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AN INTERRUPTIBLE ALGORITHM FOR PERFECT
SAMPLING VIA MARKOV CHAINS!

BY JAMES ALLEN FILL

Johns Hopkins University

For a large class of examples arising in statistical physics known as
attractive spin systems (e.g., the Ising model), one seeks to sample from a
probability distribution 7 on an enormously large state space, but elemen-
tary sampling is ruled out by the infeasibility of calculating an appropriate
normalizing constant. The same difficulty arises in computer science prob-
lems where one seeks to sample randomly from a large finite distributive
lattice whose precise size cannot be ascertained in any reasonable amount
of time.

The Markov chain Monte Carlo (MCMC) approximate sampling ap-
proach to such a problem is to construct and run “for a long time” a Markov
chain with long-run distribution 7. But determining how long is long
enough to get a good approximation can be both analytically and empiri-
cally difficult.

Recently, Propp and Wilson have devised an ingenious and efficient
algorithm to use the same Markov chains to produce perfect (i.e., exact)
samples from 7. However, the running time of their algorithm is an un-
bounded random variable whose order of magnitude is typically unknown
a priori and which is not independent of the state sampled, so a naive user
with limited patience who aborts a long run of the algorithm will introduce
bias.

We present a new algorithm which (1) again uses the same Markov
chains to produce perfect samples from =, but is based on a different
idea (namely, acceptance/rejection sampling); and (2) eliminates user-
impatience bias. Like the Propp—Wilson algorithm, the new algorithm
applies to a general class of suitably monotone chains, and also (with modi-
fication) to “anti-monotone” chains. When the chain is reversible, naive im-
plementation of the algorithm uses fewer transitions but more space than
Propp—Wilson. When fine-tuned and applied with the aid of a typical pseu-
dorandom number generator to an attractive spin system on n sites using a
random site updating Gibbs sampler whose mixing time 7 is polynomial in
n, the algorithm runs in time of the same order (bound) as Propp—Wilson
[expectation O(7logn)] and uses only logarithmically more space [expec-
tation O(nlogn), vs. O(n) for Propp—Wilson].

1. Overview. In this paper we will present an efficient new algorithm for
perfect (i.e., exact) distributional sampling that combines the ideas of rejection
sampling and Markov chain Monte Carlo (MCMC). In Section 2 we describe a
large class of examples (namely, attractive spin systems) arising in statistical
physics and computer science where elementary exact sampling from a distri-
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bution of interest is desirable but infeasible due to the virtual incomputability
of a normalizing constant. The usefulness of MCMC for such problems is ex-
plained in Section 3, and background material on monotonicity is discussed in
Section 4. In Section 5 we review a stationary sampling scheme for monotone
chains recently developed by Propp and Wilson that is based on backward
coupling, and we point out a subtle bias introduced by naive use of their algo-
rithm. In Section 6 we assess the extent of this bias and analyze the scheme’s
time and space requirements. In Section 7 we present, and in Section 8 we
analyze, a new algorithm based on rejection sampling which eliminates the
bias. As discussed in Section 9, this algorithm is closely connected with the
construction of a certain minimal strong stationary time.

A suitable modification of either algorithm allows for the treatment of the
“anti-monotone” chains described in [22]; see [26] for a pioneering application
of the Propp—Wilson algorithm in this direction. (In passing, and in connection
with [26], we note that the spatial statistics community has fallen on the idea
of perfect simulation with avid enthusiasm; see also [23] and [27].)

For reversible chains, the new algorithm is faster, in the precise sense that a
bound on the expected number of transitions is of smaller order of magnitude
than the corresponding bound for the backward coupling algorithm. However,
the new algorithm’s memory space requirement turns out to be too large for
practical application to attractive spin system problems; in Section 10 we fine-
tune the algorithm for these problems to make it competitive in time and space
requirements with the backward coupling algorithm.

In Section 11 we give a detailed comparison of the Propp—Wilson algorithm
and our new one. There one will in particular find corroboration of the asser-
tions in the final two sentences of the abstract. A reader familiar with the
Propp—Wilson algorithm and its applications and uninterested in proofs or
theoretical details might wish to proceed directly to Sections 7.2, 10.2 and the
summary 11.2.

Notation. Throughout this paper, we write .#(Z) for the probability distribu-
tion (or law) of a random variable Z [or, more generally, measurable mapping
Z from a probability space (), &7, P) into any measurable space (), .&/')]. A
standard measure of discrepancy between two such laws is the total variation
(or just variation) distance, a worst-case absolute error:

|£(Z) ~ #(Z)] := sup |P(Z € A) — P(Z € A).

We denote the complement of an event B by B¢. Let a,, b, > 0; as usual,
a, = 0(b,)) means that sup,(a,/b,) < o0; a,, = (U(b,) means that b, = O(a,);
and a, = 0(b,)) means that a, = O(b,) and b,, = O(a, ). We write lg for binary
logarithm, In for natural logarithm, and log when the base does not matter
[as in a, = O(log n)].

2. A case for MCMC: attractive spin systems. The class of examples
known as attractive spin systems (cf. [28]) nicely illustrates the usefulness of
finite-state MCMC methods. This is a class of statistical physics models which
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includes the Ising model of ferromagnetism and is easily extended to include
the more general Potts model. See [31], whose terminology we follow, for a
superbly written (and more detailed) discussion of these models and their
central importance in the study of statistical mechanics, with pointers to the
vast literature. The same models are also used in image processing for noise
reduction [8, 5, 21, 31]. Other frequently studied attractive spin systems are
the voter model (e.g., [3], Chapter 14) and contact process (e.g., [28]).

Before proceeding to definitions, we note a connection with problems in com-
puter science. Propp and Wilson [31] have shown how the uniform distribution
on the finite distributive lattice of order ideals (equivalently, of antichains) of
a given partially ordered set can be viewed as an attractive measure 7 on a
certain spin system. Thus methods we shall describe in Sections 5.2, 7, and 10
for perfect sampling from attractive spin systems will also apply, for example,
to generating random independent sets in a bipartite graph or random perfect
matchings in a graph, since it is explained in [31] how such structures can be
viewed as distributive lattices.

To begin the description of an attractive spin system, consider a finite set V
of vertices, regarded as sites. A configuration x = (x,; v € V) assigns to each
site v a spin x,, either +1 (“up”) or —1 (“down”). Partially order the set .” of
configurations by declaring that x < y exactly when x, < y, for every v € V.
Equivalently, we partially order the configurations by set inclusion, whereby
a configuration is identified with the subset of sites where its spin is positive.
Write (x; x, < o) for the configuration whose spin at v is o and whose spins
at other sites agree with those for x.

Now let 7 be a probability distribution on ./ and let x € . with 7(x) > 0.
Consider updating x at a specified site v according to 7 conditionally given
the spins at every w # v. That is, consider resetting (if necessary) the spin at
v to be +1 with probability
@.1) P, (x, (x; x, < +1))

=m(x;x, < +1)/[7(x; x, < +1)+ 7(x;x, < —1)]
and —1 with the complementary probability P,(x, (x; x, < —1)). Notice that
these transition probabilities do not depend on x,. If P, (x, (x;x, < +1)) is
an increasing function of x (in the partial order), we say that = is attractive.

A famous example is the Ising model, whose definition (not in the greatest
generality, but sufficient for this motivational introduction) is as follows. Let
G = (V, E) be a finite undirected graph. For x € ./, define

H(x):=— ) x,x,.
{v,w}eE

For given 6 > 0, let
m(x) == 2z, exp(—0H (X)), xe./,

where z, = Y, exp(—6H(x)) is the normalizing constant. In the language of
statistical mechanics, 7 is the Gibbs distribution (or Gibbs state) associated
with the Hamiltonian H, the parameter 6 is (proportional to) inverse temper-
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ature, and z, is the partition function. A simple calculation shows that

-1
(2.2) P,(x,(x; x, < +1)) = [1 + exp<—29 > xw):|
w:{v,w}cE
and hence 7 is attractive.

In applications, G is usually a rectangular or toroidal grid with n := |V| =
64 x 64 or 128 x 128, for example. If 6 # 0, it is plainly infeasible to calculate
the partition function or to sample in an elementary fashion from 7. In such
situations one may resort to Markov chain Monte Carlo MCMC), as described
in the next section.

3. Markov chain Monte Carlo. In the general setting of a probability
distribution 7 on a set .7, the MCMC approach is to devise an ergodic (i.e., ir-
reducible, aperiodic, and positive recurrent) Markov chain X with state space
. and stationary distribution 7. To obtain a single observation with approxi-
mate distribution 7, one starts X in some conveniently generated distribution
m, (for example, point mass at a convenient state x, € ./), runs it for “a long
time” ¢ (we shall have more to say about this presently), and uses X, as the
observation. Treating X, as if it were exactly distributed according to 7, one
can continue running the chain to obtain a dependent sample from 7, or be
somewhat wasteful and repeatedly restart the process to obtain an i.i.d. sam-
ple. For a discussion of such methodological issues in MCMC, see Chapter 11,
Section 4.3 in [3] and the references cited therein. We shall find it sufficiently
interesting and challenging here to consider the problem of generating a sam-
ple of size one.

The Metropolis algorithm (e.g., [3], Chapters 11 and 12 or [14]) gives a quite
general method for constructing such chains. In the setting of an attractive
spin system, however, we consider an alternative, namely, the Gibbs sampler
or heat-bath algorithm. Recall the definition (2.1) of the transition matrix
(t.m.) P, for updating of site v and note that it does not require calculating
the partition function. Let P := n 'Y,y P,; that is, the chain P picks a
random site and updates it. (This random site updating scheme has been
chosen for definiteness. The common alternative P = P, ---P, known as
systematic site updating, where v4, ..., v, is an arbitrary but fixed ordering of
the sites, will be discussed in Section 11.1.) It is easy to see that P is ergodic
(on .7 = {1, 41}V, if m(x) > O for all x; see also Remark 7.1). This class of
chains will serve as a running example throughout.

DEFINITION 3.1. A Gibbs sampler with random site updating on an attrac-
tive spin system will be called an RSU chain.

Given an ergodic Markov t.m. P, the distribution 7, = 7,P! of the chain at
time ¢ will approach 7 “in the long run.” The key question, of course, is “How
long is the long run?” Many heuristic diagnostic techniques have been devised
to address this question for Markov chains, but the methods can encounter
serious pitfalls [3], including metastability. Another approach is to bound rates
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of convergence to stationarity analytically. A tremendous amount of work has
taken place along these lines in the last 15 years; see [15], [3], [33], [12] for
discussion and myriad references. But deriving such bounds is sometimes, as
described in [31], an “arduous undertaking.”

A case in point is the Ising model. There are several MCMC algorithms
for approximate sampling from 7. With various restrictions on the underly-
ing graph and the temperature, there are also accompanying “rapid mixing”
bounds—bounds which imply that 7, is close to = when ¢ is only polynomially
large in | V|, which is the logarithm of the size of the state space. (See [14],
[31], [33] for references.) However, the degrees and coefficients involved in
these bounds are typically so large as to make the bounds ineffective for real-
sized problems. There are, furthermore, many attractive spin systems (e.g.,
random independent sets in a bipartite graph) for which there are no known
bounds sufficient even to imply rapid mixing.

An ideal remedy to MCMC difficulties would be a “self-verifying” algorithm
that produces a perfect stationary observation in time on the order of some
measure 7 of the mixing time of the chain without using any explicit prior
information about 7. At first thought, it may come as a surprise that a self-
verifying algorithm exists for a class of chains that includes all RSU chains.
We present such an algorithm in Section 7.

4. Monotonicity. Rapid stationary sampling for Markov chains with
enormous state spaces, for example, the stochastic Ising model on a 64 x 64
grid, demands some prior information about the t.m. P. Indeed, it is argued
in [29] and in Chapter 9 of [3] that any “pure simulation” algorithm G.e., P
is unknown to the algorithm) for a generic irreducible N-state chain cannot
terminate without sampling a transition from every state, so that the running
time is at least of order N. However, efficient simulation is possible when, as
is true for RSU chains, the chain is assumed monotone. Here is the definition.

DEFINITION 4.1. Let P be a t.m. on a partially ordered state space (., <).
We say that P is monotone if P preserves the partial order, that is, if P(x, -) <
P(y, -) stochastically whenever x <y.

As background, recall the following definitions [35, 25]. Call a subset I of a
partially ordered set (poset) . an order ideal or down-set if, whenever x € I
and y < x, we have y € I. The set of all order ideals is denoted J(.). Given
two probability measures u and v on ., one says that u < v stochastically if
w(I) = v(I) for all I € J(.”). The product of monotone transition matrices is
monotone.

Monotonicity of P is guaranteed when one can couple transitions using a
monotone transition rule.

DEFINITION 4.2. A monotone transition rule for a t.m. P on a partially
ordered state space (.7, <) is a measurable function f: ./ x % — ./, to-
gether with a random variable U taking values in an arbitrary probability
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space %, such that (1) f(x,u) < f(y,u) for all u €  whenever x <y and
(2) P(f(x,U) =) =P(x, -) for all x.

When a monotone transition rule exists, one can simultaneously generate
transitions from various states in such a way as to maintain ordering relations
for each realization.

Observe that each site update matrix P, for an attractive spin system pos-
sesses a monotone transition rule; indeed, the coupling can be simply realized
by letting U be uniformly distributed on % = [0, 1] and using
@1) fo(x,u) =(x; x, < —1)or (x; x, < +1)

. according as u < or > P (x, (x; x, < —1)).
The RSU chain also has a monotone transition rule: let = {1, ..., n} x[0, 1];
U = (U,,U,), where U, and U, are independent random variables uniformly
distributed on {1, ..., n} and [0, 1], respectively; and

(4.2) f(X, Ui, u2) = fvul (X’ uZ)'

REMARK 4.3. For definiteness and simplicity, we shall assume that each
RSU chain transition generated using (4.2) is executed in time of constant
order. This seems reasonable in the case of the stochastic Ising model on a
toroidal grid, for example, since the computation of (2.2) involves a sum of four
spin values, regardless of n or v or x. Moreover, we shall adopt the assumption
equally for all algorithms considered in this paper; thus comparisons between
algorithms will be fair even if the assumption is violated.

Finally, we shall usually assume for simplicity that there exist elements 0
and 1 in . such that 0 < x < 1 for all x € ./; this condition is also met for
attractive spin sytems.

DEFINITION 4.4. When a monotone transition rule and 0 and 1 exist for a
given chain P, we shall say that the monotone case obtains.

REMARK 4.5. One might conjecture that a monotone transition rule exists
whenever P is monotone. Although this is true when the state space ./ is
linearly ordered, joint work with Machida [17] has shown this to be false for
general posets. So the monotone case entails a somewhat stronger condition
than monotonicity of P.

5. A backward coupling algorithm for the monotone case.

5.1. Forward coupling. Johnson [24] proposed testing for convergence of
a MCMC algorithm using coupled sample paths. There are two underlying
ideas involved. First, consider simultaneously running one copy of the spec-
ified Markov chain from each possible initial state, coalescing the various
trajectories as they intersect and otherwise coupling the transitions in an ar-
bitrary fashion. Stopping at the first time that all copies of the chain have
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coalesced, the effect of the initial state has worn off and equilibrium has been
reached. Second, in the monotone case, if a monotone transition rule is used,
then one need only run two copies of the chain, one each from the initial states
0 and 1. When these two trajectories have coalesced, so have all the others.

Although the first idea has obvious intuitive appeal, it is important to note
that it does not lead to a perfect sampling scheme, as the following two exam-
ples demonstrate.

ExAMPLE 5.1. (As pointed out by a referee, this example was indepen-
dently considered by Kendall [26].) Consider the following t.m. on the state
space {0, 1}. From state 0 the chain moves to 0 or to 1, with probability 1/2
each. From state 1 the chain moves deterministically to 0. The stationary dis-
tribution is given by 7(0) = 2/3, 7w(1) = 1/3. However, with probability 1, the
two copies of the chain will first coalesce at state 0.

EXAMPLE 5.2. Here is an RSU chain counterexample. In the notation of
Section 2, let G be a graph consisting of two sites, say v and w, and a single
edge, and consider the Hamiltonian

H(x):=—x,x, — x,.

(This is the Ising model discussed in Section 2, modified to account for an
external field which prefers a positive spin at site v.) Use random site updating
P = (P,+P,)/2. Through somewhat tedious calculations, one can find the
distribution (p, say) of the configuration at first coalescence. The distributions
p and 7 do not agree; for example,

(626 _ 1)3 _

R 20_13
17 =0 4 g

- m < 77(())

p(0) = (¢’ +e7)?

5.2. The Propp—Wilson algorithm for the monotone case. A modification of
the coupling idea leads to an algorithm for perfect sampling from the sta-
tionary distribution 7 of an ergodic Markov chain. Working independently of
Johnson, Propp and Wilson [31] devised a backward coupling, or coupling from
the past, algorithm (call it PW) for efficient exact sampling in the monotone
case. Their algorithm is simple to describe. For t = 1,2,4, 8, ..., start two
copies (say, X and Y) of the chain at time —¢, one in 0 and the other in 1. Run
the two chains until time 0, coupling the transitions by means of a monotone
transition rule f. If X, = Y, = Z (say), we say that the trajectories of X and Y
have coalesced and return the value Z. (Note that Z is not necessarily the state
of first coalescence.) Otherwise, restart the procedure with the next value of
t. The time and space requirements of this algorithm are discussed below. For
Algorithm PW to work properly, it is essential, when the transitions from a
given time s to time s+ 1 are generated by means of f(x, U,), that the same
value U, be used in every iteration of the ¢-loop. If we assume that the al-
gorithm terminates with probability 1 (as is true, e.g., in the attractive spin
system case), then it is not hard to show that Z ~ 7 exactly. For this reason,
Propp and Wilson describe their algorithm as one for exact sampling from 7.
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However, as Propp and Wilson ([31], Section 2.1) point out, the running time
of the algorithm and Z are not independent. Thus occurrences of catastrophic
system failures (more likely for long runs than for short), or early terminations
of long runs by an impatient user, will result in a biased sample: observations
that tend to take a long time to generate are underrepresented. [In connection
with user impatience, notice that if no output has been generated by the end
of a given iteration, the user knows that, due to time-doubling, the waiting
time to termination (as measured by number of transitions) will be greater
than the total time expired to that point.]

REMARK 5.3. We do not wish to overstate the importance of this bias, so
several comments are in order here.

1. If suitable precautions are taken, a system crash need not lead to ter-
mination of a run. As a simple example of this, suppose that Algorithm PW
is implemented using a seeded pseuodorandom number generator for an RSU
chain, as discussed at the end of Section 6.2. Provided that the initial seed
is written to disk before a run commences, the run can be started over af-
ter rebooting. Alternatively, one might wish to save partial results as the run
progresses.

2. There would be little sense in stopping a run of Algorithm PW and be-
ginning a new one, provided the implementation allows for pausing a run and
resetting the time-doubling scheme. After all, for fixed s > 0, the conditional
probability of coalescence from time —(¢ + s) to time O given the simulation
over the time interval [—¢, 0] is minimized (over all choices of ¢ and all possible
simulation results) when ¢ = 0.

3. In light of comment 2, a somewhat more realistic scenario is that of a
user who, for a predetermined length of time ¢, repeatedly runs the algorithm
to collect observations from 7, and then quits, perhaps before and perhaps
after the run in progress at the planned quitting time is completed, obtaining
the results Z, Zy, ..., Zy;. Suppose that these observations will be used to
estimate a functional Eg(Z) of m (where Z ~ 7) by the sample mean g :=
N(t)™! Zfi? 2(Z;). Curiously, when a run in progress is completed if and only
if no other observations have been collected, it can be shown that the resulting
estimator g is unbiased. On the other hand, if the observation in progress
is always collected, then (due to length-biased sampling) the sample will be
biased in favor of observations that take a long time to generate (in contrast
to the bias against such observations caused by aborting long runs). In either
case, it is important to realize that the conditional distribution of a fixed
duration sample given its size is not that of an i.i.d. sample. Instead, a user
would be advised to use training runs to estimate the distribution of running
time and then sample a fixed number of observations rather than for a fixed
computation time. For more on such use of training runs, see Section 6.1.

4. We have adopted a rather harsh standard of “bias” here and do not mean
to single out the Propp—Wilson algorithm for criticism. Indeed, consider the
standard algorithm for simulating a biased coin flip by a sequence of unbiased
flips. To be more specific, suppose that independent random bits by, b, ...
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are generated sequentially until it is determined whether or not the uniform
random number .b; by - - - (in binary notation) belongs to the interval [0, 1/3].
Given that a decision is reached after at most 2% (respectively, 2k + 1) bits
have been generated, the probability of an affirmative decision is % [resp.,
3(1—1/(22%1 — 1)) < 31. So, for an impatient user, this algorithm is “biased”
towards a negative decision. In light of our comments, perhaps “bias” should
be read throughout as “potential for carelessly inappropriate use.”
5. See also the cautionary note in the last paragraph of Section 7.3.

To provide a simplistic but analyzable model of user-impatience bias, we
suppose that the user decides in advance to terminate a run of Algorithm PW
if and when i, iterations have been completed without output. Remark 5.3
indicates that this model will provide a loose upper bound on the sort of bias
incurred in practice.

Here is an exaggerated example of such bias, extracted from the discus-
sion in Section 2.1 of [31]. Consider the Markov chain with states 0 = 0, 1,
and 1 = 2 and monotone transition rule, using a uniform random variable
Uon 72 =10,1], given by f(x,u) = max(x—1,0) if u < 1/2 and f(x,u) =
min(x + 1,2) if u > 1/2. Let i, = 2. If we use the Propp—Wilson algorithm
to sample from 7, but abort runs not completed in i, iterations, then (condi-
tionally given completion) Z = 0, 1, 2 with respective probabilities 1/2, 0, 1/2,
whereas 7 = (1/3,1/3,1/3).

To obtain an example for RSU chains, consider again the set-up of Exam-
ple 5.2, and let i, = 2. An easy calculation gives the probabilities of completion
with Z = 0 and completion with Z = {v} (= the configuration with spin +1 at
v and —1 at w) as

e? 41 1
——— and —ks—r,
8(et? + 1) 4(e?? + 1)
respectively. The ratio of these probabilities (for {v} to 0) is 2(e**+1)/(e20+1)2,
which is larger than the corresponding ratio of 1 for the stationary probabili-
ties.

In Sections 7 and 10 we shall present alternative algorithms which handle
RSU chains (among others) and eliminate the user-impatience bias.

In passing, we offer some general remarks about perfect simulation in gen-
eral and backward coupling in particular. See Chapter 4 in [3] and [26] for
general discussion of perfect simulation and references to uses of backward
coupling predating Algorithm PW. With a somewhat different formulation,
backward coupling has also been developed and employed effectively by Foss
[19] and by Borovkov and Foss [9, 10]. For infinite state space extensions and
applications of Algorithm PW, see [30]. For a variant of backward coupling
using regeneration times, see [20].

6. Analysis of the Propp-Wilson algorithm.

6.1. Assessing the bias. What is an upper bound on the user-impatience
bias associated with Algorithm PW? To answer this question, consider the
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distributions
o,:=L(Z|T <), t=0,1,2,...,

where T is the backward coalescence time, i.e., the smallest value of ¢ such
that the coalescence occurs by time 0 when the two copies of the chain are
started at time —¢. In passing, we record the simple fact, noted in Section 5.1
of [31], that T has marginally the same distribution as the forward coalescence
time, that is, the time it takes transition-coupled trajectories started in 0 and
1 to first coalesce. Generalizing o,, for any random variable 7' let

o(T) = o(L£(T)):= £(Z|T < T).
If T' is generated independent of the randomness used to generate (T,Z), then

o(T') is the mixture of the distributions o, with respect to the mixing measure

Z(T|T < T) on ¢t. Proposition 6.2, a cousin to results in Section 5.1 of [31],
bounds the variation distance

|lo(T) - 7| = max |P(Z e A|T < T) — m(A)|
AcC.r
from stationarity. We first state and prove a very general lemma, from which

(since Z ~ 7 unconditionally) the proposition follows immediately, and then
prove and discuss two useful consequences of the proposition.

LEMMA 6.1. Let (Q, o7, P) be any probability space and let B € &/ with
P(B) > 0. Let Z be any measurable mapping into any measurable space
(Y, &"). Consider the variation distance

di=|/(2B) - /(Z)| = sup |P(Z ¢ A| B) - P(Z € A)l|.

Then
d < P(B°)/P(B).

PROOF. For any A € o7/,
P(B)JP(ZcA|B)—P(ZcA)]=P(BNn{Z<cA})— P(B)P(Z<cA)
= P(B)P(Z ¢ A)— P(B°Nn{Z € A}),

the absolute value of which does not exceed P(B¢). O

PROPOSITION 6.2. In the setting described above,

P(T > T)

|o(T) — 7| < m

COROLLARY 6.3. Consider again the set-up of Proposition 6.2. If T, T4, ... T,
are independent random variables, each distributed as the forward coalescence
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time,and T =Ty +---+T,, then

. 1
lo(T) — 7| < o1

ProoOF. Using the proposition, we need only show that P(T > T) <27
But this is done in Section 5.1 in [31] and is easy: condition on the values of
Ti,...,T,, use the easily established submultiplicativity of the tails of .Z(T)
(Lemma 5 in [31]), and observe P(T > T;) <1/2. O

Without going into details, we remark that an alternative to the corollary

can be obtained by considering max{7T, ..., T,} in place of T.
Proposition 6.2 and Corollary 6.3 suggest methods for controlling the user
impatience bias, as measured by the variation distance b(7') := ||o(T") — 7|.

Suppose first that T' = t. There is no need to do any backward coupling. Indeed,
suppose one simply repeatedly runs coupled trajectories forward from initial
states 0 and 1, each for duration ¢, until such a run produces coalescence, and
then outputs the terminal state of that run. It follows from Proposition 6.2
that the variation distance between the law of the eventual output and the
desired 7 is b(¢t) < P(T > t)/[1 — P(T > t)].

Of course this information is useless except in those rare instances when
one has at hand a bound on the tails of #(T"). Furthermore, in those cases one
can do slightly better than Proposition 6.2 with an even simpler algorithm, as
follows. It is clear (see [31], Theorem 4) that the coupling inequalities

d(t) < d(t) < P(T > t),
hold, where
6.1) d(t):= max |IPY(x,-)— 7| and d(¢):= max, |P!(x, ) — Py, )|
Xe. X, ye.

So one need only run a single trajectory forward for ¢ steps from an arbitrarily
chosen initial state, and the variation distance between the law of the terminal
state and 7 is at most P(T > ¢).

Typically, one will need to estimate the distribution of 7' statistically, and
then similar comments apply to the bound of Corollary 6.3. The upshot is
that one can begin by obtaining a “training sample” T';, ..., T, of r forward
coalescence times, let 7' = T,+---+ T,, and then run a single trajectory
forward for T' steps from an arbitrary initial state, resulting in a variation
distance of at most 27".

While it may seem that we have provided a method for controlling bias,
there are several inherent drawbacks.

1. The need for training runs increases the overall running time of the sam-
pling algorithm. The factor of increase grows without bound as the variation
distance tolerance shrinks to 0.

2. The user must commit the resources in advance to completing the r training
runs; if an impatient user terminates one of these runs early, then the
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analysis provided by Corollary 6.3 is rendered invalid. But our demand is
ridiculous, as the user need only commit to a single run of Algorithm PW
to obtain a completely unbiased observation from 7!

3. In our discussion, only bounds on absolute probability errors have been
given. No such bounds exist for relative errors, as the following example
demonstrates.

All these difficulties are overcome by the algorithm proposed in Section 7,
since it is not subject to user-impatience bias.

ExXAMPLE 6.4. Let .7 be the linearly ordered state space {0, 1, ..., d}, with
d > 4 assumed for later convenience. Let Pryw govern the usual simple sym-
metric random walk, with holding probability 1/2 at 0 = 0 and at 1 = d. Let
Pjymp govern the chain with absorbing state d, which with probability 1 is
reached at one step from any other state. Then
1 1
Pmix = EPRW + <1 - d>Pjump

inherits ergodicity from Pgyw and possession of a monotone transition rule
from Pgy and P; Let P =P_;.. Then P(T > 1) = 1/d and o is unit mass

8, at d, so Proposition 6.2 with 7' = 1 implies

ump*

64—l <

d— Tl = d-1

which is small when d is large. (It is also clear directly that |6, — 7| < 1/d.)
But approximation of 7(x) > 0 for any given x < d by 64(x) = 0 incurs a
relative error of 1.

REMARK 6.5. In regard to drawback 2, amortization can provide some re-
lief. That is, one might hope that commitment to completion of a single small
sample from .#(T) would allow for a large sample of observations from 7 that
is relatively free of variation bias. Indeed, suppose that we generate a training
sample T'¢,..., T, from .~(T), compute I' = T; + --- + T,, and then obtain

a sample Z;, ..., Zy by running N duration-T' trajectories from arbitrarily
chosen initial states. Then the variation distance between #(Z,,...,Z,) and
perfection (7 x --- x 1) is bounded by

P(max(T,...,Ty) > T)

where T'y,...,T,, T}, ..., Ty are all independent copies of T'. But
Pmax(T,,...,Ty) < T|Ty=t1,....,T, =t,) =[P(T} < t; 4+ +1,)]"
r N
> [1 -1 P(T; > ti)}
i=1

>1-N][[P(T; > ¢),

i=1
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from which it follows easily that
P(max(Ti,...,Ty) > T) < N27".

Therefore, to guarantee that the sample Z,,...,Z, has variation bias no
greater than &, we need only choose r > 1g(N/¢). Thus, for example, to dou-
ble the desired sample size for a given tolerance ¢, one need not double the
required training size, but rather only increase it by 1.

6.2. Time and space requirements. We conclude Section 6 by treating the
time and space requirements of the Propp—Wilson algorithm. The running
time was treated in [31], to which we refer the reader for further details,
but the space analysis is new. As defined in Chapter 4 of [3] in the case of
reversible Markov chains, let 7; denote the mixing time parameter

(6.2) 7y :=min{¢ > 0: d(¢) < e},

called the variation threshold, of a Markov chain P, where the maximum
variation distance d(¢) is defined at (6.1). Then, when the algorithm is applied
to any monotone case chain P on a poset ./, the running time is linear in TA,
where A is the time required to perform a single P-step and 7T is the backward
coalescence time as defined in Section 6.1. Propp and Wilson show that

(6.3) ET <2r,(1+1nl),

where [ is the length of the longest chain in .. For an RSU chain [so that
A = 0(1) (see Remark 4.3) and [ = n], this implies that the expected run time
is O(71;logn).

We analyze the memory needs only in the case of RSU chains. The space
required depends on the source of the random variables used to generate the
coupled transitions. Suppose first that the source is actual (unreproducible)
randomness. As mentioned above, the values U = (U, U,) € {1, ..., n}x[0, 1]
used for an update at one iteration need to be reused in subsequent iterations.
Hence the space requirement (in bits) for the U,-values is O(7T log ), which
has expectation O(7,(log n)?); and ©(T), which has expectation O(r, log n), is
the number of uniform U,-values that must also be stored. Note, however, that
only O(n+log T') [with expectation O(n+1log 7)] bits of read/write memory are
needed; the U-values can be read from read-only memory, while the additional
O(log T') term accounts for the algorithm’s need to keep track of time.

Wilson [38] has observed that, by an imputation trick, it suffices to store
ternary digits rather than U,-values, as follows. Let i > 0. During the
(i 4+ 1)st iteration (i.e., starting at time —2°), store a ternary digit d for each
site update until time 0. If both copies of the chain spin the site to +1 or both
spin to —1, store d = +1 or d = —1, respectively. If the 1-copy of the chain
spins the site to +1 and the 0-copy spins it to —1, store d = 0. How to spin
the sites is determined as follows. Over the interval [—2¢, —2i~1), generate
fresh uniform values from [0, 1] and use the transition rule. Over the interval
[-2/71,0), the stored digits are used to redetermine the trajectories from the
previous iteration and to determine the trajectories for the present iteration,
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and then are overwritten, as follows. If d = +1 or d = —1 is stored, spin
the site in both copies to +1 or —1, respectively, in both the present and
previous iterations’ trajectories, and leave d unchanged. If d = 0 is stored,
the previous iteration’s trajectories are extended by the appropriate spinning.
Further, we know that the corresponding uniform from the previous iteration
had a value u, in the interval (P,(y, (y;y, <« —-1)), P (x,(x;x, < —1))],
where x and y are the respective values of the copies of the chain started at
time —2/~! in states 0 and 1. The value Uy can be imputed by generating a
fresh uniform value in this interval. Use this value and the transition rule
to determine the spins for the two current copies of the chain, and store the
appropriate value of d. With the trick we have described, the total memory
requirement for the algorithm is @(7 log n+n) bits, of which @(7T+n) must be
read/write memory; the corresponding expected values are O(7;(logn)? + n)
and O(7rqlogn + n). Of course, for virtually all real applications, the first
of the two terms will predominate in each case. Although this trick reduces
the total memory requirement, if (as is quite typically the case) read-only
memory is much more abundantly available than read/write memory and T
is of larger order of magnitude than n, then our analysis shows that it would
be better not to use the trick.

Now suppose instead that a typical seeded pseudorandom number genera-
tor is used; that is, we assume that each value of U is determined (in time of
constant order) from a pseudorandom number s; generated by applying a de-
terministic function r to the preceding pseudorandom number s;_; generated,
where the process is begun with some specified seed s,. Storage can then be
greatly reduced, at the expense of merely a constant factor in running time, by
storing only the initial seed s,: whenever time —2¢ is reached, the algorithm
simply recomputes the seed sy-1 required at that time via sy = 72 (sp),
where r/ denotes the jth iterate of r. (For i = 0, the required seed is s,.) The
space requirement is ®(n) (needed to keep track of two configurations), plus
the memory requirement m for the seed s,. One might reasonably take m to
be O(log T') in order to get good performance from the generator. The total
expected space requirement is then O(n + log 7;). We may reasonably assume
that log 7; = O(n), and then the space needed is O(n). Indeed, if 7; is not of
order at most polynomial in n, then no feasible MCMC algorithm can hope
to approximate the stationary distribution when n is very large. So we may
assume that 7; = O(n®) for some a < oo, although the governing « may be
application-dependent.

7. A new algorithm based on rejection sampling.

7.1. Background. To set the stage for the new algorithm, we review some
background material. Let . be a finite poset, and consider probability mea-
sures u and v on .. It is well known (e.g., Theorem 1 in [25]; see also [36])
that u < v (stochastically) is equivalent to the existence of an upward kernel
K such that v = uK, that is, of a Markov t.m. K on ./ such that (1) for all
x € ./, the measure K(x, -) is supported on {y € . y > x}, and (2) for all
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y € ./, we have v(y) = Y., w(x)K(X, y). Also, recall the definition P(x, y) :=
7(y)P(y, x)/7(x) of the time-reversal of a Markov t.m. P with stationary dis-
tribution 7. For example, it is evident from (2.1) that each P, is reversible
with respect to 7 (i.e., P, = P,); hence so is the RSU chain P = n"1Y P,.
The algorithm we shall present does not require reversibility of P.

REMARK 7.1. For simplicity, we have supposed that the t.m. P of interest
is ergodic, so that w(x) > O for all x € .. When, as discussed in Section 2,
.7 is the Boolean algebra of all subsets of a finite poset V and P is the RSU
chain with long-run distribution 7 that is uniform over the collection (V') of
order ideals of V', the assumption of ergodicity is violated but can be restored
by a suitable restriction of attention to .»”" = J (V). We omit the details.

We assume that P is monotone on .~ and that .~ possesses 0 and 1, but we
do not require that a monotone transition rule exist for P. For each x € ./,
let u, := P(x, -). Monotonicity of P is equivalent to the assumption that when
x <y there exists an upward kernel K, , = K, (-, -) such that uy, = u, Ky y.
We assume that the user can simulate transitions from the measure K, ,(x’, -)
whenever x <y and P(x, x') > 0.

Suppose, for example, that a monotone transition rule f does exist for P,
that is, that the monotone case obtains for P in the sense of Definition 4.4. It
is then easy to check that one can use

(7.1) K, (x,y):=P(f(y.U)=y | f(x,U)=x), vy e

(when x < y and P(x,x’) > 0) for the upward kernels. In particular, if one
can generate a random variable U (say) whose distribution is the conditional
distribution of U given f(x, U) = X/, then one can simulate an observation Y’
from K, ,(x', ) by setting Y’ = f(y, U).

EXAMPLE 7.2. When we specialize to RSU chains, a straightforward calcu-
lation establishes the validity of the following simple method for generating
Y’ (as in the preceding paragraph) when x’ # x (so that x and x’ disagree at
a unique site v). If x, = —1 and X’ = (x; x, < +1), thenset Y = (y; y, <«
+1) (deterministically). If x, = +1 and X’ = (x; x, < —1), then set Y’ to
(y; y, < —1) with probability P (y, (y; v, < —1))/P,(x,(x; x, < —1)) and
to (y; y, < +1) with the complementary probability. A method for generating
Y’ in the more problematic case x’ = x will be discussed in Section 10.1.

7.2. The algorithm in the general monotone setting. Let P be an ergodic
t.m. with monotone time-reversal P on a poset ./ possessing a unique maxi-
mum element 0 and a unique maximum element 1. Let K, , be upward ker-

nels for P, as discussed in Section 7.1. The proposed new algorithm to output
a stationary observation runs as follows. Independently for ¢t = 1,2,4,8, ...,
perform the following routine; stop when output is first obtained. For the first
phase of the routine, run the P-chain X for ¢ steps starting from state 0,
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recording the trajectory (X, X;, ..., X,). Suppose that X, = z. For the second
phase, regard (Xt, X, ;,...,X,) as a trajectory (X,, Xy, ..., X,) from the time-
reversed chain X. Then, in synchrony with the evolution of X, build a second
trajectory Y, which starts at state 1 and evolves according to the followmg
one-step rule. Corresponding to each observed transition, say from x to x’, of
X let Y choose the transition from its present state y as y’ with probablhty

xy(X',¥'),y € .7. (Notice that this construction gives X <Y, for0O<s<t)

If Y = 0, output z; otherwise, erase all information and go on to the next value
of ¢t.

REMARK 7.3. The new algorithm bears superficial resemblance to tech-
niques of Besag and Clifford [6, 7] in a different setting, but we are unaware
of any useful connections.

7.3. Proof of correctness. Why does the algorithm presented in Section 7.2
work? The basic reason is that each iteration of the two-phase routine is an
implementation of rejection sampling (cf,, e.g., Chapter 10, Section 2.2 of [32]).
We use an observation from P?(0, -) to simulate one from 7. In order to effect
this, one produces an upper bound ¢ on the ratio (z)/P*(0,z) [subject to
P!(0, z) > 0], generates z according to P(0, -), and (conditionally) accepts z
as an observation from 7 with probability ¢~ (z)/P*(0, z). The unconditional
probability of acceptance is then 1/c.

Now

(7.2) m(z)/P!(0, z) = w(0)/P!(z, 0),

so the monotonicity of P implies that we may choose ¢ = 7(0)/P*(i,0) and
thus accept z with probability

Pi(i, 0) m(z)  P{(1,0)
(0) Pt((),z)_f»(z,())'

The first phase of the routine samples from Pt(f), -), and so the question in
designing the algorithm becomes how to engineer a coin-flip with probability
P!(1, 0)/P!(z, 0) of heads. But, conditionally given that X starts at 0 and ends
at z, the reverse trajectory X = (X, ..., X,) = (X,, .. XO) has the distribution
of a P-trajectory conditioned to start at z and end at 0. Moreover, the second
phase is designed precisely so that the probability of acceptance is the desired
Pi(1,0)/P!(z, 0).

LEMMA 7.4.
G Alc o Ao a PY1,0)
P(Y,=0 =z, X,=0, Yo=1)== .
(=0/% =2 X, =0, %= 1) = L
PROOF. Consider a modified situation where the trajectory X =(X,, ..., X,)

is again a P-trajectory, but no longer conditioned to start at z nor to end at
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0. We can again build a second (coupled) trajectory Y starting at state 1 and
evolving as in the second phase of the algorithm: if X moves from x to x/,
then Y moves from y to y’ with probability K, y(X',¥'). As before, we will
have XS < Ys for 0 < s < ¢; in particular, Yt = 0 entails X = 0. Moreover,
in this modified setting it is easy to verify that X, and Y = (Y,,...,Y,) are
independent and that Y is (marginally) a Markov chain with t.m. P.

Thus, returning to the setting of the algorithm, we have

P(Ytzf) XOZZ,XtZO,?O:i):

AL
as desired. O

The unconditional probability of acceptance is
1 Pi(1,0) _ P{(0,1)

m(0) m(1)
which (by ergodicity) converges to 1 as ¢ — oo. It follows that the conditional
probability that the algorithm terminates at the ith iteration given failure to
do so previously converges to 1 as i becomes large. A fortiori, the algorithm
terminates with probability 1.

The claim of unbiasedness with respect to user impatience follows easily
from the very nature of rejection sampling together with the fact that all
information is erased after each iteration. However, we warn that for this
claim to be valid, user impatience must be expressed in terms of number of
transitions generated, not real computation time. Otherwise, care must be
taken to program each transition to take the same (worst-case) amount of
time. Wilson [38] points out that this will cause a crippling slowdown for
chains with highly variable computation time for transitions; see Section 4.2
of [31] for such an example.

(7.3)

8. Performance of the new algorithm. From the description of the new
algorithm presented in Section 7.2, it is clear that one can analyze both the
time and space requirements by studying the distribution of F', defined to be
the number of forward P-transitions generated. The algorithm will be fine-
tuned for RSU chains in Section 10, and in Section 11 we compare the perfor-
mance of the new algorithm with that of Algorithm PW, both generally and
also specifically for RSU chains.

If I > 1 denotes the (random) number of iterations used by the algorithm,
then

I-1
F=>Y2h=2"_1
h=0
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and we have already observed [see (7.3)] that

P(I > il >i—1)=sepy(2:}), i>1,
where

(8.1) 0 <sepy(t) =1 <1, t>0

P{(0. 1 L0
POD gy PO
m(1)  yer m(y)
is recognized as the separation [3, 13] at time ¢ for the P-chain started in the
state 0. The last equality in (8.1) follows from (7.2) and the monotonicity of

P!. Thus F takes on values 2/ — 1 with respective probabilities P(I = i), i > 1,
and it follows that

00 i—-1 ) 00 h-1
(8.2) EF =Y P(I=i)) 2"=Y 2"P(I> h)=Y_ 2" ] sepy(2¢),
i=1 h=0 h=0 h=0 g=0
h—1
(8.3) P(F > 2" —1)= P(I > h) = [] sepy(2%),  h=>0.
g=0
Let
_ Pi(x,y)
(8.4) sep(t) = xrg%?;[l — 7T(y)}

be the separation maximized over choice of initial state. It is elementary and
well known that for any Markov chain, sep(-), like d(-), is submultiplicative.
As defined in Chapter 4 of [3] in the case of reversible Markov chains, let
(8.5) Til) := min{t > 0: sep(t) < e '}.

This mixing time parameter, called the separation threshold, is compared with
71 of (6.2) in Section 11.1 below.

The following theorem briefly summarizes the performance of our algo-
rithm.

THEOREM 8.1. Let F denote the (random) number of P-transitions gener-

ated by the algorithm in Section 7.2. Then EF = 0(751)), where 7(11) is the
mixing time parameter given by (8.5) and (8.4).

The next proposition, together with submultiplicativity of sep(-), suffices to
establish Theorem 8.1. The second conclusion asserts that the right tail of F
decays at least geometrically quickly.

PROPOSITION 8.2. Let

7:=min{t > 0: sep(t) < 1/2} and h:=[lg7].
Then
EF <87 and P(F>2""—1)<2°@D  for h>o0.
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PROOF. To bound the last expression in (8.2), we proceed as in [37]. Ob-
serve that 4 is the smallest integer & with sep(2”) < 1/2. Then

h ) h—1 . %) h—h—-1 -
EF <Y 2"+ Y 2" [Isep(28)=2"1—14+ 3 2" [] sep(2'+¢)
h=0 h=h+1  g=h h=h+1 g=0
00 h—h-1

< ohtl 4 » oh I1 [sep(zﬁ)]zg (by submultiplicativity)

_ e h—h-1 B 0 i
<oilp Y oh [ 27 =204 % ohg—(2"-1)
h=h+1 g=0 h=h+1
. 00 B
= 2h+1[1 +3 2“’1} < 3.563 x 2" < 7.1267 < 87.
h=1
To bound the tails of F, for A > 0 we note by similar estimates that

- h+h—1 hth—1 h-1 .
P(F>2""—1)= ] seps(2)< [] sepy(2)< [[27*'=27"1. ©
g=0 g=h g=0

9. The new algorithm and strong stationary times. When the basic
two-phase routine of the algorithm in Section 7.2 is run for an interval of
length ¢, we have already noted at (7.3) and (8.1) that the probability of out-
put is 1 — sepg(t). According to a standard theorem ([2]; see also Chapter 9 of
[3]), therefore, this probability equals P(T < ¢), where T is a minimal strong
stationary time (MSST, called a #ime to stationarity in [13]) for the P-chain
started at 0. We will show that this is no coincidence: the algorithm is inti-
mately connected with the construction of a MSST in just the same way that
Algorithm PW is connected with the construction of a backward coupling time.
The connections provide further insight into how the algorithms work.

For completeness, we briefly review the notion of strong stationary time
SST; for a fuller development, see [1, 2, 3, 13]. In the language of computer
science, a randomized stopping time for a process X = (X;),>( is an on-line
stopping rule that is allowed to use randomness independent of X.

DEFINITION 9.1. Let X be an ergodic Markov chain with finite state space
and stationary distribution 7. A randomized stopping time 7T is said to be a
strong stationary time for X if (1) X; ~ 7 and (2) T and X; are independent
random variables; equivalently, if

(9.1) PXr=x|T=t)=m(x) forall x,¢.

As mentioned above, a well-known result [2] implies that for any finite-
state ergodic chain (started in any fixed state x;) there exists a SST 7™ that is
minimal (stochastically smallest), satisfying sepy (¢) = P(T* > t) < P(T > t)
for any ¢ and any SST T.
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9.1. Construction of a strong stationary time. Throughout Section 9 we
suppose that the monotone case (in the sense of Definitions 4.4 and 4.2) is
satisfied by the time-reversed chain P with monotone transition rule f. Con-
sider the construction of the reverse trajectory Y in the second phase of the
routine. Suppose that Y, , = y has been constructed and we wish to choose
the value y’ of Y,_,.;. Let X, =X, =x and X,_,,; = X,_; = X' be the corre-
sponding values determined in the ﬁrst phase. As explained following (7.1), y’
can be chosen by generating a random variable ﬁs whose distribution is the
conditional distribution of U given f(x, U) = x’ and setting y’ = f(y, U,).

Notice that the values Uy, ..., U, could be generated, one at a time, during
the first phase as the trajectory (Xi,...,X,) evolves from X, = 0. At each
(forward) epoch s we could then ask the following question: which values of
Y,_, [to be determined by the future specification of (X, 1, . . ., X,)] would yield
Y, = 0? Since

?t = ]E( T f(f‘(?tfs’ ﬂs)? ﬁsfl) ) ﬁl)a
the set of values is precisely
X:={ye” f(- f(f(y.0,). 0, ), 0y) =0},
with X3 := {0}. Several observations follow immmediately.

1. X, e X¥; in partlcular X £

2. Xt ={ye./ f(y,U,) e Xt |} = f(-.U,)"'(X’_,); in particular, if X} ; =
/, then X! = ./

3. Since f is increasing in its first argument, X* is an order ideal in .. In
particular, X! = ./ if and only if ie X:.

4. The two-phase routine produces output (= X,) if and only if X} = ./

Since each X* is constructed using only (X, ..., X,) and independent ran-
domness, the same construction can be carried out on {0, 1, ...} rather than
on the finite time interval {0, 1, ..., t}. Suppose this is done, and let

9.2) T :=inf{s > 0: X! = ./}.

THEOREM 9.2. T is a minimal strong stationary time for the chain X started
in 0.

Theorem 9.2 will be proved in the next subsection by applying the theory
of strong stationary duality [13].

REMARK 9.3. (a) Theorem 9.2 establishes the validity of an alternative in-
terruptible algorithm for perfect sampling, to wit: construct the process X* as
described above, stop at the first time T such that X% = ./, and output Xy.
Compared with the algorithm in Section 7.2, this algorithm has the advantage
of not requiring a second (reverse trajectory) phase.

(b) However, this alternative algorithm is not generally practicable. The
problem is that the process X* takes values in the space ./* = J(./) \ {J} of
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nonempty order ideals of .. Since an order ideal is equivalently represented
by its antichain of maximal elements (e.g., [35]), the size (as a subset of .”) of
an element of ./* can be as large as the width (maximum size of an antichain)
of the poset .. For example, if (as in the case of attractive spin systems) .
is a Boolean algebra, that is, the power set of an n-element set ordered by
inclusion, then the width is (Ln72J) ~ 2"/./7wn/2 (corresponding to the an-
tichain of subsets of size k, where 2 = |n/2]| or £ = [n/2]) by a theorem of
Sperner [34]. Thus, simply to record a single value X* would use a prohibitive
amount of memory. Additionally, for complex examples such as RSU chains,
the computation X* = f(., ﬁs)*l(X;‘_l) is infeasible.

(c) Consider again the algorithm in (a). According to observations 2 and 3
above, we can test whether T' < ¢ by checking whether

f(- F(F(1, U, U,y) -+, Uy) =0.

This is precisely the function of the second phase of the routine in the algo-
rithm of Section 7.2! However, note that the total computation time (in number
of transitions) in determining the value of T' in this way is ZZ;I s = O(T?).
The “erase, double ¢, and start over” strategy of the algorithm in Section 7.2 is
designed to eliminate the time-squaring slowdown. This strategy is not new:
Algorithm PW uses the same technique in conjunction with a backward cou-
pling time 7.

(d) The fact that the time T' of Theorem 9.2 satisfies the “strong” require-
ment of independence of 7' and Xy in the definition of strong stationary time
lies at the heart of why the algorithm of Section 7.2 is interruptible, that is,
unbiased with respect to user impatience.

(e) Because T is a minimal SST, the algorithm in Section 7.2 has some claim
to near-optimality. Indeed, were we only to run the P-chain for ¢ steps from
state 0, the highest unconditional probability with which we could output the
terminal state as an observation from 7 is 1 — sepy(¢). Our routine does just
this, at the additional expense only of the reverse trajectory phase.

9.2. Strong stationary duality. In this subsection we prove Theorem 9.2
using terminology, notation, and results from [13] for strong stationary duality.
Let X* be the stochastic process constructed in Section 9.1, and let .”* denote
the collection of nonempty order ideals in ..

THEOREM 9.4. X* is marginally a Markov chain with state space .”* and
is, moreover, a sharp set-valued strong stationary dual for X.

We offer a brief explanation. “X* is a set-valued strong stationary dual”
means that X is linked to X* by A: ./* x ./ — [0, 1], where

w(x)/H(x*), ifxex*,
0,

(9.3) A(x*, x) 1= { otherwise

is the link of truncated stationary distributions, in the sense that
(9.4) (X NXG=%35, ..., X =x7) = A(x], ).
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In (9.3), we have written H for the probability measure corresponding to the
mass function :

H(x*) = > m(x).
xex*
Equation (9.4) (with x; = /) immediately implies that T of (9.2) has the
defining property (9.1) of a strong stationary time. The assertion that X* is a
“sharp” dual is precisely that the SST T is minimal. Thus Theorem 9.2 is a
corollary of Theorem 9.4, and (9.4) additionally gives distributional informa-
tion about the chain X prior to stopping.
The remainder of this subsection is rather technical and makes frequent
reference to [13]; the reader may wish to skip it upon first reading. The next
two lemmas will be used to prove Theorem 9.4.

LEMMA 9.5. Let the probability measures m, on ./ and = on ./* be unit
masses at 0 and at {0}, respectively, and define

__ H(y")
" H(x%)

Pi(x", y") P(f(,U)'(x") =y"), xX'esS" yes

Then P* is a transition matrix on /*, and (my, P*) is algebraically dual to
(79, P) with respect to the link A, in the sense that
(1) m=7m5A and (ii) AP =P*A.

PROOF. Part (i) is clear, and from part (ii) it follows that 3. P*(x*, y*) = 1
for each x*. So the following calculation proving (ii) suffices:

L v 2Py = ")

(AP)(X*’ y) = Z IN,(y? X)

H(X*) xex* H(X*) xXcx*
= ") p(f(y, U) e x) = 2IL p(f(, ) Hx) 5 y)
- H(x*) Yy, T H(x*) ’ y
_ W(y) r X —1/ % — v*) — W(y) H(X*) % [ <k *
- H(x) ygy ARt H(x*) ygy H(y*)P =57)
=X P (XL YA, y) = (PA)X", ). D
v

REMARK 9.6. (a) Lemma 9.5 is a partial extension of Theorem 4.6 in [13]
from linearly ordered to partially ordered state spaces.

(b) As will be explained in a future paper [18], P* is the H-transform of
a (generally nonunique) Siegmund dual of the time-reversal of P, extending
Theorem 5.5 in [13].

In the next lemma, o, and Q play roles analogous to those of w;, and P
on the left sides of (2.20) and (2.21), respectively, in [13]. As the proof will
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make clear, there is in the present setting an important deviation from the
construction of (2.21) in [13]. The conclusion that X* and X are marginally
Markov is noteworthy, since functions of Markov chains are not generally
Markov.

LEMMA 9.7. On the bivariate state space {(x*,x) € ./* x ./: X € X*}, let &
denote unit mass at ({0}, 0) and Q the transition matrix

7(y)
m(x)

If (X}, X, )0 is a bivariate Markov chain with initial distribution oy and tran-
sition matrix Q, then (X}),.o and (X;);>o are marginally Markov chains, with
respective initial distributions m; and 1y and respective transition matrices P*
and P. Further, equations (2.13)—(2.16) and (2.28) of [13] hold in the present
setting, and (2.27) there holds here in the modified form

P(X; =x; (X5, Xp) = (%5, %0); - (X[ 1, Xp 1) =(x}_1, %,1); Xy =%)

(9.5) _ QUL Xi), (%75 %))
P(Xt laxt)

Q(x*,x), (¥, y)) = P(f(y,U)=x, f(-,U)"'(x") =y").

PrROOF. As at (2.22) in [13], define A = P*A = AP; that is,
A(X*> y) = Z P*(X*7 y*)A(y*a Y) = Z A(X*v X)P(X, y)
v x

We apply Remark 2.23(c) in [13] and, for the assertions (2.13) and (2.28) in [13]
and (9.5) here, an extension of Remark 2.23(b) in [13] that is fairly routine
to verify. According to these remarks, which take as granted the algebraic
duality equations 7y = wjA and AP = P*A established here in Lemma 9.5, it
is enough to show for fixed x* and y that

96)  pOxy |xy) = QEX ’?Q((x x),(y,y), Xex', y' oy

defines a probability mass function in x and y* with respective marginals
0.7 AX,x)P(x,y)/AKX",y) and P'(x%, y)A(Y", y)/AX",y).

Indeed, for x € x*, the calculation

¥ Q(x' %), (v",3) = Ey;P(ﬂy,U)—x F U () 5 y)
_ E“’;Pmy, U)=x)= Eygmy, x) = P(x, y)
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verifies the first marginal in (9.7), and for y* > y the calculation

> A x)QUx", x), (¥ ¥))

xXex*

_ 5 m(x) m(y) P(f(y, U) =x, ]5(’ U)—l(x*) =y")

L Hx) =(x)

= P9 P(f3,0) ex U ) =)
— TP ) = 3 )

— L PO ) =)

=P'x", y)AY",y)

verifies the second marginal. O

REMARK 9.8. The substantial new wrinkle in our present construction of
the bivariate Q is that now (9.6) is used in place of the product of the marginal
distributions (9.7) in constructing Q((x*, x), (y*,y)) as

A", y)p(x, y* [ X7, y)/ AKX, ).

PROOF OF THEOREM 9.4. Sharpness will follow from Remark 2.39 in [13],
because the only state in ./* containing 1 € ./ is the absorbing state .”.
So we need only verify that X* as constructed in Section 9.1 is a strong sta-
tionary dual (SSD) Markov chain for X. Following the same arguments as in
Section 2.4 of [13], as X evolves we can build a SSD Markov chain X* so that
the resulting bivariate process is a (o, Q) Markov chain as in Lemma 9.7,
as follows. Suppose that X, = x, = 0, X; = xy,.. ., X, 1 = x;_; have been
observed and that X = x;; = {0}, X; =x, ..., X} ; =x/ , have been chosen.
When X, = x; is observed, set X} = x; with (conditional) probability

Q((X:—la xtfl)’ (X;k’ xt)) — P(f(xta U) =X 1, f(: U)il(xj—l) = X;‘)
P(x;_1,x;) P(XN X, 1)

= P(f(-,U) (xp_y) = x| f(x,, U) =%, 1)

But this is exactly the construction in Section 9.1, so Theorem 9.4 is proved. O

REMARK 9.9. (a) Reinforcing Remark 9.8, for our SSD construction the
value assigned to X} depends on X} ;, X;_;, X, and independent randomness,
while the corresponding construction in Section 2.4 of [13] does not use X,_;.

(b) In addition to providing a method for stationary sampling, duality has
converted a convergence-to-stationarity problem for X into an absorption-
time problem for the chain X*. Unfortunately, for complex examples such as
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RSU chains, the latter problem seems no more analytically tractable than the
former.

10. A fine-tuned algorithm for RSU chains.

10.1. How to handle a hold. We return to the setting of Example 7.2 in
order to complete the specialization of the algorithm of Section 7.2 to RSU
chains. The question left open was the following. Suppose that a hold, say
X, (= X,) = X, ,.1(= X, ;) = x, has been observed and that the value
Yt_s = y has been assigned. How does one make the assignment of value
to Y, ,,1? As explained following (7.1), one chooses the value y’ with proba-
bility P(f(y,U) =y'|f(x,U) = x), where f is the monotone transition rule
of (4.2). [In this example P = P, so f also serves as the f in (7.1).] The rather
involved calculation of the conditional distribution of U given f(x, U) = x can
be avoided altogether by making efficient use of randomness. We assume that
forward transitions for X are also generated using the transition rule f. Then
the forward hold was produced in the first place by generating U = (U4, U,)
uniformly distributed on % = {1,..., n} x [0, 1] and finding f(x, U) = x. So
one can simply store and later reuse this value to set Y, .., = f(Y,_,, U).

REMARK 10.1. If desired, one can use the same idea to save on random
number generation for nonholds. Recall Example 7.2 and consider an X-
transition from x to x/, that is, an X-transition from x’ to x, where v = v,
and x, = +1 and X' = (x; x, < —1). Observe

(U, Uy) | f(X', Uy, Uy) =x)

= (U, Uy)|Uy=u, [ (x,Uy) =x) = £((u,Uy) | Uy > P (X', X))
= > _omx) - o om®)
= (@ o> - FE) = (w1 o )
while similarly
Z((U, Uy) | f(x,U;,Uy) =x)

= a0 )

(00 T -0 | .U V) = x).

So le = f(Xs 17U17U2) - (Xs 15 (Xs l)vU <~ +1) # Xs 1 then we can
construct Y, 41 via

Ytferl = f(Yt s Ul’

(sl)
7(X;)

10.2. An algorithm requiring less memory: Algorithm RSUS. As detailed
in Section 8 (see especially Theorem 8.1), the algorithm of Section 7.2, which
stores the entire forward trajectory, runs in time of the order of the mixing

(1-1y).
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time Tﬁ” of P and space of order 7(11)0 where o is the memory required to store
a single state. In the case of RSU chains, o = n and so the space requirement
is of order 7, 'n. We cannot hope to reduce the order of the running time.
However, our algorithm’s space requirement is typically much larger than the
corresponding bound O(7,(log n)? +n) [of which only O(n) need be read-write
memory] for PW.

Further, recall from Section 6.2 that Algorithm PW, when implemented
with a seeded pseudorandom number generator, uses space of order n, where
we may assume that the mixing time for P grows at most polynomially in n.
Even at this diminished space requirement, Wilson [38] has noted that space,
not time, is the limiting resource for PW in certain interesting applications.
Thus we seek to modify our algorithm for RSU chains to reduce the memory
requirement.

Suppose first that truly random bits are used. Then the space required can
be reduced to O(’Tgl) logn 4+ n) by an imputation trick like that described for
PW at the end of Section 6.2. Again it suffices to store the U;-values and
ternary digits rather than U,-values. As the first phase evolves, one stores for
each step one of the three digit values if the step spins site vy, from +1 to —1,
a second value if it spins site v, from —1 to +1, and the third value if the step
is a hold. These digits can then be used for two purposes during the second
phase: (1) one can redetermine X, one step at a time; and (2) it is a simple
matter to impute U,-values to be used for the synchronistic construction of Y.
Note that the hold case is no more difficult than the other cases here, since one
can condition on the stored value of U;. We leave the details of the imputation
to the reader as an exercise.

When our algorithm is implemented using a seeded pseudorandom number
generator, as we assume for the remainder of Section 10, one can even reduce
the space needed to order n, by eliminating the need to store any information
about the U-values, but at the expense of a great deal of time. When one needs
to know the value of X,, that is, of X, ,, one simply recomputes the entire
initial trajectory segment (X,, X, ..., X;_;) by regenerating the appropriate
U-values. However, this squares the order of the algorithm’s run time, and so
is unsuitable.

Comments by Cowen [11] inspired the following compromise, which we
christen Algorithm RSUS (for Random Site Updating Sampler), and which
is based on the observation for the basic algorithm that one can reconstruct a
trajectory segment (X,,...,X,) = (X,_;, ..., X,_,) and build the corresponding
segment of Y from knowledge of just X, ,, the corresponding generator seed
at that time, and Y,..

Algorithm RSUS differs from the basic algorithm only in the way that the
ith iteration (with ¢t = 2i~1) is carried out (i = 1, 2, ...). For Algorithm RSUS,
this is done by calling

CoupledReverse(i — 1, 0, initialseed, i).

The procedure CoupledReverse(#, X, startseed, y), listed below, takes as in-
put the binary logarithm % of an interval length 2”, an initial configuration
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X, and uniform random number generator seed startseed for a forward tra-
jectory (X) and an initial configuration y for an appropriately coupled reverse
trajectory (Y). It returns the final configuration in the Y-trajectory. The proce-
dure ForwardStep(x, seed) is assumed to take an initial configuration x and a
given seed; use first the generator to produce a U-value and then the transition
rule f of (4.2), and return the pair (f(x, U), correspondingly updated seed).
The procedure CoupledReverseStep(x,, startseed, y) is assumed to carry out
CoupledReverse(0, x, startseed, y) correctly; we do not present the details of
CoupledReverseStep, but note for future reference that it involves a single call
to the procedure ForwardStep.

CoupledReverse(#, x,, startseed, y):

ifh=0

return CoupledReverseStep(x,, startseed, y)
else

X < X,

seed <« startseed

for g < 1to 21

(x, seed) < ForwardStep(x, seed)
y <« CoupledReverse(h — 1, x, seed, y)
return CoupledReverse(h — 1, x,, startseed, y)

10.3. Performance of Algorithm RSUS. The following theorem briefly sum-
marizes the time and space requirements of Algorithm RSUS.

THEOREM 10.2. The expected running time of Algorithm RSUS is
0(7§1> logfrgl)), and the expected space requirement for dynamic memory

is O(nlog Tf)). Here 7(11) is the mixing time parameter given by (8.5) and (8.4)
for the random site update chain P =n"1Y P,.

PrROOF. From the description of Algorithm RSUS it is clear that the run
time is linear in the number of calls, say F*, to the procedure ForwardStep. The
number of calls to ForwardStep used in CoupledReverse(#, x,, startseed, y),
say [, is deterministically given by the recurrence relation

fo=2"1t42f, , for h>1, with f, =1,

which is easily solved to yield
h R
(10.1) frn= §+12, h>0.

Thus F* is a random variable taking value 22;10 [, with probability P(I = i),
i > 1, where I (with the same value as for the algorithm in Section 7.2) is the
number of iterations required. It follows that the analogues of (8.2) and (8.3)
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for Algorithm RSUS are

00 i—-1 00 00 h-1
(10.2) EF =Y PI=0)Y fy=3 fxPI>h) =Y f) [] sepy(2%),
i=1 h=0 h=0 h=0 g=0

h-1 h-1
(10.3) P(F* >y fg) = P(I > h) = [] sepy(2%), h>0.

g=0 g=0
Proceeding as in the proof of Proposition 8.2 and using the explicit expression
(10.1), we find

h 00
EF <Y i+ Y a2 Y
h=0 h=1

<2Mh+2)+ 2’1[71 S22 L S (h+ 2)2h-2h]
h=1 h=1

< 2"2h +5) = 0(+{" 1og 7).

Also, as in Proposition 8.2, the right tail of F* is at most geometrically thick.

It is also not hard to see that the (deterministic) memory requirement for
a call to CoupledReverse(h, x,, startseed, y) with A > 1 is linear in nh; the
key here is that the memory used for the first recursive call with A reduced
to A — 1 can be reused for the second such call. Since memory can also be
erased after each iteration, the memory required is linear in In. But another
calculation like that for EF* gives

El<h+1+2Y 2% <h+3=0(ogr"). O
h=1

11. Comparison of algorithms.

11.1. Mixing times, reversibility, and other updating schemes. The Propp—
Wilson algorithm [31] uses monotone P while the algorithm introduced in this
paper assumes monotone time reversal P. In comparing the algorithms, then,
it makes sense to assume that the monotone t.m. M taken as P in Algorithm
PW is taken as P in the new algorithm, and we shall do so without further
comment.

Even without assuming any monotonicity, it is clear from the definition
(8.4) of sep(t) that its value does not change under time reversal. In order to
compare the performance of the algorithms, therefore, we need to compare the

variation threshold 7; of (6.2) with the separation threshold Tgl) of (8.5). This
is easy in the case of reversible chains (e.g., [3], Chapter 4).

LEMMA 11.1. For any finite-state ergodic reversible Markov chain,

1
T < 75)5471.
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The first inequality holds also for nonreversible chains, but there is no uni-

versal constant bound on ~r<11) /71, even for monotone chains, as demonstrated
by Example 6.4. For the monotone t.m. M := P_;, there, we have 7 = 1 while

Tgl) > d. Moreover, we have the stronger statements that the coalescence time
for M equals 1 with probability at least 1 — 1/d, while sepy(t) = 1 for M for
t < d. Thus the algorithm of Section 7.2 with high probability requires at least
d times as many forward transitions as does Algorithm PW in this case. Of
course, this increase in running time is necessary to correct the sort of large
relative errors described in Example 6.4.

It is reasonable to focus attention on reversible chains, since two of the
most common methods for simulating a Markov chain with a desired station-
ary distribution 7 are the Metropolis algorithm and the Gibbs sampler with
random site updating, both of which give reversibility. It is even more com-
mon in practice to use the Gibbs sampler Pggy = P, P, --- P, with system-
atic site updating, where vy, ..., v, is some fixed ordering of the sites. Since
Py = P, P - P, , reversibility is lost, but (1) it is easy to implement and,

in terms of 751), to analyze fine-tuned versions of our user-impatience unbiased
algorithm for this and other alternative updating schemes; and (2) absent ana-
lytical information about the respective mixing time values, there seems to be
no particular reason to prefer Pgg; over either its multiplicative (PggyPssy)
or additive [%(PSSU + Pgqy)] reversiblization.

For balance, we develop a nontrivial nonreversible example in a companion
paper [16].

Up—1

11.2. Comparison of Propp—Wilson and the new algorithm. Let . be a
partially ordered state space possessing a unique minimum (respectively, max-
imum) element 0 (resp., 1). Let M be a monotone t.m. on . to be used as P
for the Algorithm PW of Section 5.2 and as P for our algorithm in Section 7.2.
Let 7; and 751) be the variation and separation thresholds for M given by (6.2)
and (8.5), respectively. We now give a point-by-point comparison of the two
algorithms.

Underlying ideas. Backward coupling for PW; acceptance/rejection, or strong
stationary times and duality, for ours.

Applicability. PW requires the existence of a monotone transition rule (re-
call Definition 4.2) for M (and this is a somewhat stronger requirement than
monotonicity of M; recall Remark 4.5); ours does not, but requires the ability
to generate transitions from each K, (X, -), where (see Section 7.1) K, , (for
X <y)is an upward kernel for M(x, ) and M(y, -). Ours additionally requlres
the ability to generate transitions from each M(x, -); in the nonreversible case,
PW does not.

Generalizability. Ideas initiated by Kendall [26] lead to a modification of PW
for “anti-monotone” chains, including repulsive spin systems; see Haggstrom
and Nelander [22] for definitions and further development. As for monotone
chains, the algorithm maintains only two states. Our algorithm can be simi-
larly modified.
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The PW algorithm also possesses the noteworthy feature of allowing for
“omnithermal” sampling of attractive spin systems, in effect simultaneously
generating one observation for every possible temperature. See Section 3.1
and the remarkable Figure 2 in [31]. Our algorithm similarly can allow for
omnithermal sampling.

There exist variants of both algorithms for nonmonotone chains, although
neither is very useful for generic chains with large state space, in view of the
comment at the outset of Section 4. See [31] for PW; we plan to discuss the
variant of our algorithm in future work. There are other schemes to handle
general chains: see [37], [29], [4].

Both algorithms are also easily generalized to allow time-inhomogeneous
chains, although the performance analyses are greatly complicated in doing so.

Performance. Unlike PW, our algorithm is not subject to user-impatience
bias; that is a major theme of the present paper. The expected number of
Markov transitions for PW is O(rlog ), where [ is the length of the longest
chain in ./; the corresponding guarantee for ours is O(Tgl) ). If M is reversible,
our bound is smaller; otherwise, our running time can be worse: see Sec-
tion 11.1. Further, a count of forward transitions does not tell the full running
time story. In [16] we present a nonreversible example for which transitions
from M (required for our algorithm but not for PW) take time of larger order of
magnitude than those from M. Similarly, generating from the upward kernels
might take longer than from M.

From now on we restrict attention to attractive spin systems on n sites. We
will consider only the performance of RSU chains, as in Definition 3.1; similar
analysis is possible for other updating schemes. We write 7 indifferently for
T, O 7(11). See Sections 6.2, 10.2, and 10.3 for supporting details.

1. Suppose first that truly random bits are used.
Expected run time. Our guarantee is smaller, O(7) vs. O(7logn) for PW.
Expected space. For read/write memory, the guarantee is O(n+log 7) for PW
and O(7log n+n) for our algorithm. PW requires an additional O(r(log n)?)
bits of read-only memory, plus enough additional read-only memory to store
O(7log n) numbers uniformly distributed on [0, 1].

In fairness, we emphasize that the above summary concerns only bounds.
At least for some examples (e.g., see [16]), the general bound (6.3) for PW can
be sharpened to ET = O(7). If this sharpened bound holds for a RSU chain,
then the expected run time bounds for the two algorithms become equal in
magnitude, and the read-only memory bounds for PW are also reduced by a
factor of log n.

2. Now suppose that a seeded pseudorandom number generator, as described
at the end of Section 6.2, is used. From a probabilistic viewpoint, our anal-
ysis treats the numbers generated as if truly random. As discussed at the
end of Section 6.2, we may assume that 7 = O(n*) for some a < co.
Expected run time. Our guarantee is O(7log7), of same order as PW’s
O(rlogn).
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Expected space. Our guarantee is O(nlog ) = O(nlogn), which is loga-
rithmically larger than PW’s O(n + log 1) = O(n).
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pling algorithm and tested it on the Ising model (personal communication).
Elke Thonnes (Perfect simulation of some point processes for the impatient
user, Technical Report 317, Dept. Statistics, Univ. Warwick, 1997) extends the
algorithm so as to produce perfect samples for the penetrable sphere mixture
process and related models.
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