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OPTIMAL INSURANCE DEMAND UNDER MARKED
POINT PROCESSES SHOCKS

By Nizar Touzi
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We study the stochastic control problem of maximizing expected util-
ity from terminal wealth, when the wealth process is subject to shocks
produced by a general marked point process; the problem of the agent is
to derive the optimal allocation of his wealth between investments in a
nonrisky asset and in a (costly) insurance strategy which allows “lower-
ing” the level of the shocks. The agent’s optimization problem is related
to a suitable dual stochastic control problem in which the constraint on
the insurance strategy disappears. We establish a general existence result
for the dual problem as well as the duality between both problems. We
conclude by some applications in the context of power (and logarithmic)
utility functions and linear insurance premium which show, in particular,
the existence of two critical values for the insurance premium: below the
lower critical value, agents prefer to be completely insured, whereas above
the upper critical value they take no insurance.

1. Introduction. We study the optimal insurance demand problem of an
agent whose wealth is subject to shocks produced by some marked point pro-
cess. Such a problem is formulated in continuous-time with Poisson shocks in
Bryis (1986). Gollier (1994) studies a similar problem where shocks are not
proportional to wealth. An explicit solution to the problem is provided by Briys
by writing formally the Hamilton–Jacobi–Bellman equation.

An important feature of Briys’ (1986) and Gollier’s (1994) analysis is that
no constraint on the insurance strategy is imposed, which is not realistic. In
real cases, the insurance strategy is restricted to the interval �0�1�. Also, in
both papers, the insurance premium is assumed to be an affine function of the
insurance strategy.

In this paper, we account explicitly for the constraint on the insurance strat-
egy and we consider a more general convex insurance premium. We provide
a dual formulation of the optimal insurance demand problem inspired from
the usual technique in portfolio optimization theory; see Karatzas, Lehoczky
and Shreve (1987), Karatzas (1989), Cox and Huang (1989) and Cvitanic̀ and
Karatzas (1992). In the case of Poisson shocks, unconstrained insurance strat-
egy and affine insurance premium, the dual opitimization problem is degen-
erate and provides directly an explicit solution of the problem.

In the general case, the dual optimization problem cannot be solved explic-
itly but does not present any constraint on the controls. The proofs of the dual
formulation of the problem are inspired from Cvitanic̀ and Karatzas (1992)
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with some simplified arguments; see, for example, the proof of Lemma 6.3.
Theorem 5.1 appeals to the optional decomposition Theorem of Föllmer and
Kramkov (1997), which was first established by El Kaoui and Quenez (1995)
and Cvitanic̀ and Karatzas (1992) in a Brownian filtration framework. We also
provide an existence theorem for the dual optimization problem which does
not satisfy the usual conditions for application of general existence theorems
as in Ekeland and Temam (1976).

Finally, we observe that the optimal insurance demand problem is closely
related to the portfolio optimization problem in a large investor setting as in
Cuocco and Cvitanic̀ (1998) who studied the Brownian filtration case.

In this paper, we only discuss the problem of maximizing expected utility
from terminal wealth. As in Karatzas, Lehoczky, Shreve and Xue (1991) and
Cvitanic̀ and Karatzas (1992), the model can be easily extended to allow for
intertemporal consumption.

The paper is organized as follows. Section 2 provides the (explicit) solution
of the optimal unconstrained insurance demand problem with Poisson shocks.
Section 3 describes the general (constrained) insurance demand problem under
marked point processes shocks. In Section 4, we introduce an appropriate set
of auxiliary local martingales which is the basic tool for the dual formulation of
the problem. In Section 5, we characterize the set of attainable terminal wealth
processes which is now well understood to be closely related to the problem
of maximizing expected utility from terminal wealth. Section 6 contains the
main result of the paper which provides a dual formulation of the problem
in terms of the auxiliary local martingales introduced in Section 4 under an
existence assumption on the dual problem. In Section 7, we provide sufficient
conditions which ensure the existence of a solution to the dual problem. We
conclude by some examples in Section 8 concerning logarithmic and power
utility functions, constant coefficients of the model and Poisson shocks.

2. Poisson shocks, unconstrained insurance strategy and linear in-
surance premium. In this section, we present a slight generalization of
Briys (1986) which motivates the passage to the dual formulation of the prob-
lem. The reader interested in the general model of this paper can skip this
section. We fix throughout this section a complete probability space ���� �P�,
a finite time horizon T, and a Poisson process �v�t�� 0 ≤ t ≤ T� with pre-
dictable intensity process �m�t�� 0 ≤ t ≤ T� with m�t� ≥ η� 0 ≤ t ≤ T P-a.s.
for some constant η > 0. The process ṽ�t� = v�t� − ∫ t

0 m�u�du denotes the
compensated Poisson process. Let � = �� �t�� 0 ≤ t ≤ T� the (P-completion)
of the filtration generated by �v�t�� 0 ≤ t ≤ T� and assume � �T� = � .

Let β = �β�t��0 ≤ t ≤ T� be some �-predictable process, and consider the
associated wealth process Xx�β defined by

Xx�β�0�=x and dXx�β�t�=Xx�β�t−�[�r�t�−bβ�t��dt−�1−β�t��γ�t�dv�t�]�
where �r�t�� 0 ≤ t ≤ T� is an �-predictable process satisfying

∫ T
0 r�u�du <∞,

b is some positive constant and γ = �γ�t�� 0 ≤ t ≤ T� is an �-predictable
positive process with γ�t� ≥ η� 0 ≤ t ≤ T, and

∫ T
0 γ�t�m�t�dt <∞ P-a.s.
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Here r�t� is the instantaneous interest rate process at time t; the process
β = �β�t�� 0 ≤ t ≤ T� is called an unconstrained insurance strategy; that is
β�t� is the level of insurance demanded by the agent at time t. The function
π�x� = bx is the insurance premium, to be paid by the agent, for a level of
insurance x, see Section 3 for a deeper description of the model. Notice that,
as in Bryis (1986), we do not impose that the level of insurance must be in the
interval �0�1�; we shall take this constraint into account in the subsequent
sections of the paper.

An unconstrained insurance strategy β is said to be admissible if the asso-
ciated wealth process Xx�β is nonnegative. We shall denote by �0 the set of
all such admissible unconstrained insurance strategies.

The preferences of the agent are described by a utility functionU
 �0�∞� →
� assumed to be increasing, strictly concave, of classC1, and satisfiesU′�0+� =
+∞ and U′�+∞� = 0.

The (unconstrained) optimal insurance demand problem of the agent is

sup
β∈�0

E
[
U
(
Xx�β�T�)]�

In this section, we solve the above optimization problems by a method similar
to that introduced by Karatzas (1989) in the theory of continuous trading with
complete market.

We shall denote I the (continuous strictly increasing) inverse of U′ and we
introduce the Legendre–Fenchel transform of −U�−x� defined by

Ũ�y� 
= sup
x>0
�U�x� − xy� = U�I�y�� − yI�y�� y > 0�

Denote by q the process defined by

q�t� = b

γ�t�m�t� � 0 ≤ t ≤ T�

and consider the Doléans-Dade exponential local martingale Ẑ,

Ẑ�t� = �
(∫ t

0
�q�u� − 1�dṽ�u�

)

From our assumptions on the coefficients, Ẑ is a P-martingale. Then we can
define the probability measure P̂ ∼ P by P̂�A� = E

[
Ẑ�T�1A

]
for all A ∈ � .

By the Girsanov theorem for Poisson processes, the predictable intensity of
�v�t�� 0 ≤ t ≤ T� under the probability measure P̂ is given by

∫ t
0 m�u�q�u�du.

Denoting by v̂ the P̂-compensated Poisson process, we see that the wealth
process associated to some admissible insurance strategy β satisfies

d
(
Xx�β�t� exp(− ∫ t

0
r�u�du))

=
(
Xx�β�t−� exp(− ∫ t

0
r�u�du))�1− β�t��γ�t�dv̂�t��
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Then Xx�β exp
(− ∫ ·

0 r�u�du
)
is a P̂-supermartingale as a nonnegative P̂-

local martingale. Now, by definition of Ũ, we have

Ũ
(
yẐ�T�) ≥ U

(
Xx�β�T�)− yẐ�T�Xx�β�T�� P-a.s.(2.1)

for all x > 0 and β ∈ �0. Furthermore, from the P̂-supermartingale property
of Xx�β, we have

E
[
Ẑ�T�Xx�β�T�] ≤ x�(2.2)

It follows from (2.1) and (2.2) that

E
[
Ũ�yẐ�T��] ≥ sup

β∈�0

E
[
U
(
Xx�β�T�)]− xy�(2.3)

Now, observe that, in order to have equality in (2.3), it suffices to have equality
in (2.1) and (2.2) for some ŷ > 0 and some β̂ ∈ �0. By definition of Ũ, we have
equality in (2.1) if and only if

I
(
yẐ�T�) =Xx� β̂�T�� P-a.s.(2.4)

By the local martingale representation theorem for Poisson processes [see
Brémaud (1981), Theorem 9, page 64], it is possible to find such a process β̂.
Next, in order to have equality in (2.2), we need to define ŷ by

E
[
Ẑ�T�I(ŷẐ�T�)] = x�(2.5)

By Fatou’s lemma, we see that the left-hand side of (2.5) tends to +∞ as y↘ 0.
Moreover, assuming that E

[
Ẑ�T�I(y0Ẑ�T�

)]
<∞ for some y0 > 0, it follows

from the decrease of I�·� that Ẑ�T�I(yẐ�T�) ≤ Ẑ�T�I(y0Ẑ�T�
)
for y ≥ y0,

and therefore, we see that the left-hand side of (2.5) tends to zero as y ↗ ∞
by the dominated convergence theorem. Therefore by the strict decrease of I,
(2.5) defines a unique ŷ > 0.

We have then proved that

E
[
Ũ�ŷẐ�T��] = sup

β∈�0

E
[
U
(
Xx�β�T�)]− xy

and the optimal insurance strategy is characterized by (2.4). Hence the dual
formulation of the unconstrained optimal insurance problem solves the prob-
lem explicitly.

3. The general model. In this section, we present the model and the
stochastic control problem considered throughout the rest of the paper. Our
purpose is to obtain a dual formulation of the optimal insurance demand prob-
lem as in the previous section.
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3.1. The general framework. Let ���� �P� be a complete probability space
and T a finite time horizon. We consider an integer valued random mea-
sure v�dt�dz�, defined on ���� �P�, associated to the marked point process
�N� �Y�n�� n ∈ ���; that is, �N�t� t ≥ 0� is a counting process corresponding
to the random time points �Tn� n ∈ ��, and �Y�n�� n ∈ �� is a sequence of
random variables with values in the mark space D, a Borel subset of �+.

As usual, v and �N� �Y�n�� n ∈ ��� are identified by the formula

v��0� t� ×B� = ∑
n≥1

1�Tn≤t�1B�Yn� for all t ∈ �0�T� and B ∈ � �

where � is the Borel σ-field on D. We denote by � = �� �t�� 0 ≤ t ≤ T� the P-
completed filtration generated by the random measure v�dt�dz�. We assume
that �0 is trivial and �T = � .

The random measure v�dt�dz� is assumed to have a predictable intensity
kernel mt�dz� with

∫
Dmt�dz� <∞ which means that there is a finite number

of jumps during any finite time interval. By definition of the intensity kernel
mt�dz�, the compensated jump process

ṽ�dt�dz� = v�dt�dz� −mt�dz�dt
is such that �ṽ��0� t� ×B�� 0 ≤ t ≤ T� is a �P��� martingale for all t ∈ �0�T�
and B ∈ � . We shall assume throughout the paper that the following nonde-
generacy condition holds:∫

D
mt�dz� ≥ η for all t ∈ �0�T� P-a.s.

for some η > 0 and that E�∫ T0 ∫
Dmt�dz��.

3.2. The wealth process. In this paper, we consider the problem of opti-
mal insurance demand of an agent whose wealth process is subject to (nega-
tive jumps) produced by the random measure v�dt�dz�. We first describe the
agent wealth process in the absence of insurance. Let �r�t��0≤ t≤T� be an
�-predictable nonnegative bounded process. Here, r�t� is the instantaneous
interest rate at time t. The wealth process evolves according to

Xx�0�0� = x�

dXx�0�t� =Xx�0�t−�
[
r�t�dt−

∫
D
γt�z�v�dt�dz�

]
�

where �γt�z�� is a predictable D-marked process satisfying

η ≤ γt�z� < 1 for all �t� z� ∈ �0�T� ×D� P-a.s.

for some η > 0. The condition γt�z� < 1 guarantees positivity of the wealth
process Xx�0 for any initial data x > 0.

Now, suppose that the agent has the possibility of “lowering” the shocks on
his wealth by buying an insurance.

An insurance strategy is an �-predictable process �β�t�� 0 ≤ t ≤ T� valued
in �0�1�. At each time t, β�t� is the rate of insurance decided by the agent; that
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is, if the agent is subject to some accident which costs an amount of money C,
then the insurance company reimburses the amount β�t�C so that the shock
is reduced from C to �1−β�t��C. We shall denote by � the set of all insurance
strategies.

We denote by π the insurance premium rate per unit of insured capital. We
assume that

π
 �0�1� → �+ is strictly increasing, convex and π�1� <∞�

Given an insurance strategy β, the wealth process evolves according to

Xx�β�0� = x�

dXx�β�t� =Xx�β�t−�
{
�r�t� − π�β�t���dt− �1− β�t��

∫
D
γt�z�v�dt�dz�

}
�

We shall denote by π̃ the Legendre–Fenchel transform of the function π�x+1�
(after extending the convex function π to the whole real line by assigning the
value +∞ outside the interval �0�1�) defined by

π̃�y� = sup
x∈�
�xy− π�x+ 1�� = sup

−1≤x≤0
�xy− π�x+ 1��

= sup
0≤x≤1

�−�1− x�y− π�x��� y ∈ �+�

Then it is easily checked that

π̃ is convex, nonincreasing on �+ and π̃�·� ≥ −π�1��(3.1)

3.3. Utility functions. A function U
 �0�∞� → � will be called a utility
function if it is increasing, strictly concave, of class C1, and satisfies

U�∞� 
= lim
x↗∞

U�x� = +∞�(3.2)

U′�0+� 
= lim
x↘0

U′�x� = ∞ and U′�∞� 
= lim
x↗∞

U′�x� = 0�(3.3)

We shall denote by I the (continuous strictly decreasing) inverse of the func-
tionU′. It is easily checked that Imaps �0�∞� onto itself and satisfies I�0+� =
∞ and I�∞� = 0. We also introduce the Legendre–Fenchel transform of
−U�−x� defined by

Ũ�y� 
= sup
x>0
�U�x� − xy� = U�I�y�� − yI�y�� 0 < y <∞�

Then Ũ is strictly convex, decreasing with

Ũ′�y� = −I�y�� 0 < y <∞
and satisfies

Ũ�0+� = U�∞� = +∞ and Ũ�∞� = U�0+��(3.4)

We shall also assume the condition

y �→ Ũ�ey� is convex on ��(3.5)
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Remark 3.1. As observed in Karatzas, Lehoczky, Shreve and Xu (1991),
conditions (3.2) and (3.5) are implied by the condition x �→ U′�x� is nonde-
creasing on �0�∞�, which is equivalent to y �→ yI�y� is nonincreasing on
�0�∞�. The latter (stronger) condition is satisfied by power utility functions
as well as logarithmic ones.

Finally, we need the condition

∃α ∈ �0�1� and γ > 1 such that U′�γx� ≤ αU′�x� for all x > 0�(3.6)

which is equivalent to

∃α ∈ �0�1� and γ > 1 such that I�αy� ≤ γI�y� for all y > 0�(3.7)

By iterating (3.7), we obtain the apparently stronger statement

∀α ∈ �0�1�� ∃γ ∈ �1�∞� such that I�αy� ≤ γI�y� for all y > 0�(3.8)

Condition (3.6) will be used in order to connect the solution of the dual problem
of Section 6 to some attainable terminal wealth; see Lemma 6.3.

3.4. The insurance demand problem. In this paper, we consider the prob-
lem of optimal insurance demand of the agent faced to shocks on his wealth
produced by the random measure v�dt�dz�. For all β ∈ �, we introduce

J�x�β� 
= E
[
U
(
Xx�β�T�)]�

Remark 3.2. Function J�x�β� is well defined for all x > 0 and β ∈ �
and takes values in � ∪ �−∞�. Indeed, we clearly have 0 ≤ Xx�β�T� ≤
x exp

(∫ T
0 r�u�du); then since U is increasing, we have E

[
U
(
Xx�β�T�)+] <∞.

The agent optimal insurance demand problem is then to maximize the
expected terminal wealth utility over all admissible insurance strategies,
that is,

V�x� 
= sup
β∈�

J�x�β��

From Remark 3.2, we see that V�x� <∞.

4. Auxiliary local martingales. In order to solve the optimization prob-
lem V�x� introduced in the previous section, we introduce a set of exponential
local martingales which preserve a supermartingale property for the wealth
process. We shall denote by � the set of all predictable D-marked processes
θ satisfying

∫ T

0

∫
D

(�θt�Z�� + exp�θt�z��
)
mt�dz�dt <∞� P-a.s.
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For each θ ∈ � , we define the Doléans–Dade exponential

Zθ�t� 
= �
(∫ t

0

∫
D

(
exp�θs�z�� − 1

)
ṽ�ds�dz�

)

= exp
(∫ t

0

∫
D
θsv�ds�dz� −

∫ t

0

∫
D

(
exp�θs�z�� − 1

)
ms�dz�ds

)
�

where the last equality follows from the exponential formula; see, for example,
Brémaud (1981). In the following, we shall use the notations

νθ�t� 
=
∫
D
γt�z� exp�θt�z��mt�dz��

Hθ�t� 
= Zθ�t� exp−
∫ t

0

[
r�s� + π̃(νθ�s�)]ds�

We then have the following result.

Proposition 4.1. Let x > 0 and β ∈ � be some initial wealth and insu-
rance strategy. Then for any θ ∈ � , the process �Hθ�t�Xx�β�t�� 0 ≤ t ≤ T� is
a P-supermartingale.

Proof. By Itô’s lemma [see, e.g., Jacod and Shiryaev (1987), page 57], it
follows that

d
[
Hθ�t�Xx�β�t�] =Hθ�t−�dXx�β�t� +Xx�β�t−�dHθ�t� + ,Hθ�t�,Xx�β�t�

=Hθ�t−�dXx�β�t� +Xx�β�t−�dHθ�t�

+ �1− β�t��
∫
D
γt�z�

(
exp�θt�z�� − 1

)
v�dt�dz�

=Hθ�t−�Xx�β�t−�
{
−�π̃(νθ�t�)+π�β�t��+�1−β�t��νθ�t��dt

+
∫
D

(
exp�θt�z��−1+�1−β�t��γt�z� exp�θt�z��

)
ṽ�dt�dz�

}
�

Notice that, by definition of π̃, we have π̃�y� + π�x� + �1 − x�y ≥ 0 for all
x ∈ �0�1�. Then process HθXx�β is a local supermartingale. Since HθXx�β is
nonnegative, the required result follows from Fatou’s lemma. ✷

5. Attainable terminal wealth. In this section, we provide a characteri-
zation of the set of attainable terminal wealth processes which is related to the
problem of maximizing expected utility from terminal wealth; see Karatzas,
Lehoczky, Shreve and Xu (1991).

Let B be any � -measurable nonnegative random variable with

0 < sup
θ∈�

E
[
Hθ�T�B]

<∞�
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Our interest is in the problem of minimal initial wealth in order to achieve a
terminal wealth which dominates the random variable B, that is,

Q�0� 
= inf
{
x > 0
 ∃ β ∈ ��Xx�β�T� ≥ B a.s.

}
�

The random variable B is said to be attainable if there exists some initial
wealth x > 0 and some admissible insurance strategy β such that Xx�β�T� =
B a.s. The basic result of this paragraph for the rest of the paper consists in a
dual characterization of the set of all such attainable random variables. Simi-
lar characterizations have been obtained in the theory of portfolio optimization
by El Karoui and Quenez (1995), in the context of incomplete markets, and
Cvitanic̀ and Karatzas (1992) in the context of portfolio constraints.

Let us introduce the subset of � ,

�0 =
{
θ ∈ � 
 E[

Zθ�T�] = 1
}
�

For all θ ∈ �0, we can define a probability measure Pθ equivalent to P by

Pθ�A� = E
[
Zθ�T�1A

]� A ∈ � �

Lemma 5.1. Let Y be a nonnegative process. Suppose that the process

{
Y�t� exp(− ∫ t

0
π̃�νθ�u��du)� 0 ≤ t ≤ T

}

is a Pθ-supermartingale for all θ ∈ �0. Then there exists an insurance strategy
β ∈ � and an optional nondecreasing process C, with C�0� = 0, such that

Y�t� ≤XY�0�� β�t� exp
(
−
∫ t

0
r�u�du

)
� 0 ≤ t ≤ T� P-a.s.

Proof. The proof is a consequence of Theorem 3.1 (and its corollary) in
Föllmer and Kramkov (1997). We first introduce some notations. We denote
by 	 the set of all nondecreasing cad-lag predictable processes with C�0� = 0.
Given β ∈ � and C ∈ 	 , we introduce the process Sβ�C defined by

Sβ�C�t� = −
∫ t

0
�π�β�u�� − π�1��du−C�t� −

∫ t

0
�1− β�u��

∫
D
γu�z�v�du�dz��

We denote 
 
= {
Sβ�C
 �β� C� ∈ �×	

}
. Observe that S0�0 = 0 ∈ 
 and that,

by convexity of π�·�, 
 is predictably convex, that is, for S1� S2 ∈ 
 and for
any predictable process h with 0 ≤ h ≤ 1, the process

∫ ·
0 h�u−�dS1�u�+

∫ ·
0�1−

h�u−��dS2�u� is in 
 . Next, we introduce the set � �
 � defined by

� �
 � = �P′ ∼ P: ∃ A ∈ 	 �∀S ∈ 
 � S−A is a P′-local supermartingale�
and we denote by A


P′ the upper variation process of 
 under P′ as defined
in Föllmer and Kramkov (1997). Clearly, we have � �
 � = �Pθ: θ ∈ �0� and

A

Pθ�t� =

∫ t

0

[
π�1� + π̃�νθ�u��]du� 0 ≤ t ≤ T
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for all θ ∈ �0; recall that π̃�y� ≥ π�1� for all y > 0. We now claim that

If �Sn�n ⊂ 
 � uniformly bounded from below

and Sn→S in the semimartingale topology,

then we have S ∈ 
 �
(5.1)

this is Assumption 3.1 in Föllmer and Kramkov (1997). Before proving this,
let us show how to complete the proof. Let Ỹ�t� 
= Y�t� exp�π�1�t�; 0 ≤ t ≤ T.
Then, from the condition of the lemma on the process Y, we deduce that the
process �Ỹ�t� exp(−A


Pθ�t�
)
�0 ≤ t ≤ T� is a nonnegative Pθ-supermartingale

for all θ ∈ �0. Then, from Corollary 3.1 in Föllmer and Kramkov (1997), we
have Ỹ = Y�0�� �S−C� for some optional nondecreasing process C and S ∈ 
 ,
which provides the required result by stochastic composition.

It remains to prove (5.1). Let �βn�Cn� be corresponding to Sn, that is,
Sn = Sβn�Cn . From Theorem II.3 in Mémin (1980), there is a subsequence
[also denoted �Sn�n] and a probability measure Q ∼ P with bounded den-
sity dQ/dP, such that �Sn�n is a Cauchy sequence in � 2�Q� ⊕
 �Q� where
� 2�Q� is the Banach space of Q-square integrable martingales and 
 �Q� is
the Banach space of predictable processes with finite Q-integrable variation.
Then Sn → S = M +A in � 2�Q� ⊕
 �Q�. Using Corollary III.4 in Mémin
(1980), this proves that the limit process S is a semimartingale in the form

S�t� = −A�t� −
∫ t

0
�1− β�u��

∫
D
γt�z�v�dt�dz�� 0 ≤ t ≤ T�

where β ∈ � and A is a predictable process with finite variation. From the
convergence of �Sn�n to S in � 2�Q� ⊕ A�Q�, it also follows that the local
martingale part of (Sn) converges to the local martingale part of (S) in� 2�Q�,
and therefore

EQ

(∫ T

0
�βn�t� − β�t��

∫
D
γt�z�mt�dz�dt

)
→ 0�

By the nondegeneracy assumption on γt�z� and mt�dz�, it follows that βn →
β l ⊗P-a.s. possibly after passing to a subsequence, where l is the Lebesgue
measure on �0�T�. Since 0 ≤ π�βn�t�� ≤ π�1�, we can conclude from the
dominated convergence theorem that

EQ

∣∣∣∣
∫ T

0

[
π�βn�t�� − π�β�t��

]
dt

∣∣∣∣→ 0�

This implies that

Cn�t� → C�t� 
= A�t� −
∫ t

0

[
π�β�u�� − π�1�]du� P-a.s.

along some subsequence. Clearly, the predictable process C inherits the in-
crease of the processes Cn and therefore

S�t� = −
∫ t

0

[
π�β�u�� − π�1�]du−C�t� − ∫ t

0
�1− β�u��

∫
D
γt�z�v�dt�dz��

with �β�C� ∈ � × 	 , proving that the limit S ∈ 
 . ✷
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Next, for all stopping time τ valued in �0�T�, we define

Q̃�τ� 
= ess sup
θ∈�

Ĩ�τ� θ� with Ĩ�τ� θ� 
= E

[
Hθ�T�
Hθ�τ� B

∣∣∣∣� �τ�
]
�

In order to connect the “dual” problem Q̃ toQ, we need to establish a dynamic
programming result. This is obtained by the general method developed by
Neveu (1975) in discrete time and adapted to continuous time by El Karoui and
Quenez (1995) in the context of portfolio optimization in incomplete markets.

Lemma 5.2. For all stopping time τ valued in �0�T�, and for all θ1� θ2 ∈ � ,
there exists θ̂ ∈ � such that Ĩ�τ� θ̂� = max

{
Ĩ�τ� θ1�� Ĩ�τ� θ2�}.

Proof. Take two arbitrary elements θ and θ′ in � and define

A 
= {
ω ∈ �: Ĩ�τ� θ� ≥ Ĩ�τ� θ′�}�

observe that A is � �τ� measurable. Next define θ̂ 
= θ1A + θ′1Ac . Then,

Ĩ�τ� θ̂� = E

[
Hθ̂�T�
Hθ̂�τ� B1A

∣∣∣∣� �τ�
]
+E

[
Hθ̂�T�
Hθ̂�τ� B1Ac

∣∣∣∣� �τ�
]

= E

[
Hθ�T�
Hθ�τ� B

∣∣∣∣� �τ�
]
1A +E

[
Hθ′ �T�
Hθ′ �τ� B

∣∣∣∣� �τ�
]
1Ac

= max
{
Ĩ�τ� θ�� Ĩ�τ� θ′�}� ✷

Lemma 5.3 (Dynamic programming). Let τ and ζ be two �0�T�-valued stop-
ping times with ζ ≥ τ a.s. Then, we have

Q̃�τ� = ess sup
θ∈�

E

[
Hθ�ζ�
Hθ�τ� Q̃�ζ�

∣∣∣∣� �τ�
]
�

Proof. By simple conditioning we have

Q̃�τ� = ess sup
θ∈�

E

[
Hθ�ζ�
Hθ�τ� Ĩ�ζ� θ�

∣∣∣∣� �τ�
]
�

Notice that Ĩθ�ζ� depends on θ only through its realizations in the stochastic
interval �ζ�T�, and the first term inside the expectation (on the right-hand
side of the last equation) depends on θ only through its realizations in the
stochastic interval �τ� ζ�. Then we have

Q̃�τ� ≤ ess sup
θ∈�

E

[
Hθ�ζ�
Hθ�τ� Q̃�ζ�

∣∣∣∣� �τ�
]
�

We now prove the opposite inequality. Let θ be an arbitrary element in �
and denote by �θ�τ� ζ� 
= �µ ∈ � 
 µ = θ on �τ� ζ��. From Lemma 5.2, the
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family �Ĩ�ζ� θ�� θ ∈ � � is directed upwards. Then there exists a sequence
�θn�n≥0 ⊂ � such that

Q̃�ζ� = lim
n→∞ ↑ Ĩ�ζ� θ

n� a�s�

See Neveu [(1975), page 121]. Moreover, since Ĩ�ζ� θn� depends on θn only
through its realizations on the stochastic interval �ζ�T�, we may chose �θn�n≥0
⊂ �θ�τ� ζ�. Now, for all n ≥ 0, we have

Q̃�τ� ≥ E

[
Hθn�ζ�
Hθn�τ� Ĩ�ζ� θ

n�
∣∣∣∣� �τ�

]
= E

[
Hθ�ζ�
Hθ�τ� Ĩ�ζ� θ

n�
∣∣∣∣� �τ�

]
�

and therefore

Q̃�τ� ≥ lim
n→∞ ↑ E

[
Hθ�ζ�
Hθ�τ� Ĩ�ζ� θ

n�
∣∣∣∣� �τ�

]
= E

[
Hθ�ζ�
Hθ�τ� Q̃�ζ�

∣∣∣∣� �τ�
]

by monotone convergence. ✷

We now can state the main result of this section.

Theorem 5.1. We have

Q�0� = Q̃�0� = sup
θ∈�

E
[
Hθ�T�B]

�

Moreover, for all θ ∈ � , the following statements are equivalent:

(i) θ achieves the supremum in Q̃�0� = supθ∈� E�Hθ�T�B�.
(ii) B is attainable (by some β ∈ �) and the corresponding process

�Hθ�t�XQ�0�� β�t��0 ≤ t ≤ T� is a P-martingale.

Proof. Step 1. We first prove that Q�0� ≥ Q̃�0�. Let x > 0 be an arbitrary
initial wealth such that there exists an insurance strategy β ∈ � satisfying
Xx�β�T� ≥ B a.s. Then, for all θ ∈ � , we have

Hθ�T�Xx�β�T� ≥Hθ�T�B a.s.

Taking expectation on both sides of the last inequality and using Proposi-
tion 4.1 provides

x ≥ E
[
Hθ�T�B]

�

which provides the required inequality.
Step 2. We now prove the opposite inequality Q�0� ≤ Q̃�0�. From the dy-

namic programming equation of Lemma 5.3, it follows that the process{
Zθ�t�Q̃�t� exp

(
−
∫ t

0
�r�u� + π̃�νθ�u���du

)
�0 ≤ t ≤ T

}

is a P-supermartingale for each θ ∈ � . Moreover, as in El Karoui and Quenez
(1995) and Cvitanic̀ and Karatzas (1992), it is possible to show that there
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exists a right continuous with left limits supermartingale [still denoted Q̃�t�]
which coincides a.s. with Q̃. It then follows that, for all θ ∈ �0, the process

{
Q̃�t� exp

(
−
∫ t

0
�r�u� + π̃�νθ�u���du

)
�0 ≤ t ≤ T

}

is a Pθ-supermartingale for all θ ∈ �0. By Lemma 5.1, we deduce that there
exists an insurance strategy β ∈ �, such that

Q̃�t� ≤XQ̃�0�� β�t�� 0 ≤ t ≤ T� P-a.s.(5.2)

Since Q̃�T� = B, it follows from the definition of Q�0� that Q̃�0� ≥ Q�0�.
Step 3. It remains to prove the equivalence between statements (i) and (ii)

of the theorem. �ii� ⇒ �i� is trivial. Now, suppose that there exists some θ̂ ∈ �
such that

Q̃�0� = E
[
Hθ̂�T�B]

�

Then since the process Hθ̂Q̃ is a P-supermartingale,

E
[
Hθ̂�t�Q̃�t�] ≥ E

[
E
(
Hθ̂�T�Q̃�T��� �t�)] = E

[
Hθ̂�T�B] = Q̃�0�

and
E
[
Hθ̂�t�Q̃�t�] ≤Hθ̂�0�Q̃�0� = Q̃�0��

Hence, Hθ̂Q̃ is a P-supermartingale with constant expectation and therefore
a P-martingale. It follows that the increasing process C appearing in the proof
of Lemma 5.1 must be zero. This proves that XQ�0�� β�T� = B P-a.s. ✷

6. Dual optimization problem. We now introduce the following opti-
mization problem:

Ṽ�y� = inf
θ∈�

J̃�y� θ��
J̃�y� θ� = E

[
Ũ�yHθ�T��]

and

Hθ�T� = Zθ�T� exp
(
−
∫ T

0
�r�u� + π̃�νθ�u���du

)
�

The following result shows (in particular) that function J̃ is well defined and
takes values in the extended real line � ∪ �+∞�.

Lemma 6.1. For all y > 0, the family �Ũ�yHθ�T��−� θ ∈ � � is uniformly
integrable.

Proof. If U�0+� ≥ 0 then the result is trivial. Then we concentrate on
the case U�0+� < 0. The following argument is reported from Kramkov and
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Schachermayer (1997). Let g
 (−Ũ�0��−Ũ�∞�) → �0�∞� denote the inverse
of −Ũ. Notice that 0 ∈ (−Ũ�0��−Ũ�∞�) = (−U�∞��−U�0+�); see (3.4). The
function g is strictly increasing and

E
[
g
(
Ũ�yHθ�T��−)] ≤ E

[
g
(−Ũ�yHθ�T��)]+ g�0�

≤ Cy+ g�0��
where we used the fact that E�Zθ�T�� ≤ 1 and C is a lower bound of
exp

(− ∫ T
0 �r�u� + π̃�νθ�u���); recall that the process r is bounded and π̃�·� ≥

−π�1�. Now, from l’Hôpital’s rule, we have

lim
x→−Ũ�∞�

g�x�
x

= lim
y→∞

y

−Ũ�y� = lim
y→∞

1
I�y� = +∞�

the required result then follows from the de la Valée–Poussin theorem; see
Dellacherie and Meyer (1975). ✷

In order to relate the optimization problemsV and Ṽ, we need the following
condition.

Assumption 6.1. There exists some ŷ > 0 such that Ṽ�ŷ� <∞.

Remark 6.1. Assumption 6.1 is equivalent to Ṽ�y� < ∞ for all y > 0.
Indeed, for y ≥ ŷ, this follows from the decrease of Ũ. Next consider some
α ∈ �0�1�. As observed in Kramkov and Schachermayer (1997), condition (3.6)
implies that there exists some y0 > 0 and some C < ∞ such that Ũ�αz� <
CŨ�z� for all z < y0. Then, it follows from the decrease of Ũ that, for all
θ ∈ � ,

Ũ�αŷHθ�T�� ≤ CŨ�ŷHθ�T��1�ŷHθ�T�≤y0� +
∣∣Ũ�αy0�

∣∣
and therefore Ṽ�αŷ� <∞ whenever Ṽ�ŷ� <∞.

Lemma 6.2. Function Ṽ is convex and satisfies

Ṽ�y� ≥ sup
ξ>0
�V�ξ� − ξy� for all y > 0�

Proof. (i) We first prove the convexity of Ṽ. Fix λ ∈ �0�1� and y�y′ > 0.
Let θ and θ′ be two arbitrary elements in � and define

G�t� 
= λyHθ�t� + �1− λ�y′Hθ′ �t��

exp�θ̂t�z�� 
= λy exp�θt�z��
Hθ�t−�
G�t−� + �1− λ�y

′ exp�θ′t�z��
Hθ′ �t−�
G�t−� �

µ�t� 
= λyπ̃�νθ�t��H
θ�t−�

G�t−� + �1− λ�y
′π̃�νθ′ �t��H

θ′ �t−�
Gε�t−� �
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By Itô’s lemma, we get

dG�t� = G�t−�
[∫

D
�exp�θ̂t�z�� − 1�ṽ�dt�dz� − µ�t�dt

]
�

Notice that, from the convexity of π̃, we have

µ�t� ≥ π̃

(
λyνθ�t�H

θ�t−�
G�t−� + �1− λ�y

′νθ
′ �t�H

θ′ �t−�
G�t−�

)
= π̃

(
νθ̂�t�)�

Since dHθ̂�t� = Hθ̂�t−�[∫D�exp�θ̂t�z�� − 1� ṽ�dt�dz� − π̃�νθ′ �t��dt], it follows
from the comparison theorem [see, e.g., Protter (1990), Theorem 54, page 268]
that

G�t� ≤ �λy+ �1− λ�y′�Hθ̂�t�� 0 ≤ t ≤ T a.s.

Therefore, by convexity and decrease of Ũ, we see that

Ũ
(
�λy+ �1− λ�y′�Hθ̂�T�

)
≤ λŨ

(
yHθ�T�)+ �1− λ�Ũ(

y′Hθ′ �T�)�
then the required result follows from the arbitrariness of θ and θ′ in � .

(ii) We now prove the last claim of the lemma. Consider some ξ� y > 0� β ∈ �
and θ ∈ � . Then, by the definition of Ũ, we have

Ũ�yHθ�T�� ≥ U�Xξ�β�T�� − yHθ�T�Xξ�β�T��
From the supermartingale property established in Proposition 4.1, we have
E�Hθ�T�Xξ�β�T�� ≤ ξ and therefore

E
[
Ũ�yHθ�T��] ≥ E

[
U�Xξ�β�T��]− yξ�

the required result is obtained by taking supremum over β ∈ � and ξ > 0
on the right-hand side and infinimum over θ ∈ � on the left-hand side of the
last inequality. ✷

We leave the discussion of the existence problem in Ṽ�y� for the next section
and we simply assume it in the present section.

Assumption 6.2. For all y > 0, there exists θ�y� ∈ � such that

Ṽ�y� = J̃�y� θ�y���

In the next section, we shall provide conditions under which existence in
Ṽ�y� indeed holds.

Remark 6.2. Under Assumption 6.1 and 6.2, we have that

E
[
Hθ�y��T�I�yHθ�y��T��] <∞ for all y > 0�

To see this, we use the fact that condition (3.6) implies that there exists some
y0 > 0 and some constant C <∞ such that zI�z� < CŨ�z� for all z ∈ �0� y0�;
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see Kramkov and Schachermayer (1997). Then, by the decrease of I, it is easily
checked that

Hθ�y��T�I(yHθ�y��T�) ≤Hθ�y��T�I�y0� +
C

y
Ũ
(
yHθ�y��T�)1�yHθ�y��T�<y0��

which proves the announced claim.

Lemma 6.3. Let Assumptions 6.1 and 6.2 hold. Then,

E
[
Hθ�y��T�I�yHθ�y��T��] = sup

θ∈�
E
[
Hθ�T�I�yHθ�y��T��]�

Proof. In order to establish the above result, we use a variations calculus
argument to obtain a characterization of the optimality of θ�y� for the dual
problem Ṽ�y�. For ease of notation, we set θ̂ = θ�y�. Fix some ε > 0 and θ ∈ �
and define

Gε�t� 
= �1− ε�Hθ̂�t� + εHθ�t��

exp�θεt �z�� 
= �1− ε� exp�θ̂t�z��
Hθ̂�t−�
Gε�t−� + ε exp�θt�z��

Hθ�t−�
Gε�t−� �

µε�t� 
= �1− ε�π̃�νθ̂�t��H
θ̂�t−�

Gε�t−� + επ̃�ν
θ�t��H

θ�t−�
Gε�t−� �

By the same argument as in the proof of Lemma 6.2, we see that

Gε�t� ≤Hθε�t�� 0 ≤ t ≤ T a.s.

Then, from the optimality of θ̂ and the decrease of Ũ, this provides

E
[
Ũ�yHθ̂�T�� − Ũ�yGε�T��] ≤ E

[
Ũ�yHθ̂�T�� − Ũ�yHθε�T��] ≤ 0�

hence

E

[
1
ε

(
Ũ
(
yHθ̂�T�)− Ũ�yGε�T��)

]
≤ 0�(6.1)

Since Ũ is C1 there exists a random variable Fε between yGε�T� and yHθ̂�T�
such that Ũ

(
yHθ̂�T�)− Ũ�yGε�T�� = Ũ′�Fε�y(Hθ̂�t� −Gε�T�) and therefore

E
[
I�Fε�(Hθ�T� −Hθ̂�T�)] ≤ 0 for all ε > 0�

Notice that Fε → yHθ̂�T� P-a.s. Therefore, in order to obtain the required
result it suffices to prove that

lim inf
ε→0

E
[
I�Fε�(Hθ�T� −Hθ̂�T�)]

(6.2)
≥ E

[
lim inf
ε→0

I�Fε�(Hθ�T� −Hθ̂�T�)
]
�



OPTIMAL INSURANCE DEMAND 299

To see this, write

E
[
I�Fε�(Hθ�T� −Hθ̂�T�)] = E

[
I�Fε�(Hθ�T� −Hθ̂�T�)+]

+E[
I�Fε�Hθ�T�1�Hθ̂�T�≥Hθ�T��

]

−E[
I�Fε�Hθ̂�T�1�Hθ̂�T�≥Hθ�T��

]
�

The first two terms on the right-hand side are handled by Fatou’s lemma. As
for the last term, observe that Fε ≥ yGε�T� ≥ y�1 − ε�Hθ̂�T� on {

Hθ̂�T� ≥
Hθ�T�}; by the decrease of I it then follows that

I�Fε�Hθ̂�T�1�Hθ̂�T�≥Hθ�T�� ≤ I
(
y�1− ε�Hθ̂�T�)Hθ̂�T�

≤ I
(
αyHθ̂�T�)Hθ̂�T�

for all ε ≤ 1− α, where α is an arbitrary value in (0, 1). Now, from (3.7), this
provides

I�Fε�Hθ̂�T�1�Hθ̂�T�≥Hθ�T�� ≤ γI
(
yHθ̂�T�)Hθ̂�T��

which is an integrable random variable; see Remark 6.2. Then by the domi-
nated convergence theorem, we see that

lim
ε→0

E
[
I�Fε�Hθ̂�T�1�Hθ̂�T�≥Hθ�T��

] = E
[
I
(
yHθ̂�T�)Hθ̂�T�1�Hθ̂�T�≥Hθ�T��

]

and (6.2) follows. ✷

Corollary 6.1. Let Assumptions 6.1 and 6.2 hold. Then, for all y > 0, the
random variable I�yHθ�y��T�� is attainable starting from the initial wealth

x�y� 
= E
[
Hθ�y��T�I�yHθ�y��T��]�

that is, there exists an insurance strategy β�y� ∈ � such that

Xx�y�� β�y��T� = I
(
yHθ�y��T�) a.s.

Furthermore, E�U�Xx�y�� β�y��T��� > −∞.

Proof. The first part of the claim is a direct consequence of Lemma 6.3
and Theorem 5.1(ii). The second part follows from the fact that

U
(
Xx�y��β�y��T�)=U(

I
(
yHθ�y��T�))= Ũ(

yHθ�y��T�)+yHθ�y��T�I(yHθ�y��T�)�
both terms on the right-hand side are integrable by Assumptions 6.1, 6.2 and
Remark 6.2. ✷

Lemma 6.4. Let Assumptions 6.1 and 6.2 hold. Then for all x > 0 there
exists some y�x� > 0 such that

Ṽ�y�x�� + xy�x� = inf
y>0

Ṽ�y� + xy�(6.3)
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Furthermore, y�x� satisfies

x = E
[
Hθ�y�x���T�I

(
y�x�Hθ�y�x���T�

)]
�(6.4)

Proof. (i) The proof of (6.3) is the same as in Cvitanic̀ and Karatzas (1992)
and is reported here only for completeness. From Lemma 6.2, we have Ṽ�y�+
xy ≥ V�x/2� + �x/2�y for all x > 0, and therefore limy→∞ Ṽ�y� + xy = +∞.

Moreover, since π̃�·� ≥ −π�1� and the process �r�t�� 0 ≤ t ≤ T� is bounded,
we get with some positive constant C,

E
[
Ũ
(
yHθ�T�)] ≥ E

[
Ũ
(
yCZθ�T�)] ≥ Ũ

(
yCE�Zθ�T��)

by the convexity of Ũ. Now recall that Zθ is a supermartingale (as a nonneg-
ative local martingale) and therefore E�Zθ�T�� ≤ 1. Then by the decrease of
Ũ, we get

Ṽ�y� ≥ Ũ�yC��
which proves that Ṽ�0+� = +∞. Hence the function fx:y �→ Ṽ�y� + xy is
convex (see Lemma 6.2) and tends to infinity as y↘ 0 or y↗∞. This proves
the existence of y�x� > 0 achieving the minimum of fx over �0�∞�.

(ii) It remains to prove the last part of the lemma. Notice that

inf
ζ>0

{
ζy�x�x+ J̃�ζy�x�� θ�y�x���} = inf

ζ>0

{
ζx+ J̃�ζ� θ�y�x���}

≥ inf
ζ>0

{
ζx+ Ṽ�ζ�}

= fx�y�x�� = xy�x� + Ṽ�y�x���
Hence ζ = 1 attains infinimum of G�ζ� 
= ζy�x�x+ J̃�ζy�x�� θ�y�x���. In the
case U�0+� > −∞, it is proved in Karatzas, Lehoczky, Shreve and Xu (1991)
that the function G�ζ� is well defined and differentiable at ζ = 1; writing that
G′�1� = 0 then provides (6.4). We then concentrate on the case U�0+� < 0
[which includes U�0+� = −∞] and we prove that the last statement still
holds; that is,

G�ζ� is well defined for ζ > 0�differentiable at ζ = 1

and G′�1� = y�x�x− y�x�E[
Hθ�y�x���T�I(y�x�Hθ�y�x���T�)]�

Denote by y0 the positive real parameter defined by Ũ�y0� = 0. From
Lemma 6.1 we haveE

[
Ũ
(
ζy�x�Hθ�y�x���T�)−] <∞. As for the positive part, we

consider separately the cases ζ ≥ 1 and ζ < 1. In the first case, it follows from
the decrease of Ũ that Ũ�ζy�x�Hθ�y�x���T��+ ≤ Ũ�y�x�Hθ�y�x���T��+ which is
integrable by Assumption 6.2. Next, for the case ζ < 1, we adapt the argument
of Karatzas, Lehoczky, Shreve and Xu (1991),

Ũ�ζy� =
∫ y0

ζy
I�u�du = 1

ζ

∫ y0/ζ

y
I�ζu�du ≤ γ

ζ

[
Ũ�y� − Ũ�y0/ζ�

]
�



OPTIMAL INSURANCE DEMAND 301

where we used (3.8). Then, for all ζ ∈ �0�1�, we have

Ũ
(
ζy�x�Hθ�y�x���T�)+ ≤ ζγ

∣∣Ũ(
y�x�Hθ�y�x���T�)− Ũ�ζy0�∣∣

and therefore E
[
Ũ
(
ζy�x�Hθ�y�x���T�)+] <∞ by Assumption 6.2.

The proof of differentiability of G at ζ = 1 and the expression of the deriva-
tive is obtained as in Karatzas, Lehoczky, Shreve and Xu (1991) by a domi-
nated convergence argument using (3.7). ✷

We now can state the basic result of this section relating problems V�x�
and Ṽ�y�.

Theorem 6.1. (i) Let Assumptions 6.1 and 6.2 hold. Then the optimization
problem V�x� has a solution β̂ ∈ � and

V�x� = Ṽ�y�x�� + xy�x��
where y�x� is defined in Lemma 6.4.

(ii) The optimal insurance strategy β̂ is characterized by

Xx� β̂�T� = I
(
y�x�Hθ�y�x���T�)�

Proof. The existence of β̂ in (ii) is ensured by Corollary 6.1. By the defi-
nition of Ũ, we have

Ũ
(
y�x�Hθ�T�) ≥ U

(
Xx�β�T�)− y�x�Hθ�T�Xx�β�T�(6.5)

for all θ ∈ � and β ∈ �. Moreover, from the supermartingale property estab-
lished in Proposition 4.1, we have

E
[
Hθ�T�Xx�β�T�] ≤ x�(6.6)

By taking expectation in (6.5) and plugging (6.6), we get

J̃�y�x�� θ� ≥ J�x�β� − xy�x� for all θ ∈ � and β ∈ ��

Now, with θ = θ�y�x�� and β = β̂, we have equality in (6.5) by definition of Ũ
and β̂ via Corollary 6.1. By Lemma 6.4, equality also holds in (6.6). Therefore

J̃�y�x�� θ�y�x��� = J�x� β̂� − xy�x�� ✷

7. Existence in the dual optimization problem. In this paragraph,
we provide sufficient conditions under which Assumption 6.2 holds.

From the convexity of the function x �→ �x� + ex, it follows that the set �
is convex. In order to ensure the convexity of J̃�y� ·�, we need the following
assumption.

Assumption 7.1. For all t ∈ �0�T�, the function

θ �→
∫
D
eθ�z�mt�dz� + π̃

(∫
D
γt�z�eθ�z�mt�dz�

)

is convex.
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Remark 7.1. Suppose that function π is an affine function defined by
π�x� = a + bx� x ∈ �0�1� [this framework encompasses the case considered
in Briys (1986)]. Then Assumption 7.1 holds. Indeed, it is easily checked that

π̃�y� = −y ∧ b− a for all y > 0�

and the function which appears in Assumption 7.1 is given by

g�θ� =



−a+

∫
D
�1− γt�z��eθ�z�mt�dz�� if

∫
D
eθ�z�γt�z�mt�dz� ≤ b,

−b− a+
∫
D
eθ�z�mt�dz�� if

∫
D
eθ�z�γt�z�mt�dz� ≥ b,

which is clearly a convex function; recall that γt�z� < 1 for all �t� z� ∈ �0�T�×
D.

Remark 7.2. Suppose that function π is C1, strictly convex and satisfies
π ′�0� = 0 and π ′�1� = +∞. Then Assumption 7.1 holds. Indeed, by direct
computation, we get

π̃�y� = y��π ′�−1�y� − 1� − π(�π ′�−1�y�)� y > 0�

Denoting by g the function appearing in Assumption 7.1 and by ∇g its
Gâteaux derivative, it is easily checked that

%∇g�θ� − ∇g�µ�� θ− µ& 
=
∫
D
�θ�z� − µ�z���h�t� z� θ� − h�t� z� µ��mt�dz��

where h�t� z� ζ� = eζ�z��1−γt�z�+γt�z��π ′�−1�νζ�t���. Since �π ′�−1 is increasing
(as inverse of an increasing function), each term inside the integral is non-
negative [recall that 0 < γt�z� < 1], we have %∇g�θ� − ∇g�µ�� θ − µ& ≥ 0 and
therefore g is convex.

Lemma 7.1. Under Assumption 7.1, J̃�y� ·� is convex for all y > 0.

Proof. Fix some λ ∈ �0�1� and consider two elements θ1 and θ2 in � . By
Assumption 7.1, we get

Hλθ1+�1−λ�θ2�T� ≥ exp
[
λ lnHθ1�T� + �1− λ� lnHθ2�T�]�

The result then follows from the fact that Ũ is nonincreasing and Ũ ◦ e·. ✷

Assumption 7.2. For all t ∈ �0�T�, the range of γt�·� is finite.

Lemma 7.2. Suppose that Assumption 7.2 holds. Let �θn�n≥0 be a sequence
in � which converges a.s. to some θ ∈ � and such that

E
∫ T

0

∫
D

∣∣θnt �z�+ − θt�z�+∣∣mt�dz�dt→ 0 as n→∞�

Then, for all y > 0, we have

lim inf
n→∞ J̃�y� θn� ≥ J̃�y� θ��
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Proof. Step 1. We first prove that lim supn→∞ Hθn�T� ≤Hθ�T�, or equiv-
alently,

lim sup
n→∞

lnZθn�T� −
∫ T

0
π̃�νθn�u��du ≤ lnZθ�T� −

∫ T

0
π̃�νθ�u��du�(7.1)

(i) Using Fatou’s lemma and the fact that π̃ is nonincreasing, we see that

lim inf
n→∞

∫ T

0
π̃�νθn�u��du ≥

∫ T

0
lim inf
n→∞ π̃�νθn�u��du

=
∫ T

0
π̃
(
lim sup
n→∞

νθ
n�u�

)
du�

Now recall that νθ
n�t� = ∫

D γt�z� exp �θnt �z��mt�dz� and therefore, by Assump-
tion 7.2, we get

lim inf
n→∞

∫ T

0
π̃�νθn�u��du ≥

∫ T

0
π̃�νθ�u��du�(7.2)

(ii) Since ex − 1 ≥ −1, we get by Fatou’s lemma,

lim inf
n→∞

∫ T

0

∫
D
�exp�θnt �z�� − 1�mt�dz�ds

(7.3)
≥

∫ T

0

∫
D
�exp�θt�z�� − 1�mt�dz�ds�

(iii) By direct computation, we see that

E

∣∣∣∣
∫ T

0

∫
D
θnt �z�+v�dt�dz� −

∫ T

0

∫
D
θt�z�+v�dt�dz�

∣∣∣∣
≤ E

∫ T

0

∫
D

∣∣θnt �z�+ − θt�z�+∣∣v�dt�dz�
= E

∫ T

0

∫
D

∣∣θnt �z�+ − θt�z�+∣∣mt�dz�dt�

which proves that
∫ T
0

∫
D θ

n
t �z�+v�dt�dz� converges to

∫ T
0

∫
D θt�z�+v�dt�dz� a.s.

possibly along some subsequence. Now,

lim sup
n→∞

∫ T

0

∫
D
θnt �z�v�dt�dz�

=
∫ T

0

∫
D
θt�z�+v�dt�dz� − lim inf

n→∞

∫ T

0

∫
D
θnt �z�−v�dt�dz�(7.4)

≤
∫ T

0

∫
D
θt�z�v�dt�dz�

by Fatou’s lemma.
(iv) The result announced in (7.1) follows from (7.2), (7.3), (7.4) and the

definition of Zθ�T�.
Step 2. We shall consider two cases.
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(i) Assume that U�0+� ≥ 0; then Ũ is nonnegative [see (3.4)] and nonin-
creasing. It follows from Fatou’s lemma that

lim inf
n→∞ J̃�y� θn� ≥ E

[
Ũ
(
y lim sup

n→∞
Hθn�T�)]�

and the required result follows from the first step of this proof and the decrease
of Ũ.

(ii) Assume that U�0+� < 0. Then from Lemma 6.1, the sequence
�Ũ�yHθn�T��−�n≥0 is uniformly integrable. Then, by Fatou’s lemma,

lim inf
n→∞ J̃�y� θn� = lim inf

n→∞ E
[
Ũ
(
yHθn�T�)+]+ lim inf

n→∞ −E[
Ũ
(
yHθn�T�)−]

≥ E
[
Ũ
(
yHθ�T�)]

by the first step of this proof. ✷

We now can state the existence theorem for the dual problem.

Theorem 7.1. Suppose that Assumptions 7.1 and 7.2 hold. Then, for all
y > 0, there exists a solution θ�y� to the dual problem Ṽ�y� �i.e., θ�y� ∈ �
and Ṽ�y� = J̃�y� θ�y��� satisfying

E

[∫ T

0

∫
D
�exp�θ�y�t�z�� + �θ�y�t�z���mt�dz�dt

]
<∞�(7.5)

Proof. First notice that π̃�y� ≥ −π�1� > −∞ and the process �r�t��0 ≤
t ≤ T� is nonnegative. Let �θn�n≥0 be a minimizing sequence of Ṽ�y� with
J̃�y� θn� ≤ Ṽ�0� + 1. Then,

Ṽ�0� + 1 ≥ J�y� θn�
≥ E

[
Ũ
(
y exp

(
Tπ�1� + lnZθn�T�))]

≥ Ũ
(
yeTπ�1� exp

(
E
[
lnZθn�T�]))

since Ũ ◦ e· is convex. Now, since Ũ is continuous and strictly decreasing, it is
invertible with strictly decreasing inverse. This provides

E

[∫ T

0

∫
D
exp�θnt �z��mt�dz�dt−

∫ T

0

∫
D
θnt �z�v�dt�dz�

]
≤ Const�(7.6)

and then

E

[∫ T

0

∫
D
exp�θnt �z�+ ∧ k�mt�dz�dt−

∫ T

0

∫
D
θnt �z�+v�dt�dz�

]

= E

[∫ T

0

∫
D
exp�θnt �z�+ ∧ k�mt�dz�dt

]

−E
[∫ T

0

∫
D
θnt �z�+v�dt�dz�

]
≤ Const�
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for all integer k. Now using Theorem T3, page 235 of Brémaud (1981) and
sending k to infinity, it follows from Fatou’s lemma that

E

[∫ T

0

∫
D

(
exp�θnt �z�+� − θnt �z�+

)
mt�dz�dt

]
≤ Const�(7.7)

Therefore, it follows from (7.6) that

E

[∫ T

0

∫
D

(
exp�θnt �z�+� − θnt �z�+

)
mt�dz�dt

]

+E
[∫ T

0

∫
D
θnt �z�−mt�dz�dt

]
≤ Const�

and then

E

[∫ T

0

∫
D
θnt �z�−mt�dz�dt

]
≤ Const�(7.8)

Since the function x �→ ex−x defined on �+ satisfies �ex−x�/x→∞ as x→∞,
inequality (7.7) proves that the sequence �θn+�n≥0 is uniformly integrable by
the La Vallée–Poussin theorem; then by the Dunford–Petis compacity crite-
rion, we see that by possibly passing to a subsequence, there exists a convex
combination θ̂nt �z�+ 
=

∑
k≥n λ

n
kθ

n
t �z�+ such that

E
∫ T

0

∫
D

∣∣∣θ̂nt �z�+ − θ̂+t �z�
∣∣∣mt�dz�dt→ 0

for some θ̂+; see Dellacherie and Meyer [(1975), Theorem 25, page 43]. More-
over, by possibly passing to a subsequence, the last convergence result holds
in the a.s. sense.

Next, inequality (7.8) says that the sequence �θn−�n≥0 is bounded in L1.
From the Kómlos theorem [see Hall and Heyde (1980), Theorem 7.3, page 205],
by possibly passing to a subsequence, there exists a convex combination
θ̂nt �z�− 
=

∑
k≥n λ

n
kθ

n
t �z�− such that θ̂nt �z�− → θ̂−t �z� a.s. for some θ̂− (Notice

that we can take the same convex combination as before by possibly composing
both convex combinations). Defining θ̂ 
= θ̂+ − θ̂−, we conclude that

θ̂nt �z� → θ̂t�z� a�s�

Moreover, by Fatou’s lemma and the convexity of e·, we see that

Const� ≥ lim inf
n→∞

∫ T

0

∫
D

(
exp�θ̂nt �z�� − θ̂nt �z�

)
mt�dz�dt

≥
∫ T

0

∫
D

(
exp�θ̂t�z�� − θ̂t�z�

)
mt�dz�dt�

which implies (7.5) and therefore θ̂ ∈ � . Hence the sequence �θ̂n�n≥0 meets
the conditions of Lemma 7.2 which proves that

lim inf
n→∞ J̃�y� θ̂n� ≥ J̃�y� θ̂��



306 N. TOUZI

In order to conclude the proof, it remains to show that the sequence �θ̂n�n is
a minimizing sequence. But this is a direct consequence of Lemma 7.1. ✷

8. Examples

8.1. Logarithmic utility and Poisson shocks. In this paragraph, we solve
explicitly the optimal insurance demand problem in the case U�x� = lnx, the
random measure v�dt�dy� is a Poisson process, denoted dvt, with constant
intensitym and the jump size is a constant γ ∈ �0�1�. The insurance premium
function is given by π�x� = bx.

Direct computation shows that Ũ�y� = −1 − lny and π̃�y� = −b∧y. The
dual optimization problem in this case is

Ṽ�y� = −1− lny−E
[∫ T

0
r�t�dt

]

+ inf
θ∈�

E

[∫ T

0

(
eθt − 1− θt − �γeθt� ∧

b

m

)
mdt

]
�

recall (7.5). It follows that the solution to the dual problem does not depend
on y and, since y�x� achieves the minimum of Ṽ�y� + xy over all y > 0 (see
Lemma 6.4), we have

y�x� = 1
x

for all x > 0�

Next, we turn to the solution of the dual problem.
Case 1. b ≤ γm. (since γm is the expected relative jump of the wealth

process, the insurance premium is said to be fair in the case b = γm). Then
it is easily checked that the constant process θ̂ 
= 0 solves the dual problem.
From Theorem 6.1, the wealth process associated to the initial capital x and
the optimal insurance strategy β̂ is related to θ̂ by

Xx� β̂�T� = x

Hθ̂�T� =
x

H0�T�

= x exp
(
−bT+

∫ T

0
r�t�dt

)
�

then the optimal insurance strategy is given by the constant process β̂ = 1.
Case 2. γm ≤ b ≤ γm/�1 − γ�. Then it is easily checked that the constant

process θ̂ = ln�b/γm� solves the dual problem. The wealth process associated
to the initial capital x and the optimal insurance strategy β̂ is related to θ̂ by

Xx� β̂�T� = x

Hθ̂�T�

= x exp
(
−bT+

∫ T

0
r�t�dt

)[
�

(∫ T

0
�eθ̂t − 1�dṽt

)]−1
�
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Applying Itô’s lemma allows us to identify the optimal insurance strategy

β̂�t� = 1− 1
γ
+ m

b
� 0 ≤ t ≤ T�

Hence, the insurance strategy is a decreasing function of b and tends to 0 as
b approaches the value γm/�1− γ�.

We now clarify the above identification. Let Y be the process defined by
Y�t� = �Zθ�t��−1−δ; δ ≥ 0 (the case δ = 0 is needed here, whereas the case
δ > 0 will be used in the subsequent paragraph). Then, it follows from Itô’s
lemma that

dY�t� = �1+ δ�Y�t��eθt − 1�mdt+Y�t� −Y�t−��

Next observe that Y�t� −Y�t−� = Y�t−�[�1+ �eθt − 1�dvt�−1−δ − 1
] = Y�t−�

�exp�−�1+ δ�θt� − 1�dvt and therefore

dY�t� = �1+ δ�Y�t��eθt − 1�mdt+Y�t−�(exp�−�1+ δ�θt� − 1
)
dvt�

Case 3. b ≥ γm/�1− γ�. Then it is easily checked that the constant process
θ̂ = − ln�1− γ� solves the dual problem. By writing the wealth process, asso-
ciated to the initial capital x and the optimal insurance strategy β̂, in terms
of θ̂, and applying Itô’s lemma, we see that the optimal insurance strategy is
the constant process β̂ = 0; that is, the agent does not demand any insurance.

8.2. Power utility and Poisson shocks. In this paragraph, we consider the
same framework as in the previous application except that the utility function
is given by

U�x� = xp

p
� x > 0

for some p ∈ �0�1�. We also take the interest rate to be constant for simplicity.
Then it is easily checked that function Ũ is given by

Ũ�y� = y−q

q
� y > 0 where q = p

1− p�

Define

Ṽ�t� y� = inf
θ∈�

E

[
Ũ

(
y
Hθ�T�
Hθ�t�

)]
�

Of course Ṽ�y� = Ṽ�0� y�. In order to solve the above stochastic control prob-
lem, we write formally the associated Hamilton–Jacobi–Bellman equation and
derive a smooth solution to it; we then conclude that the (classical) solution
of the HJB equation indeed solves the control problem Ṽ by a verification
theorem argument.
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The HJB equation together with the terminal condition associated to our
control problem is

inf
θ∈�

� θv�t� y� = 0� �t� y� ∈ �0�T� × �0�∞��(8.9)

v�T�y� = Ũ�y�� y ∈ �0�∞��(8.10)

where

� θv�t� y� = ∂v

∂t
�t� y� + [−r− π̃�eθmγ� −m�eθ − 1�]y∂v

∂y
�t� y�

+m[
v�t� yeθ� − v�t� y�]�

As in the previous application, we have π̃�y� = −b ∧ y; y > 0. Clearly,
given the form of Ũ, the value function of the dual problem is of the form
Ṽ�t� y� = f�t�y−q for all �t� y� ∈ �0�T� × �0�∞�. Function f�t� is determined
by plugging Ṽ�t� y� in the HJB equation; then we get

f′�t� +
[
rq−m+ inf

θ∈�
h�θ�

]
f�t� = 0�

f�T� = 1
q
�

where

h�θ� =me−qθ +mq�eθ − 1� − qb ∧ �eθmγ��
By direct computation, we see that the value of θ which attains the minimum
of h�θ� is given by

θ̂ =




0� if b ≤mγ,

ln
(

b

mγ

)
� if mγ ≤ b ≤mγ

(
1

1− γ
)1+q

,

− ln�1− γ�
1+ q � if b ≥mγ

(
1

1− γ
)1+q

.

Hence the function

W�t� y� = y−q

q
exp��rq−m+ h�θ̂���T− t��� �t� y� ∈ �0�T� × �0�∞�

is a classical solution to the HJB equation (8.9)–(8.10).

Proposition 8.1. The value function of the dual optimization problem is
given by

Ṽ�y� =W�0� y� = y−q

q
exp��rq−m+ h�θ̂��T� for all y > 0�

Proof. Denote by �b the subset of � consisting of all bounded elements,
and define Ṽb�y� = inf θ∈�b

E�Ũ�yHθ�T���. Clearly, we have Ṽb�y� ≥ Ṽ�y�.
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(i) We first prove that Ṽb =W and therefore Ṽ ≥W. Let �θn�n≥0 be a min-
imizing sequence of Ṽb�y� in �b. By Itô’s lemma and the terminal condition
satisfied by W, we have

E

[
Ũ

(
y
Hθn�T�
Hθn�t�

)]
−W�t� y� = E

[
W

(
T�y

Hθn�T�
Hθn�t�

)
−W�t� y�

]

= E

[∫ T

t
� θn�u�W

(
u�y

Hθn�u�
Hθn�t�

)
du

]

+E
[∫ T

t
Wy

(
u�y

Hθn�u−�
Hθn�t�

)
y
Hθn�u−�
Hθn�t�

× (
exp�θn�u−�� − 1

)
dṽu

]
�

where dṽt = dvt−mdt is the compensated Poisson process. Since� θW�t� z� ≥
0 for all θ ∈ �, by definition of W, this provides

E

[
Ũ

(
y
Hθn�T�
Hθn�t�

)]
−W�t� y�

≥ E

[∫ T

t
Wy

(
u�y

Hθn�u−�
Hθn�t�

)
y
Hθn�u−�
Hθn�t�

(
exp�θn�u�� − 1

)
dṽu

]

In order to prove that W�t� y� = Ṽb�t� y�, we have to show that

E

[∫ T

t
Wy

(
u�y

Hθn�u−�
Hθn�t�

)
y
Hθn�u−�
Hθn�t�

(
exp�θn�u�� − 1

)
dṽu

]
= 0�(8.11)

Indeed, the last claim implies that

W�t� y� ≤ E

[
Ũ

(
y
Hθn�T�
Hθn�t�

)]

and with θ = θ̂ the above inequality is in fact an equality. To prove (8.11), we
show that the process appearing inside the expectation is a martingale. To see
this, observe that from the bound on θn and the form of W it follows that

E

[∫ T

t

∣∣∣∣Wy

(
u�y

Hθn�u�
Hθn�t�

)
y
Hθn�u�
Hθn�t�

(
exp�θn�u�� − 1

)∣∣∣∣mdu

]

≤ Const� E
[∫ T

t
Ũ

(
y
Hθn�u�
Hθn�t�

)
du

]
�

Moreover, from the fact that π̃�·� ≥ −π�1�, E[
Zθn�T�/Zθn�t�] ≤ 1 and the

decrease of Ũ, we see that E
[
Ũ�yHθn�u�/Hθn�t��] ≤ Const� E

[
Ũ�yHθn�T�/
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Hθn�t��]. We then get

E

[∫ T

t

∣∣∣∣Wy

(
u�y

Hθn�u�
Hθn�t�

)
y
Hθn�u�
Hθn�t�

(
exp�θn�u�)− 1�

∣∣∣∣mdu

]

≤ Const� E
[
Ũ

(
y
Hθn�T�
Hθn�t�

)]

<∞�

since �θn�n is a minimizing sequence; this provides (8.11).
(ii) We now prove that Ṽ ≥ W. Denote by Ṽ∗ the lower semicontinuous

(l.s.c.) envelope of Ṽ, that is, the largest l.s.c. envelope dominated by Ṽ. Notice
that Ṽ�t� y� is continuous in y and therefore the l.s.c. envelope concerns only
the t variable. We only highlight the main steps of the argument. The value
function Ṽ satisfies the dynamic programming equation

Ṽ�t� y� = E

[
Ṽ

(
t+ τ� yH

θ̂�t+ τ�
Hθ̂�t�

)]

for all nonnegative stopping time τ ≤ T− t, where θ̂ is the solution of Ṽ�t� y�;
actually we only need that the left-hand side term be larger than the right-
hand side one in the dynamic programming equation. By Fatou’s lemma and
the definition of Ṽ∗, this provides

Ṽ∗�t� y� = lim inf
t′→t

Ṽ∗�t′� y� = lim inf
t′→t

E

[
Ṽ

(
t′ + τ� yH

θ̂�t′ + τ�
Hθ̂�t′�

)]

≥ E

[
lim inf
t′→t

Ṽ

(
t′ + τ� yH

θ̂�t′ + τ�
Hθ̂�t′�

)]
(8.12)

= E

[
Ṽ∗

(
t+ τ� yH

θ̂�t+ τ�
Hθ̂�t�

)]
�

Next let ϕ be an arbitrary C1��0�T�×�� function such that 0 = �Ṽ∗−ϕ��t� y� =
min�Ṽ∗ − ϕ�. Then it follows from (8.12) that

ϕ�t� y� ≥ E

[
ϕ

(
t+ τ� yH

θ̂�t+ τ�
Hθ̂�t�

)]
�

Applying Itô’s lemma and choosing the stopping time appropriately (in order
for the local martingale term to be a martingale), we see that for all h > 0,

1
h
E

[
−
∫ t+τ∧h

t
� θ̂�u�ϕ

(
u�y

Hθ̂�u�
Hθ̂�t�

)
du

]
≥ 0�

which provides by passing to the limit as h↘ 0,

sup
θ∈�

−� θϕ�t� y� ≥ 0�
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Hence Ṽ∗ is a viscosity supersolution of the HJB equation (8.9)–(8.10), and
therefore Ṽ ≥ Ṽ∗ ≥W by the comparison theorem for viscosity solutions. ✷

The solution of the dual problem is given by θ̂ and does not depend on y.
Since y�x� achieves the minimum of Ṽ�y�+xy over all y > 0 (see Lemma 6.4),
we have

y�x�1/�p−1� = x exp�−�rq−m+ h�θ̂��T�� x > 0�

Now we can deduce an explicit solution to the optimal insurance demand
problem.

Case 1. b ≤ γm. Then the solution of the dual problem is θ̂ = 0 and the
optimal insurance strategy β̂ is related to θ̂ by

Xx� β̂�T� = I
(
y�x�Hθ̂�T�) = (

y�x�H0�T�)1/�p−1�
= x exp��r− b�T��

Hence, the optimal insurance strategy is given by the constant process

β̂ = 1�

Case 2. mγ ≤ b ≤ mγ�1/�1− γ��1+q. Then the solution of the dual problem
is θ̂ = ln�b/mγ� and the optimal insurance strategy is characterized by

Xx� β̂�T� = I
(
y�x�Hθ̂�T�)

= �y�x��1/�p−1��exp�−r+ b�T�1/�p−1�
[
�

(∫ T

0
�eθ̂ − 1�dṽ

)]1/�p−1�
�

Applying Itô’s lemma, we see that[
�

(∫ T

0
�eθ̂ − 1�dṽ

)]1/�p−1�

= exp
(

m

1− p�e
θ̂ − 1�T

)
�

(∫ T

0
�exp�θ̂/�p− 1�� − 1�dv

)
�

Then, direct identification shows that the constant insurance strategy

β̂ = 1− 1
γ
+ 1
γ

(
b

mγ

)−q−1

is the optimal insurance strategy for the the problem V�x�.
Case 3. b ≥ mγ�1/�1 − γ��1+q. Then the solution of the dual problem is

θ̂ = �ln�1 − γ��/�1 + q�. Proceeding as in the second case, we see that the
optimal insurance strategy is characterized by

Xx� β̂�T� = I
(
y�x�Hθ̂�T�)

= xe−rT�
(
−
∫ T

0
γ dvt

)

and therefore the optimal insurance strategy is given by the constant process

β̂ = 0�
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