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ASYMPTOTIC PROPERTIES OF CERTAIN ANISOTROPIC WALKS
IN RANDOM MEDIA

BY LIAN SHEN

ETH-Zürich

We discuss a class of anisotropic random walks in a random media on Z
d ,

d ≥ 1, which have reversible transition kernels when the environment is fixed.
The aim is to derive a strong law of large numbers and a functional central
limit theorem for this class of models. The technique of the environment
viewed from the particle does not seem to apply well in this setting. Our
approach is based on the technique of introducing certain times similar to
the regeneration times in the work concerning random walks in i.i.d. random
environment by Sznitman and Zerner. With the help of these times we are
able to construct an ergodic Markov structure.

1. Introduction. There are many works investigating random motions in
random media. The point of view of the “environment viewed from the particle”
has played an important role in the progress made so far; see Papanicolaou and
Varadhan [13], Kozlov [8], De Masi, Ferrari, Goldstein and Wick [2], Olla [12] and
also the lectures of Sznitman [17]. Lawler showed in [9] the central limit theorem
for driftless random walks in random environments by using this technique. This
technique has mostly been successful when one can find an explicit invariant
measure of the Markov chain of the environment viewed from the particle, which
is absolutely continuous with respect to the static distribution of the environment,
especially when this invariant measure is reversible.

In this article we study a class of anisotropic random walks in random media,
which are reversible Markov chains when the environment is fixed, but for
which the chain of the environment viewed from the particle has no obvious
invariant measure absolutely continuous to the static measure. Paradoxically,
we are able to apply a strategy, which has been used in the investigation of a
genuinely nonreversible model: the i.i.d. random walks in random environment
(cf. Sznitman and Zerner [18] and Sznitman [16]). The principal aim of the
present work is to derive a strong law of large numbers with nonvanishing limiting
velocity and a functional central limit theorem for the anisotropic random motion
in random environment under consideration. Incidentally, let us mention that
for the type of models we consider here, the question of the existence of an
effective, nonvanishing velocity was asked by Lebowitz and Rost (see [10]) in
their investigation of the Einstein relation.
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Let us describe our model in detail. First we denote with B
d the set of nearest

neighbor bonds on Z
d . The random environment is given through i.i.d. nonnegative

random variables ω(b) ∈ I ⊂ (0,∞), b ∈ B
d , with common distribution µ. Here

I denotes a compact interval of (0,∞). A random environment ω = (ω(b))b∈Bd

is an element of the product space � := I
B
d

endowed with the canonical product
measure P = µ⊗B

d
and the canonical product σ -algebra � = (�(I))B

d
, where

�(I) denotes the σ -algebra of Borel subsets of I.
In our model we have a nearest neighbor jump transition kernel pω(x, x + e),

that is,
∑

|e′|=1 pω(x, x + e′) = 1, where e′ denotes unit vectors in Z
d and | · | the

L1-norm in R
d . Further, we assume that the kernel fulfills the ellipticity condition,

pω(x, x + e) ≥ κ > 0 for all unit vectors e ∈ Z
d, x ∈ Z

d, ω ∈ �,(1.1)

and it is reversible; that is, there exists a positive measure (mω(x))x∈Zd such that

mω(x)pω(x, x + e)= mω(x + e)pω(x + e, x),(1.2)

for all ω ∈ �, x ∈ Z
d , |e| = 1. We also assume that pω(x, x + e) has the form

pω(x, x + e)= f
((
ω({x, x + e′}))|e′|=1, e

)
,(1.3)

for all x ∈ Z
d and unit vectors e. This means that the transition kernel pω(x, x+e)

depends only on the value of ω for bonds connected to x, in the same way for all
x ∈ Z

d . This is a translation invariance assumption on the jump mechanism.
In addition, we assume there exists a nearest neighbor random walk on Z

d with
jumps distributed according to the law (q(e))|e|=1,e∈Zd , q(e) �= 0 for all |e| = 1,
such that

λ := 1

2

∥∥∥∥∑
e

(
e logq(e)

)∥∥∥∥ > 0 and � := 1

2λ

∑
e

e logq(e) ∈ Sd−1,(1.4)

with ‖ · ‖ denoting the L2-norm in R
d and that there exist constants 0 < A < B,

such that

Ae2λ�.x ≤ mω(x) ≤ Be2λ�.x for all ω ∈ �,x ∈ Z
d,(1.5)

where x.y always denotes the standard scalar product of x, y ∈ R
d throughout this

article.
For instance, if we choose for given λ > 0 and � ∈ Sd−1,

pω(x, x + e)= ω({x, x + e})eλ�.e∑
|e′|=1 ω({x, x + e′})eλ�.e′ ,(1.6)

then the conditions (1.1), (1.2), (1.3) and (1.5) hold for suitable choices of κ ,
A and B , provided q(e) = eλ�.e∑

e′ eλ�.e
′ and mω(x) = e2λ�.x ∑

e ω({x, x + e})eλ�.e/∑
e′ eλ�.e

′
(the last denominator is simply a matter of normalization).
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Actually, (1.6) is a special case of a transition probability with the form

pω(x, x + e) = ω({x, x + e})q(e)∑
|e′|=1 ω({x, x + e′})q(e′)

,(1.7)

and (1.7) fulfills all the conditions (1.1)–(1.5) for suitable choices of κ,A,B , the
reversible measure for (1.7) being now

mω(x) = e2λ�.x
∑
e

ω({x, x + e})q(e),

with λ and � from (1.4).
With these assumptions over pω, the random walk in the random environment

ω is the Markov chain (Xn)n≥0 on (Zd)N , with state space Z
d and “quenched law”

Px,ω for x ∈ Z
d ,

Px,ω[Xn+1 = Xn + e|X0, . . . ,Xn] Px,ω-a.s.= pω(Xn,Xn + e),

Px,ω[X0 = x] = 1,
(1.8)

where e denotes unit vectors in Z
d . The “annealed law” Px is then defined as the

semidirect product on �× (Zd)N :

Px := P × Px,ω with x ∈ Z
d .(1.9)

A degenerate case of the above model is discussed in the physics literature. It
corresponds to the anisotropic random walk on the infinite percolation cluster; see
pages 136–146 in Havlin and Bunde [6]. In this case the random variable ω(b) only
takes the values 0 or 1. Although random walks an the infinite cluster have been
discussed in the isotropic case (cf. [2]), we know of no mathematical reference in
the anisotropic situation.

The main goal of this article is to show in Theorem 5.1 that

Xn

n
converges P0-a.s. to a deterministic nondegenerate velocity v.

Further, we prove in Theorem 5.3 that the process Bn
. ,

Bn
t = X[tn] − [tn]v√

n
, t ≥ 0,(1.10)

with [t] denoting the integer part of t ≥ 0, converges in law under the annealed
measure P0 to a d-dimensional Brownian motion with nondegenerate covariance
matrix, as n → ∞.

One special aspect of our work is that our results hold for arbitrarily small
anisotropy strength λ. We do not need any Kalikow-like condition as for the i.i.d.
random walks in random environment; see [7, 16, 18].

The strategy employed to derive these two theorems is to construct an embedded
Markov chain structure under the annealed measure P0, which has a “small state
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space” (cf. Corollary 3.6). The times τk , k ≥ 1, defined in (3.12) and (3.26), play a
central role here. In essence τk is the kth time, when the random walker comes to a
new maximum in the direction � and then never comes back below this level. The
true definition is in fact more sophisticated (cf. Remark 3.2). The random variables
consisting of τk+1 − τk , Xτk+1 − Xτk and the value of some bonds connected to
Xτk , k ≥ 1, build a Markov chain, as shown in Corollary 3.6. In Theorem 3.8 the
ergodicity of this Markov chain is shown. Let us mention that the above strategy is
in the same spirit as the renewal structure attached to certain regeneration times τk
for i.i.d. random walks in random environment model in [18] and [16]. However,
unlike what happens for the i.i.d. random walks in random environment model, the
times τk in our model do not yield a renewal structure, but rather lead to a Markov
structure with a small state space; see Theorem 3.3 and Corollary 3.6. This comes
from the fact that the transition kernel pω(x, x+e) depends on all bonds connected
to x; therefore the jump probabilities pω(x, x + e) and pω(x + e, x + e + e′) are
not independent under P.

Let us explain the organization of this article. In Section 2 we make full use
of the ellipticity condition (1.1) and the reversibility assumption (1.2)–(1.5) on
(Xn)n≥0 under the quenched law Px,ω to derive a key estimate in Theorem 2.2. In
particular, with the help of this estimate we prove that the random walk has a strict
positive probability of never coming below its initial level (cf. Corollary 2.3) and at
the end of Section 2 we show that Px,ω-a.s. (Xn)n≥0 tends to +∞ in the direction �.
In Section 3 the times τk, k ≥ 1, are introduced [cf. (3.12) and (3.26)] and the
embedded Markov chain (Yn)n≥0 under the annealed measure P0 is constructed in
Corollary 3.6. Its ergodicity is then discussed in Theorem 3.8.

In Section 4 we use the key estimate of Theorem 2.2 to derive the integrability
properties of Xτ1 and τ1. Our main result is presented in Corollary 4.4. In Section 5,
with the help of the embedded Markov chain (Yn)n≥0 constructed in Section 3
and the integrability property of τ1 proved in Corollary 4.4, a strong law of large
numbers for (Xn)n≥0 under the annealed measure P0 is proved in Theorem 5.1.
Further we are able to prove a functional central limit theorem for the process Bn·
in Theorem 5.3.

2. Notation, reversible structure and a key estimate. In this section we use
the ellipticity condition (1.1) and the specific reversibility assumption (1.2)–(1.5)
on the quenched Markov chain (1.8) to show that the random walk has a positive
probability of no-backtracking (cf. Corollary 2.3) and derive transience in direction
� (cf. Corollary 2.4). We first provide a uniform lower bound for the generalized
principal Dirichlet eigenvalue in Theorem 2.1, which will be useful to prove our
key estimate in Theorem 2.2.

Before doing so we introduce some further notations needed throughout this
article; c and cj , j ∈ N always stand for positive constants, which depend only on
the quantities (κ, d,A,B,q(·)), which are introduced in (1.1)–(1.5). We denote by
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(θn)n≥0 the canonical shift on (Zd)N , and by �n, n ≥ 0, the canonical filtration of
(Xn)n≥0, that is, �n = σ {X0, . . . ,Xn} for n ≥ 0.

The exit time TU for U ⊂ Z
d is given by

TU = inf{n ≥ 0 :Xn �∈ U },(2.1)

and for u ∈ R we introduce

Tu = inf{n ≥ 0 :�.(Xn −X0) ≥ u},
T̃u = inf{n ≥ 0 :�.(Xn −X0) < u}.(2.2)

Further we shall also need the first backtracking time defined through

D = inf{n ≥ 0 :�.Xn < �.X0}.(2.3)

2.1. Principal Dirichlet eigenvalue. Keeping in mind the reversible structure
stated in (1.2)–(1.5), we introduce for each ω ∈ � the scalar product on the space
of functions f : Z

d → R and its associated norm,

(f, g)mω := ∑
x∈Zd

mω(x)f (x)g(x), ‖f ‖mω :=
√
(f, f )mω,(2.4)

for f,g : Z
d → R.

For ω ∈ �, U ⊂ Z
d nonempty, we introduce +ω(U):

+ω(U) := inf
{

Emω(f,f )∑
x mω(x)f (x)2 :f �= 0, f |Uc = 0, f ∈ L2(mω)

}
,(2.5)

with the Dirichlet form

Emω(f, g) = 1
2

∑
x,y

mω(x)pω(x, y)
(
f (x)− f (y)

)(
g(x)− g(y)

)
,

f, g ∈ L2(mω),

where for x, y ∈ Z
d we use the following convention:

pω(x, y) :=
{
pω(x, x + e), for y = x + e, with |e| = 1,
0, otherwise,

and by f |Uc we mean the restriction of f to the complement Uc of U ⊂ Z
d .

With a slight abuse of language, we refer to +ω(U) as the principal Dirichlet
eigenvalue attached to U ; it is in fact the bottom of the spectrum of the bounded
self-adjoint operator 1 − PU,ω on L2(mω), where PU,ω is defined through

PU,ω := P1
U,ω provided,

(Pn
U,ωf )(x) := Ex,ω[f (Xn), TU > n] for n ∈ N, f : Z

d → R.
(2.6)

The next theorem provides a uniform lower bound for +ω(U).



482 L. SHEN

THEOREM 2.1.

inf
U,ω∈�

+ω(U) = ε > 0,(2.7)

where U varies over the collection of nonempty subsets of Z
d .

Consequently, ∥∥∥Pn
U,ω

∥∥∥
L2(mω)

≤ e−nγ with γ = log
1

1 − ε
,(2.8)

for all U ⊂ Z
d and all ω ∈ �.

PROOF. We begin with the proof of (2.7). The ellipticity condition (1.1) and
assumption (1.5) imply that for x, y ∈ Z

d ,

mω(x)pω(x, y) ≥ Aκm̃(x)q(x, y),

with

m̃(x) = e2λ�.x and q(x, y) =
{
q(e), for y = x + e,

0, otherwise.

Therefore +ω(U) ≥ Aκ
B

+̃(U), with

+̃(U)

:= inf
{∑

x,y m̃(x)q(x, y)(f (x)− f (y))2

2
∑

x m̃(x)f 2(x)
:f �= 0, f |Uc = 0, f ∈ L2(m̃)

}
.

(2.9)

So we only need to provide a positive lower bound in the context of the determin-
istic random walk with jump probability (q(e))|e|=1. Further, because +ω(Z

d) =
infU �=∅ +ω(U) and for f ∈ L2(mω) we have Emω(f,f )

(f,f )
= limU↑Zd

Emω(f 1U ,f 1U)

(f 1U,f 1U )
,

we see that +ω(Z
d) = infU �=∅, finite +ω(U), hence we can assume without loss of

generality that sup{|�.z| : z ∈ U } < ∞.
Let us denote the canonical law of this random walk starting in x by Qx

and its expectation value by EQ
x . Because 2λ�.

(∑
|e|=1 eq(e)

) = ∑d
j=1

(
q(ej ) −

q(−ej )
)(

logq(ej ) − logq(−ej )
)
> 0 [recall λ and � are given in (1.4)], we can

find 0 < c < 1 and δ > 0 small enough such that

EQ
x [e−δ�.(X1−X0)] ≤ c < 1.(2.10)

Defining η = − log c > 0, we observe that exp{−δ�.Xn+ηn} is a Qx -supermartin-
gale. The stopping theorem implies that

EQ
x [exp{−δ�.(XTU − x)+ ηTU }] ≤ 1 for all x ∈ U.(2.11)

Let L := sup{|�.(z− x)| : z ∈ U } < ∞, and since −δ�.(XTU − x) ≥ −δ(L+ 1) we
find

sup
x∈U

EQ
x [exp{−δ(L+ 1)+ ηTU }] ≤ 1,
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which implies

sup
x∈U

EQ
x [eηTU ] ≤ eδρ with ρ = sup

x∈U

{�.x} − inf
x∈U

{�.x} + 1.(2.12)

Notice also

+̃(U) = 1 − sup
{
(f,QUf )m̃

(f, f )m̃
:f �= 0, f |Uc = 0, f ∈ L2(m̃)

}
,

with the sub-Markov kernel QU defined through

QU = Q1
U provided,

(Qn
Uf )(x) = EQ

x [f (Xn), TU > n], n ∈ N, f : Z
d → R.

(2.13)

We observe also Qn
U = (QU)n and QU is a bounded self-adjoint operator on L2(m̃)

with respect to the canonical scalar product (·, ·)m̃ attached to m̃.
It now suffices to show that ‖QU‖L2(m̃) ≤ e−η/2 to prove (2.7). To show this we

observe

‖Qn
Uf ‖2

L2(m̃)
= ∑

x∈U

m̃(x)(Qn
Uf )2(x)

Jensen≤ (1,Qn
Uf 2)m̃ = (Qn

U1, f 2)m̃

(2.13)= ∑
y m̃(y)Qy[TU > n]f 2(y) ≤ e−ηneδρ‖f ‖2

L2(m̃)
,

(2.14)

where the Chebychev inequality Qy[TU > n] ≤ EQ
y [eηTU−ηn] (2.12)≤ e−ηneδρ is used

in the last step. Taking the nth root, it follows from Theorem VI.6, page 192 in [14],
that ‖QU‖L2(m̃) ≤ e−η/2, and hence (2.7) follows.

Inequality (2.8) is an immediate consequence of the fact that +ω(U) = 1 −
‖PU,ω‖L2(mω)

and Pn
U,ω = (PU,ω)

n. �

2.2. Key estimate. Thanks to Theorem 2.1 we can prove the key estimate of
this section.

THEOREM 2.2. There exist constants c1 > 0 and c2 > 0 such that for m ∈ N,

sup
x∈Zd ,ω∈�

Px,ω[T̃−2m < T2m] ≤ c1e
−c22m

.(2.15)

PROOF. Let U ⊂ Z
d be finite, then (2.6) and (2.8) imply that for all ω ∈ �,

x ∈ U ,

mω(x)Px,ω[TU > n] = (1{x},Pn
U,ω1U)L2(mω)

≤ ‖1{x}‖L2(mω)
· ‖1U‖L2(mω)

· e−γ n(2.16)

= √
mω(x) · ‖1U‖L2(mω)

· e−γ n.
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Using the assumption (1.5), Px,ω[TU > n] can be estimated from above by

Px,ω[TU > n] ≤ ‖1U‖L2(mω)
· e−γ n/

√
mω(x)

≤ 1√
A
e−λ�.x‖1U‖L2(mω)

e−γ n.
(2.17)

Now let U be a box centered at x with width L in the � direction and size L2 in the
directions normal to �, that is, with a rotation R of space R

d such that R(e1) = �:

U :=
{
z ∈ Z

d : |(z − x).�| < L

2
, sup
j≥2

|R(ej ).(z − x)| < L2

2

}
.(2.18)

With rmax := sup{�.z : z ∈ U } < ∞, we see from (1.5) that for L ≥ 1,

‖1U‖L2(mω)
≤ c3L

deλrmax .

Thereafter for

n ≥ λL

γ
[recall that γ is defined in (2.8)](2.19)

it follows from (2.17) that

Px,ω[TU > n] ≤ c3√
A
e−λ�.xLdeλrmaxe−γ n ≤ c3√

A
Lde−(λ/2)L

≤ c4e
−(λ/4)L.

(2.20)

The boundary of U is defined through

∂U = {
z �∈ U :∃y ∈ U, |z − y| = 1

}
,(2.21)

with | · | denoting the L1-norm on R
d . Now we divide it into ∂U = ∂+U ∪ ∂−U ∪

∂0U , with

∂+U :=
{
z ∈ ∂U :�.(z − x) ≥ L

2

}
,

∂−U :=
{
z ∈ ∂U :�.(z − x) ≤ −L

2

}
,(2.22)

∂0U := ∂U\(∂+U ∪ ∂−U)

and setting L = 2m+1 in the above definition of U , we observe that

Px,ω[T̃−2m < T2m] ≤ Px,ω

[
TU >

λL

γ

]
+ Px,ω

[
TU ≤ λL

γ
,XTU /∈ ∂+U

]
.(2.23)

Using (2.20), the first term on the right-hand side of (2.23) can be estimated by

Px,ω

[
TU >

λL

γ

]
≤ c4e

−(λ/4)L.(2.24)
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To estimate the second term, we use Carne’s inequality for reversible Markov
chains (cf. [1], Theorem 1), (there is a small typo in the paper: x and y are
interchanged on the right-hand side of the inequality.):

Px,ω[Xk = y] ≤ 2

√
mω(y)

mω(x)
exp

{
−|x − y|2

2k

}
, x, y ∈ Z

d, ω ∈ �,(2.25)

with | · | denoting the L1-norm on R
d .

Because |x − y|2 ≥ ‖x − y‖2, the second term can now be estimated through

Px,ω

[
TU ≤ λL

γ
, XTU /∈ ∂+U

]
≤ ∑

k≤λL/γ

∑
y∈∂0U∪∂−U

Px,ω[Xk = y]

≤ 2λL

γ

[ ∑
y∈∂0U

√
mω(y)

mω(x)
exp

(
−γ ‖x − y‖2

2λL

)

+ ∑
y∈∂−U

√
mω(y)

mω(x)
exp

(
−γ ‖x − y‖2

2λL

)]
.

(2.26)

By using (1.5) again the first sum on the right-hand side of (2.26) can be estimated
by

∑
y∈∂0U

√
mω(y)

mω(x)
exp

(
−γ ‖x − y‖2

2λL

)

≤ c5L
2d−3

√
B

A
eλL exp

(
−L4γ

8λL

)
≤ c6 exp(−c7L

3),

(2.27)

and the second sum by

∑
y∈∂−U

√
mω(y)

mω(x)
exp

(
−γ ‖x − y‖2

2λL

)
≤ ∑

y∈∂−U

√
B

A
e−c8λLe−c9L

≤ c10L
2(d−1)e−(c9+λc8)L

≤ c11e
−c12L.

(2.28)

Putting the above inequalities together,

Px,ω[T̃−2m < T2m] ≤ c1e
−c22m

for all x ∈ Z
d, ω ∈ �, m ≥ 0. �(2.29)

2.3. Transience. The next corollary of Theorem 2.2 will be useful in Sec-
tions 3 and 4.

COROLLARY 2.3. There exists c13 > 0 such that for all x ∈ Z
d and ω ∈ �,

Px,ω[D = ∞] ≥ c13 > 0,(2.30)

where D is the first backtracking time defined in (2.3).
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PROOF. With the notation Um
x := {z ∈ Z

d : |�.(z − x)| < 2m}, the ellipticity
condition (1.1) and the strong Markov property imply that Py,ω[TUm

x
= ∞] = 0 for

all y ∈ Um
x , ω ∈ �. Therefore (2.15) implies

inf
x,ω

Px,ω[T̃−2m > T2m] ≥ 1 − c1e
−c22m

.(2.31)

Let m := inf{k ≥ 1 : 1 > c1e
−c22k }; we claim for any n ≥ m+ 1, x ∈ Z

d , ω ∈ �,

Px,ω[T̃−2m > T2n−2m] ≥
n−1∏
k=m

(1 − c1e
−c22k

).(2.32)

We show this by induction. The case n = m+1 is immediate from (2.31). The step
n → n + 1 follows easily by the strong Markov property and (2.31):

Px,ω[T̃−2m > T2n+1−2m]
≥ Ex,ω

[
T̃−2m > T2n−2m,PXT2n−2m

,ω[T̃−2n > T2n ]]
≥ Px,ω[T̃−2m > T2n−2m](1 − c1e

−c22n

).

From (2.32) it is clear that for all x ∈ Z
d , ω ∈ �:

Px,ω[T̃−2m > T2n−2m] ≥ ∏
k≥m

(1 − c1e
−c22k

) > 0,

and hence

Px,ω[T̃−2m > T2k−2m for all k > m] ≥ ∏
k≥m

(1 − c1e
−c22k

) > 0.

Therefore by using ellipticity condition (1.1) and the strong Markov property again
we find that Px,ω-a.s.,

Px,ω[D = ∞] ≥ κc2m

Ex,ω

[
PXT2m

,ω[T̃−2m > T2k−2m for all k >m]]
≥ κc2m ∏

k≥m

(1 − c1e
−c22k

) > 0 for all x ∈ Z
d, ω ∈ �.

This completes the proof. �

As an application of the above corollary we prove the transience of Xn in the
direction � under the quenched law Px,ω.

COROLLARY 2.4. The random walk is transient and Px,ω[limn �.Xn = ∞]
= 1, for all x ∈ Z

d , ω ∈ �.
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PROOF. At first we show

Px,ω

[
inf
n

�.Xn = −∞] = 0 for all x ∈ Z
d, ω ∈ �.(2.33)

Indeed with

D1 := D and Dm+1 := D ◦θDm +Dm, m ≥ 1,

we find

sup
x∈Zd

Px,ω

[
inf
n

�.Xn = −∞] ≤ sup
x∈Zd

Px,ω[Dm < ∞, ∀m]

≤ sup
x∈Zd

Ex,ω

[
D1 < ∞,PXD1 ,ω

[Dm < ∞, ∀ m]]
≤ sup

x∈Zd

Px,ω[D1 < ∞] sup
y∈Zd

Py,ω[Dm < ∞, ∀m]

≤ (1 − c13) sup
y∈Zd

Py,ω[Dm < ∞, ∀m],

where we used (2.30) in the last step. Because 1 − c13 < 1, it follows that
supx Px,ω[Dm < ∞, ∀m] = 0, and hence (2.33).

Now we claim that for h > 0 and u ∈ R,

Px,ω-a.s., {�.(Xn − x) < u i.o.} ⊂ {�.(Xn − x) < u− h i.o.}.(2.34)

To verify this, we observe that from the ellipticity condition (1.1) there exists
a large enough integer N > 0 and c > 0, such that

Px,ω[T̃−h ≤ N ] ≥ c for all ω ∈ �, x ∈ Z
d.(2.35)

Then we define a sequence of auxiliary stopping-times (Ṽk)k≥0,

Ṽ0 := 0, Ṽ1 := inf{n ≥ 0 :�.(Xn − x) < u},
Ṽk+1 := Ṽ1 ◦ θ

Ṽk+N
+ Ṽk +N ≤ ∞ for k ≥ 1,

and let Gk = {Ṽk < ∞}, 1Hk
= 1{T̃−h≤N} ◦ θ

Ṽk
. We observe that Gk ∈ �

Ṽk
and

Hk ∈ �
Ṽk+1

. Using the strong Markov property and (2.35) we find

Px,ω[Hk|�Ṽk
] ≥ c1Gk

for all x ∈ Z
d, ω ∈ �, k ≥ 1.(2.36)

Therefore it follows from Borel–Cantelli’s second lemma (cf. [4], page 240) that

Px,ω-a.s.,
∑
k≥1

1Hk
= ∞ on

{ ∑
k≥1

1Gk
= ∞

}
,(2.37)

which implies (2.34).
As an immediate consequence of (2.34) we see that for u′ ∈ R, Px,ω-a.s.,

{�.Xn < u′ f.o.} ⊂ ⋂
h∈N

{�.Xn < u′ + h f.o.} = {lim �.Xn = ∞}.(2.38)
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Due to (2.33) we have Px,ω[inf�.Xn > −∞] = 1, and since {inf�.Xn > −∞} ⊂⋃
u′∈Z{�.Xn < u′ f.o.}, it follows from (2.38) that

Px,ω[lim �.Xn = ∞] = 1. �

3. Embedded Markov chain and ergodicity. In this section we will define
the regeneration times τk , k ≥ 1, introduce the resulting Markov chain under
the annealed measure P0 and then show that this Markov chain has an invariant
probability measure, with which the chain is ergodic.

3.1. The first no-backtracking time τ1. First let us introduce some further
notations. With tx : � → �, x ∈ Z

d , we denote the spatial shift operator

(txω)({y, z}) := ω({y + x, z + x}) with {y, z} ∈ B
d .(3.1)

Let us also denote by � the set of unit vectors in Z
d , which maximize {�.e} and fix

one such vector from �; call it ẽ:

� := {
e ∈ Z

d : |e| = 1, �.e = max{�.e′ : e′ ∈ Z
d, |e′| = 1}},

ẽ ∈ � fixed.
(3.2)

With the help of this ẽ we are able to introduce the set of maximizing bonds
containing the point x − ẽ:

Bx := {
b ∈ B

d :b = {x − ẽ, x − ẽ + e}, e ∈ �
}

(3.3)

and separate B
d into two subsets, Rx and Lx (R and L, respectively, stand for

“right” and “left” of the point x ∈ Z
d ):

Rx := {{y, z} ∈ B
d : max(�.z, �.y) ≥ �.x

}
,

Lx := (Bd \ Rx)∪ Bx,
(3.4)

so that

Rx ∩ Lx = Bx.(3.5)

We depict Lx and Rx for d = 2 in Figure 1, where solid lines are bonds in Lx ,
dashed lines are bonds in Rx and the two thick lines are bonds in Bx .

Further, we introduce two sequences of (�n)n≥0-stopping times Sk , k ≥ 0 and
Rk , k ≥ 1, and a sequence of successive maxima in the direction � ∈ R

d , Mk, k ≥ 0
[we recall the definition of D in (2.3)]:

S0 := 0, M0 := �.X0,

S1 := inf{n ≥ 2 :Xn −Xn−1 = ẽ;Xn−1 −Xn−2 = ẽ;
�.Xm ≤ �.Xn−2,∀m ≤ n − 2},

R1 := D ◦ θS1 + S1,

M1 := sup{�.Xm : 0 ≤ m ≤ R1}

(3.6)
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FIG. 1. Lx and Rx .

and inductively for k ≥ 1,

Sk+1 := inf{n ≥ Rk :Xn −Xn−1 = ẽ;Xn−1 −Xn−2 = ẽ;
�.Xm ≤ �.Xn−2, ∀ m ≤ n− 2},

Rk+1 := D ◦ θSk+1 + Sk+1,

Mk+1 := sup{�.Xm : 0 ≤ m ≤ Rk+1}.
(3.7)

Clearly we have 0 = S0 < S1 ≤ R1 ≤ S2 ≤ · · · ≤ ∞, and the inequalities are strict
if the left member is finite.

Now let us introduce

K := inf{k ≥ 1 :Sk < ∞, Rk = ∞}.(3.8)

Before defining τ1 as SK , we first prove the finiteness of K .

LEMMA 3.1.

Px,ω[K < ∞] = 1 for all x ∈ Z
d, ω ∈ �.(3.9)

PROOF. First we show Px,ω[S1 < ∞] = 1, for all x ∈ Z
d, ω ∈ �. To this end

we introduce a sequence of auxiliary (�n)n≥0-stopping times S̃k , k ≥ 0,

S̃0 = 0,

S̃k+1 = inf{n ≥ S̃k + 2 :�.Xm ≤ �.Xn, ∀ m ≤ n}.
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In words, S̃k+1 is the first time, at least two steps later than S̃k , when the walk
reaches a new maximum.

Because from Corollary 2.4 we have Px,ω-a.s. �.Xn

n→∞ ∞, it follows that

Px,ω-a.s. S̃k < ∞ and S̃k

k→∞ ∞, for all x ∈ Z
d , ω ∈ �.

We prove now by induction that there exists a constant c ∈ (0,1) such that

Px,ω[S1 > S̃k] ≤ ck for all k, x ∈ Z
d, ω ∈ �,(3.10)

which implies by the Borel–Cantelli lemma immediately that

Px,ω[S1 = ∞] = 0 for all x ∈ Z
d, ω ∈ �.(3.11)

For k = 0, (3.10) is immediate. Assume then (3.10) up to k. Because of (1.1)
there exists a c > 0 such that supy∈Zd ,ω∈� Py,ω[(X1 − X0,X2 − X1) �= (ẽ, ẽ)}] ≤
c < 1. Using the strong Markov property we get

Px,ω[S1 > S̃k+1] ≤ Ex,ω[S1 > S̃k; (XS̃k+1 −X
S̃k
,X

S̃k+2 −X
S̃k+1) �= (ẽ, ẽ)]

= Ex,ω

[
S1 > S̃k,PX

S̃k
,ω[(X1 −X0,X2 −X1) �= (ẽ, ẽ)]]

≤ cPx,ω[S1 > S̃k] ≤ ck+1.

The claim (3.10) follows.
Now we return to the proof of finiteness of K . By (2.30), supy,ω Py,ω[D <

∞] ≤ 1 − c13 < 1, therefore for k ≥ 1,

Px,ω[Rk < ∞] = Ex,ω

[
Sk < ∞,PXSk

,ω[D < ∞]]
≤ (1 − c13)Px,ω[Sk < ∞]
≤ (1 − c13)Px,ω[Rk−1 < ∞],

with the convention R0 = 0. By induction it is Px,ω[Rk < ∞] ≤ (1 − c13)
k , for all

x ∈ Z
d,ω ∈ �, from which we deduce that Px,ω-a.s.

∑
k≥1 1{Rk<∞} < ∞, for all

x ∈ Z
d,ω ∈ �. It is only possible when

Px,ω[K < ∞] = 1 for all x ∈ Z
d, ω ∈ �. �

Now we are ready to define

τ1 := SK,(3.12)

and certainly we have

Px,ω[τ1 < ∞] = 1 for all x ∈ Z
d, ω ∈ �.(3.13)

Let us give the meaning of τ1: The random variable τ1, when finite, is on the
one hand the first time n, at which �.Xn−2 reaches a maximum and the next
two steps have increment ẽ ∈ �; that is, �.Xτ1−2 ≥ �.Xm for all m ≤ τ1 − 2, and
Xτ1 −Xτ1−1 = ẽ, Xτ1−1 −Xτ1−2 = ẽ. On the other hand it is a time such that after
τ1, �.Xn never becomes smaller than �.Xτ1 .
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REMARK 3.2. In the definition of Sk , k ≥ 1, we chose quite artificially that
the random walk (Xn)n≥0 has increments ẽ in the previous two steps before Sk .
Indeed, we can also choose any number of steps larger than two, and this will not
affect our later discussion, as the proof of Theorem 4.3 shows.

Loosely speaking, we want to reduce the common dependency of the bonds
involved before and after time τ1 to only finitely many bonds, namely to {b ∈
BXτ1 } [recall (3.3) for the definition of Bx]. To achieve this we need that the
walker perform at least two steps in the direction ẽ ∈ � just before time τ1. This
reduction of dependency is essential to the proof of Theorem 3.3.

Before going to the key result of this section, let us introduce some further
notations used in the remainder of this article. Recall the definition of �, ẽ in (3.2)
and that I ⊂ R+ is the compact interval given above (1.1). We introduce, for each
x ∈ Z

d ,

ax := (
ω({x − ẽ, x − ẽ + e}))e∈� = (

ω(b)
)
b∈Bx ∈ I

�,(3.14)

and for a ∈ I
�,

P
a
x := δa

((
ω({x − ẽ, x − ẽ + e}))e∈�

)
⊗

∫
b∈(Bd\Bx)

⊗ dµ
(
ω(b)

)
(3.15)

as well as for the annealed measure

Pa
x = P

a
x × Px,ω.(3.16)

We also need the σ -algebra �1 on � × (Zd)N , describing the history of path and
environment involved before τ1:

�1 := σ
{
τ1, (Xτ1∧m)m≥0; {ω(b) :b ∈ LXτ1 }};(3.17)

that is, �1 is generated by the sets

{τ1 = m} ∩ {Xτ1 = x} ∩A,(3.18)

with m ≥ 0, x ∈ Z
d , A ∈ σ {ω(b) :b ∈ Lx} ⊗ �m and

{τ1 = ∞} ∩A with A ∈ � ⊗ �∞.(3.19)

[Recall � is defined above (1.1).]
The key step in the study of the embedded Markov chain structure mentioned

in Section 1 is now the following.

THEOREM 3.3. Let f , g, h be bounded and respectively σ {Xn :n ≥ 0}-,
σ {ω(b) :b ∈ R0}- and �1-measurable functions, then for a ∈ I

�:

Ea
0[f (Xτ1+· −Xτ1) g ◦ tXτ1

h] = Ea
0
[
hE

aXτ1
0 [fg|D = ∞]],(3.20)

where tx is the spatial shift operator introduced in (3.1).
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PROOF. The left-hand side of (3.20) is

Ea
0[f (Xτ1+· −Xτ1) g ◦ tXτ1

h]
= ∑

k≥1,x∈Zd

Ea
0[f (Xτ1+· −Xτ1) g ◦ tXτ1

h,Sk < ∞, Rk = ∞, XSk = x]

= ∑
k,x

E
a
0
[
E0,ω[f (XSk+· − x)h,Sk < ∞, Rk = ∞, XSk = x]g ◦ tx

]
.

(3.21)

Observe that on the event {τ1 = Sk} ∩ {Xτ1 = x}, there exists a bounded
σ {ω(b) :b ∈ Lx}⊗�Sk -measurable variable hk,x , which coincides with h. Indeed,
from the definition of �1 in (3.18), by applying the monotone class theorem
(cf. [4], page 280), on any set {τ1 = m} ∩ {Xτ1 = x} there exists h̃m,x which is
bounded σ {ω(b) :b ∈ Lx} ⊗ �m-measurable and coincides with h. Now we can
define

hk,x := ∑
m≥0

h̃m,x1{Sk=m},

so that hk,x is σ {ω(b) :b ∈ Lx} ⊗ �Sk -measurable, and coincides with h on
{τ1 = Sk} ∩ {Xτ1 = x}.

As a result, the rightmost side of (3.21) equals∑
k,x

E
a
0
[
E0,ω[f (XSk+· − x)hk,x, Sk < ∞, D ◦ θSk = ∞, XSk = x]g ◦ tx

];
applying the strong Markov property at the stopping time Sk yields∑

k,x

E
a
0
[
E0,ω[Sk < ∞, XSk = x,hk,x] Ex,ω[f (X· − x),D = ∞]g ◦ tx

]
.

Because by definition of Sk in (3.7), XSk−1 − XSk−2 = XSk − XSk−1 = ẽ and
�.Xm ≤ �.XSk−2 for all m ≤ Sk − 2, and also because �.e ≤ �.ẽ for all unit
vectors e ∈ Z

d , it follows that {Xm,Xm + e} ∈ LXSk , for all m ≤ Sk −1. Therefore
E0,ω[Sk < ∞,XSk = x,hk,x] is σ {ω(b) :b ∈ Lx}-measurable. On the other hand,
due to the restriction D = ∞, Ex,ω[f (X· − x),D = ∞] · g ◦ tx is σ {ω(b) :
b ∈ Rx}-measurable. Because Lx ∩ Rx �= ∅, these two random variables are not
P-independent. Fortunately, by our definition of Sk , we observe the dependence of
E0,ω[Sk < ∞, XSk = x,hk,x] and Ex,ω[f (X· − x), D = ∞] · g ◦ tx is concentrated
on {ω(b) :b ∈ Bx}. [Here we see that it is necessary in the definition of Sk to have
the random walk (Xn)n≥0 going at least two steps in the direction ẽ ∈ � before time
Sk , otherwise E0,ω[Sk < ∞, XSk = x,hk,x] is not σ {ω(b) :b ∈ Lx}-measurable.]
Using this fact and Fubini’s theorem, the last expression equals∑

k,x

E
a
0
[
E0,ω[Sk < ∞, XSk = x,hk,x] E

ax
x

[
Ex,ω[f (X· − x),D = ∞]g ◦ tx

]]

= ∑
k,x

E
a
0
[
E0,ω[Sk < ∞,XSk = x,hk,x] Eax

x [f (X· − x)g ◦ tx ,D = ∞]].
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Using then the translation invariance of P measure we have Eax
x [f (X· − x)g ◦ tx ,

D = ∞] = Eax
0 [f (X· − 0)g ◦ t0,D = ∞], therefore the rightmost side of the last

expression now equals∑
k,x

E
a
0
[
E0,ω[Sk < ∞,XSk = x,hk,x] Eax

0 [fg,D = ∞]]

= ∑
k,x

E
a
0
[
E0,ω[Sk < ∞,XSk = x,hk,x] Pax

0 [D = ∞] Eax
0 [fg|D = ∞]].

This means

Ea
0[f (Xτ1+· −Xτ1)g ◦ tXτ1

h]
= ∑

k,x

E
a
0
[
E0,ω[Sk < ∞,XSk = x,hk,x] Pax

0 [D = ∞] Eax
0 [fg|D = ∞]].(3.22)

By taking specially f = g = 1, we get from the above equation

Ea
0[h] = ∑

k,x

E
a
0
[
E0,ω[Sk < ∞, XSk = x,hk,x] Pax

0 [D = ∞]].(3.23)

Define now ϕ(a) := Ea
0[fg|D = ∞], and note that ϕ(ax) is σ {ω(b) :

b ∈ Bx}-measurable, hence σ {ω(b) :b ∈ Lx} ⊗ �Sk -measurable, and there-
after hk,xϕ(ax) is σ {ω(b) :b ∈ Lx} ⊗ �Sk -measurable and coincides with the
�1-measurable function hϕ(aXτ1

) on {τ1 = Sk} ∩ {Xτ1 = x}.
Substituting h through hϕ(aXτ1

) in (3.23), we find

Ea
0[hϕ(aXτ1

)] = ∑
k,x

E
a
0
[
E0,ω[Sk < ∞, XSk = x,hk,x · ϕ(ax)] Pax

0 [D = ∞]]

= ∑
k,x

E
a
0
[
E0,ω[Sk < ∞, XSk = x,hk,x] Pax

0 [D = ∞]

× Eax
0 [fg|D = ∞]].

Comparing this with (3.22) yields our claim (3.20). �

REMARK 3.4. Define

ψ(X·,ω) := (Xτ1+· −Xτ1; tXτ1
ω) ∈ (Zd)N ×�,(3.24)

Then equation (3.20) can also be expressed as

Ea
0[(fg) ◦ψh] = Ea

0
[
hE

aXτ1
0 [fg|D = ∞]].(3.25)

3.2. The kth no-backtracking time τk and the Markov structure. Because
{D = ∞} = {D ≥ τ1} ∈ �1, we can define on {τ1 < ∞} a nondecreasing sequence
of random variables inductively, by viewing τk, k ≥ 1, as a function of X·,

τk+1(X·) := τ1(X·)+ τk(Xτ1+· −Xτ1) for k ≥ 1,(3.26)
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and by convention set τk+1 = ∞ on {τk = ∞}. Because of (3.13) and Theorem 3.3
we observe that P0-a.s. τk < ∞, for all k ≥ 1. One could ask why we do not use
the equivalent formula τk+1 = τk(X·)+ τ1(Xτk+· −Xτk ) as the definition for τk+1.
The reason will be clear in the proof of Theorem 3.5.

With τk+1, k ≥ 1, introduced, we are now ready to introduce σ -algebra �k+1
for k ≥ 1,

�k+1 := σ
{
τ1, . . . , τk, τk+1; (Xτk+1∧m)m≥0; ω(b), b ∈ LXτk+1

}
,(3.27)

describing the history of the path and environment involved before time τk+1.
With �̄k := σ {τ1, . . . , τk; (Xτk∧m)m≥0; ω(b), b ∈ R0 ∩LXτk }, which is clearly

included in �k , we also have

�k+1 = σ
{
�1 ∪ψ−1(�̄k)

}
(3.28)

with ψ introduced in (3.24).
The main result showing the embedded Markov chain structure comes in the

next theorem, displaying the conditional distribution of the joint random variables
((Xτk+n −Xτk )n≥0; (τk+n − τk)n≥0; tXτk

ω(b), b ∈ RXτk ) given �k , k ≥ 1.

THEOREM 3.5. Let f , g, hk be bounded and, respectively, σ {Xn: ≥ 0}-,
σ {ω(b): b ∈ R0}- and �k-measurable functions with k ≥ 1. Then for a ∈ I

�,

Ea
0[f (Xτk+· −Xτk )g ◦ tXτk

hk] = Ea
0
[
hkE

aXτk

0 [fg|D = ∞]].(3.29)

PROOF. We prove (3.29) by induction. The case k = 1 is just Theorem 3.3.
For the step k to k + 1, we observe that in view of (3.28) it is sufficient to show
(3.29) for hk+1 = h1 hk ◦ ψ , while h1 and hk are bounded and, respectively, �1
and �̄k-measurable. For such an h, the left-hand side of (3.29) equals

Ea
0[f (Xτk+1+· −Xτk+1)g ◦ tXτk+1

h1hk ◦ ψ]
= Ea

0[f (Xτk+· −Xτk) ◦ψ (g ◦ tXτk
◦ψ) (hk ◦ ψ)h1],

applying now (3.25), the right-hand side of the last expression equals

Ea
0
[
h1E

aXτ1
0 [f (Xτk+· −Xτk)g ◦ tXτk

hk|D = ∞]]
= Ea

0
[
h1E

aXτ1
0 [f (Xτk+· −Xτk)g ◦ tXτk

hk,D = ∞]/P
aXτ1
0 [D = ∞]]

and because hk1{D=∞} is �k-measurable, we can use the induction assumption
and find

= Ea
0
[
h1E

aXτ1
0

[
E
aXτk

0 [fg|D = ∞]hk,D = ∞]/
P
aXτ1
0 [D = ∞]]

= Ea
0
[
h1E

aXτ1
0

[
E
aXτk

0 [fg|D = ∞]hk

∣∣D = ∞]]
= Ea

0
[
h1E

aXτk
◦ψ

0 [fg|D = ∞]hk ◦ψ
]
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= Ea
0
[
h1hk ◦ ψE

aXτk+1
0 [fg|D = ∞]]

= Ea
0
[
hk+1E

aXτk+1
0 [fg|D = ∞]],

where we applied (3.25) backward in the third line, and this completes the proof.
�

As an immediate consequence we get the next corollary.

COROLLARY 3.6. Let

? := N × Z
d × I

�(3.30)

with its canonical product σ -algebra and let yk = (jk, zk, ak) ∈ ?, k ≥ 0. For
a ∈ I

� and G ⊂ ? measurable let also

R̃(a;G) := Pa
0[(τ1,Xτ1, aXτ1

) ∈ G|D = ∞].(3.31)

Then under P0 the ?-valued random variables (with convention τ0 = 0),

Yk := (Jk,Zk,Ak) := (τk+1 − τk,Xτk+1 −Xτk , aXτk+1
), k ≥ 0,(3.32)

define a Markov chain on the state space ?, which has transition kernel

P[Yk+1 ∈ G|Y0 = y0, . . . , Yk = yk] = R̃(ak;G),(3.33)

and initial distribution

+̃(G) := P0[(τ1,Xτ1, aXτ1
) ∈ G].(3.34)

Similarly, on the state space I
�, the random variables

Ak = aXτk+1
, k ≥ 0,(3.35)

also define a Markov chain under P0. With a ∈ I
� and B ⊂ I

� measurable, its
transition kernel is

R(a;B) := Pa
0[aXτ1

∈ B|D = ∞] = ∑
j∈N

z∈Zd

R̃
(
a; (j, z,B)

)
,(3.36)

and the initial distribution is

+(B) := P0[aXτ1
∈ B] = ∑

j∈N

z∈Zd

+̃
(
(j, z,B)

)
.(3.37)
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3.3. Doeblin condition, invariant measure and ergodicity. In this section we
will show that the transition kernel R̃(a; ·) has an invariant distribution and it is
ergodic. First we need the following lemma.

LEMMA 3.7. There exists a unique probability measure ν on I
� and two

constants c > 0, c15 > 0 such that for m ≥ 0,

sup
a∈I�

‖Rm(a; ·)− ν(·)‖var ≤ ce−c15m,(3.38)

where ‖ · ‖var denotes the variational norm on the space of measures on I
�.

Further, this probability measure ν is invariant with respect to the transition
kernel R; that is, νR = ν, and the Markov chain (Ak)k≥0, defined in (3.35) with
transition kernel R and initial distribution ν on the state space I

� is ergodic.
Moreover, the initial distribution +(·) given in (3.37) is absolutely continuous

with respect to ν(·).

PROOF. First we show that the kernel R(a; ·) satisfies the Doeblin condition
(cf. [15], page 178):

R(a;B)≥ κ2c13
( ⊗� µ

)
(B) for all measurable B ⊂ I

�,(3.39)

where we recall that µ is the distribution of ω(b) on I. Indeed the ellipticity
condition (1.1) implies

R(a;B) = Pa
0[aXτ1

∈ B|D = ∞] = E
a
0

[
P0,ω[aXτ1

,D = ∞]]/Pa
0[D = ∞]

≥ E
a
0

[
P0,ω[X1 = ẽ, X2 = 2ẽ, D ◦ θ2 = ∞], aX2 ∈ B

]
= E

a
0
[
P0,ω[X1 = ẽ, X2 = 2ẽ] P2ẽ,ω[D = ∞], a2ẽ ∈ B

]
≥ κ2

E
a
0

[
P2ẽ,ω[D = ∞], a2ẽ ∈ B

]
(2.30)≥ κ2c13P

a
0[a2ẽ ∈ B] = κ2c13(⊗�µ)(B).

Applying Theorem 6.15 in [11], the Doeblin condition immediately implies that
there exists an invariant measure ν and (3.38) holds. (The Doeblin condition
implies that the kernel is small and aperiodic in the terminology of [11]; cf.
pages 15, 20 and 21.) The uniqueness is a trivial consequence of (3.38).

In view of (3.38) the ergodicity of (An)n≥0 follows from Proposition 2.4 in [15],
Chapter 6. To prove that the initial distribution +(·) is absolutely continuous with
respect to the invariant measure ν(·), we observe that the Doeblin condition (3.39)
also implies

ν(B) =
∫

ν(da)R(a;B)≥ κ2c13

∫
ν(da)

( ⊗� µ
)
(B) = κ2c13

( ⊗� µ
)
(B).
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Therefore ν(B) = 0 implies (⊗�µ)(B) = 0, and hence

+(B) ≤ ∑
z∈Zd

P0[az ∈ B] = ∑
z∈Zd

(⊗�µ)(B) = 0,

that is, + is absolutely continuous with respect to ν, and this completes the
proof. �

With this lemma we can now prove Theorem 3.8.

THEOREM 3.8 (Ergodicity). ν̃ := νR̃ is the unique invariant distribution for
the transition kernel R̃, for which the relation

sup
a∈I�

∥∥R̃m(a; ·)− ν̃(·)∥∥var ≤ c14e
−c15m, m ≥ 0,(3.40)

holds for some c14 > 0. With initial distribution equal ν̃ , the Markov chain (Yk)k≥0
defined in (3.32) is ergodic. Moreover, the law of the Markov chain (Yk+1)k≥0
under P0 is absolutely continuous with respect to the law of the chain with initial
distribution ν̃ .

PROOF. We observe that for any bounded and measurable function f on I
�

we have R̃f = Rf and thereafter ν̃R̃ = νR̃R̃ = νRR̃ = νR̃ = ν̃. This means that
ν̃ is an invariant probability measure with respect to R̃ on ?. From RR̃ = R̃2 and
(3.38) it follows that ‖R̃m+1(a; ·)− ν̃(·)‖var ≤ ce−c15m for m ≥ 0, and hence (3.40)
with some constant c14 > 0. Applying again Proposition 2.4 in [15], Chapter 6, the
ergodicity of (Yk)k≥0 with initial distribution ν̃ follows.

From Corollary 3.6 we know that, the initial distribution of (Yk+1)k≥0 under P0

is +̃R̃. From Lemma 3.7, + is absolutely continuous with respect to ν, therefore
the absolute continuity of the law (Yk+1)k≥0 under P0 with respect to the law with
initial distribution ν̃ follows immediately from the obvious relations +̃R̃ = +R̃

and ν̃R̃ = νR̃. �

4. Integrability properties of �.Xτ1 and τ1. As a last step of preparation
toward the strong law of large numbers and the functional central limit theorem
mentioned in Section 1, we will show in this section that for c > 0 small enough,
supx,ω Ex,ω[ecτ1] < ∞. The proof will be divided in several auxiliary lemmas.

LEMMA 4.1. There exists c16 > 0 such that for all ω ∈ �, x ∈ Z
d ,

Ex,ω

[
exp{c16�.(XS1 −X0)}] ≤ 1 + c13

4
,(4.1)

with c13 given in (2.30).
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PROOF. At first we define a sequence of auxiliary (�n)n≥0-stopping times
[recall the definition of ẽ in (3.2)],

N0 := 0; N1 := inf{m ≥ 0 :�.(Xm −X0) ≥ 2�.ẽ};
Nk+1 := Nk +N1 ◦ θNk

for k ≥ 1.

Observe that for all k ≥ 1,

2�.ẽ ≤ �.(XNk
−XNk−1) ≤ 3�.ẽ and Nk −Nk−1 ≥ 2.

Therefore we have �.(XS1 −X0) ≤ 3k(�.ẽ) on {Nk−1 < S1 ≤ Nk}, and hence

Ex,ω[ec�.(XS1−X0)] = ∑
k≥1

Ex,ω[ec�.(XS1−X0),Nk−1 < S1 ≤ Nk]

≤ ∑
k≥1

e3ck�.ẽPx,ω[Nk−1 < S1 ≤ Nk].
(4.2)

Because for all y ∈ Z
d , ω ∈ �,

Py,ω[Nk+1 < S1] ≤ Py,ω[Nk < S1, (XNk+1 −XNk
,XNk+2 −XNk+1) �= (ẽ, ẽ)]

≤ (1 − κ2)Py,ω[Nk < S1],
where we used the ellipticity condition (1.1) in the last step, the rightmost side of
(4.2) can be estimated further by∑

k≥1

e3ck�.ẽPx,ω[Nk−1 < S1 ≤ Nk] ≤ ∑
k≥1

e3ck�.ẽPx,ω[Nk−1 < S1]

≤ ∑
k≥1

e3ck�.ẽ(1 − κ2)k−1 < ∞,
(4.3)

provided c is small enough.
Take now c0 > 0 and m0 ∈ N such that

∑
k>m0

e3c0k�.ẽ(1 − κ2)k−1 <
c13
8 , (4.2)

and (4.3) imply that for all c < c0,

Ex,ω[ec�.(XS1−X0)] ≤ ∑
m≤m0

e3cm0�.ẽPx,ω[Nm−1 < S1 ≤ Nm] + c13

8

≤ e3cm0�.ẽPx,ω[S1 ≤ Nm0] +
c13

8
.

Thereafter there exists c16 ∈ (0, c0) small enough such that e3c16m0�.ẽ < 1 + c13
8

and that completes our proof. �

Let us introduce the random variable

M := sup{�.(Xn −X0) : 0 ≤ n ≤ D},(4.4)

which is the maximal displacement in the direction � before backtracking. It will
turn out that M is a key variable later in studying integrability properties of
�.Xτ1 . Because for all a ∈ I

�, Pa
0[D = ∞] > 0, we cannot expect M < ∞ Pa

0-a.s.
Nevertheless we claim the following lemma.
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LEMMA 4.2. There exists some c17 > 0 small enough such that

(
1 + c13

4

){
sup
x∈Zd

ω∈�

Ex,ω[ec17M,D < ∞]
}

≤ 1 − c13

2
.(4.5)

PROOF. At first we show that

Px,ω[2m ≤ M < 2m+1, D < ∞] ≤ c18e
−c192m+1

for all x ∈ Z
d, ω ∈ �.(4.6)

Recall the definition (2.18) for the box U centered in x with width L in the
direction � and size L2 in the direction normal to �; also recall (2.22) for its
boundary ∂U = ∂+U ∪ ∂−U ∪ ∂0U and setting L = 2m+1, we observe that

Px,ω[2m ≤ M < 2m+1,D < ∞]

≤ Px,ω

[
TU >

λL

γ

]
+ Px,ω

[
TU ≤ λL

γ
, XTU /∈ ∂+U

]

+ Px,ω

[
TU ≤ λL

γ
, XTU ∈ ∂+U,PXTU

,ω[T̃−2m < T2m]
]
.

By (2.24)–(2.29) the first two terms together are ≤ c1e
−c22m

. To estimate the third
term we observe

Px,ω

[
TU ≤ λL

γ
,XTU ∈ ∂+U,PXTU

,ω[T̃−2m < T2m]
]

≤ ∑
y∈∂+U

sup
y∈∂+U

Py,ω[T̃−2m < T2m],

and using supy,ω Py,ω[T̃−2m < T2m] ≤ c1e
−c22m

,

≤ C(d, �)L2d−2c1e
−c22m

.

Putting them together the claim (4.6) follows.
With (4.6) in mind we show in the second step that supx,ω Ex,ω[ecM,D < ∞] ≤

1 − 3c13
4 , provided c > 0 small enough. This can be seen by the obvious estimate

Ex,ω[ecM,D < ∞]
≤ e2cPx,ω[0 ≤ M < 1,D < ∞] + ∑

m≥0

Px,ω[2m ≤ M < 2m+1,D < ∞]ec2m+1

≤ Px,ω[D < ∞]ec2m0+1 + ∑
m>m0

Px,ω[2m ≤ M < 2m+1,D < ∞]ec2m+1

≤ Px,ω[D < ∞]ec2m0+1 + ∑
m>m0

c18e
(c−c19)2m+1

.
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Now let c0 = c19
2 and m0 ∈ N be chosen such that

∑
m>m0

c18e
(c0−c19)2m+1 ≤ c13

8 ,
the rightmost side above is less than or equal to

(1 − c13)e
c2m0+1 + c13

8
≤ 1 − 3c13

4
,

with 0 < c < c0 small enough. Our claim follows immediately. �

With the help of these two lemmas we can now provide the integrability of
Ex,ω[ec�.Xτ1 ].

THEOREM 4.3. There exists c20 > 0 small enough such that

sup
x∈Zd

ω∈�

Ex,ω[exp{c20�.(Xτ1 −X0)}] < ∞.(4.7)

PROOF. Since

Ex,ω

[
ec�.(Xτ1−X0)

] = ∑
k≥1

Ex,ω

[
ec�.(XSk

−X0), Sk < ∞,D ◦ θSk = ∞]

≤ ∑
k≥1

Ex,ω

[
ec�.(XSk

−X0), Sk < ∞]
,

(4.8)

in view of (4.1) it suffices to show that supx,ω

∑
k≥2 Ex,ω[ec�.(XSk

−X0), Sk < ∞]
< ∞.

To this end we define another sequence of auxiliary (�n)n≥0-stopping times
[recall the definition of Mk in (3.7)],

Vk := inf{n ≥ Rk :�.Xn ≥ Mk} for k ≥ 1,(4.9)

that is, Vk is the first time after Rk such that the random walker (Xn)n≥0 reaches a
maximum in the direction � again.

It is clear that Rk ≤ Vk ≤ Sk+1, and the inequalities are strict if Sk+1 < ∞. We
observe that for k ≥ 2,

�.(XSk −X0) = �.XSk − �.XVk−1 + �.(XVk−1 −X0)

≤ �.(XS1 −X0) ◦ θVk−1 + �.(XVk−1 −X0),

whence

Ex,ω

[
ec�.(XSk

−X0), Sk < ∞] ≤ Ex,ω

[
ec�.(XSk

−X0), Vk−1 < ∞]
≤ Ex,ω

[
e
c�.(XVk−1−X0), Vk−1 < ∞,EXVk−1 ,ω

[ec�.(XS1−X0)]]
(4.1)≤ Ex,ω

[
e
c�.(XVk−1−X0)

(
1 + c13

4

)
,Vk−1 < ∞

]
.

(4.10)
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Further, we observe that

�.(XVk−1 −X0) = �.(XVk−1 −XSk−1)+ �.(XSk−1 −X0)

≤ Mk−1 + 1 − �.XSk−1 + �.(XSk−1 −X0)

= M ◦ θSk−1 + 1 + �.(XSk−1 −X0).

Therefore with the strong Markov property the rightmost side of (4.10) can be
further estimated by

≤ ecEx,ω

[
exp

{
c
(
M ◦ θSk−1 + �.(XSk−1 −X0)

)}(
1 + c13

4

)
,Rk−1 < ∞

]

= ecEx,ω

[
e
c�.(XSk−1−X0), Sk−1 < ∞,

(
1 + c13

4

)
EXSk−1 ,ω

[ecM,D < ∞]
]
,

and this is, by (4.5) and induction,

≤ ec
(

1 − c13

2

)
Ex,ω

[
e
c�.(XSk−1−X0), Sk−1 < ∞]

≤
(
ec

(
1 − c13

2

))k

,

provided 0 < c ≤ c17.
Therefore we can find c20 ∈ (0, c17) small enough such that ec20(1 − c13

2 ) < 1.
Therefore,

∑
k≥2

Ex,ω

[
ec20�.(XSk

−X0), Sk < ∞] ≤ ∑
k≥2

(
ec20

(
1 − c13

2

))k

< ∞.

And with (4.8) this completes the proof. �

As a corollary we obtain an estimate on the tail of τ1 and its integrability
properties.

COROLLARY 4.4. There exists c21 > 0 and c22 > 0 such that for u ∈ N,

sup
x∈Zd

ω∈�

Px,ω[τ1 > u] ≤ c21 e−c22u,(4.11)

and consequently,

sup
x∈Zd

ω∈�

Ex,ω[ec23τ1] ≤ c24 < ∞,(4.12)

for some c23 > 0 and c24 > 0.
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PROOF. Recall γ = log 1
1−ε

from Theorem 2.1 and choose u ∈ N, u ≥ 2λ
γ

. We

denote with U the box defined in (2.18), with center x, width γ
2λu in the direction

� and size (
γ
2λu)

2 in the direction normal to �.
By Chebychev’s inequality and with c20 from (4.7) we observe

Px,ω[τ1 > u]

≤ Px,ω

[
τ1 > u,�.(Xτ1 −X0) ≤ γ

4λ
u

]
+ Px,ω

[
�.(Xτ1 −X0) >

γ

4λ
u

]

≤ Px,ω

[
τ1 > u,�.(Xτ1 −X0) ≤ γ

4λ
u

]
+ exp

{
−c20

γ

4λ
u

}
Ex,ω

[
ec20�.(Xτ1−X0)

]

≤ Px,ω

[
τ1 > u,�.(Xτ1 −X0) ≤ γ

4λ
u

]
+ c25e

−c26u;

further we have

Px,ω

[
τ1 > u,�.(Xτ1 −X0) ≤ γ

4λ
u

]

≤ Px,ω

[
T(γ/4λ)u > u

]
≤ Px,ω

[
T(γ/4λ)u > TU

] + Px,ω

[
TU = T(γ/4λ)u > u

]
≤ Px,ω

[
TU >

u

2

]
+ Px,ω

[
TU ≤ u

2
,XTU �∈ ∂+U

]

+ Px,ω

[
TU = T(γ/4λ)u > u

]
.

Using the same argument as in (2.23)–(2.29), the first two terms on the right-hand
side together can be estimated uniformly: for all x ∈ Z

d , ω ∈ � and for all u ∈ N,

Px,ω

[
TU >

u

2

]
+ Px,ω

[
TU ≤ u

2
,XTU �∈ ∂+U

]
≤ c27e

−c28u,(4.13)

and by (2.20) the last term can also be estimated uniformly: for all x ∈ Z
d , ω ∈ �

and u ∈ N, u ≥ 2λ
γ

,

Px,ω[TU > u] ≤ c4e
−(γ /8)u,(4.14)

because in our construction of U , u ≥ λ
γ

γ
2λu = u

2 , the condition (2.19) is fulfilled.

Altogether we get that for all u ∈ N, x ∈ Z
d and ω ∈ �,

Px,ω[τ1 > u] ≤ c21e
−c22u,(4.15)

our claim (4.11) follows immediately, and finally, (4.12) is an easy consequence
of (4.11). �
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5. Law of large numbers and central limit theorem. In this section we
will provide the main results of this article: first a strong law of large numbers;
moreover, we are able to prove a functional central limit theorem. Some parts of
the proofs presented in this section are similar to the proofs of [18], Theorem 2.3,
page 1864 and [16], Theorem 4.1, pages 130–131.

THEOREM 5.1 (Strong law of large numbers). Under the assumptions (1.1)–
(1.5) we have

P0-a.s.
Xn

n

n→∞
v = ED[Xτ1 ]

ED[τ1] and �.v > 0,(5.1)

where

D[·] :=
∫

ν(da)Pa
0[·|D = ∞] and ED[·] :=

∫
ν(da)Ea

0[·|D = ∞].(5.2)

(We recall that ν is the unique invariant distribution on I
� given in Lemma 3.7.)

PROOF. Let Yk = (Jk,Zk,Ak) = (τk+1 − τk,Xτk+1 − Xτk , aXτk+1
), k ≥ 0, be

the random variables on ? defined in (3.32). We know from Theorem 3.8 that the
Markov chain (Yk)k≥0 with initial distribution ν̃ is stationary and ergodic, further,
the law of (Yk+1)k≥0 under P0 is absolutely continuous with respect to the law
with initial distribution ν̃. Therefore from the Birkhoff’s ergodic theorem (cf. [4],
page 341) it follows that for any f ∈ L1(?, ν̃), P0-a.s.,

1

n

n∑
k=1

f (Yk)
n→∞ ∫

dν̃f.

Applying this formula to f (y) = j and f (y) = z for y = (j, z, a) ∈ ?, we find that
P0-a.s.,

1

n − 1
(τn − τ1)

n→∞ ∫
dν̃J1 =

∫
ν(da)Ea

0[τ1|D = ∞] = ED[τ1] < ∞,

1

n− 1
(Xτn −Xτ1)

n→∞ ∫
dν̃Z1 =

∫
ν(da)Ea

0[Xτ1 |D = ∞] = ED[Xτ1 ],
(5.3)

where the finiteness follows from (4.12). We also observe that �.v > 0, because P0-
a.s. �.Xτ1 > 0 by definition (3.6), (3.7) and (3.12), and ED[|Xτ1 |] ≤ ED[τ1] < ∞.

From (3.13) we observe that P0-a.s. τ1
n−1 → 0, as n → ∞. Therefore (5.3)

implies that

1

n
τn

n→∞ ∫
dν̃J1 =

∫
ν(da)Ea

0[τ1|D = ∞] = ED[τ1],
1

n
Xτn

n→∞ ∫
dν̃Z1 =

∫
ν(da)Ea

0[Xτ1 |D = ∞] = ED[Xτ1 ].
(5.3∗)
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Now let us define a nondecreasing sequence kn, n ≥ 0, which tends to +∞ P0-a.s.,
such that

τkn ≤ n < τkn+1 (with the convention τ0 = 0).(5.4)

Dividing the above inequality by kn and using (5.3∗), we find that P0-a.s.,

kn

n

n→∞ 1

ED[τ1] .(5.5)

Further, we observe that

Xn

n
= Xτkn

n
+ Xn −Xτkn

n
,(5.6)

then in view of (5.3∗) and (5.5), we obtain that P0-a.s.,

Xτkn

n
= Xτkn

kn

kn

n

n→∞ ED[Xτ1]
ED[τ1] ,(5.7)

and by (5.5) again, that P0-a.s.,

|Xn −Xτkn
|

n
≤ τkn+1 − τkn

n
= τkn+1

kn + 1

kn + 1

n
− τkn

kn

kn

n

n→∞
0.

Combining this with (5.6) and (5.7), we have proved that P0-a.s. Xn

n

n→∞
v, with

v given in (5.1). �

We are now able to derive a functional central limit theorem for the process

Bn
t = 1√

n

(
X[tn] − [tn]v)

, t ≥ 0,(5.8)

where [t] denotes the integer part of t ∈ R+.
We denote by DRd [0,∞) the set of R

d -valued functions on [0,∞), which are
right-continuous and possess left limits (also called cadlag functions). We endow
this set with the Skorohod topology (cf. [5], page 117) and its Borel-σ -algebra, so
that Bn· defines a DRd [0,∞)-valued random variable.

To simplify notations let us temporarily denote the law of the Markov chain
(Ym)m≥0 with invariant distribution ν̃ by Pν̃[·] and its expectation value by Eν̃[·].
Further, we use xT to denote the transposed vector of x ∈ R

d .

LEMMA 5.2. Let f (y) := z − jv for y = (j, z, a) ∈ ? and v from Theo-
rem 5.1. Then

sup
a∈I�

(R̃|f |)(a) < ∞,(5.9)
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where we recall that | · | denotes the L1-norm on R
d . Further the R

d -valued
random variables

F(a) :=
∞∑

m=1

(R̃mf )(a), Gn :=
n∑

m=1

f (Ym),

Wn := Gn + F(An), n ≥ 1,

(5.10)

[with notations from (3.32) and (3.35)] are well defined, and under P0, (Wn)n≥1 is
a (�n)n≥1-martingale with respect to �n := σ {Y1, . . . , Yn}. We use the convention
W0 := 0 and �0 equals the trivial σ -algebra.

Finally, the partial sum 1√
n
G[n·] converges under P0 on the space DRd [0,∞)

in law to a d-dimensional Brownian motion with covariance matrix K,

K = Eν̃[(W2 −W1)(W2 −W1)
T ]

= ED[(Xτ1 − τ1v)(Xτ1 − τ1v)
T ]

+
∞∑

m=1

ED
[
(Xτ1 − τ1v)

(
Xτm+1 −Xτm − (τm+1 − τm)v

)T ]

+
∞∑

m=1

ED
[(
Xτm+1 −Xτm − (τm+1 − τm)v

)
(Xτ1 − τ1v)

T
]
,

(5.11)

where the last two terms converge in all matrix norms. [We recall the definition of
ED in (5.2).]

PROOF. Inequality (5.9) follows immediately from (2.30) and (4.12), because

sup
a∈I�

(R̃|f |)(a) ≤ sup
a

Ea
0[|Xτ1 | + |v|τ1|D = ∞]

≤ (1 + |v|) sup
a

Ea
0[τ1|D = ∞] < ∞.

With this, we can now show that

sup
a∈I�

|F(a)|< c29 < ∞.(5.12)

Indeed, Theorem 5.1 implies that ν̃R̃f = ν̃f = 0 and hence for a ∈ I
�, m ≥ 1,

|(R̃mf )(a)| ≤ ∣∣(R̃m−1 ◦ (R̃f )
)
(a)− ν̃R̃f

∣∣ + |ν̃R̃f |
≤ ‖R̃m−1(a; ·)− ν̃(·)‖var · ‖R̃f ‖L∞

≤ c14e
−c15(m−1)‖R̃f ‖L∞,

(5.13)

where (3.40) is used in the last step, and this with (5.9) proves (5.12).
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To show that (Wn)n≥1 is a (�n)n≥1-martingale, we observe from Corollary 3.6
that for n ≥ 1,

E0[Wn+1 −Wn|�n] = E0[f (Yn+1)+ F(An+1)− F(An)|�n]
= (R̃f )(An)+ (R̃F )(An)− F(An) = 0.

Now we show that under P0,

1√
n
W[n·]

n→∞
B(·) in law on DRd [0,∞),(5.14)

where B(·) is a R
d -valued Brownian motion with covariance matrix K given by

the first line of (5.11). With (5.14) proved, we can replace W[n·] by G[n·] in (5.14),
because of (5.12).

To show (5.14), we observe at first that

E0

[(
1√
n

sup
1≤k≤[nT ]

|Wk −Wk−1|
)4]

≤ 1

n2

∑
1≤k≤[nT ]

E0[|Wk −Wk−1|4]

≤ 1

n2 E0[(|Xτ1 − vτ1| + c29)
4]

+ [nT ] − 1

n2 sup
a∈I�

Ea
0[(|Xτ1 − vτ1| + 2c29)

4|D = ∞]

n→∞
0 by (4.12) and (2.30),

where we used (5.10), (5.12) and Corollary 3.6 in the second and third line.
Second, by Birkhoff’s ergodic theorem (cf. [4], page 341) we get from

Theorem 3.8 that Pν̃ -a.s. and hence P0-a.s.,

[nt]∑
k=1

1

n
(Wk+1 −Wk)(Wk+1 −Wk)

T
n→∞

tEν̃[(W2 −W1)(W2 −W1)
T ]

and the same limit holds true for a sum from k = 0 to [nt].
Thereafter, (5.14) follows immediately from the martingale central limit

theorem (cf. [5], Theorem 1.4 (a), Remark 1.5, pages 339–340). It remains to
show the second equality in (5.11). We show at first that the last two terms in
(5.11) are well defined; that is, the series converges in any matrix norm. Let ‖ · ‖
be an arbitrary matrix norm, then with the notations of (3.32) we have for m ≥ 1,∥∥ED

[
(Xτ1 − τ1v)

(
Xτm+1 −Xτm − (τm+1 − τm)v

)T ]∥∥
= ‖Eν̃[(Z0 − J0v)(Zm − Jmv)T ]‖ = ‖Eν̃ [f (Y0)(R̃

mf )(A0)
T ]‖

≤ c′ supa(R̃
m|f |)(a) Eν̃[|Z0 − J0v|],

(5.15)
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where c′ > 0 is a dimension dependent constant. Thereafter it follows now from
(5.13) that the rightmost side above is

≤ c′c14e
−c15(m−1)‖R̃f ‖L∞ · Eν̃[|Z0 − J0v|]

≤ c30e
−c15m.

Consequently, the right-hand side of (5.11) converges in any matrix norm.
To verify the second equality, we put in the definition of Wm, m = 1,2,

K = Eν̃[(W2 −W1)(W2 −W1)
T ]

= Eν̃[{f (Y2)+ F(A2)− F(A1)}{f (Y2)+ F(A2)− F(A1)}T ]
= Eν̃[f (Y2)f (Y2)

T ] + Eν̃[f (Y2)F (A2)
T ] + Eν̃[F(A2)f (Y2)

T ]
+Eν̃[F(A2)F (A2)

T ] − Eν̃

[
F(A1)

(
f (Y2)+ F(A2)

)T ]
+Eν̃[F(A1)F (A1)

T ] − Eν̃

[(
f (Y2)+ F(A2)

)
F(A1)

T
]
.

Using the fact that ν̃ is the invariant distribution of the kernel R̃, and applying the
Markov property, we see that the second and third line on the right-hand side of
the above equation vanish.

Now putting in the definition of F from (5.10), the second equality of (5.11)
follows from (5.15) and Corollary 3.6. This completes our proof. �

Thanks to Lemma 5.2, we can now prove the following.

THEOREM 5.3 (Functional central limit theorem). Under assumption (1.1)–
(1.5), the DRd [0,∞)-valued random variable Bn· defined in (5.8) converges under
P0 in law to a d-dimensional Brownian motion with a nondegenerate covariance
matrix

K
ED[τ1] ,(5.16)

with K given in (5.11) and ED[·] defined in (5.2).

PROOF. Let kn, n ≥ 0 be the sequence introduced in (5.4). Then (5.5) and
Dini’s theorem (cf. [3], page 129) imply that P0-a.s.,

for all T > 0, sup
0≤t≤T

∣∣∣∣k[tn]
n

− t

ED[τ1]
∣∣∣∣ n→∞

0.(5.17)

Further, for the random variables Bn
t and Gn, respectively, defined in (5.8) and

(5.10), we observe that P0-a.s. for any T > 0,

sup
0≤t≤T

∣∣∣∣Bn
t − Gk[tn]√

n

∣∣∣∣ ≤ (1 + |v|) sup
0≤k≤k[nT ]

τk+1 − τk√
n

,
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and

sup
0≤k≤k[nT ]

τk+1 − τk√
n

n→∞
0 in P0-probability.(5.18)

To see (5.18), we observe that thanks to Corollary 3.6, and since kn ≤ n, for u > 0,

P0

[
sup

0≤k≤k[nT ]

τk+1 − τk√
n

> u

]

≤ P0[τ1 >
√
nu] + nT sup

a∈I�

Pa
0[τ1 >

√
nu|D = ∞] n→∞

0,

where we used (4.11) and (2.30) in the last step.

Therefore, the Skorohod-distance of Bn· and
Gk[n·]√

n
(cf. [5], page 117), tends to

0 in P0-probability, as n → ∞. From this fact, (5.17) and Lemma 5.2 we obtain
that, under P0, Bn· converges in law to a d-dimensional Brownian motion with
covariance matrix K

ED[τ1] .
What remains to prove is the nondegeneracy of K. If wT Kw = 0 for some

w ∈ R
d , it follows from the first line of (5.11) that

Pν̃[w.f (Y2) = w.F(A1)−w.F(A2)] = 1,

and since from (5.12) we know that F is bounded, we can find some constant
c31 > 0 such that

Pν̃[w.f (Y2) ∈ (−c31, c31)] = 1.(5.19)

Because ν̃ is the invariant distribution of R̃ we obtain [recall the definition of D in
(5.2)]

1 = Pν̃[w.f (Y1) ∈ (−c31, c31)]
= D[(v.w)τ1 ∈ (Xτ1 .w − c31,Xτ1.w + c31)].

(5.20)

Now let r > 2
√
d and H = {z ∈ Z

d :�.z < r + 2�.ẽ}. Then for all x ∈ ∂H we
can construct a path in H such that X0 = 0, XS1 = x. To see this, we first
notice that with the argument in [16], page 102, the set {z ∈ Z

d : 0 ≤ �.z < r}
is connected. Therefore there is a path connecting 0 and x − 2ẽ, which remains
in {z ∈ Z

d : 0 ≤ �.z < r} except for the last point. By inserting a loop at each step
of this path, which goes back to the previous point and then returns to the current
position, we can make sure that XS1 does not occur within {z ∈ Z

d : 0 ≤ �.z < r}.
Now letting the modified path go two steps in the direction ẽ after it reaches x−2ẽ,
we get a path (Xn)n≥0 with X0 = 0 and XS1 = x.

This and (2.30) together imply that for each x ∈ ∂H there exists n ∈ N such that
for all a ∈ I

�,

Pa
0[Xτ1 = x, τ1 = S1 = n,D = ∞] > 0.
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Using a nearest neighbor loop of length 2k, k ∈ N, inserted at the first jump step,
we get from the ellipticity condition (1.1) that for all k ∈ N and a ∈ I

�,

Pa
0[Xτ1 = x, τ1 = S1 = n + 2k, D = ∞] > 0.(5.21)

On the other hand it follows from (5.20) and (5.21) that for x ∈ ∂H , there exists
n ∈ N such that

(2k + n)(v.w) ∈ (x.w − c31, x.w + c31) for all k ∈ N.

This is only possible when

v.w = 0.(5.22)

Taking now limits points in ∂H , we observe from (5.20) that

w.y = 0 for all y ⊥ �,(5.23)

hence w is colinear to �. But since v.� > 0, (5.22) implies that w = 0, which
completes our proof. �
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