1; yi+1� exp�−tyi+1� · · ·R�yk−1; yk� exp�−tyk�

+ 1
2

∑
yj=−1;+1;

j6=i

R�y1; y2� exp�ty1� · · ·R�yi−1;−1� exp�tyi−1�

×R�−1; yi+1� exp�tyi+1� · · ·R�yk−1; yk� exp�tyk�:

(19)
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Due to the symmetry of R and the Yj, the two sums on the right-hand side
in (19) agree such that

E

(
exp

(
−t

k∑
j=1;
j6=i

YiYj

))

=
∑

yj=−1;+1;
j6=i

R�y1; y2� exp�−ty1� · · ·R�yi−1;1� exp�−tyi−1�

×R�1; yi+1� exp�−tyi+1� · · ·R�yk−1; yk� exp�−tyk�

=
∑

y1=−1;1;
yk=−1;1

5i−1
L �y1;1�5k−iR �1; yk�;

where

5L x=
(

qe−t �1− q�e−t
�1− q�et qet

)

and

5R x=
(

qe−t �1− q�et
�1− q�e−t qet

)
:

Observe that �5L�t = 5R, implying that 5L and 5R have the same eigenval-
ues, which are

λ1 = q cosh�t� +
√

1− 2q+ q2 cosh2�t�(20)

and

λ2 = q cosh�t� −
√

1− 2q+ q2 cosh2�t�:

Now

∑
y1=−1;1; yN=−1;1

5i−1
L �y1;1�5k−iR �1; yk� =

((
1

1

)
5i−1
L

(
1

0

))((
1

0

)
5k−iR

(
1

1

))
:

By bringing 5L and 5R into diagonal form we see that
(

1

1

)
5i−1
L

(
1

0

)
= 1
ad− bc�a�d− b�λ

i−1
1 + b�a− c�λi−1

2 �

as well as
(

1

0

)
5k−iR

(
1

1

)
= 1
ad− bc�a�d− b�λ

k−i
1 + b�a− c�λk−i2 �
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with

a =
√

1− 2q+ q2 cosh2�t� − q sinh�t�; b = �1− q�et;

c = �1− q�e−t; d = q sinh�t� −
√

1− 2q+ q2 cosh2�t�:
Put

f�t� = 1
ad− bc

(
a�d− b�λn1 + b�a− c�λn2

)

for some n. Some calculations give that

f�0� = 1;

f′�0� = − 2q− 1
2�1− q� �1− �2q− 1�n�;

f′′�0� = 2�n− 1�q�1− q� − �2q− 1��1− �2q− 1�n�
�1− q�2 ;

f′′′�0� = O �n�:
Thus by Taylor expansion for t ∈ �0;1�,

f�t� = 1− t 2q− 1
2�1− q� �1− �2q− 1�n�

+ t2 2�n− 1�q�1− q� − �2q− 1��1− �2q− 1�n�
4�1− q�2 + O �nt3�

≤ exp
(
−t 2q− 1

2�1− q� �1− �2q− 1�n�

+ t2 2�n− 1�q�1− q� − �2q− 1��1− �2q− 1�n�
4�1− q�2 + O �nt3�

)
:

This implies the assertion of the lemma. 2

4. Proofs. The proofs of the first two theorems are quite similar, so we
will give the first in detail and only comment on the changes for the second.

Proof of Theorem 2.1. Fix 1 ≤ ν ≤M�N�. Following the definition of the
dynamics T and the definition of stability introduced in Section 2 the pattern
ξν is stable if and only if

ξνi = sgn

(
N∑
j=1
j6=i

ξνjJij

)
= sgn

( N∑
j=1

M�N�∑
µ=1

ξνjξ
µ
i ξ

µ
j

)

for all i = 1; : : : ;N, or, in other words, if

N∑
j=1
j6=i

M�N�∑
µ=1

ξνiξ
ν
jξ

µ
i ξ

µ
j ≥ 0
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for all i = 1; : : : ;N (where we use the convention sgn�0� = 1, which does
not really influence our calculations since the probability that the above sum
equals zero vanishes for largeN). Hence by bounding the probability of a union
of events by the sum of the corresponding probabilities and the exponential
Chebyshev–Markov inequality we get for all t ≥ 0,

P�ξν is not stable� ≤
N∑
i=1

P

(
N∑
j=1
j6=i

M�N�∑
µ=1
µ6=ν

ξνiξ
ν
jξ

µ
i ξ

µ
j ≤ −N

)

≤
N∑
i=1

e−tNE exp

(
−t

N∑
j=1
j6=i

M�N�∑
µ=1
µ6=ν

ξνiξ
ν
jξ

µ
i ξ

µ
j

)

=Ne−tN
(
E exp

(
−t

M�N�∑
µ=1
µ6=ν

ξν1ξ
ν
2ξ
µ
1ξ

µ
2

))N
:

(21)

Now putting Yµ x= ξµ1ξ
µ
2 , note that Yµ is a Markov chain with transition

matrix

R =
(
p2 + �1− p�2 2p�1− p�

2p�1− p� p2 + �1− p�2
)
=x
(

q 1− q
1− q q

)
;

such that we can calculate

E exp

(
−t

M�N�∑
µ=1
µ6=ν

ξν1ξ
ν
2ξ
µ
1ξ

µ
2

)
= E exp

(
−t

M�N�∑
µ=1
µ6=ν

YνYµ

)

with the help of Lemma 3.4 (and k = M). Thus there is a constant C such
that for all t ≤ 1,

E exp

(
−t

M�N�∑
µ=1
µ6=ν

YνYµ

)

≤ exp
(
−t 2q− 1

2�1− q� �2− �2q− 1�M−ν − �2q− 1�ν−1�
)

× exp
(
t2

2�M−1�q�1−q�− �2q−1��2−�2q−1�M−ν −�2q−1�M−1�
4�1−q�2

+CMt3
)
:
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Now as for each ε > 0 we have that �2− �2q− 1�M−ν − �2q− 1�ν−1� ≥ 1− ε if
N and therefore M is large enough. Thus,

exp
(
−t 2q− 1

2�1− q� �2− �2q− 1�M−ν − �2q− 1�ν−1�
)

× exp
(
t2

2�M−1�q�1−q�− �2q−1��2−�2q−1�M−ν −�2q−1�M−1�
4�1−q�2

+CMt3
)

≤ exp
(
−t�1− ε� 2q− 1

2�1− q� + t
2 �M− 1�q

2�1− q� +CMt3
)
:

Hence we arrive at

P
(
∃ νx ξν is not stable

)

≤MN exp
(
−tN

(
1+ �1− ε� 2q− 1

2�1− q�

)
+t2MN q

2�1− q� +CMNt
3
)
;

where the last factor on the right-hand side does not contribute, if t goes to
zero fast enough. Choosing t = 1− ε�2q− 1�/2qM gives

P
(
∃ νx ξν is not stable

)
≤MN exp

(
−�1− ε�2q− 1��2

8q�1− q�
N

M
+C N

M2

)
:

So if M =N/γ logN the last factor on the right-hand side can be bounded by
exp�const.��logN�2/N��, which is converging to one. Therefore

P
(
∃ νx ξν is not stable

)
≤ N2

logN
N−�γ�1−ε�2q−1��2�/8q�1−q��1+ o�1��

and the choice γ > 24q�1− q�/�1− ε�2q− 1��2 = 48�p2+�1−p�2�p�1−p�/�1−
ε�2q−1��2 leads to the converging series

∑�1/Nκ logN� for a κ > 1. Since this
is true for all ε > 0 this proves part (i) of the theorem by the Borel–Cantelli
lemma.

The choice of γ > 16q�1− q� = 32�p2 + �1− p�2�p�1− p� yields

P
(
∃ νx ξν is not stable

)
→ 0

and therefore part (ii) of the theorem.
Part (iii) of the theorem follows by observing that for any fixed ν,

P�ξν is not stable�

≤N exp
(
−tN

(
1+ �1− ε� 2q− 1

2�1− q�

)
+ t2 MNq

2�1− q� +CMt3
)

and then continuing just as above. 2
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Proof of Theorem 2.2. Again fix 1 ≤ ν ≤ M�N�. Just as in the proof of
Theorem 2.1 we use the exponential Chebyshev–Markov inequality together
with the independence of the patterns to obtain, for all t ≥ 0,

P�ξν is not stable� ≤
N∑
i=1

exp�−tN�
(
E exp

(
−t

N∑
j=1
j6=i

ξ1
iξ

1
jξ

2
iξ

2
j

))M−1

:(22)

Putting Yi x= ξ1
iξ

2
i this time and again,

R =
(
p2 + �1− p�2 2p�1− p�

2p�1− p� p2 + �1− p�2
)
=x
(

q 1− q
1− q q

)
;

we can calculate the expectation in (22) with the help of Lemma 3.4 (with
k =N), such that there exists a constant C such that for all t ∈ �0;1�,

E exp

(
−t

N∑
j=1
j6=i

ξ1
iξ

2
iξ

1
jξ

2
j

)

= E exp

(
−t

N∑
j=1
j6=i

YiYj

)

≤ exp
(
−t 2q− 1

2�1− q� �2− �2q− 1�N−i − �2q− 1�i−1�
)

× exp
(
t2

2�N−1�q�1−q�− �2q−1��2−�2q−1�N−i−�2q−1�N−1�
4�1−q�2

+CNt3
)

≤ exp
(
−t 2q− 1

2�1− q� + t
2 �N− 1�q

2�1− q� +CNt
3
)
:

(23)

Since the right-hand side of (23) is independent of the choice of i, we obtain

P
(
∃ νx ξν is not stable

)

≤MP�ξ1 is not stable�

≤NM exp�−tN� exp
(
−tM 2q− 1

2�1− q� + t
2NM

q

2�1− q� +CNt
3
)
:

(24)

Now the basic difference between the proofs of Theorems 2.1 and 2.2
(and the reason for the different qualitative behavior in q) occurs because
the ansatz M = N/γ logN implies that M = o�N� and therefore the term
exp�−tM�2q− 1/2�1− q��� becomes negligible in the limit for large N. More
precisely, given ε > 0, we have that for all N large enough,

P
(
∃ νx ξν is not stable

)
≤NM exp

(
−tN�1+ ε� + t2NM q

2�1− q� +CNt
3
)
:
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Again the t3-term for our choice of t does not contribute; namely, choosing
t = �1+ ε���1− q�/qM� gives

P
(
∃ νx ξν is not stable

)
≤MN exp

(
−1− q

2q
�1+ ε�2N

M

)
�1+ o�1��

(provided that M ≤ N). So the choice of M = N/γ logN and γ > 6q/1− q =
3�p2 + �1− p�2�/p�1− p� again leads to a converging series and thus proves
part (i) of the theorem by the Borel–Cantelli lemma.

The choice of γ ≥ 4q/1− q = 2�p2 + �1− p�2�/p�1− p� yields

P
(
∃ νx ξν is not stable

)
→ 0

and therefore part (ii) of the theorem. Part (iii) of the theorem follows simi-
larly. 2

Remark 4.1. The attentive reader may have noticed that in the above
proofs we only made use of the Markov property of our patterns in order
to estimate the moment generating function, or more precisely to obtain a
bound of the form

E

(
exp

(
−t

N∑
j=1
j6=i

M�N�∑
µ=1
µ6=ν

ξνiξ
ν
jξ

µ
i ξ

µ
j

))
≤ exp�const.MNt2�

for t small enough, that is, that the moment generating function “looks
Gaussian” in a neighborhood of zero. This is, of course, not only true for
Markov chains (e.g., a similar bound might be shown for appropriate higher-
dimensional random fields) and indeed it is an easy exercise to prove a
corresponding theorem for sequences of patterns admitting a bound of the
above form. However, the reason that we stick to Markov chains here is
that we will need this assumption to prove Theorems 2.3 and 2.4 anyway.
Moreover, in the case of Markov chains one can easily detect the qualitative
behavior of the bound on the storage capacity.

We now give the proofs of the theorems treating the case of the second
notion of storage capacity.

Proof of Theorem 2.3. Again the proof uses large deviation estimates.
These can be carried out by a centering of the variables (which already has
been prepared in Lemma 3.3) together with the idea of replacing the ξµi by
appropriate Gaussian random variables, which is a standard idea in the frame-
work of the Hopfield model with independent patterns (see, e.g., [21] or [4]),
but in our case technically quite involved. Finally, the resulting generating
function of a quadratic form in Gaussian random variables has to be calcu-
lated.

Let us set

hN�σ; δ� x= inf
σ ′∈Sδ�σ�

HN�σ ′�:
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Then

P

({M�N�⋂
ν=1

�hN�ξν; δ� ≥HN�ξν� + εN�
}c)

= P
(M�N�⋃

ν=1

⋃

Jx �J�=δN
HN�ξνJ� −HN�ξν� ≤ εN

)

≤
∑

Jx �J�=δN

M�N�∑
ν=1

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)
;

where ξνJ denotes a configuration differing from ξν exactly in the coordinates
J and for convenience we have chosen δN to be an integer.

Estimating the probability on the right-hand side of the above inequality,
again with the help of the exponential Chebyshev–Markov inequality, we ob-
tain for a fixed 1 ≤ ν ≤M�N� and all t ≥ 0,

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)

= P
(
− 1

2N

M�N�∑
µ=1

N∑
i; j=1

(
ξνJ; iξ

ν
J; j − ξνiξνj�

)
ξ
µ
i ξ

µ
j ≤ εN

)

= P
(

1
N

M�N�∑
µ=1

∑
i∈J;j/∈J
i/∈J;j∈J

ξνiξ
ν
jξ

µ
i ξ

µ
j ≤ εN

)

= P
(

2
N

M�N�∑
µ=1

∑
i∈J;j/∈J

ξνiξ
ν
jξ

µ
i ξ

µ
j ≤ εN

)

= P
(

1
N

∑
µ6=ν

∑
i∈J;j/∈J

ξνiξ
ν
jξ

µ
i ξ

µ
j ≤ �ε/2− δ�1− δ��N

)

≤ exp�−tε′N�E exp
(
− t

N

∑
µ6=ν

∑
i∈J;j/∈J

ξνiξ
ν
jξ

µ
i ξ

µ
j

)
;

where we have set ε′ = −ε/2+ δ�1− δ� and we are again left with estimating
the expectation of an exponential.

To this end we assume that ξνi = 1 for all i = 1; : : : ;N (this can be done
without loss of generality since the initial situation is completely symmetric)
and apply Lemma 3.3. Thus,

∑
i∈J;j/∈J

M∑
µ=ν+1

ξ
µ
i ξ

µ
j =

∑
i∈J;j/∈J

( M∑
µ1; µ2=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

+
M∑

µ=ν+1

aµ; ν�ξµi + ξ
µ
j� +

M−ν−1∑
n=0

�2p− 1�2n
)
;
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where ξµi = ξ
µ
i + �2p− 1�ξµ−1

i and

aµ1; µ2
x=

M−max�µ1; µ2�∑
n=0

�2p− 1�2n+�µ1−µ2�(25)

for µ1; µ2 ≥ ν, �µ1; µ2� 6= �ν; ν�. Note that aµ1; µ2
= aµ2; µ1

.
For the summands with an index µ < ν in

∑
i∈J;j/∈J

∑
µ6=ν ξ

µ
i ξ

µ
j we observe

that the Markov chains �ξµi �µ<ν and �ξµi �µ≥ν+1, i = 1; : : : ;N conditioned on ξνi
are independent. Applying the same transformation as above to the Markov
chains �ξµi �µ<ν (i = 1; : : : ;N) yields

E

(
exp

(
− t

N

∑
i∈J;j/∈J

∑
µ6=ν

ξ
µ
i ξ

µ
j

))

= exp
(
− t

N

∑
i∈J;j/∈J

(M−ν−1∑
n=0

�2p− 1�2n +
ν−1∑
n=0

�2p− 1�2n
))

×E exp
(
− t

N

∑
i∈J;j/∈J

( M∑
µ=ν+1

aµ; ν�ξµi + ξ
µ
j� +

ν−1∑
µ=1

ãµ; ν�ξµi + ξ
µ
j�

+
M∑

µ1; µ2=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j +

ν−1∑
µ1; µ2=1

ãµ1; µ2
ξ
µ1
i ξ

µ2
j

))
;

where

ãµ1; µ2
x=

ν−1−min�ν−µ1; ν−µ2�∑
n=0

�2p− 1�2n+�µ1−µ2�:(26)

Using the independence of the initial part and the tail part of the Markov
chains mentioned above together with Hölder’s inequality to split up the mo-
ment generating function of the linear part from the moment generating func-
tion of the genuine quadratic form, we obtain for all λ > 1,

E exp
(
− t

N

∑
µ6=ν

∑
i∈J;j/∈J

ξνiξ
ν
jξ

µ
i ξ

µ
j

)

≤ exp
(
−tNδ�1− δ�

(M−ν−1∑
n=0

�2p− 1�2n +
ν−1∑
n=0

�2p− 1�2n
))

×
(
E exp

(
− t

N

λ

λ− 1

M∑
µ=ν+1

aµ; ν
∑

i∈J;j/∈J
�ξµi + ξ

µ
j�
))�λ−1�/λ

×
(
E exp

(
− t

N

λ

λ− 1

ν−1∑
µ=1

ãµ; ν
∑

i∈J;j/∈J
�ξµi + ξ

µ
j�
))�λ−1�/λ

×
(
E exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ1; µ2=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

))1/λ

×
(
E exp

(
− t

N
λ

∑
i∈J;j/∈J

ν−1∑
µ1; µ2=1

ãµ1; µ2
ξ
µ1
i ξ

µ2
j

))1/λ

:

(27)
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Now we estimate the factors on the right-hand side of (27). First of all note
that for M large enough (which is possible, since M is growing with N),

M−ν−1∑
n=0

�2p− 1�2n +
ν−1∑
n=0

�2p− 1�2n� ≥ 1
C′�1− �2p− 1�2�

for any C′ > 1.
To treat the other terms let us agree on the following notation: with EI′

I

(where I ⊂ �1; : : : ;N� and I′ ⊂ �1; : : : ;M�) we denote the integration with
respect to those random variables ξµi with i ∈ I and µ ∈ I′. Especially, if we
drop the upper or lower indices we will usually mean the expectation with
respect to all the random variables occuring in the argument of the integral.
By the independence of the coordinate processes and the identical distribution
of the ξµi , we obtain for the moment generating function of the linear part,

E

(
exp

(
− t

N

λ

λ− 1

M∑
µ=ν+1

aµ; ν
∑

i∈J;j/∈J
�ξµi + ξ

µ
j�
))

=
[
E

(
exp

(
− t

N

λ

λ− 1

M∑
µ=ν+1

aµ; νξ
µ
1

))]δ�1−δ�N2

:

Moreover,

E

(
exp

(
−t λ

λ− 1

M∑
µ=ν+1

aµ; νξ
µ
1

))

= Eν<µ≤M−1
(

exp
(
−t λ

λ− 1

M−1∑
µ=ν+1

aµ; νξ
µ
1

))
EM

(
exp

(
−t λ

λ− 1
aM;νξ

M
1

))

= Eν<µ≤M−1
(

exp
(
−t λ

λ− 1

M−1∑
µ=ν+1

aµ; νξ
µ
1

))

×
(
p exp

(
−2t

λ

λ− 1
aM;ν�1− p�ξM−1

1

)

+ �1− p� exp
(

2t
λ

λ− 1
aM;νpξ

M−1
1

))

≤ Eν<µ≤M−1
(

exp
(
−t λ

λ− 1

M−1∑
µ=ν+1

aµ; νξ
µ
1

))

× cosh
(
t
λ

λ− 1
aM;ν�1+ �2p− 1��ξM−1

1

)

≤ Eν<µ≤M−1
(

exp
(
−t λ

λ− 1

M−1∑
µ=ν+1

aµ; νξ
µ
1

))

× exp
(

1
2
t2
(

λ

λ− 1

)2

a2
M;ν�1+ �2p− 1��2

)
;
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where we have used �ξM−1
1 � = 1, Lemma 3.1, part (i), and finally

cosh�x� ≤ exp�x2/2�:
Iterating these estimates gives

E

(
exp

(
−t λ

λ− 1

M∑
µ=ν+1

aµ; νξ
µ
1

))

≤ exp
(

1
2
t2
(

λ

λ− 1

)2

�1+ �2p− 1��2
M∑

µ=ν+1

a2
µ; ν

)

≤ exp
(

1
2
t2
(

λ

λ− 1

)2

�1+ �2p− 1��2 1
�1− �2p− 1�2�3

)
:

So altogether (using this estimate with t/N instead of t) we arrive at

E

(
exp

(
− t

N

λ

λ− 1

M∑
µ=ν+1

aµ; ν
∑

i∈J;j/∈J
�ξµi + ξ

µ
j�
))

≤ exp
(

1
2
t2δ�1− δ�

(
λ

λ− 1

)2

�1+ �2p− 1��2 1
�1− �2p− 1�2�3

)

Thus, applying the same techniques to the second linear term on the right-
hand side of (27), we obtain

(
E

(
exp

(
− t

N

λ

λ− 1

M∑
µ=ν+1

aµ; ν
∑

i∈J;j/∈J
�ξµi + ξ

µ
j�
)))�λ−1�/λ

×
(
E

(
exp

(
− t

N

λ

λ− 1

ν−1∑
µ=1

ãµ; ν
∑

i∈J;j/∈J
�ξµi + ξ

µ
j�
)))�λ−1�/λ

≤ exp
(
t2δ�1− δ�

(
λ

λ− 1

)
�1+ �2p− 1��2 1

�1− �2p− 1�2�3
)
:

We will see that due to our final choice of t, this factor will have a negligible
contribution to the final estimate.

The moment generating function of the quadratic form is treated similarly,
using the independence of the ξµi for different i to replace them by Gaussian
random variables:

E

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ1; µ2=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

))

= Eν<µ1; µ2≤M−1EM
Jc

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ2=ν+1

M−1∑
µ1=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

)

×EM
J

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

ξMi

M∑
µ2=ν+1

aM;µ2
ξ
µ2
j

)))
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= Eν<µ1; µ2≤M−1EM
Jc

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ2=ν+1

M−1∑
µ1=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

)

×
∏
i∈J
EM
�i�

(
exp

(
− t

N
λξMi

∑
j/∈J

M∑
µ2=ν+1

aM;µ2
ξ
µ2
j

)))

≤ Eν<µ1; µ2≤M−1EM
Jc

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ2=ν+1

M−1∑
µ1=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

))

×
∏
i∈J

exp
(

1
2
t2

N2
λ2�1+ �2p− 1��2

( ∑
j/∈J

M∑
µ2=ν+1

aM;µ2
ξ
µ2
j

)2)

= Eν<µ1; µ2≤M−1EM
Jc

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ2=ν+1

M−1∑
µ1=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

))

×
∏
i∈J
EzMi

exp
(
zMi

t

N
λ�1+ �2p− 1��

∑
i∈J;j/∈J

M∑
µ2=ν+1

aM;µ2
ξ
µ2
j

)

= Eν<µ1; µ2≤M−1EM
Jc

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ2=ν+1

M−1∑
µ1=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

))

×EzMJ
exp

(
t

N
λ�1+ �2p− 1��

∑
i∈J;j/∈J

M∑
µ2=ν+1

aM;µ2
zMi ξ

µ2
j

)
;

where zMi are Gaussian random variables with expectation 0 and identity
covariance matrix independent of the ξµi , EzMi

denotes the expectation with
respect to zMi and finally EzMJ

denotes the expectation with respect to the
vector �zMi �i∈J. Here we have used the well-known identity

exp
(

1
2
x2
)
= 1√

2π

∫ ∞
−∞

exp
(
xy− 1

2
y2
)
dy:(28)

Interchanging the order of integration and using the above technique on every
ξ
µ
i , we are now able to consecutively replace all the variables ξµi by Gaussian

random variables zµi with expectation zero and identity covariance matrix.
This leads to

E

(
exp

(
− t

N
λ

∑
i∈J;j/∈J

M∑
µ1; µ2=ν+1

aµ1; µ2
ξ
µ1
i ξ

µ2
j

))

≤ Ez

(
exp

(
t

N
λ�1+ �2p− 1��2

∑
i∈J;j/∈J

M∑
µ1; µ2=ν+1

aµ1; µ2
z
µ1
i z

µ2
j

))

= Ez

(
exp

(
tλ�1+ �2p− 1��2

√
δ�1− δ�

∑
µ1; µ2=ν+1

aµ1; µ2
zµ1zµ2

))

= Ez

(
exp

1
2

(
tλ�1+ �2p− 1��2

√
δ�1− δ��z; Âz�

))
;
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where (by normalizing) the �zµ�µ=ν+1;:::;M are now Gaussian random variables
with expectation 0 and identity covariance matrix, z denotes the vector of the
z
µ
i and Ez is integration with respect to z. Finally Â is an 2�M−ν�×2�M−ν�-

matrix with entries

Â =
(

0 A

A 0

)

and the �M− ν� × �M− ν�-matrix A is given by

A = �Aµ1; µ2
� = �aµ1−ν; µ2−ν�:

Observe that the above integral only exists if t is small enough [i.e., if Id−
tλ�1+ �2p− 1��2

√
δ�1− δ�Â is positive definite] and in this case it equals the

inverse of the square root of the determinant of Id−tλ�1+�2p−1��2
√
δ�1− δ�Â.

On the other hand, since trivially Id and Â are simultaneously diagonalizable,

det
(
Id− tλ�1+ �2p− 1��

√
�δ�1− δ�Â

)

=
2�M−ν�∏
k=1

%k

=
2�M−ν�∏
i=k

(
1− tλ�1+ �2p− 1��2

√
δ�1− δ�αk

)
;

where the %k are the eigenvalues of Id− tλ�1+ �2p− 1��2
√
δ�1− δ�Â and the

αk are the eigenvalues of Â. Moreover note that Â has a symmetric spectrum;
that is, if αk is an eigenvalue of Â then so is −αk. Thus

det
(
Id− tλ�1+ �2p− 1��

√
�δ�1− δ�Â

)

=
M−ν∏
k=1

�1− t2λ2�1+ �2p− 1��4δ�1− δ�α2
k�;

where the product is taken over all nonnegative eigenvalues.
Thus

Ez

(
exp

(
t

N
λ�1+ �2p− 1��

√
δ�1− δ�

∑
µ1; µ2=ν+1

aµ1; µ2
zµ1zµ2

))

≤
M−ν∏
k=1

(
1√

1− t2λ2�1+ �2p− 1��4δ�1− δ�α2
k

)

= exp
(
−1

2

M−ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α2

k

))
;
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where we have assumed that t is so small that the latter quantity is real
[e.g., t2λ2�δ�1− δ�/�1− �2p− 1�2�2��4�1+ �2p− 1��4/�1− �2p− 1��2� ≤ 1 suf-
fices as by Gershgorin’s theorem,

�αk� ≤ �αmax� ≤ max
µ1

∑
µ2

�aµ1; µ2
� ≤ 1

1− �2p− 1�2
2

1− �2p− 1� ;

where αmax denotes the maximal eigenvalue of Â].
Thus, repeating the estimate for the moment generating function of the

second quadratic form,

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)

≤ inf
t∗≥t≥0

exp
(
−tε′N− tNδ�1− δ� 1

C′�1− �2p− 1�2�

)

× exp
(
−1

2

M−ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α2

k

))

× exp
(
−1

2

ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α̃2

k

))

× exp
(
t2δ�1− δ� λ

λ− 1
�1+ �2p− 1��2 1

�1− �2p− 1�2�3
)
;

where t∗ = ��1− �2p− 1�2��1− �2p− 1��/2λ�1+ �2p− 1��2�
√

1/δ�1− δ�, the
α̃k’s are the positive eigenvalues of the matrix

˜̃A =
(

0 Ã

Ã 0

)

and the ν × ν-matrix Ã is given by Ã = �Ãµ1; µ2
� = �ãµ1; µ2

�.
Finally, by Stirling’s formula (to bound the binomial coefficient), the ansatz

M = αN and the above estimate,

∑

Jx �J�=δN

M�N�∑
ν=1

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)

≤M�N�
(
N

δN

)
exp

(
−tε′N− tNδ�1− δ� 1

C′�1− �2p− 1�2�

)

× exp
(
−1

2

M−ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α2

k

))

× exp
(
−1

2

ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α̃2

k

))

× exp
(
t2δ�1− δ�

(
λ

λ− 1

)
�1+ �2p− 1��2 1

�1− �2p− 1�2�3
)
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≤ αN inf
t∗≥t≥0

exp
(
�−δ log δ− �1− δ� log�1− δ��N

)

× exp
(
−tε′N− tNδ�1− δ� 1

C′�1− �2p− 1�2�

)

× exp
(
−1

2

M−ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α2

k

))

× exp
(
−1

2

ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α̃2

k

))

× exp
(
t2δ�1− δ� λ

λ− 1
�1+ �2p− 1��2 1

�1− �2p− 1�2�3
)

and we have to find an admissible t (i.e., 0 ≤ t ≤ t∗) and values of δ and α
such that the above exponent becomes negative. To this end, first note that
for all admissible t,

exp
(
t2δ�1− δ�

(
λ

λ− 1

)
�1+ �2p− 1��2 1

�1− �2p− 1�2�3
)
= O �1�

and therefore this term does not influence the convergence (as promised
above).

Moreover, if t2λ2�δ�1−δ�/�1−�2p−1�2�2��4�1+�2p−1��4/�1−�2p−1��2� ≤
3/4,

1√
1− t2λ2�1+ �2p− 1��4δ�1− δ�α2

k

≤ exp
(
t2λ2δ�1− δ��1+ �2p− 1��4α2

k

)

as well as the same inequality for the α̃k-terms.
Hence, up to factors of order one

∑
Jx �J�=δN

∑M�N�
ν=1 P�HN�ξνJ� −HN�ξν� ≤

εN� can be bounded by

exp
((
−δ log δ−�1− δ� log�1− δ�

)
N− tε′N− tNδ�1− δ� 1

C′�1− �2p− 1�2�

)

× exp
(
−1

2

αN−ν∑
k=1

log
(

1− t2λ2�1+ �2p−1��4δ�1− δ�α2
k

M−1∑
µ=ν+1

aµ; ν

M−1∑
µ=ν+1

aµ; ν

))

× exp
(
−1

2

ν∑
k=1

log
(
1− t2λ2�1+ �2p− 1��4δ�1− δ�α̃2

k

))

≤ exp
((
−δ log δ− �1− δ� log�1− δ�

)
N− tε′N

− tNδ�1− δ� 1
C′�1− �2p− 1�2�

)

× exp
(
t2λ2�1+ �2p− 1��4δ�1− δ�

( αN−ν∑
k=1

α2
k +

ν∑
k=1

α̃2
k

))
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if

t ≤ t∗∗ x= �1− �2p− 1�2��1− �2p− 1��
4λ�1+ �2p− 1��2

√
3

δ�1− δ� :

Now
αN−ν∑
k=1

α2
k = 1

2 tr�Â� = 1
2 × 2

αN−ν∑
µ1=1

αN−ν∑
µ2=1

αµ1; µ2
αµ2; µ1

=
αN−ν∑
µ1=1

αN−ν∑
µ2=1

α2
µ1; µ2

and with the definition of αµ1; µ2
one therefore obtains

αN−ν∑
k=1

α2
k =
�αN− ν��1+ �2p− 1�2�
�1− �2p− 1�2�3 + O �1�;

where the O �1� refers to the N that will tend to infinity. As also
∑ν
k=1 α̃

2
k =

�ν�1+ �2p− 1�2�/�1− �2p− 1�2�3� + O �1�, we obtain—again for t ≤ t∗∗,

∑

Jx �J�=δN

M�N�∑
ν=1

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)

≤ exp
((
−δ log δ− �1− δ� log�1− δ�

)
N− tε′N

− tNδ�1− δ� 1
C′�1− �2p− 1�2�

)

× exp
(
t2λ2�1+ �2p− 1��4δ�1− δ�αN 1+ �2p− 1�2

�1− �2p− 1�2�3
)
× O �1�:

(29)

Choosing ε very small, the exponent is minimized by a t which is close to

tmin =
1
α

1
2λ2�1+ �2p− 1��4

(
�1− �2p− 1�2� + 1

C′

)�1− �2p− 1�2�2
1+ �2p− 1�2 :

Observe that tmin ≤ t∗∗ if

α ≥
√
δ�1− δ� 2�1− �2p− 1�2 + �1/C′���1− �2p− 1�2�√

3λ�1+ �2p− 1��2�1+ �2p− 1�2��1− �2p− 1��
:(30)

On the other hand, inserting tmin into the essential part of the exponent
and choosing ε sufficiently small gives (for the exponent)

�−δ log δ− �1− δ� log�1− δ��N− tminε
′N

− tminNδ�1− δ�
1

C′�1− �2p− 1�2�

+ t2minλ
2�1+ �2p− 1��4δ�1− δ�αN 1+ �2p− 1�2

�1− �2p− 1�2�3
≤ �−δ log δ− �1− δ� log�1− δ��N

− γ

4α
δ�1− δ�N �1− �2p− 1�2��1− �2p− 1�2 + �1/C′��2

λ2�1+ �2p− 1��4�1+ �2p− 1�2�

(31)
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with γ < 1 and close to 1 (as ε becomes small). The right-hand side of this
inequality becomes negative when δ and α are chosen appropriately. To check
whether this can be done in agreement with (30), we insert

α =
√
δ�1− δ� 2�1− �2p− 1�2 + �1/C′���1− �2p− 1�2�√

3λ�1+ �2p− 1��2�1+ �2p− 1�2��1− �2p− 1��
into the right-hand side of (31) and obtain

(
−
√

3γ�1− �2p− 1�2 + �1/C′��
2λ�1+ �2p− 1��2 �1− �2p− 1��

√
δ�1− δ�

− δ log δ− �1− δ� log�1− δ�
)
N:

(32)

As it is quickly checked that for each positive constant C there is an interval
�0; r� (depending on C, of course) such that

C
√
δ�1− δ� ≥ −δ log δ− �1− δ� log�1− δ�

for all δ ∈ �0; r�, the above exponent becomes negative if we choose δ small
enough and, for example, α as the right-hand side of (30). This completes the
proof of the theorem. 2

Remark 4.2. Observe that the bound on the moment generating function
in (31) depends on p mainly via the factor �1 − �2p − 1�� (the other terms
containing p are bounded from above and away from 0), which converges to
zero for p close to one or close to zero and therefore can only deteriorate the
bounds for δ or α (allowing smaller α′s or δ′s only) for large correlations. The
bound on the admissible α in (30) shows the interplay between α and δ. As
�1− �2p− 1�2/1− �2p− 1�� → 1 for p → 0 or p → 1, (30) seems to indicate
that one might formally choose α independent of p, but then (32) shows that
in this case δ shrinks to 0 when the correlations become large and therefore
(as α ∼

√
δ) so does α. Indeed, such a behavior can already be expected from

(29), when substituting t by t�1 − �2p − 1�2� and noticing that the t2-term
then is still multiplied by a factor 1/�1− �2p− 1�2�, that is, the quadratic
term grows faster for p→ 0;1 than the linear term. This behavior of course
seems to be in contradiction to the result of Theorem 2.1. On the other hand,
this contradiction might well be a result of the different notions of storage
capacity. Indeed, although the calculations in the proof of Theorem 2.3 are
rather lengthy, there seems to be only one inequality (Lemma 3.1) where we
possibly could lose essential factors for the qualitative behavior of the storage
capacity with large correlations.

Proof of Theorem 2.4. The central idea of the proof is the same as in the
proof of Theorem 2.3: a centering of the patterns as prepared in Lemma 3.2
and their replacement by appropriate Gaussian random variables. To be able
to evaluate the resulting integral we will make use of Lemma 3.1(ii).
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With the notation of the proof of Theorem 2.3, we first of all observe that

P

({M�N�⋂
ν=1

�hN�ξν; δ� ≥HN�ξν� + εN�
}c)

≤
∑

Jx �J�=δN

M�N�∑
ν=1

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)
:

Again let us keep ν fixed in the sequel (without loss of generality we choose
ν = 1).

By the exponential Chebyshev–Markov inequality for any t ≥ 0,

P
(
HN�ξ1

J� −HN�ξ1� ≤ εN
)

≤ exp�−tε′N�E
(

exp

(
− t

N

∑
µ6=1

∑

�i∈J;j/∈J�
�i/∈J;j∈J�

ξ1
iξ

1
jξ

µ
i ξ

µ
j

))

= exp�−tε′N�E
(

exp

(
− t

N

∑

�i∈J;j/∈J�
�i/∈J;j∈J�

ξ1
iξ

1
jξ

2
iξ

2
j

))M−1

;

(33)

where we have set ε′ = −ε+ 2δ�1− δ�.
Our main goal is now to estimate the expectation on the right-hand side

of (33). To this end, note that the exponent is a quadratic form in Markovian
random variables as treated in Lemma 3.2. Indeed, putting

Yi x= ξ1
iξ

2
i

and

ai; j x=





1; if i ∈ J;j /∈ J;
1; if i /∈ J;j ∈ J;
0; otherwise;

(note that this especially implies that ai; i = 0) we obtain that

E

(
exp

(
− t

N

∑

�i∈J;j/∈J�
�i/∈J;j∈J�

ξ1
iξ

1
jξ

2
iξ

2
j

))
= E

(
exp

(
− t

N

∑
i; j

ai; jYiYj

))
:

Observe that Yi is a Markov chain on the set �−1;+1� (in i) with transition
matrix R given by

R =
(
p2 + �1− p�2 2p�1− p�

2p�1− p� p2 + �1− p�2
)
=x
(

q 1− q
1− q q

)

(notice that q ≥ 1/2). Hence we are in the situation of Lemma 3.2. Therefore

E

(
exp

(
− t

N

∑
i; j

ai; jYiYj

))

= exp
(
−2t
N

∑
1≤i<j≤N

�2q− 1�j−iai; j
)
E

(
exp

(
− t

N

∑
i; j

bi; jYiYj

))
;

(34)
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where the Yi and bi; j are defined as in (10) and (12), respectively. To estimate
the right-hand side of (34), observe that due to the symmetry of the ai; j we
have that 2

∑
1≤i<j≤N�2q− 1�j−iai; j =

∑
1≤i; j≤N�2q− 1��j−i�ai; j and that

2
(

2q− 1
2�1− q�

)2

�1− �2q− 1�δN��1− �2q− 1��1−δ�N�

≤
∑

1≤i; j≤N
�2q− 1��j−i�ai; j

≤ N

1− q:

(35)

The upper bound in (35) is derived by simply setting all the ai; j = 1 and is just
to show that the term exp�−�2t/N�∑1≤i<j≤N�2q− 1�j−iai; j� is at most of the
same order as the expectation on the right-hand side of (34) (which, for exam-
ple, may fail in the Hopfield model with biased patterns if the Hamiltonian is
not appropriately normalized; this would be a sign that the model is not chosen
correctly). The lower bound in (35) is because the number of ai; j that are equal
to one is independent of the choice of J such that

∑
1≤i; j≤N�2q − 1��j−i�ai; j

becomes minimal for sets J which are maximally connected, for example,
J = �1; : : : ; δN�. Hence for N large enough

exp
(
−2t
N

∑
1≤i<j≤N

�2q− 1�j−iai; j
)
≤ exp

(
− t

N

(
2q− 1

2�1− q�

)2)
:

To estimate the expectation on the right-hand side of (34), we employ
Lemma 3.1(ii). First, let us agree on the following notation: with EI (where
I ⊂ �1; : : : ;N�) we denote the integration with respect to those random vari-
ables Yi (resp. Yi) with i ∈ I. With these notations we will be able to prove
that

E

(
exp

(
− t

N

∑
1≤i; j≤N

bi; jYiYj

))
≤ E

(
exp

(
2qt
N

∑
1≤i; j≤N

bi; jzizj

))
;(36)

where the zi are i.i.d. standard Gaussian random variables.
Indeed,

E

(
exp

(
− t

N

∑
i; j

bi; jYiYj

))

= E
(

exp
(
−2t
N

∑
1≤i<j≤N

bi; jYiYj

))

= E�1;:::;N−1�

(
exp

(
−2t
N

∑
1≤i<j≤N−1

bi; jYiYj

))

×E�N�
(

exp
(
−2t
N

N−1∑
i=1

bi;NYiYN

))



1246 M. LÖWE

= E�1;:::;N−1�

(
exp

(
−2t
N

∑
1≤i<j≤N−1

bi; jYiYj

))

×
(
q exp

(
−4�1− q� t

N

N−1∑
i=1

bi;NYi

)
+ �1− q� exp

(
4q

t

N

N−1∑
i=1

bi;NYi

))

≤ E�1;:::;N−1�

(
exp

(
−2t
N

∑
1≤i<j≤N−1

bi; jYiYj

))
× cosh

(
4tq
N

N−1∑
i=1

bi;NYi

)

≤ E�1;:::;N−1�

(
exp

(
−2t
N

∑
1≤i<j≤N−1

bi; jYiYj

))

× exp
(

2
q2t2

N2

(N−1∑
i=1

bi;NYi

)2)
;

where we have used the inequality (8).
Again using (28) yields

E

(
exp

(
− t

N

∑
i; j

bi; jYiYj

))

≤ E�1;:::;N−1�

(
exp

(
−2t
N

∑
1≤i<j≤N−1

bi; jYi

))
EzN

exp
(

4qt
N

N−1∑
i=1

bi;NYizN

)
;

where EzN
denotes integration with respect to the Gaussian random variable

zN. Note that we have replaced YN by zN and also observe that this replace-
ment was independent of all the other Yi, i 6= N and just relied on the fact
that YN was appropriately centered such that part one of Lemma 3.1 could
be applied. Since this is true for all the Yi, too, the other replacements can be
carried out along the same lines just by rearranging the order of integration
appropriately, such that (36) indeed is true.

So we have arrived at

E

(
exp

(
− t

N

∑
1≤i; j≤N

ai; jYiYj

))

≤ exp
(
− t

N

(
2q− 1

2�1− q�

)2)
E

(
exp

(
2qt
N

∑
1≤i; j≤N

bi; jzizj

))
:

(37)

Note that the expectation on the right-hand side of (37) is only defined if t is
small enough, that is, if Id − �2qt/N�B is a positive definite matrix (here B
is the quadratic form given by B = �bi; j�1≤i; j≤N). In this case

E

(
exp

(
2qt
N

∑
i; j

bi; jzizj

))
= 1√

det�Id− �2qt/N�B�
:

To estimate this determinant, denote by �βi�1≤i≤N the (real) eigenvalues of B.
Then, on one hand, since Id and B are trivially simultaneously diagonalizable,

det
(
Id− 2qt

N
B

)
=

N∏
i=1

(
1− 2qt

N
βi

)
:
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On the other hand
∑N
i=1 βi = 0; since all the diagonal entries of B are zero.

Now let us assume that t is so small that even

4t2q2

N2

N∑
i=1

β2
i ≤

3
4
:(38)

An immediate application of (9) yields that

N∏
i=1

(
1− 2qt

N
βi

)
≥ 1− 4q2t2

N2

N∑
i=1

β2
i ;

implying that

1√
det�Id− �2qt/N�B�

≤ 1√
1− �4q2t2/N2�∑N

i=1 β
2
i

:

Since 1/
√

1− x ≤ ex for 0 ≤ x ≤ 3/4, we obtain

1√
det�Id− �2qt/N�B�

≤ exp
(

4q2t2

N2

N∑
i=1

β2
i

)
:

Finally, observe that due to the symmetry of B,

N∑
i=1

β2
i = tr�B2� =

N∑
i=1

N∑
j=1

b2
i; j:

Since

N∑
i; j=1

ai; j = 2δ�1− δ�N2;

we arrive at

N∑
i=1

N∑
j=1

b2
i; j =

N∑
i=1

N∑
j=1

j−i−1∑
k=0

N−j∑
l=0

�2q− 1�k+lai+k; j+l

≤ 2
(

1
2�1− q�

)2

δ�1− δ�N2:

(39)

So altogether for t ≥ 0 and N large enough,

P
(
HN�ξ1

J� −HN�ξ1� ≤ εN
)

≤ exp�−tε′N� exp
(
−tM
N

(
2q− 1

2�1− q�

)2)

× exp
(

8q2t2
(

1
2�1− q�

)2

δ�1− δ�M
)
:

(40)
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Now note that the above bound (40) is uniform in J with �J� = δN. Hence
by setting M = αN and estimating the term

(
N
δN

)
by Stirling’s formula we

arrive at

∑

Jx �J�=δN

M�N�∑
ν=1

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)

≤ αN inf
t∗≥t≥0

exp
(
�−δ log δ− �1− δ� log�1− δ��N

)

× exp
(
−t
(
ε′N+ α

(
2q− 1

2�1− q�

)2)
+ 8t2q2

(
1

2�1− q�

)2

δ�1− δ�αN
)
;

where t∗ is the maximum t fulfilling (38) [e.g., choosing t∗ x= �1− q�2/4αq2

and

α ≥
√
δ�1− δ�

6
1− q
q

(41)

suffices, since then t∗ is admissible in the sense that (38) is fulfilled. Indeed,
together with (39) we obtain

4t2q2

N2

N∑
i=1

β2
i ≤ 2

4q2�1− q�4
16q4α2N2

1
4�1− q�2 δ�1− δ�N

2

= �1− q�
2δ�1− δ�

8q2α2
≤ 3

4
:

Now the proof can be completed along the lines of the proof of Theorem 2.3. 2

Finally, let us comment a little on the result of Theorem 2.4. Observe that
the bound on the moment generating function in (40) as well as the bound on
α in (41) depends on p in a way that implies that large correlations again lead
to smaller α’s (and δ’s).

This might, of course, originate from the fact that due to the very crude
lower bound in (35), our bound on

P
(
HN�ξνJ� −HN�ξν� ≤ εN

)

is independent of the special choice of J and just depends on its size. Indeed,
for most choices of J, the sum

∑
1≤i; j≤N�2q−1��j−i�ai; j is not of order constant

but of some order growing with N (maybe even of order N). However, to see
whether such a refined estimate really can change the qualitative behavior
in q (which in a way would be the only interesting change), that is, if the
above sum is of order N/�1 − q� [i.e., the order of the upper bound in (36)]
for “almost all” choices of J requires a large deviation analysis we have not
been able to do. On the other hand, in view of Theorems 2.2 and 2.3, one
may also conjecture that improving the estimates in this point may, of course,
increase the numerical value of the storage capacity, but would not change
the qualitative behavior in p.
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Moreover, the reader may have noticed that for the proofs of Theorem 2.3
and 2.4 we have invented techniques to be able to adapt the ideas of Newman
[21] to our situation rather than the recent improvements by Loukianova [16]
and Talagrand [26]. The reason is that, while establishing some extra difficul-
ties on the one side, these improvements are basically useful to give a better
numerical value for αc on the other (but not its behavior in p). Since we think
that such a numerical constant would only be interesting if we could describe
the exact borderline between memory and loss of memory or at least if we
could give a bound for αc with a uniform error in p (and we cannot see how
to do that), we have tried to avoid these unnecessary complications.

Finally, let us mention that we assume that the storage abilities of the
Hopfield model are not limited to the case where the correlations come from a
Markov chain (at least the cases of exponentially decaying correlations or even
summable correlations should be tractable). Our method, however, seems to
be thus limited. The reader may notice that even for the (interesting) case of a
two-dimensional Markov random field (Ising model) the centered variables do
not depend only on the two-point correlations any longer, so that new methods
to treat the corresponding moment generating function have to be invented.
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He also thanks Holger Knöpfel for discussions on the analytical problems.

REFERENCES

[1] Amit, D. J. (1987). The properties of models of simple neural networks. Heidelberg Collo-
quium on Glassy Dynamics. Lecture Notes in Phys. 275. Springer, Berlin.

[2] Amit, D. J., Gutfreund, G. and Sompolinsky, H. (1985). Spin-glass models of neural net-
works. Phys. Rev. A 32 1007–1018.

[3] Amit, D. J., Gutfreund, G. and Sompolinsky, H. (1987). Statistical mechanics of neural
networks near saturation. Ann. Physics 173 30–67.

[4] Bovier, A. and Gayrard, V. (1992). Rigorous bounds on the storage capacity of the dilute
Hopfield model. J. Statist. Phys. 69 597–627.

[5] Bovier, A. and Gayrard, V. (1996). An almost sure large deviation principle for the Hopfield
model. Ann. Probab. 24 1444–1475.

[6] Bovier, A. and Gayrard, V. (1997). Hopfield models as a generalized mean field model.
In Mathematics of Spin Glasses and Neural Networks (A. Bovier and P. Picco, eds.).
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