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THE LARGE DEVIATIONS OF A MULTI-ALLELE
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This is the fourth in a series of papers devoted to the study of the
large deviations of a Wright–Fisher process modeling the genetic evolu-
tion of a reproducing population. Variational considerations imply that if
the process undergoes a large deviation, then it necessarily follows closely
a definite path from its original to its current state. The favored paths
were determined previously for a one-dimensional process subject to one-
way mutation or natural selection, respectively, acting on a faster time
scale than random genetic drift. The present paper deals with a general
d-dimensional Wright–Fisher process in which any mutation or selection
forces act on a time scale no faster than that of genetic drift. If the states of
the process are represented as points on a d-sphere, then it can be shown
that the position of a subcritically scaled process at a fixed “time”T satisfies
a large-deviation principle with rate function proportional to the square of
the length of the great circle arc joining this position with the initial one
(Hellinger–Bhattacharya distance). If a large deviation does occur, then the
process follows with near certainty this arc at constant speed. The main
technical problem circumvented is the degeneracy of the covariance matrix
of the process at the boundary of the state space.

1. Introduction. It has long been known that the natural geometry of
the parameter space of a d-dimensional multinomial distribution is that of
the d-sphere. Assuming the size parameter fixed for convenience, if p =
�p1� � � � � pd+1�� q = �q1� � � � � qd+1� are two frequency parameter vectors �pk ≥
0� qk ≥ 0� ∑d+1

k=1 pk = ∑d+1
k=1 qk = 1�, the Hellinger–Bhattacharya distance

between them is proportional to cos−1�∑d+1
k=1

√
pkqk�, which is the angle

between the points �√p1� � � � �√pd+1� and �√q1� � � � �√qd+1� on the d-sphere,
subtended at the center. See [2] and the historical references given therein;
see also [1]. Thus, the orthant of the sphere can be viewed as the natural state
space of a d-dimensional Wright–Fisher process modeling the reproduction of
a population in which there are d+ 1 alleles.
It is our purpose here to show that the large deviations of a Wright–Fisher

process in which mutation and selection act on the same time scale as random
genetic drift, in other words, over a number of generations comparable to the
size of the population (or possibly more slowly), occur along arcs of great circles
of the sphere at uniform speed (Theorem 2) and are governed by a rate function
involving the preceding distance in the following sense (Theorem 1): as the size
of the population tends to ∞, the position at “time” T > 0 of a subcritically

Received July 1998; revised November 1999.
AMS 1991 subject classifications. Primary 60F10; secondary 60J20.
Key words and phrases. Wright–Fisher process, random genetic drift, mutation, natural

selection, large deviations, rate function, Hellinger–Bhattacharya distance.

1259



1260 F. PAPANGELOU

scaled Wright–Fisher process starting at p satisfies a large-deviation principle
with rate function

Jp�T�q� =
2
T

[
cos−1

(d+1∑
k=1

√
pkqk

)]2
�(1.1)

Note that the critical scaling is the one leading to the diffusion approximation
as explained later.
The problem studied here is of interest for two reasons. First, there are

not many examples of non-spatially-homogeneous discrete Markov processes
where the rate function for the large deviations of the position can be dis-
played in closed form. We stress that what we are concerned with here are
not the large deviations of either the empirical measure or the sample path
of the process but rather those of its position (state) at a “future time.” The
second cause of interest in the Wright–Fisher process lies in the fact that its
covariance matrix is degenerate at the boundary of the state space, where one
or more alleles are at or near extinction.
Were it not for this degeneracy, the large-deviation principle for the future

position of the process would in principle follow from Wentzell’s [16] results
at the sample path level via the contraction principle. However, even for pro-
cesses without degeneracies, the corresponding rate function may not be read-
ily identifiable. One may be able to solve the variational problem and obtain
the paths which minimize the action functional between two points as solu-
tions of Euler’s equation; it may be harder to calculate the rate function,
that is, the minimal value of the action. Even where the latter satisfies the
Hamilton–Jacobi equation, this equation may be impossible to solve explicitly.
In our present case the identification of the state space with the orthant of a
sphere trivializes the variational problem as will be seen.
The degeneracy of the boundary mentioned previously can be handled by

means of an inductive argument on the dimension. In the one-dimensional
case it was overcome in [11] (cf. also [12] and [13]) by the simple device of
modifying the process near the boundary. The higher dimensional case is much
more intricate but essentially the inductive step in our proof below exploits
the fact that the marginals of a Wright–Fisher process are very nearly lower
dimensional Wright–Fisher processes.
It is worth drawing the distinction between the scaled processes of the

present paper and those of [12] and [13]. In the latter, mutation and selection
were assumed to act on a faster time scale than random genetic drift. This led
to much more surprising families of minimizing paths but rate functions are
too complicated to calculate explicitly in those cases.
At the end of the paper we comment briefly on two further issues. One

concerns the large deviations of the time-scaled diffusion approximation to
the Wright–Fisher process. The other concerns the exponential asymptotics of
the probability of reaching a given subset of the boundary. Boundary sets are
not open in the natural topology but a large-deviation lower bound is stated
for such sets in the case of pure random genetic drift (Theorem 3).
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2. The variational problem. We establish first the notation we will use
for our Wright–Fisher process. Suppose that the number of alleles for a gene
at a particular locus on a chromosome is d + 1� d ≥ 1. If in a population of
2N genes the proportions in which these alleles appear are i1/2N� i2/2N� � � � �
id+1/2N� i1+i2+· · ·+id+1 = 2N, then the state of the corresponding Wright–
Fisher process is the vector y = �y1� y2� � � � � yd�, where yk = ik/2N� k =
1�2� � � � � d. The next generation of 2N genes is produced by “sampling with
replacement” so that the probability P�y� ỹ� of a transition from state
y = �y1� � � � � yd� to state ỹ = �j1/2N� � � � � jd/2N� is given by the following
multinomial term (with jd+1 = 2N−∑d

k=1 jk�:

P�y� ỹ� = [�2N�!][d+1∏
k=1

�jk!�
]−1

π
j1
1 π

j2
2 · · ·πjd+1

d+1 �(2.1)

where in the absence of mutation or selection πk = yk� k = 1� � � � � d, and
πd+1 = 1 − ∑d

k=1 πk, while if there are mutation and selection effects the
dependence of the πk’s on the yk’s is more involved.
It is a classical fact [5] that if the number of generations over which muta-

tion and selection have an effect is of the same order as the size 2N of the
population, then, for large N and under appropriate hypotheses, there is a
diffusion approximation to the Wright–Fisher process, whose state space is
the simplex

� =
{
�y1� � � � � yd� ∈ �d � y1 ≥ 0� � � � � yd ≥ 0 and

d∑
k=1

yk ≤ 1
}
�(2.2)

This diffusion is obtained as a “limit” of the Wright–Fisher process as
N → ∞, provided the time axis is scaled so that there are 2N generations
in a “unit of time.” The Fleming–Viot process introduced in [7] and exten-
sively studied over the last two decades is an extension of such a diffusion to
state spaces consisting of probability measures on infinite sets which replace
the set �1�2� � � � � d+ 1�.
Here, however, we are primarily interested in the Wright–Fisher process

itself rather than its diffusion approximation, although in Section 4 we indi-
cate a companion large-deviation result for the corresponding diffusion pro-
cess. If the time axis is scaled less severely, so that there are n generations per
unit of time, where n/N → 0, then the process converges (over any bounded
time interval) to the constant “process” concentrated at the initial state. In
particular, its position at “time” T converges in distribution to a point mass
situated at the initial position. As mentioned in the Introduction, our purpose
is to show that the position at time T satisfies a large-deviation principle.
To define our sequence Y�n�

t � t ≥ 0� n = 1�2� � � �, of scaled Wright–Fisher
processes, assume thatNn�n = 1�2� � � �, is a sequence of positive integers such
that n/Nn → 0 as n → ∞ and write N for Nn for the sake of convenience.
For each n = 1�2� � � � letY�n�

0 �Y
�n�
1/n�Y

�n�
2/n� � � � be a d-dimensional Wright–Fisher
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process with transition probability given by (2.1) with

πk = πk�y�n� = yk +
gk�y� + ok�1�

N
� k = 1�2� � � � � d�(2.3)

Here it is assumed that g1�y�� � � � � gd�y� are continuous functions of y ∈ �

[see (2.2)] and that ok�1� → 0 uniformly in y as n → ∞. The process Y�n�
t

remains constant on ν/n ≤ t < �ν + 1�/n for each ν = 0�1�2� � � � . Notice
that (2.3) differs crucially from the considerations of [12] and [13], where
π1 = y1 + �g1�y� + o�1��/n, although in other respects the analysis of the
asymptotics is similar. The cumulant generating function of Y�n�

t � t ≥ 0, in
the sense of [16] is Gn�y� z� = n logEy exp�z · �Y�n�

1/n − y��, where z ∈ �d

and z · y denotes the inner product. According to [16], the large deviations
of Y�n�

t � n = 1�2� � � �, are determined by the asymptotic behavior (as n → ∞�
of n�2N�−1Gn�y� �2N�n−1z� and an easy calculation shows that the latter is
equal to

−n�z · y� + n2 log
{
1+

d∑
k=1

(
exp

zk
n

− 1
)
πk

}
(see [12] for the case d = 1). Using the expansions log�1 + s� = s − s2/2 +
O�s3� and es − 1 = s + s2/2 + O�s3�, one can show exactly as outlined in
[12] that n�2N�−1Gn�y� �2N�n−1z� converges to G�y� z� = 1

2zA�y�z, where
A�y� is the matrix �akl�kl� k� l = 1� � � � � d, with akl = yk�δkl − yl�. (We blur
the distinction between z and its transpose.) A number of other conditions
required in Wentzell’s theory are met (see [12] for the one-dimensional case)
but not all, since the quadratic form zA�y�z is not uniformly elliptic, being
degenerate on the boundary of �. Despite this, for points y that are not on the
boundary of �, the Legendre transform of G�y� z� is (see[16])

H�y�u� = sup
z

[
z · u−G�y� z�] = 1

2
uA�y�−1u�

The matrix A�y� is the covariance matrix of a multinomial random vector
and it also provides the Cramér–Rao lower bound (matrix) for the multino-
mial family of distributions. Its inverse A�y�−1, which is the matrix �bkl�kl�
k� l = 1� � � � � d, with bkl = y−1

d+1 + δkly
−1
l , where yd+1 = 1 − ∑d

k=1 yk, is the
Fisher information matrix for the multinomial distribution. The quadratic
form uA�y�−1u defines Rao’s Riemannian metric for the family of multino-
mial distributions, which coincides with the Hellinger–Bhattacharya metric
mentioned in the Introduction (see [1] and [2]). To link this with large devi-
ations, we set up here the corresponding variational problem. It can be seen
that

uA�y�−1u =
d+1∑
k=1

u2k
yk

�
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where ud+1 = −∑d
k=1 uk. (See, for instance, Lemma 2.1 in [10].) Pretending for

a moment that we can ignore the degeneracies, we expect in accordance with
Wentzell’s theory that, roughly speaking, “away from the boundary” a sample
path large-deviation principle is satisfied in the sense that the logarithm of
the probability that Y�n�

t �0 ≤ t ≤ T (T > 0 fixed), “follows closely” a curve
φ�t��0 ≤ t ≤ T, in the interior �o of � is of order

−2Nn−1
∫ T

0
H

(
φ�t�� φ′�t�)dt = −2Nn−1

∫ T

0

1
2

(d+1∑
k=1

φ′
k�t�2
φk�t�

)
dt�

where the integral is taken to be ∞ if φ is not absolutely continuous. Thus
the functional

S0�T�φ� =
1
2

∫ T

0

(d+1∑
k=1

φ′
k�t�2
φk�t�

)
dt

appears in a role similar to that of an action functional. The probability that a
process starting at a point p ∈ �o at time 0 is “at” a point q at timeT is roughly
of the same exponential order as the probability that the process follows closely
the path φ�t��0 ≤ t ≤ T, joining p and q which minimizes the preceding inte-
gral. This is essentially the contraction principle. Thevariationalproblemtobe
solved is therefore that of minimizing the integral 12

∫ �∑d+1
k=1 y

′2
k /yk�dt between

the two points. The simple transformation xk = √
yk� k = 1�2� � � � � d + 1, con-

verts this to the problem of minimizing the action 2
∫ �∑d+1

k=1 x
′2
k �dt subject to∑d+1

k=1 x
2
k = 1. The extremals (see [8]) of this problem satisfy ∑d+1

k=1 x
′2
k = c2 (a

constant) and are thus geodesics (great circles) of the sphere
∑d+1

k=1 x
2
k = 1 with

t proportional to arc length.
Thus if p = �p1� � � � � pd� and q = �q1� � � � � qd� are two points of �o and we

set Jp�T�q� =� inf�S0�T�φ� � φ�t��0 ≤ t ≤ T, is a curve in �o with φ�0� = p
and φ�T� = q�, then Jp�T�q� is equal to

2c2T = 2
(
θ

T

)2
T = 2

T

[
cos−1�√p1q1 +

√
p2q2 + · · · + √

pd+1qd+1�
]2
�

where pd+1 = 1 − ∑d
k=1pk� qd+1 = 1 − ∑d

k=1 qk and θ is the “angle” between
the images of p and q on the d-sphere.
It is worth mentioning here that the square of cos−1�∑d+1

k=1
√
pkqk� was pro-

posed by Bhattacharya as a “measure of divergence” between two multinomial
distributions. In the context of a one-dimensional Wright–Fisher process the
angular distance goes back to Fisher’s “angular transformation.” See [6] and
[9]. The metric cos−1�∑d+1

k=1
√
pkqk�, which can be defined for boundary points

as well, was extended to the infinite-dimensional context of a Fleming–Viot
process by Schied [15], who showed that it is the intrinsic metric arising from
the “carré du champs” operator of the process.
In the next section we show that, notwithstanding the degeneracy of

A�y��Jp�T�q� in (1.1) is the rate function of a large-deviation principle forY�n�
T .
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3. The large deviations of Y
�n�
T . Throughout the present paper the

topology of � considered is the relative topology of � in �d. We have already
denoted the interior of � by �o. If p ∈ �o, denote by Pp the probability mea-

sure arising from the initial conditions Y�n�
0 = p and the transition structure

of Y�n�
t � t ≥ 0, indicated in the preceding section.

Theorem 1. Let K be a closed subset of �o, F a closed subset of � and G
a subset of � open in the relative topology of �. Then, for any T > 0,

lim sup
n→∞

n

2N
log sup

p∈K
Pp�Y�n�

T ∈ F� ≤ − inf
p∈K
inf
q∈F

Jp�T�q��(3.1)

lim inf
n→∞

n

2N
log inf

p∈K
Pp�Y�n�

T ∈ G� ≥ − sup
p∈K
inf
q∈G

Jp�T�q��(3.2)

The proof will take up most of this section.
To bypass the degeneracy, we follow the practice of [12] and [13] and modify

the process near the boundary of � in �d by choosing a suitable neighborhood
�′ of the boundary in � and replacing the distribution of the step of our process
out of a point y′ ∈ �′ by a Gaussian step with mean N−1�g1�y�� � � � � gd�y��
and covariance matrix N−1A�y� [or N−1A�π�], where y is the point of �\�′

nearest y′. The quadratic form of the new covariance matrix is bounded away
from 0 so that Wentzell’s results apply (Theorem 3.2.3′ in [16]). See [12] for
the one-dimensional case. We will denote by Ỹ�n�

t � t ≥ 0, the modified process,
with state space �d. The proof of the lower bound (3.2) is now straightforward.
Suppose that G ⊂ � is open in the relative topology of ��K ⊂ �o is compact
and q ∈ G ∩ �o. We can choose a closed neighborhood �′ of the boundary of
� such that �′ ∩K = �, q /∈ �′ and the geodesics (with respect to the metric
introduced in the preceding section) joining points of K with q lie entirely in
�\�′. Suppose p ∈ K and let φ0 be the geodesic joining p with q. If U denotes
the set of curves φ�t��0 ≤ t ≤ T, in � such that φ does not exit from �\�′ and
φ�T� ∈ G, then, by the large-deviation principle for the sample paths of the
modified process Ỹ�n� = �Ỹ�n�

t �0 ≤ t ≤ T��

lim inf
n→∞

n

2N
logPp�Y�n�

T ∈ G� ≥ lim inf
n→∞

n

2N
logPp�Ỹ�n� ∈ U�

≥ − inf�S0�T�φ� � φ ∈ U�
= −S0�T�φ0�
= −Jp�T�q��

Continuity arguments establish the same for q on the boundary of � and it is
also a simple matter to extend this to the whole set K of initial states using
the uniformity known for Ỹ�n�.
The upper bound is more delicate because we need to handle sets of paths

that can get arbitrarily close to the boundary. In this respect Azencott’s [3]
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general methods at sample path level are not helpful in our case because of
the nature of the topology on paths on which they are based.

Lemma 3.1. Given any M > 0 and η > 0, there is a δ > 0 such that, for
any p ∈ �o,

lim sup
n→∞

n

2N
logPp

{
there exist t′� t′′ ∈ �0�T�

such that �t′ − t′′� < δ and ��Y�n�
t′ −Y

�n�
t′′ �� ≥ η

}
≤ −M�

where �·� denotes the Euclidean norm.

Proof. The proof is an adaptation of arguments given in [16]. It is suf-
ficient to establish the lemma for each coordinate of Y�n�

t and we do so for
the first one which we denote by Y

�n�
1�t . If y = �y1� y2� � � � � yd� and z̃ =

�z�0�0� � � � �0�, where z ∈ �, then the cumulant generating function is

Gn�y� z̃� = −nzy1 + 2nN log
{
1+ π1

(
exp

z

2N
− 1

)}
�

where π1 is defined in (2.3). It is easy to show that if C is an upper bound of
�g1�y� + o�1�� in (2.3), then Gn�y� z̃� ≤ G

n�z�, where

G
n�z� = n

N

[
C�z� + 1

4

(
1+ C

N

)
z2
]
�

(If z > 0, write Gn�y� z̃� in the form nz�1 − y1� + 2nN log�1 + �1 − π1�
�exp�−z/2N� − 1�� and use the inequality log�1 + x� ≤ x. The case z < 0
is more direct.) The fact that the process

exp
{
z�Y�n�

1�m/n −Y
�n�
1�l/n� −

1
n

m−1∑
i=l

Gn�Y�n�
i/n� z̃�

}
� m = l+ 1� l+ 2� � � � �

is a martingale, combined with the inequality just stated, implies that if t′ <
t′′, then

E

{
exp

(
z�Y�n�

1�t′′ −Y
�n�
1�t′ �

)
�Y�n�

t′ = y

}
≤ exp

{
�t′′ − t′�Gn�z�

}
�

A standard large-deviation argument shows that if 0 < t′′ − t′ < δ and u > 0,
then

Pp

{
Y

�n�
1�t′′ −Y

�n�
1�t′ ≥ δu�Y�n�

t′ = y

}
≤ exp

{
δ
(
G
n�z� − zu

)}
for any y and z. If, given M> 0 and η0 > 0, we set δ = η20�4M�−1� u = η0δ

−1

and z = Nn−1u, we see that 0 < t′′−t′ < δ implies that, for sufficiently large n,

Pp

{
Y

�n�
1�t′′ −Y

�n�
1�t′ ≥ η0�Y�n�

t′ = y

}
≤ exp

{
−2NMn−1

}
�
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The case Y
�n�
1�t′′ − Y

�n�
1�t′ ≤ −η0 can be handled similarly. If now 0 = t0 <

t1 < · · · < tm = T is a partition of �0�T� such that max1≤ν≤m�tν − tν−1� < δ,
then one may use arguments similar to those on pages 42–43 of [16] to show
that

Pp

{
�Y�n�
1�t −Y

�n�
1�tν−1

� > 2η0 for some t ∈ �tν−1� tν�
}

≤ 2 sup
tν−1≤t≤tν

y∈�o

P
{
�Y�n�
1�tν

−Y
�n�
1�t � ≥ η0�Y�n�

t = y
}

from which the lemma follows easily.
The large-deviation upper bound will be proved by induction on the dimen-

sion d of the Wright–Fisher process. If d = 1 the result follows immediately
from the large-deviation upper bound for the suitably modified process Ỹ�n�,
since it is sufficient to consider closed sets F of the form F = �0� q′� ∪ �q�1�,
where q′ < p < q. Briefly, if the scaled process reaches q say at time T, hav-
ing previously approached 1, then it must have gone through q at an earlier
time. The probability of this, however, is of a lower order than the probability
that it has reached q for the “first time” at time T. The full argument was
given in �11� for the case of pure random genetic drift [π = y in (2.3)] and
the rate function was produced there in the form of an integral which can be
calculated trivially. It extends to the present case because of the assumed rate
of action of mutation and selection. The situation differs from that of [12] and
[13], where the action of mutation or selection is faster.
The inductive argument will exploit the fact that the marginal processes of

a Wright–Fisher process are very nearly Wright–Fisher processes: whenever
the process gets close to the boundary of � we drop down to a lower dimension
and observe only the marginal process. The idea is to construct a “fence” just
inside the boundary of � in such a way that Hellinger–Bhattacharya distances
along the fence are equal to distances traveled by the marginal in its own state
space. This will become clear in the following paragraphs.
To avoid complicating the issue and cluttering the notation, we will outline

the proof for d = 2, omitting details wherever the arguments are obvious.
Except for the last paragraph, throughout this proof � will denote the set �p =
�p1� p2�� p1 ≥ 0� p2 ≥ 0� p1+p2 ≤ 1� and ρ�p�q� the Hellinger–Bhattacharya
distance between two points p = �p1� p2� and q = �q1� q2� of �:

ρ�p�q� = cos−1
(√

p1q1 +
√
p2q2 +

√
�1− p1 − q1��1− p2 − q2�

)
�

We will assume for convenience thatK = �p�, where p ∈ �o. Let F be a closed
subset of � such that p /∈ F. Let β be an arbitrary positive number less than
inf�ρ�p� r�� r ∈ F� and cover each point q ∈ F by a compact neighborhood Fq

of ρ-diameter less than β/2 and also less than half the distance from q to the
boundary of � if, in addition, q ∈ �o. Since F is covered by a finite collection
of such neighborhoods we will concentrate on one of them, Fq say, which we
will denote by F for convenience. Assume first that q ∈ �o. Define ζ = β/I,
where I is an integer to be determined later.
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Note first that straight lines passing through the point �0�1� (i.e., with equa-
tions of the form ay1 + y2 = 1 or, equivalently,

√
a− 1 · √y1 −

√
1− y1 − y2 =

0� a > 1� are geodesics of the ρ-distance, that is, great circles on the 2-sphere
of points �√y1�√y2�

√
1− y1 − y2�. The same applies to lines through �1�0�

or �0�0�.
Draw the four straight lines by1 + y2 = 1� �1+ 1/b�y1 + y2 = 1� y1 + by2 =

1� y1+�1+1/b�y2 = 1 with b so large that the quadrilateral bounded by them
contains in its interior the point p, the set F = Fq and the “geodesic” joining
p and q. The next step is to “thicken” the boundary of this quadrilateral by
drawing four lines b∗y1 + y2 = 1� �1 + 1/b∗�y1 + y2 = 1� y1 + b∗y2 = 1� y1 +
�1 + 1/b∗�y2 = 1 with b∗ slightly larger than b and chosen in a manner to
be described later. Denote by Qo

1 the open quadrilateral enclosed by the first
set of lines and by Q2 the closed (and larger) quadrilateral enclosed by the
second set of lines. The set Q2\Qo

1 will play the role of the “fence” referred to
previously. Next denote by R1 the set of points y = �y1� y2� of Q2\Qo

1 which
lie between the lines b∗y1 +y2 = 1 and by1 +y2 = 1, that is, R1 = ��y1� y2� ∈
Q2\Qo

1 � by1+y2 < 1 < b∗y1+y2� and let R2�R3�R4, be the other three thick
“sides” making up the fence, defined similarly. Note that these sides are not
disjoint.
In our construction we choose b∗ so close to b that the set Q2\Qo

1 can be
expressed as a finite union ∪L

k=1Dk of small compact sets Dk�k = 1�2� � � � �L,
having the following properties:

(;1) If Dk intersects any one of the sets R1�R2�R3�R4, then it is contained in
it.

(;2) If a point y = �y1� y2� of R1 is in Dk, then every point y′ = �y′
1� y2� of

R1 with the same ordinate y2 is within ρ-distance less than ζ from every
point of Dk. Likewise with R2�R3�R4.

Next define

η = 1
2
inf

{
��y− y′�� � y ∈ Qo

1� y
′ /∈ Q2

}
�

fix anM> �2/T�ρ�p�q�2 and let δ > 0 be as in Lemma 3.1.
We now express the set W�n� of paths of Y�n� with Y

�n�
0 = p�Y

�n�
T ∈ F as

a finite union of sets W�n�
0 �W

�n�
1 � � � � as follows. We take W�n�

0 to be the set of
paths such that ��Y�n�

t′ −Y
�n�
t′′ �� ≥ η for some pair t′� t′′ with �t′ − t′′� < δ. This

set can be handled by means of Lemma 3.1, which implies that

Pp

(
W

�n�
0

) ≤ exp{−2N
n

�
2
T
ρ�p�q�2

}

for sufficiently large n. The next set,W�n�
1 , is the set of all paths which remain

within Q01. This set can be handled by means of the large-deviation property
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of the suitably modified process Ỹ�n� as indicated earlier. Accordingly,

Pp�W�n�
1 � ≤ exp

{
−2N

n
· 2
T
�ρ�p�q� − β�2

}
eventually.
To handle the remaining paths, we introduce a partition 0 = t0 <

t1 < · · · < tm = T of �0�T� such that max1≤ν≤m�tν − tν−1� < δ. Every path in

W�n� which is not in W�n�
0 or W�n�

1 necessarily visits Q2\Qo
1 at one or more of

the times t1� t2� � � � � tm−1. Considering only these times, we can decompose the
set of remaining paths according to the order in which any of R1�R2�R3�R4
are visited and also according to the particular Dk’s that are visited. To take
an example, suppose Dk ⊂ R1�Dl ⊂ R1 and 0 < i < j < m, and let W�n�

2

be the set of paths of Y�n�
t �0 ≤ t ≤ T, such that Y�n�

t ∈ Q01 for 0 ≤ t ≤ ti−1�
Y

�n�
ti

∈ Dk� Y
�n�
tj

∈ Dl and Y
�n�
t ∈ Qo

1 for tj+1 ≤ t ≤ T. Then

Pp

(
W

�n�
2

)≤ ∫
y′∈Dl

∫
y∈Dk

Pp

{
Y

�n�
t ∈ Q2 for 0 ≤ t ≤ ti�Y

�n�
ti

∈ dy
}

× P
{
Y

�n�
tj

∈ dy′�Y�n�
ti

= y
}

× P
{
Y

�n�
s ∈ Q2 for tj ≤ s ≤ T�Y

�n�
T ∈ F�Y�n�

tj
= y′}�

(3.3)

Given any θ ∈ �0�1�, the last probability in the double integral is, for all
y′ ∈ Dl, less than

exp
[
−2N

n
�1− θ� inf{Stj�T

�φ� � φ�tj� ∈ Dl�φ�s� ∈ Q2

for all s ∈ �tj�T�� φ�T� ∈ F
}]

≤ exp
[
−2N

n
�1− θ� inf

{
2�T− tj�−1ρ�y′� y′′�2� y′ ∈ Dl�y

′′ ∈ F
}]

(3.4)

eventually. Next, if Z�n�
t denotes the second coordinate of Y�n�

t and D̃l = �y2 �
�y1� y2� ∈ Dl for some y1�, then P�Y�n�

tj
∈ Dl�Y�n�

ti
= y� ≤ P�Z�n�

tj
∈ D̃l�Y�n�

ti
=

y�. The process Z�n�
t , t ≥ 0, is not Markovian under its marginal distribu-

tion, since π2 in (2.3) may depend on both y1 and y2. However, Z
�n�
t can

be sandwiched between two scaled one-dimensional Wright–Fisher processes,
Z′

t�n��Z′′
t �n� say, one with π ′

2 of the form y2 − C/N suitably truncated at 0
and one with π ′′

2 of the form y2 +C/N suitably truncated at 1, where C is an
upper bound of �g2�y� + o2�1�� in (2.3). [It is sufficient to note that if X′�X′′

are random variables with binomial distributions B�2N�π ′� and B�2N�π ′′�,
respectively, where π ′ ≤ π ′′, thenX′ andX′′ can be “coupled” so thatX′ ≤ X′′

almost surely. This may be achieved for instance by “thinning” the successes in
a sequence of Bernoulli trials.] Since each of the sequences Z′

tj
�n� and Z′′

tj
�n�
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satisfies a large-deviation principle, it is easy to see that we have

sup
y∈Dk

P
{
Y

�n�
tj

∈ Dl�Y�n�
ti

= y
}

≤ exp
[
−2N

n
�1− θ� inf

{
2�tj − ti�−1ρ̃�y2� y′

2�2 � y2 ∈ D̃k� y
′
2 ∈ D̃l

}](3.5)

eventually, where ρ̃�y2� y′
2� = cos−1�

√
y2y

′
2+

√�1− y2��1− y′
2��. Now we know

that the point y = �y1� y2� is in Dk ⊂ R1. Consider the straight line through
�y1� y2� and �0�1�. For y′

2 ∈ D̃l there is a y
′′
1 such that the point �y′′

1� y
′
2� is on

this line and the crucial argument is that, as can be checked,√
�1− y2��1− y′

2� =
√
y1y

′′
1 +

√
�1− y1 − y2��1− y′′

1 − y′
2�

so that ρ̃�y2� y′
2� = ρ�y�y′′�, where y′′ = �y′′

1� y
′
2�. By condition �;2� the right-

hand side of (3.5) is less than

exp
[
−2N

n
�1− θ� inf

{
2�tj − ti�−1

(
ρ�y�y′� − ζ

)2 � y ∈ Dk�y
′ ∈ Dl

}]
�(3.6)

Finally,

Pp

{
Y

�n�
t ∈ Q2 for 0 ≤ t ≤ ti�Y

�n�
ti

∈ Dk

}
≤ exp

[
−2N

n
�1− θ� inf

{
2t−1i ρ�p�y�2 � y ∈ Dk

}](3.7)

eventually.
Since the ρ-diameter of every Dk is less than ζ = β/I, we see that if I > 5

then ρ�p�q�−β is less than inf ρ�p�y�+ inf �ρ�y�y′�−ζ�+ inf ρ�y′� y′′�, where
the three infima are taken over the ranges indicated in the right-hand sides
of (3.7), (3.6) and (3.4), respectively. Using the fact that

�x1 + x2 + x3�2
T1 +T2 +T3

≤ x21
T1

+ x22
T2

+ x23
T3

if xi > 0�Ti > 0 (Cauchy–Schwarz), we see from (3.3) that eventually

Pp

(
W

�n�
2

) ≤ exp{−2N
n

�1− θ� 2
T

[
ρ�p�q� − β

]2}
�(3.8)

This procedure for handling the set W�n�
2 of paths actually shows that in

this expression ρ�p�q� can be replaced by the infimum of ρ-lengths of curves
φ�t��0 ≤ t ≤ T, in Q2 which start at p, exit from Qo

1 and end at points of F.
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One may next consider paths for which the sequence Y�n�
t1
� � � � �Y

�n�
tm
, after

leaving R1 for the last time visits R2, say. We then need to consider the last
time it leaves R2, and so on. If between the last time it leaves R1 and the first
subsequent time it visitsR2 the path travels outsideQ2 and negotiates around
R1 ∩R2 say, then we need to consider first one of its coordinates (marginals)
and then the other. The length of the great circle arc joining the endpoints
of this stretch of the path is no greater than a sum of arc lengths along the
sides of the fence. The arguments are similar to those given previously, the
only adjustment required being in the value of I in the definition of ζ = β/I.
The large-deviation upper bound for F = Fq follows from the fact that the

decomposition of paths outlined is finite.
Cases in which the point q is on the boundary of � can be treated by anal-

ogous arguments. If, for instance, such a q is not a vertex of �, then the fence
is constructed in such a way that one of the sets Dk [see �;1� and �;2�� is
contained in the neighborhood Fq. Each path starting at p and terminating
in Fq is then split as before into various sections, corresponding to the move-
ments of the path in and out of the fence. If now such a path terminates
outside Q2, then the final section to be considered will have been shadowed
by a “marginal” process along the fence.
Finally, we comment briefly on the inductive step for higher dimensions

d. We have shown how to move up from d = 1 to d = 2. To illustrate the
general step from d to d+1, we consider the three-dimensional Wright–Fisher
process whose state space is the tetrahedron � = ��y1� y2� y3� � y1 ≥ 0� y2 ≥
0� y3 ≥ 0� y1 + y2 + y3 ≤ 1�. In this case the fence is constructed with the
aid of planes, each of which contains one of the edges of the tetrahedron. If
p = �p1� p2� p3� and q = �q1� q2� q3� are two points on such a plane, then it
can be checked that the Hellinger–Bhattacharya distance between p and q
is equal to the Hellinger–Bhattacharya distance between their “marginals,”
�p1� p2� and �q1� q2� say. As regards the “sandwiching” of a two-dimensional
marginal, this is achieved by means of four two-dimensional Wright–Fisher
processes. It should now be clear how the inductive arguments proceed.
This concludes the proof of Theorem 1.
The arguments establishing Theorem 5.1 in [12], combined with the remark

immediately after (3.8), easily imply the following result.

Theorem 2. Suppose p ∈ �o� q ∈ �o and let φ0�t��0 ≤ t ≤ T, be the curve
in �o whose image on the d-sphere is the arc of the great circle joining the
images of p and q on the sphere, with parameter t proportional to arc length.
Let δ > 0. If G is a sufficiently small neighborhood of q, then

lim
n→∞Pp

{
sup
0≤t≤T

��Y�n�
t −φ0�t��� < δ�Y�n�

T ∈ G
}
= 1�

We omit the purely technical extension to q ∈ �. The theorem roughly
asserts that if Y�n�

t �0 ≤ t ≤ T, undergoes a large deviation from p ∈ �o to
q ∈ �o, then, with near certainty, its image on the d-sphere follows closely the
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curve which traverses the arc of the great circle joining the images of p and
q, at constant speed.

4. Two remarks.

Remark 1. Results entirely analogous to Theorems 1 and 2 can be proved
for the continuous-time version of the Wright–Fisher process, that is, the
so-called “diffusion approximation.” Consider a degenerate diffusion Yt� t ≥ 0,
on � with differential operator of the form

1
2

d∑
k=1

d∑
l=1

yk�δkl − yl�
∂2

∂yk∂yl
+

d∑
k=1

bk�y1� � � � � yd�
∂

∂yk
�

For ε > 0 define Yε
t = Yεt� t ≥ 0. Under mild conditions on the bk’s and

for fixed T > 0�Yε
T satisfies a large-deviation principle as ε → 0, with rate

function given by (1.1), that is,

lim sup
ε→0

ε logPp�Yε
T ∈ F� ≤ − inf

q∈F
Jp�T�q��

lim inf
ε→0

ε logPp�Yε
T ∈ G� ≥ − inf

q∈G
Jp�T�q��

where p ∈ �o and F�G are as in Theorem 1. Here again this does not follow
from Theorem 6.4 in [3]. If Yε

• undergoes a large deviation, then its image on
the sphere traces an arc of a great circle, in the sense of Theorem 2.
Just as in the discrete case of Section 3, the scalingYε

t = Yεt has the effect of
scaling down the three factors of random genetic drift, mutation and selection
at the same rate. This differs somewhat from the more usual scaling which
is applied to the diffusion coefficient only, as is, for instance, the case with
Theorem 3.3 in [4]. This latter theorem (which appeared after the first version
of the present paper was submitted) establishes a large-deviation principle at
path level for a class of degenerate diffusions such as the above but does not
cover our case: it deals with a case of unscaled neutral mutation in which
the rate function diverges to ∞ as the path approaches the boundary of �.
This feature eliminates the need to consider the behavior of a path beyond its
initial approach to the boundary.

Remark 2. The degeneracy of a Wright–Fisher process at the boundary
raises an interesting problem, namely that of determining the rough asymp-
totics of the probabilities of actually reaching given subsets of the boundary of
�. Such subsets are not open in the relative topology of � and hence the large-
deviation lower bound of Theorem 1 can only tell us something about the prob-
ability of getting “close” to them. However, the event of actually reaching the
boundary is of great importance. In the absence of mutation, for instance, the
phenomenon of fixation, whereby all but one of the alleles eventually become
extinct, is of primary interest. Theorem 3 provides a lower bound for subsets of
the boundary under the additional assumptions that n2 = o�N� and that the
Wright–Fisher process is subject only to random genetic drift; that is, there is
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no mutation or selection. The proof of the theorem is given in [14]. The large-
deviation upper bound for boundary sets follows trivially from Theorem 1.

Theorem 3. Let �m = �q = �q1� � � � � qd� ∈ � � q1 = q2 = · · · = qm = 0�,
where m ≤ d, and suppose that G is a subset of �m which is open in the relative
topology of �m. If Y�n�

t �0 ≤ t ≤ T, is defined as in Section 2 but with πk = yk
in �2�3� and if n2 = o�N� as n → ∞, then, for p ∈ �o,

lim inf
n→∞

n

2N
logPp�Y�n�

T ∈ G� ≥ − inf
q∈G

Jp�T�q��

The theorem naturally holds for all other components of the boundary of �
as well.
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