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NONUNIFORM RANDOM TRANSFORMATIONS

By C. A. O’Cinneide and A. V. Pokrovskii

Purdue University and University College, Cork

With a given transformation on a finite domain, we associate a three-
dimensional distribution function describing the component size, cycle
length and trajectory length of each point in the domain. We then consider
a random transformation on the domain, in which images of points are
independent and identically distributed. The three-dimensional distribu-
tion function associated with this random transformation is itself random.
We show that, under a simple homogeneity condition on the distribution of
images, and with a suitable scaling, this random distribution function has
a limit law as the number of points in the domain tends to ∞. The proof is
based on a Poisson approximation technique for matches in an urn model.
The result helps to explain the behavior of computer implementations of
chaotic dynamical systems.

1. Motivation. In recent years much attention has been given to com-
puter implementations of dynamical systems with chaotic behavior (see [4],
[10] and [22]). In contrast to a continuous system, a computer implementation
is a transformation on a finite, albeit rather large, set of digital numbers. Such
a transformation may be viewed as a digraph on a set �1� 2� � � � � n�, with the
property that each node is the initial node of exactly one edge. An important
combinatorial descriptor of such a transformation is the joint distribution of
the cycle lengths, recurrence times and component sizes (see the next section
for definitions) of the elements of �1�2� � � � � n�. An exact analysis of quantities
such as cycle lengths in discretizations of chaotic dynamical systems is not
feasible, as they are typically highly sensitive to small variations in both the
dynamical system itself and the discretization scheme. (However, see [16] for
a rigorous analysis of a discretization of an interesting planar dynamical sys-
tem.) Thus, it is natural to consider the statistical characteristics of an ensem-
ble of similar discretizations of a given dynamical system. This approach has
been taken in many papers; see, for example, [6], [12], [18] and [21] and the
references therein. This literature has given rise to the empirical principle:
ensembles of discretizations of chaotic dynamical systems display regularities
which are to some extent insensitive to the details of both the dynamical system
and the discretization scheme. We give an example to illustrate this principle,
after introducing some notation.

Let φ be a transformation on �1�2� � � � � n�. Then each element i0 ∈
�1�2� � � � � n� generates a trajectory i0� i1 = φ�i0�� i2 = φ�i1�� � � � � which is
eventually periodic. We denote by α�φ� the probability that the trajectories
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Fig. 1. The empirical distribution functions Fα�· 	H1� (dotted line) and Fα�· 	H2� (solid line).

generated by two independently and uniformly chosen elements intersect.
If we have an ensemble H = �φ1� φ2� � � � � φN� of transformations on
�1�2� � � � � n�, we can define the empirical distribution function of α�·� over
H by

Fα�t	H� = #
{
φ ∈ H:α�φ� ≤ t

}
N

� t ∈ ��

where # denotes cardinality.
For a positive integer n, the n-discretization of a transformation f: �0�1� 
→

�0�1� is the transformation fn on �1�2� � � � � n� defined by fn�i� = �nf�i/n��+,
where �·�+ is the smallest positive integer not less than the argument. We
consider two ensembles of discretizations constructed in different ways from
two classical chaotic transformations on the unit interval: the β-mapping
f�x� = √

2x �mod 1� and the logistic mapping g�x� = 4x�1 − x�. These are
among the best understood examples of chaotic mappings [15].

For the β-mapping f, denote byH1 the ensemble of discretizations fn� n =
106 + 1�106 + 2� � � � �106 + 103� For the logistic mapping g, we discretize in
a different way. First define g�· � a� = ag�·� for a real. Denote by H2 the
ensemble of discretizations gn�· � ak� with n = 106 fixed and with ak = 1–
10−6k� k = 1�2� � � � �103. Figure 1 presents the graphs of the empirical dis-
tribution functions Fα�· 	H1� and Fα�· 	H2� of α�·� over these ensembles. The
curves are in good agreement. The choice of the ensembles of discretizations
H1 andH2 of f and g here is quite arbitrary, and the point being made is that
the resulting empirical distributions of α�·� are little influenced by the choice.
However, we clearly must require that the ensembles be fairly large (each
containing 1000 discretizations here), that the discretizations be fairly fine
(n ≈ 106 here) and that the discretizations within an ensemble be sufficiently
distinct (confirmed here by Figure 1).
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Much experimentation of this kind has been done with various mappings
(e.g., the Henon mapping), with other graph-theoretical characteristics and
with other discretization schemes (especially floating-point implementations
[13]), and it supports the italicized observation of the first paragraph of this
section.

It is important to understand and to theoretically predict such regularities
in the behavior of discretizations of dynamical systems. The obvious approach
is a direct investigation of the combinatorics of these computer implementa-
tions, but this is not practicable. Thus we consider a phenomenological model
of ensembles of discretizations. For such a model to be useful, it should admit
rigorous mathematical investigation and produce predictions that are consis-
tent with the results of computer experiments. A direct analog of this approach
is to be found in thermodynamics, where, instead of explaining the behavior
of every particle of a gas, we use the far less detailed microscopic models of
statistical physics, which, despite their simplicity, still account for macroscopic
characteristics such as entropy and temperature.

There is a general consensus that random transformations [7] in which
images of points are i.i.d. (independent and identically distributed) are the
most promising phenomenological models of discretizations of dynamical sys-
tems. (Further references on random transformations include [5], [19] and
[26].) This consensus is supported, on the one hand, by convincing heuristic
arguments (see [6] and [18]) and, on the other hand, by excellent quantita-
tive agreement between the theoretical predictions of these models and the
results of extensive computer experiments, especially in situations where the
underlying dynamical systems have a Sinai–Ruelle–Bowen invariant measure
[23]. We illustrate this with an example. For a completely random mapping �
on �1�2� � � � � n� (see the next section for the definition), the distribution func-
tion of α��� has a limit F∞

α as n → ∞ which can be calculated theoretically.
This is a consequence of Theorem 2.1; it may also be proved by the methods
of [26]. Heuristics suggest that the empirical distribution functions Fα�· 	H1�
andFα�· 	H2� should approximate this limit. Figure 2 presents graphs of these
empirical distribution functions along with the prediction F∞

α . Again, there is
good agreement.

The construction of these phenomenological models falls naturally into two
stages. At the first stage, one considers random transformations which are
nonuniform: each point is assigned a weight reflecting the nature of the origi-
nal dynamical system—see Section 6.1 for an explanation of the natural choice
of weights. However, only broad features of these weights can be convincingly
attributed to the underlying continuous transformation whose discretizations
we are considering. We hope to identify these features through a “thermody-
namic limit” in which the number of points of the discretization increases to∞.
Thus we need a second stage, where the nonuniform random transformations
are replaced by suitable limits in which much of the detail of the distribu-
tion of images disappears. For example, the limiting behavior of a random
transformation may be indistinguishable from that of a completely random
transformation [21] or a transformation with an attracting center [14] and
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Fig. 2. The distribution functions Fα�· 	H1� (dotted line), Fα�· 	H2� (solid line) and F∞
α (dashed

line).

[27]; see Section 6.2). While the first stage is not amenable to analysis, the
second stage is, and this is the focus of the present paper. We derive a simple
condition on the distribution of images [see (2.5)], under which the asymptotic
behavior of the joint distribution of component size, cycle length and trajec-
tory length of a randommapping is indistinguishable from that of a completely
random mapping, apart from a scale factor.

2. Overview.

2.1. Random transformations. This paper deals with random transforma-
tions on a finite set �1�2� � � � � n�. The elements of this set will be referred to
as labels throughout, to distinguish them from other indices that occur. From
Section 3 on, they will be the labels of balls in an urn model. Let φ be a fixed
transformation on �1�2� � � � � n�. In discussing such transformations, we gen-
erally follow the notation of the classical paper [19]. We identify φ with its
digraph: φ ≡ ��i� φ�i��	i = 1�2� � � � � n�� We define the trajectory of a point i0
under φ as the subgraph

Tr�i0� φ� = {(
φk�i0�� φk+1�i0�

)	k = 0� 1�2� � � �
}
�

All trajectories are eventually cyclic because �1�2� � � � � n� is finite. We denote
by Cy�i0� φ� the cycle of this trajectory (also called simply the cycle of i0).
This may be defined formally as follows. Let k0 be the smallest positive k
with φk�i0� = φ��i0�, for some � < k. Then the cycle of i0 is the subgraph

Cy�i0� φ� = {(
φk�i0�� φk+1�i0�

)	k = k0� k0 + 1� k0 + 2� � � �
}
�

The function φ induces an equivalence relation ∼ on �1�2� � � � � n� defined as
follows: we write i ∼ j if there exists a pair of nonnegative integers k1� k2
such that φk1�i� = φk2�j�. This equivalence relation decomposes �1�2� � � � � n�
into equivalence classes which are called the components of φ. Each cycle
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is wholly contained in one component, which, in the language of dynamical
systems, is the basin of attraction of the cycle. We denote by Co�i0� φ� the
component containing a particular label i0 ∈ �1�2� � � � � n��

Let pn be a probability measure on the set �1�2� � � � � n�, and write pni for
the mass pn��i�� that it assigns to i. We place a probability measure πn on
the discrete space �n of transformations φ: �1�2� � � � � n� → �1�2� � � � � n� by
setting

πn
({
φ
}) = n∏

i=1
pn�φ�i�� φ ∈ �n�(2.1)

This means that the images of the labels 1�2� � � � � n are chosen independently
according to the distribution pn. We write � for the identity transformation
on �n, so that, under πn, � is a random transformation on �1�2� � � � � n�. The
random transformation � is the sole focus of this paper.

If pn is the uniform distribution on �1�2� � � � � n�, then � is called the com-
pletely random transformation and its law is denoted by πunif

n . The completely
random transformation is a “combinatorial” object, in the sense that questions
about its distribution are counting problems. The theory of completely random
transformations is quite well developed, through combinatorial methods; see
[7], [19] and [26] and the bibliographies therein. The related theory of “com-
pletely random permutations” was treated in [24]. (For more recent work on
random permutations, see [11] and [20] and the references therein.)

We denote by #� the order of a graph � , that is, the number of nodes it con-
tains. Thus, for example, #Tr�i0� φ� is the number of labels in the trajectory
of i0 under φ. (We use # to indicate the cardinality of a set also.) Our concern
in this paper is with component size, cycle length and trajectory length of the
labels �1�2� � � � � n� under the random transformation �, which are summa-
rized in the “triplets”

�Xi� Yi� Zi� ≡ (
pn
{
Co�i��)}�#Cy�i���� #Tr�i� ��)

for i ∈ �1�2� � � � � n��
(2.2)

Here component size is measured by pn. Cycles and trajectories are measured
by the number of labels they contain.

The quantity

cn ≡ 		pn		2 ≡
( n∑
i=1

p2
i

)1/2

(2.3)

plays a key role in the following, as a natural scaling parameter for cycle and
trajectory length. To explain this, we look ahead for a moment. We shall see in
Section 3.1 that, under the homogeneity condition (2.5), the scaled trajectory
length cn�#Tr�L� φ�� converges in distribution as n → ∞. See also part E5 of
[1]. Similarly, the scaled cycle length cn�#Cy�L�φ�� converges in distribution
as n → ∞. This simple fact is not treated directly in the following discussion,
but is a consequence of the main result of the paper, Theorem 2.1. We sum-
marize informally by saying that, under (2.5), cycle and trajectory length are
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asymptotically of order 1/cn. These facts explain the scaling of the triplets
�Xi� Yi� Zi� of (2.2) that is introduced at (2.4).

Let L denote a label selected according to the distribution pn. For φ ∈ �n,
we denote by Fφ the distribution function of the scaled triplet(

pn
{
Co�L� φ)}� cn(#Cy�L� φ�)� cn�#Tr�L� φ��)(2.4)

associated with L. This is the joint distribution of component size and scaled
cycle and trajectory length of a label under the transformation φ, where that
label is randomly selected according to the distribution pn. The support of
each Fφ lies in the set �0� 1� × �+ × �+. Were Fφ summarizes many of the
most important features of φ from the viewpoint of dynamical systems andF�

is a random distribution function. Our goal is to prove a weak limit theorem
for the law µn of F� as the number of labels n increases to ∞.

2.2. The main result. We write �d for the space of distribution functions
(d.f.’s) on �d. Thus Fφ ∈ �3 for φ ∈ �n. We endow �d with the Lévy metric
dL, which is defined for F1� F2 ∈ �d by

dL�F1� F2� = inf
{
ε > 0 � F1�t− εe� − ε ≤ F2�t�

≤ F1�t+ εe� + ε for all t ∈ �d
}
� where e = �1� 1� � � � �1��

We denote the σ-field of Borel sets of �d with respect to the Lévy metric by
���d�.

We consider the law µn of F� on �3, defined by µn�S� = πn�F� ∈ S�, for
S ∈ ���3�. We are interested in the asymptotic behavior as n → ∞ of the
measures µn, for a sequence pn� n = 1�2� � � � � of probability measures, pn
being concentrated on �1�2� � � � � n�. The main result of this paper, stated in
Theorem 2.1, is that these measures µn converge to a certain limit, provided
that pn is “somewhat uniform” over �1�2� � � � � n� for large n [see (2.5)].

To treat convergence of the µn’s, we endow the set �� ��3� of all Borel
probability measures over �3 with the Prohorov metric (Section 3.1 of [17]),
defined for η1� η2 ∈ �� ��3� by

dPr�η1� η2� = inf
{
ε > 0:η1�S� ≤ η2�Sε� + ε for all S ∈ ���3�

}
�

Here Sε is the open ε-neighborhood of the set S.
We remark that we could have worked just as well with the set of Borel

measures on �3 rather than the set of d.f.’s �3 given, previously and then used
the Prohorov metric in place of the Lévy metric. The use of different metrics
improves clarity in Section 5.

Theorem 2.1. Suppose that for each n = 1�2� � � � we have a probability
measure pn on �1�2� � � � � n�. Suppose that this sequence of probability measures
satisfies

lim
n→∞ εn = 0� where εn ≡ max

1≤i≤n
pni
cn

and cn ≡ 		pn		2�(2.5)
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Let � be the random transformation with distribution of images pn, and let
µn denote the law of the random d.f. F� of scaled triplets of �, as defined in
the paragraph containing (2.4). Then the laws µn converge weakly to a law µ
on �3 as n → ∞ that does not depend on the pn’s.

Note that

c2n =
n∑
i=1

p2
ni ≤ max

1≤i≤n
pni = εncn� and so cn ≤ εn� n = 1�2� � � � �(2.6)

Thus (2.5) also implies that limn→∞ cn = 0.
We call the condition expressed in (2.5) the homogeneous limit. Results

for a certain heterogeneous limit, which explain some empirical observations
on discretizations of chaotic transformations with “attracting centers,” will
be described fully elsewhere; see the discussion in Section 6, in particular,
Theorem 6.1.

Theorem 2.1 extends what is known about the random transformation �
in two ways. First, it extends much of what is known in the uniform case,
where pni = 1/n� i = 1�2� � � � � n� to the case of the homogeneous limit. Sec-
ond, it gives the asymptotic behavior of a fairly comprehensive descriptor of
the dynamical system associated with �, namely, the joint distribution of com-
ponent size, cycle length and trajectory length.

In the uniform case, in which � is the completely random mapping, we have
cn = n−1/2. This means informally that cycles and trajectories are O�√n� in
length. We denote by µunif

n the measure µn on �3 in this case, which may
also be described as the πunif

n -law of F�. Harris, Stepanov and others have
proved many limit theorems for this uniform case. As a simple example, the
distribution of the size of the component containing a given label is known to
converge to the Stepanov distribution, defined by its d.f.

FStepanov�t� = 1−
√
1− t� 0 ≤ t ≤ 1�

Theorem 2.1 implies that the distribution of component size has the same
limit under (2.5). Even this simple result is new, to the best of our knowledge,
for the nonuniform case.

3. Urn models. We first review some basics on Poisson approximation.
Then in Section 3.1 we develop a connection between the random transforma-
tion � and a simple urn model with Poisson drawing times. This connection
is extended in Section 3.2 to a coupling of � with a many-urn model. The
coupling plays a role later in the proof of Theorem 2.1.

The total variation distance between two probability measures η1� η2 on a
σ-field � is defined as

dTV�η1� η2� ≡ dTV�η1� η2	� � ≡ sup
G∈�

	η1�G� − η2�G�	�

We denote the law or distribution of a random variable X by � �X�. The
Poisson distribution of mean m is denoted by Po�m�. See Barbour, Holst and
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Janson [5] for the following well-known results on Poisson approximation,
where Theorem 3.1 is (1.23) and Theorem 3.2 is Theorem 1.C.

Theorem 3.1. Let W = ∑n
i=1 Ii, where the Ii’s are independent indicator

random variables with pi = Ɛ�Ii� = 
�Ii = 1�� Let m = Ɛ�W� =∑n
i=1pi� Then

dTV
(
� �W��Po�m�) ≤ min�1� m−1�

n∑
i=1

p2
i ≤

n∑
i=1

p2
i �

Theorem 3.2. Let M be a nonnegative random variable and consider the
mixture Po�M� of Poisson distributions with mixing measure � �M� over the
mean. We have, for all m > 0,

dTV
(
Po�M�� Po�m�� ≤ min�1�m−1/2�Ɛ	M−m	 ≤ Ɛ	M−m	�

In each of these theorems, the larger bound is elementary. The refined
bounds, involving the “magic factors” m−1 and m−1/2, are more difficult to
prove. The refined bounds are not used in the following discussion.

3.1. A simple urn model. Let n be a given positive integer, and suppose we
have an urn containing n balls, labeled �1�2� � � � � n�. We draw balls from the
urn, independently with replacement. We write pni > 0 for the probability that
ball i is selected on a single draw. We first focus on the question: What is the
distribution of the number D of draws needed until some ball is drawn twice?
A little reflection shows that, in the notation of Section 2, this is equivalent
to the question: What is the distribution of #Tr�i0� ��, the number of labels
in the trajectory of a given label under the random transformation �? This is
answered in a limiting sense, under the homogeneity hypotheses (2.5) on the
pni’s. See Aldous [1], parts E5 and E20, for heuristics and commentary. In the
next section, we develop a fuller relationship between � and drawing balls
from urns.

Our analysis of the italicized questions in the preceding paragraph lays
some of the foundation for the proof of Theorem 2.1. The first step is to embed
the draws in a Poisson process, as in part E3 of [1]. LetN be a Poisson counting
process of rate 1, with jump times T1� T2� � � � � and suppose the kth draw from
the urn takes place at time Tk. This may be described as a marked Poisson
process [9], the marks being the ball labels. Let Ni�t� denote the number of
times that ball i has been drawn by time t. By elementary properties of the
Poisson process, the Ni’s are independent Poisson processes, Ni having rate
pni. Of course,

N =
n∑
i=1

Ni�

Let R denote the earliest instant at which some ball is drawn for the second
time. Thus, the number D of draws up to this time satisfies

R = TD and N�R� = D�
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We prove a limit theorem for cnR when the number of balls n increases to ∞,
under (2.5). Then we prove that cnR and cnD are close and so have the same
limit.

We now assume the homogeneous limit condition (2.5). We also introduce
the quantities

ani ≡
pni
cn

� satisfying
∑
a2ni = 1�(3.1)

Under (2.5), (2.6) implies that cn → 0, or, equivalently, maxi pni → 0� So,
for sufficiently large n, each ball has a negligible chance of being chosen on
a single draw. In fact, (2.5) also ensures that, for sufficiently large n, each
ball has a negligible chance of being the first to be drawn twice; this will be
apparent from the results of Section 4.

The following calculation identifies the distribution ofR explicitly. For t ≥ 0,


�R > t�=
�no repeat draws of ball i up to time t� i = 1� 2� � � � � n�

=
n∏
i=1

P
(
Ni�t� < 2

) = n∏
i=1

e−pnit�1+ pnit��
(3.2)

The Poisson embedding has brought about the independence here. We have
from (3.2) that



(
cnR > t

) = n∏
i=1

e−pnit/cn�1+ pnit/cn�

=
n∏
i=1

e−anit�1+ anit�� t ≥ 0�

Elementary analysis using (3.1) and the assumption (2.5) establishes from
this that, for t ≥ 0,

lim
n→∞


(
cnR > t

) = exp�−t2/2��(3.3)

(This is also a consequence of Theorem 4.1.) This is the required convergence
in distribution for cnR as the number n of balls goes to ∞.

Let ε > 0 be given. By applying Doob’s maximal quadratic inequality to the
martingale N�t� − t� t ≥ 0, we see that, for any t0 > 0,



(
max
0≤s≤t0

	N�s� − s	 > ε
)
≤ 4Ɛ

(
N�t0� − t0

)2
ε2

= 4t0
ε2
�

Applying this with t0 = t/cn, we get


�cn	D−R	 > ε� = 


(
	N�R� −R	 > ε

cn

)
≤ 


(
max

0≤s≤t/cn
	N�s� − s	 > ε

cn

)
+ 


(
R >

t

cn

)
(3.4)

≤ 4tcn
ε2

+ 
�cnR > t��
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Now choose t with exp�−t2/2� = ε/3. Using (3.3) and the fact that cn → 0 as
n → ∞, it is clear that for sufficiently large n each term on the right-hand
side of (3.4) is no greater than ε/2. For such n, we have 
�cn	R−D	 > ε� ≤ ε.
This implies that cnD has the same limit law as cnR.

3.2. Coupling drawings from urns and the random transformation. We
consider U urns, each one identical to the one described in Section 3.1. Thus
balls are drawn independently at Poisson, rate 1, times from each of the
U urns, and the probability that ball i is chosen on any draw is pni. This
construction may be viewed as U independent marked Poisson processes, as
before. Let Nui�t� denote the number of balls of label i drawn from urn u by
time t. Nui is a Poisson process of rate pni, and all these Poisson processes
are independent of one another.

We write ���� �
� for the probability space supporting the Nui’s. The
probability is 0 that two balls are ever drawn simultaneously, and we excise
this event from � as doing so simplifies the description of various construc-
tions to follow. This space will be expanded to support other random vari-
ables of interest as we proceed. In this section, we construct on an expanded
���� �
� a random transformation � with the distribution πn specified
in (2.1).

We define an expiration time �u� u = 1�2� � � � �U� for each of the U urns,
inductively, as follows. Suppose we observe each of the U marked Poisson
processes until the first moment that some label is drawn for the second time
among all the drawings from all the urns. Let U1 denote the index of the urn
from which this label was drawn for the second time, and let �U1

be the time
of that second drawing. We say that urn U1 is expired from time �U1

on, and
refer to �U1

as the expiration time of urn U1. We say that draws of labels
from an urn before its expiration are observed, and draws made at or after its
expiration time are unobserved. In particular, the draw from urn U1 at time
�U1

is unobserved.
We proceed inductively to define expiration times for all U urns. Suppose

that we have determined the expiration times �U1
< �U2

< · · · < �Uk
of the

urns U1� U2� � � � �Uk, where k < U. At time �Uk
, urns U1� U2� � � � �Uk are

expired and all other urns are unexpired. We now continue to observe the
drawings from the unexpired urns from time �Uk

on until we next make a
drawing, from an unexpired urn, of a label that has already been drawn from
any of the U urns during its unexpired period. In other words, we observe
the unexpired urns until the next instant when there is a new match with an
earlier observed draw. This instant is the expiration time �Uk+1 of the urnUk+1
from which this label is drawn. This process continues until an expiration time
has been determined for each urn. That this process terminates may be seen
as follows. Let Ruu denote the earliest time at which some label is drawn for
the second time from urn u. This is clearly finite with probability 1. If the urn
has not expired already by time Ruu, then there is a match at time Ruu with
an earlier observed draw and so in this situation Ruu is the expiration time
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Fig. 3. Defining � on the observed labels B = ��1� �2� �3� a� b� c� from the marked Poisson
processes.

of urn u. We have shown that

�u ≤ Ruu < ∞�

For future reference, we define �u to be the time at which the label drawn at
the expiration time �u was drawn previously during observed time. We call
�u the knot time associated with urn u, because we think of it as the point at
which the time axis of the expired urn u is “tied” to that of another. We denote
by �u the initial label of urn u, which is defined as the label of the first ball
to be drawn from urn u. Figure 3 illustrates a simple example, in which we
have connected each expiration time to the corresponding knot time by a line.

Now consider the set B of all labels drawn during the unexpired periods of
the urns. We refer to this as the set of observed labels. Each label i ∈ B has a
unique successor i+ ∈ B defined as follows. Each label i ∈ B has been drawn
exactly once during unexpired time. This is the observed draw of that label.
We define the successor i+ of i as the next label drawn after the observed
draw of i from the same urn as the observed draw of i was from. That i+ ∈ B
may be seen as follows. If the next draw after the observed draw of i, from
the same urn as i, is not at an expiration time, then clearly the label drawn,
namely i+, is observed and so is in B. On the other hand, if the next label
drawn is at an expiration time, then, by definition of expiration times, this
label was also drawn at some earlier observed time, and so again this label
is in B.
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Now we are ready to define the random transformation �. First we define
� on the observed labels B by

��i� = i+� i ∈ B�
For i /∈ B, we choose ��i� at random from �1�2� � � � � n� according to the dis-
tribution pn, independently of everything else that has been introduced. With
this we have extended the probability space ���� �
� to encompass the ran-
dom transformation � on �1�2� � � � � n�. The construction of � on B is illus-
trated in Figure 3. We now have the following result.

Theorem 3.3. The random transformation � has the distribution πn over
�n. Moreover, the initial labels �1� �2� � � � � �U associated with the urns are i.i.d.
with distribution pn and are independent of �.

Proof. We summarize the construction of � and the �u’s in a manner
which makes the statement of the theorem obvious. We may view this con-
struction as a process of “visiting” the various urn indices �1�2� � � � �U� and
the various ball labels �1�2� � � � � n� in a complicated order determined by the
marked Poisson processes associated with the urns. When a label or urn index
is visited, a label is assigned to it. Here is a precise description of this process
of visiting and assigning labels.

We say that urn index u is “visited” the first time a ball is drawn from it.
The label assigned to urn index u is the label �u of the first ball drawn from
urn u.

We say that ball label i ∈ B is “visited” when the next ball is drawn after
the unique observed drawing of label i, from the same urn. The label assigned
to i is the label i+ = ��i� of this next ball drawn from the same urn.

When these assignments have been made, the remaining labels i /∈ B may
be “visited” in an arbitrary order as described in the construction of �. They
are assigned i.i.d. labels ��i� according to pn independently of everything else.

We note now that, whenever an urn index or ball label is “visited,” a label is
assigned to it according to the distribution pn, independently of all previous
assignments of labels. This property is enough to guarantee that all of the
assignments are i.i.d. with distribution pn. This completes the proof. ✷

In Section 5 we use the coupling described here to get detailed information
about the triplets �X�u

� Y�u
� Z�u

�� u = 1�2� � � � �U� of (2.2) associated with the
�u’s under �. This and the Poisson approximation of the next section are the
basis of the proof of Theorem 2.1.

4. Poisson process approximation for matches among many urns.
In this section we develop a Poisson process approximation for the matches
between labels drawn from the U urns of Section 3.2. We derive an explicit
total variation norm bound for the approximation. The random transformation
� plays no role here. The first step is taken in Section 4.1, where we give a
Poisson approximation for the number of matches between a pair of urns up
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to a fixed time τ. Then in Sections 4.2 and 4.3 we extend this to Poisson
approximations for the processes of matches between pairs of urns.

4.1. Poisson approximation for the number of matches among many urns.
We treat point processes somewhat informally for now, postponing some ele-
mentary topological and measure-theoretic formalities until the next section.

We consider the U urns of Section 3.2, and the independent Poisson pro-
cesses Nui of drawing times of label i from urn u. We define

N·i�t� ≡
U∑
u=1

Nui�t�� t ≥ 0�

a process which counts the total number of draws of balls of label i from all
U urns up to time t. The N·i’s are again independent Poisson processes, N·i
having rate Upni. We also define the following independent Poisson processes
of rate 1, which track the total number of draws from each urn u up to time t:

Nu·�t� ≡
n∑
i=1

Nui�t�� t ≥ 0�

The Nu·’s will not be needed until Section 5.
Our concern is with labels that are drawn more than once, from the totality

of all urns. There is said to be amatch between urn u and urn v when a label is
drawn from urn u that has already been drawn from urn v. These are tracked
by the planar point processes

Muv�A�≡
n∑
i=1

∫ ∫
A
dNui�u1�dNvi�u2��

A ∈ ��9�� where 9 ≡ {�t1� t2�: 0 ≤ t2 ≤ t1
}
�

(4.1)

counting the number of pairs �t1� t2� in a Borel set A such that the same label
was drawn from urn u at time t1 and from urn v at the earlier time t2 ≤ t1.
The letterM here connotes “matches.” Here and in the following discussion, a
match is characterized by four quantities: the two times t1 > t2 at which the
same label was drawn, the urn u from which that label was drawn at time t1
and the urn v from which it was drawn at time t2. The actual label drawn is
usually not of interest. In (4.1), Muv is presented as a random measure. It is
easily seen to be simple [9]: every point of 9 has Muv-mass ≤ 1.

In this section, we fix a time τ > 0 and focus on draws up to time τ from
the U urns. We write Mτ

uv for the “projection” of our point processes onto the
triangle

9τ ≡ {�t1� t2�: 0 ≤ t2 ≤ t1 ≤ τ
}
�

More formally, for a Borel measure β on 9, its projection onto 9τ is the Borel
measure :τβ defined by

:τβ�A� = β�A ∩ 9τ� for A ∈ ��9��(4.2)

With this notation, Mτ
uv ≡ :τMuv.
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Let Ii denote the indicator of the event that label i is drawn exactly twice
by time τ. Thus Ii = 1 iff N·i�τ� = 2. As N·i is a Poisson process of rate Upni,
we have


�Ii = 1� = 

(
N·i�τ� = 2

) = �Upniτ�2
2

e−Upniτ�(4.3)

Consider the sum

J2 =
n∑
i=1

Ii�

which is the number of labels drawn exactly twice by time τ. The expected
value of J2 is

m ≡ Ɛ�J2� =
n∑
i=1

�Upniτ�2
2

e−Upniτ�

The next lemma bounds the total variation distance between � �J2� and
Po�m�.

Lemma 4.1. We have

dTV
(
� �J2�� Po�m�) ≤ U4

4
τ4

n∑
i=1

p4
ni =

U4

4
τ4		pn		44�

Proof. Apply Theorem 3.1, using (4.3) and the fact that the exponential
factor there is no greater than 1. ✷

Using the inequalities 1− x ≤ e−x ≤ 1� x ≥ 0� in (4.3) we find that

1
2
U2c2nτ

2 − 1
2
U3

n∑
i=1

p3
niτ

3 ≤ m ≤ 1
2
U2c2nτ

2�(4.4)

These inequalities allow us to place a bound on the total variation distance
between � �J2� and Po�U2c2nτ

2/2�, and so allow us to replace the m = Ɛ�J2�
of Lemma 4.1 with something simpler to understand.

Lemma 4.2. We have

dTV
(
� �J2��Po�U2c2nτ

2/2�� ≤ U3

2
τ3		pn		33 + U4

4
τ4		pn		44�

Proof. Using (4.4), Theorem 3.2 gives a bound on the total variation norm
distance between the Poisson distributions with means m and U2c2nτ

2/2. The
triangle inequality allows us to combine this bound with the result of Lemma
4.1 to give the desired conclusion. ✷
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Consider the number J3 of labels that are drawn at least three times. (Recall
that J2 counts only those that have been drawn exactly twice.) Boole’s inequal-
ity gives


�J3 > 0� = 
�some label is drawn three times by time τ�

≤
n∑
i=1



(
N·i�τ� ≥ 3

)
�

It is elementary that for a Poisson(θ) random variable W, 
�W ≥ 3� ≤ θ3/6,
θ ≥ 0. This gives immediately the following result.

Lemma 4.3. We have


�J3 > 0� ≤ 1
6
U3τ3		pn		33�

Lemmas 4.2 and 4.3 summarize our analysis of the number of matches
among all draws from theU urns by time τ. When we invoke the homogeneous
limit condition (2.5), using the elementary (4.8), Lemma 4.2 tells us that the
number of labels drawn exactly twice by time τ is approximately Poisson.
Lemma 4.3 tells us, again under (2.5), that it is unlikely that any label is drawn
three or more times. Our goal is something larger: a simple total variation
approximation for the law of the processes Mτ

uv� u� v = 1�2� � � � �U. What is
missing from Lemmas 4.2 and 4.3 is a description of between which urns and
at what times the J2 matches occur, given J3 = 0. This issue is to be addressed
fully in the next section, using the following simple lemma.

Lemma 4.4. Given that N·i�τ� = 2, that is, that label i was drawn exactly
twice among all drawings up to time τ, we have:

(a) For any pair �u� v�, the conditional probability that label i was drawn
first from urn v and then (at a later time) from urn u is 1/U2.

(b) The conditional distribution of the two times T1 ≥ T2 at which label i
was drawn is uniform over the triangle 9τ = ��t1� t2�: 0 ≤ t2 ≤ t1 ≤ τ�.

(c) The pair of urns from which label i was drawn is conditionally indepen-
dent of the times �T1� T2� at which it was drawn.

Proof. This follows by direct calculation from the premise that theNui’s,
u = 1�2� � � � �U, are independent and identical Poisson processes. ✷

4.2. Poisson process approximation for matches. In this section and the
next, our focus is on matches between urns, ignoring the labels of the balls
involved. Our goal is a Poisson process approximation for these matches. In
preparation for a precise treatment of certain point processes, we now make
some aspects of the underlying probability and metric spaces explicit. We fol-
low [9] for the basic formalities and some notation. Let 
 be a complete sepa-
rable metric space and let ��
 � be its Borel field. Were �̂
 denotes the set
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of all Borel measures giving finite mass to bounded sets (“boundedly finite”)
and giving only nonnegative integer masses. There is a natural metric on �̂


(A2.6 of [9]) under which it becomes a complete separable metric space, and
we denote its Borel field by ���̂
 �. This Borel field is generated by the map-
pings m → m�A�, A ∈ ��
 �, m ∈ �̂
 , from �̂
 to �. A point process on 

is formally defined in [9] as a Borel-measurable mapping from a probability
space ���� �
� into �̂
 .

On our probability space ���� �
� are defined the Poisson processes Nui,
u = 1�2� � � � �U� i = 1�2� � � � n, on �0� ∞�, from which everything in this sec-
tion derives. The point processes of matches Muv on 
 = 9 defined in (4.1)
comprise a U×U “matrix”

M ≡ �Muv:u� v = 1�2� � � � �U��
which we view as a random element of the U2-fold product space

��′� � ′� ≡ (
�̂9� ���̂9�

)U2

�(4.5)

Let �M denote the sub-σ-field of � generated by M:� → �′. It is helpful
to think of �M as containing only information on the times of matches and
the indices of the urns involved, but containing no further information on
the labels drawn. We write :τM for the matrix �Mτ

uv� ≡ �:τMuv� of point
processes of matches up to time τ. We denote by �M�τ the sub-σ-field of �M

generated by :τM:� → �′.
We define a new probability measure νn over �M by specifying the law of the

Muv’s under νn, as follows: under νn, the Muv’s are independent Poisson pro-
cesses of rate c2n on 9. Therefore, under νn, the M

τ
uv’s are independent Poisson

processes of rate c2n on the finite triangle 9τ. Here is another way to describe
νn on �M�τ, which helps to bring out a similarity between νn and 
 in the light
of Lemma 4.4. Under νn, the total number of matches by time τ, defined by

Mtot�τ� ≡
U∑

u� v=1
Muv�9τ��

has the Poisson distribution of Lemma 4.2, namely, Po�U2c2nτ
2/2�. Further-

more, still under νn, given the total numberMtot�τ� of matches, these matches,
taken in random order, are independent of one another and have a common
marginal distribution. The marginal distribution may be described as follows.
A match is distributed across the urn pairs �u� v� and times �t1� t2� ∈ 9τ
according to the conditional distribution described in (a)–(c) of Lemma 4.4.
This similarity between 
 and νn is the basis of the next lemma, in which we
must restrict 
 to the event J3 = 0 that no label is drawn more than twice by
time τ in order to invoke Lemma 4.4.

Lemma 4.5. Let τ > 0 be fixed. The probability measures 
�· 	J2 = m� J3 =
0� and νn�· 	Mtot�τ� = m� are identical on �M�τ for m = 0�1�2� � � � � That is, for
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all G ∈ �M�τ we have


�G	J2 = m�J3 = 0� = νn
(
G	Mtot�τ� = m

)
� m = 0�1�2 � � � �

Proof. Note first that the conditional probabilities are well defined: the
events on which we condition have positive probability for all m = 0�1�2� � � � �
Using Lemma 4.4, the independence of the N·i’s and the comments immedi-
ately preceding the statement of the present lemma, we get the following fact:
the conditional 
-law of Mτ, given J2 = m and J3 = 0 and given the random
variables I1� I2� � � � � In indicating which m of the n labels were drawn twice
by time τ [see (4.3)], is identical to the conditional law νn�·	Mtot�τ� = m�. Since
this conditional law depends on I1� I2� � � � � In only through their sum J2 = m,
the lemma follows. ✷

The next theorem, which is the main result of this section, bounds the total
variation distance between the probability measures νn and 
 over the σ-field
�M�τ. Equivalently, it bounds the total variation distance between the 
-law
of Mτ and the νn-law of Mτ.

Theorem 4.1. We have

dTV�
� νn	�M�τ� ≤ 4
3
U3τ3		pn		33 + 1

2
U4τ4		pn		44�

Proof. We write O3 for the event J3 = 0, and Oc
3 for its complement.

The fact that Mtot�τ� = J2 on O3 is used on the second line of the following
calculation. Lemma 4.5 is used on the third. For all G ∈ �M�τ we have


�G ∩O3� =
∞∑
m=0



(
G	Mtot�τ� = m�O3

)


({
Mtot�τ� = m

} ∩O3
)

=
∞∑
m=0


�G	J2 = m�J3 = 0�
({Mtot�τ� = m
} ∩O3

)
=

∞∑
m=0

νn
(
G	Mtot�τ� = m

)


({
J2 = m

} ∩O3
)
�

This is used on the second line of the next calculation. Some caution is needed
because O3 /∈ �M, and so, for example, νn�O3� is not defined:

	
�G� − νn�G�	 ≤ 
�Oc
3� + 	
�G ∩O3� − νn�G�	

≤ 
�Oc
3� +

∞∑
m=0

∣∣νn(G	Mtot�τ� = m
)


(�J2 = m� ∩O3

)
− νn

(
G	Mtot�τ� = m

)
νn
(
Mtot�τ� = m

)∣∣
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= 
�Oc
3� +

∞∑
m=0

νn
(
G	Mtot�τ� = m

)∣∣
(�J2 = m� ∩O3
)

− νn
(
Mtot�τ� = m

)∣∣
≤ 
�Oc

3� +
∞∑
m=0

νn
(
G	Mtot�τ� = m

)
×
{∣∣
�J2 = m� − νn

(
Mtot�τ� = m

)∣∣+ 

(�J2 = m� ∩Oc

3�
}

≤ 
�Oc
3� +

∞∑
m=0

{∣∣
�J2 = m� − νn
(
Mtot�τ� = m

)∣∣
+ 


(�J2 = m� ∩Oc
3

)}
= 2
�J3 > 0� + 2dTV

(
� �J2�� Po�U2c2nτ

2/2�)�
The two terms in the final expression are bounded by the results of Lemmas
4.3 and 4.2, respectively. ✷

4.3. Poisson process approximation up to a random time. As in Section 3.2,
Ruu denotes the time of the first match for the pair �u� u� of urns. Let

R ≡ max�R11�R22� � � � �RUU��(4.6)

(This notation is in concert with the use of R for the time of the first match in
a single urn in Section 3.1.) We use Theorem 4.1 to deduce a total variation
approximation for the law of theMuv’s “up to time R.” The new feature is that
the “ending time” R, formerly fixed at τ, is now random.

We introduce the processes of matches M∗ = �M∗
uv� observed up to time R,

defined by

M∗
uv�ω� ≡ :R�ω�Muv�ω� for ω ∈ ��

We define � ∗
M to be the sub-σ-field of �M induced by this mapping. In fact,

R is a stopping time with respect to the filtration �M�τ� τ ≥ 0� and � ∗
M is the

σ-field �M�R of this stopping time.
Now we are ready to derive a total variation norm bound on the distance

between 
 and νn on � ∗
M. For G ∈ � ∗

M, we have

	
�G� − νn�G�	 ≤ 	
(G ∩ �R ≤ τ�)− νn
(
G ∩ �R ≤ τ�)	 + 
�R > τ�

+ νn�R > τ�
≤ 2dTV�
� νn 	 �M�τ� + 2νn�R > τ��

On the second line, we have used a total variation distance bound twice: first
in bounding the difference between 
�G ∩ �R ≤ τ�� and νn�G ∩ �R ≤ τ��, and
then in bounding the difference between 
�R > τ� and νn�R > τ�. These are
justified by the fact that the events R > τ and G∩�R ≤ τ� are in �M�τ. As the
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final bound does not depend on G, it also bounds the total variation distance
between 
 and νn on � ∗

M. Thus we continue

dTV�
� νn 	 � ∗
M� ≤ 2νn�R > τ� + 2dTV�
� νn 	 �M�τ�

≤ 2U exp
{−c2nτ2/2}+ 8

3U
3τ3		pn		33 +U4τ4		pn		44�

(4.7)

The last step uses Theorem 4.1 and the following bound on the tail probability
ofR under νn. For any urn u, νn�Ruu > τ� = νn�Muu�9τ� = 0� = exp�−c2nτ2/2�,
the latter following from the fact thatMuu is a Poisson process of rate c2n on 9
under νn and that the area of 9τ is τ2/2. [This is, in essence, (3.3), which gives
the limiting d.f. of cnR in the case of a single urn.] Now use Boole’s inequality
to deduce that νn�R > τ� = νn�maxv Rvv > τ� ≤ Uνn�Ruu > τ�. This explains
the first term of (4.7).

The homogeneous limit condition (2.5) states that εn → 0 as n → ∞, where
εn ≡ maxi pni/cn� We now make a choice of τ such that cnτ → ∞ as n → ∞
but also such that the final bound of (4.7) goes to 0 as n → ∞. Set

τ =
√−2 log ε∗

n

cn
� where ε∗

n ≡ min
(1
e
� εn

)
�

Substituting this choice into (4.7) leads to following result.

Theorem 4.2. We have

dTV�
� νn	� ∗
M� ≤ 14U4εn	 log ε∗

n	3/2�

Proof. It follows from definitions that
		pn		33
c3n

= 		pn		33
		pn		32

≤ εn ≤ 1 and
		pn		44
c4n

≤ ε2n�(4.8)

Using this and (4.7) with the special choice of τ, we have

dTV�
� νn 	 � ∗
M� ≤ 2U exp

{−c2nτ2/2}+ 8
3U

3τ3		pn		33 +U4τ4		pn		44
≤ 2Uε∗

n + 8
3U

3εn	2 log ε∗
n	3/2 +U4ε2n	2 log ε∗

n	2

≤ 2Uε∗
n + 8U3εn	 log ε∗

n	3/2 + 4U4εn	 log ε∗
n	3/2

≤ 14U4εn	 log ε∗
n	3/2�

The next-to-last line is because 3 > 23/2 and εn	 log ε∗
n	1/2 ≤ 1. (For the latter,

note that ε∗
n ≤ εn ≤ 1.) The last line is because ε∗

n ≤ εn and 	 log ε∗
n	 ≥ 1. ✷

It is natural to “speed up time” by a factor of 1/cn in studying the limiting
behavior of the counting processes Muv, since they are close to Poisson pro-
cesses of rate c2n → 0 on 9. The time scaling produces the point processes on
9 defined by

M̃uv�A� ≡ Muv

( 1
cn
A
)
� A ∈ ��9�� where

1
cn
A ≡ {

a/cn 	 a ∈ A}�
Under νn, the M̃uv’s are independent Poisson processes of rate 1 on 9.



1170 C. A. O’CINNEIDE AND A. V. POKROVSKII

5. Proof of the main result. In this section we prove Theorem 2.1. The
proof is divided into three parts. In the first part, treated in Section 5.1, we
present an � ∗

M-measurable approximation F∗
��U to the random d.f. F�. In the

second part, treated in Section 5.2, we progress in a series of small steps, as
measured by the Lévy metric, from F� to F∗

��U. In the third part, treated
in Section 5.3, the Poisson approximation of Theorem 4.2 is invoked to give
detailed information on the law of F∗

��U, and the proof of Theorem 2.1 is easily
completed.

It is helpful to keep in mind that the word “label” is reserved for the labels
�1�2� � � � � n� of the balls in the urn model. Quantities described as “indices”
do not refer to balls.

5.1. An � ∗
M-measurable approximation. In this section, we make the con-

nection between the random transformation � of Section 2 and the Poisson
approximation for matches of Section 4, by invoking the coupling of � with
the urn model described in Section 3.2. Recall that �u denotes the initial label
of urn u, that is, the label of the first ball drawn from urn u. We introduce � ∗

M-
measurable quantities that approximate the size X�u

= pn�Co��u���� of the
component of � containing �u, the length Y�u

≡ #Cy��u� �� of the cycle of �u
under � and the length Z�u

≡ #Tr��u� �� of the trajectory of �u under �. Here
� ∗
M-measurability means precisely that we can construct these approximating

random variables by observing the processes M∗
uv of matches up to time R.

The goodness of these approximations is established in the next Section.
In the course of the construction of the coupling in Section 3.2, we associ-

ated with each urn index u� u = 1�2� � � � �U� an expiration time �u. We also
introduced the time �u at which the label drawn at time �u was drawn pre-
viously during observed time. We called �u was called the “knot time,” being
the point at which the time axis of an expired urn is “tied” to that of another,
as indicated by the sloped lines in Figure 3 (or Figure 4). Two knot times may
coincide. This happens when the same label is drawn at two different expira-
tion times. The label of the ball drawn at the expiration time �u of urn u is
called the knot label of urn u; this is also the label of the ball drawn at the
knot time �u.

We define ϕ�u� to be the index of the unique urn from which the label drawn
at time �u from urn u was drawn previously during observed time. Thus ϕ is
a transformation on the urn indices �1�2� � � � �U�. In Figure 4 we identify ϕ
for the situation of Figure 3. We have the following result.

Proposition 5.1. Two urn indices u� v ∈ �1�2� � � � �U� are in the same
component of ϕ if and only if the initial labels �u and �v of the corresponding
urns are in the same component of �.

Proof. This result is clear once the definitions are understood. We outline
the argument, avoiding some additional notation needed for a formal proof.
The key is that the trajectory of an observed label, say i, under �, may be
described as follows. Let u be the index of the unique urn from which i was
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Fig. 4. Defining ϕ on the urn indices �1�2�3� and γ on the urn and knot indices �1�2�3�4�5�6��
(Only the � ∗

M-measurable information of Figure 3 is presented here.)

drawn during observed time. Then i���i������i�� · · · is the sequence of labels
that arise if we start at the time of the observed drawing of label i and record
the labels drawn from urn u until just before its expiration time, whereupon
we jump to urn ϕ�u� at the knot time �u and observe the labels drawn from
that point until just before the expiration time of urn ϕ�u�, whereupon we
jump to urn ϕ�ϕ�u��, and so forth.

Suppose that u and v are in the same component of ϕ. Then their trajecto-
ries under ϕ intersect, at say urn index w. Thus, by the preceding description,
the trajectories of �u and �v under � must intersect at the knot label of urn
w. This implies that �u and �v are in the same component of �.

Conversely, if �u and �v are in the same component of �, then, by definition,
their trajectories under � must intersect at some label i. Let w be the index of
the urn from which this label was drawn during observed time. Then, by the
first paragraph of this proof, it follows that the trajectories of u and v under
ϕ both visit w, and so we conclude that u and v are in the same component
of ϕ. ✷

We introduce

Xu ≡ #Co�u� ϕ�
U

� u = 1�2� � � � �U�(5.1)

By Proposition 5.1, this is the proportion of urns whose initial labels belong
to the the same component of � as �u. It is a natural approximation to X�u
based on the urn model. It is � ∗

M-measurable because the function ϕ is defined
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entirely in terms of the processesM∗
uv of matches up to time R. This is proved

to be a good approximation to X�u
in Lemma 5.1. Next we develop similar

approximations for Y�u
and Z�u

.
Let V be the number of distinct knot times, and assign “knot indices” U+

1� U + 2� � � � �U + V to these knot times in an arbitrary order. We write �v
for the label of the ball drawn at the knot time with index v� v = U+ 1� U+
2� � � � �U +V. Thus the �v� v = U + 1� U + 2� � � � �U +V� are the knot labels.
We define a transformation γ:

γ: �1�2� � � � �U�U+ 1�U+ 2� � � � �U+V�
→ �1�2� � � � �U�U+ 1�U+ 2� � � � �U+V�

on the set of urn and knot indices, as follows. First consider an urn index
u = 1�2� � � � �U. As we evaluate the iterates �k��u�� k = 0�1�2� � � � � of � in
turn, starting with the initial label �u of urn u, we eventually reach a knot
label. We define γ�u� to be the index of this first knot label that arises in these
iterates. Now consider a knot index v = U+1�U+2� � � � �U+V. We define γ�v�
to be the index of the first knot label arising in the iterates�k��v�� k = 1�2� � � � �
(Note that the iterations here start with k = 1, not k = 0.) The function γ is
evaluated in Figure 4 for the situation of Figure 3.

Again we identify the function γ with its digraph. The digraph γ becomes
a weighted graph when we associate with each edge �v� γ�v�� the weight
Weight�v� γ�v�� defined as follows. For urn indices u = 1�2� � � � �U� Weight�u,
γ�u�� is the time until the first drawing of a knot label from urn u. For knot
indices v = U + 1�U + 2� � � � �U + V� Weight�v� γ�v�� is the time from the
observed drawing of the knot label �v until the next drawing, whether observed
or unobserved, of a knot label from the same urn. The weighted digraph of γ
is � ∗

M-measurable as it depends only on the point processes M∗
uv of matches

up to time R.
We define the weight of a subgraph � of the weighted graph γ as the sum

of the weights of all of its edges:

Weight
(
�
) ≡ ∑(

v�γ�v�
)
∈�

Weight
(
v� γ�v�)�

With this we define

Yu≡Weight
(
Cy�u�γ�) and Zu≡Weight

(
Tr�u�γ�) for u=1�2�����U�

These are our � ∗
M-measurable approximations to Y�u

and Z�u
. That they are

good approximations will be shown in Lemma 5.3. Informally, the idea is that
Yu and Zu measure the continuous time taken by the Poisson processes of
Section 3.2 to trace out the corresponding cycles and trajectories of �, and
since the Poisson processes are of rate 1 this continuous time is close to the
actual numbers of labels drawn, namely Y�u

and Z�u
. This is analogous to the

relationship established in Section 3.1 between the number of draws D from
a single urn until the first match and the (continuous) time R until the first
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match. We record the important measurability property of the approximations
developed in this Section as follows.

Proposition 5.2. The random variables Xu�Yu�Zu�u = 1� 2� � � � �U� are
� ∗
M-measurable.

Now we introduce our � ∗
M-measurable approximation to F�. Let F

∗
��U

denote the empirical d.f. of �Xu� cnY
u� cnZ

u�� u = 1�2� � � � �U. Proposition
5.2 implies that F∗

��U is � ∗
M-measurable. Our next goal is to show that F∗

��U

is a good approximation to F� in the Lévy metric.

5.2. Goodness of the � ∗
M-measurable approximation. We present a series

of approximations in the Lévy metric leading from F� to its � ∗
M-measurable

approximation F∗
��U defined previously. This section culminates in Lemma

5.4, which describes the accuracy of the approximation F∗
��U of F�.

We make use of the following notation scheme. The notation ψ�·� will rep-
resent a function which has 0 as a certain limit; we indicate variables to be
held fixed in taking this limit by placing them to the right of a “	” symbol.
Thus, for example, we introduce

ψ0�ε 	 U� ≡ 14U4ε	 log ε∗	3/2 where ε∗ ≡ min
(
1
e
� ε

)
�(5.2)

to represent the total-variation norm bound in Theorem 4.2. For fixed U�
ψ0�ε 	 U� tends to 0 as ε → 0.

We define F��U to be the empirical d.f. of the scaled triplets �X�u
� cnY�u

,
cnZ�u

�� u = 1�2� � � � �U. Conditional on �, this is the empirical d.f. of a random
sample [25] from F�. This is because the initial labels �1� �2� � � � � �U form a
random sample from pn that is independent of �, by Theorem 3.3. We have
the following result.

Lemma 5.1. There is a function ψ1�· 	 ·� satisfying lim
U→∞

ψ1�U	ε� = 0 for all

ε > 0 such that



(
dL�F��F��U� > ε

) ≤ ψ1�U	ε�� ε > 0�

Proof. The theory of Vapnik–Chervonenkis classes implies that there is
a function ψ1�U	ε� satisfying the limit condition of the lemma such that, for
any d.f. G on �3, with GU denoting the empirical d.f. of a random sample of
size U from G, we have



(
dL�G�GU� > ε

) ≤ ψ1�U	ε��
See, for example, [25], Theorem 1 of Chapter 26. [In fact, we may take
ψ1�U	ε� = A/�Uε8� for a constant A.] Specializing this to G = Fφ [see (2.4)]
and averaging with respect to the distribution πn�φ�� φ ∈ �n� of � [see (2.1)]
gives the desired result. ✷
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At the next step we show that we still get a good approximation to F� using
F1
��U, the empirical d.f. of the triplets �Xu� cnY�u

� cnZ�u
�� u = 1�2� � � � �U, in

place of F��U. The superscript “1” indicates that the first components X�u
of

the random sample have been replaced by the approximationsXu. This lemma
is based on the following observation, which is clear when the definition (5.1)
ofXu is viewed in the light of Theorem 3.3. Conditional on � and �u,Xu is, in
essence, a “sample proportion” estimator of the “population proportion” X�u

.
Note that, unlike F��U, F

1
��U is not the empirical d.f. of a random sample

given �.

Lemma 5.2. For all ε > 0 we have



(
dL�F��U�F

1
��U� > ε

) ≤ 2
ε2U

�

Proof. It is elementary that



(
dL�F��U�F

1
��U� > ε

)
≤ 
�max 	Xu −X�u

	 > ε�

≤ 


(
U∑
u=1

�Xu −X�u
�2 > ε2

)
≤ 1
ε2

Ɛ

(
U∑
u=1

�Xu −X�u
�2
)

= 1
ε2

Ɛ

(
U∑
u=1

Ɛ
(�Xu −X�u

�2 	 X�u

))

= 1
ε2

Ɛ

(
U∑
u=1

{
X�u

�1−X�u
�

U
+ �1−X�u

��1− 2X�u
�

U2

})
≤ 2
ε2U

�

(5.3)

The equality on the last line is because the conditional distribution of UXu−1
given X�u

is binomial�U− 1�X�u
�. This is a consequence of Theorem 3.3. ✷

Now we make use of the � ∗
M-measurable approximations of cycle and tra-

jectory length given in Section 5.1. Recall from the end of Section 5.1 that
F∗
��U denotes the empirical d.f. of �Xu� cnY

u� cnZ
u�� u = 1�2� � � � �U. The dif-

ference between this and F��U is that all three components of the triplets
�X�u

� cnY�u
� cnZ�u

� in the random sample of size U have been replaced by
their � ∗

M-measurable approximations �Xu� cnY
u� cnZ

u�.

Lemma 5.3. There exists a function ψ2 satisfying limx↓0ψ2�x	ε�U� = 0 for
all ε > 0 and U = 1�2� � � � � such that



(
dL
(
F1
��U�F

∗
��U

)
> ε

) ≤ ψ2�εn	ε�U��

Proof. Recall from Section 4.1 that Nu· is the Poisson process of rate 1
describing the times at which balls are drawn from urn u. First we point out
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thatNu·�t� tends to be close to t for all urns u and all times t ≤ R. We use an
argument paralleling that of (3.4). We have, for any t0 > 0,



(
max
0≤t≤R

cn	Nu·�t� − t	 > ε
)

≤ 


(
max

0≤s≤t0/cn
	Nu·�s� − s	 > ε

cn

)
+ 


(
R >

t0
cn

)
(5.4)

≤ 4t0cn
ε2

+ 
�cnR > t0� ≤ 4t0εn
ε2

+Ue−t
2
0/2 + ψ0�εn	U��

The bound on the tail probability of R here is argued as in (4.7). We also used
(2.6) at the last step. Now choose t0 so that exp�−t20/2� = εn, and then define
the last expression to be ψ′

2�εn	ε�U�. Then ψ′
2 satisfies limx↓0ψ

′
2�x	ε�U� = 0

and



(
max
0≤t≤R

cn	Nu·�t� − t	 > ε
)
≤ ψ′

2�εn	ε�U��

An application of Boole’s inequality to bound the union over u of the events
on the left here leads readily to a bound showing that the increments in the
Nu·’s up to time R ≡ maxRvv are close to the corresponding time intervals:



(
max
1≤u≤U

cn	Nu·�t� −Nu·�s� − �t− s�	 > 2ε for some 0 ≤ s ≤ t ≤ R
)

≤ Uψ′
2�εn	ε�U��

(5.5)

The following facts are direct consequences of the definitions in Section 5.1.
Each Y�u

is a sum of at most U increments of the form Nv·��v� −Nv·��w�,
where v = ϕ�w�, and each Yu is a sum of the corresponding time intervals
�v−�w. Similarly, each Z�u

is a sum ofNu·��u� and at most U−1 increments
of the form Nv·��v� −Nv·��w�, where v = ϕ�w�, and each Zu is again a sum
of the corresponding time intervals �u and �v −�w. Thus (5.5) gives



(
max
1≤u≤U

	Yu −Y�u
	 > 2Uε or max

1≤u≤U
	Zu −Z�u

	 > 2Uε
)
≤ Uψ′

2�εn	ε�U��

The left-hand side here is a bound on 
�dL�F1
��U�F

∗
��U� > 2Uε�. The con-

clusion of the lemma follows now with this definition of ψ2:ψ2�x	ε�U� ≡
Uψ′

2�x	ε/�2U��U�. ✷

By applying the triangle inequality to combine Lemmas 5.1, 5.2 and 5.3,
we can summarize this section as following result.

Lemma 5.4. We have



(
dL�F��F

∗
��U� > 3ε

) ≤ ψ1�U	ε� + 2
ε2U

+ ψ2�εn	ε�U��
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5.3. Invoking the Poisson approximation. First we quote an elementary
result bounding the Prohorov distance in terms of a “coupling.”

Lemma 5.5. Let Hi� i = 1�2� be random variables taking values in a sep-
arable metric space 
 with metric d, and let ηi� i = 1�2� be their laws. Then
for all ε > 0 we have

dPr�η1� η2� ≤ ε+ 

(
d�H1�H2� > ε

)
�

Proof. Let ε′ ≡ ε+ 
�d�H1�H2� > ε� ≥ ε. Then we have 
�d�H1�H2� >
ε′� ≤ 
�d�H1�H2� > ε� ≤ ε′� and the conclusion follows from Theorem 3.1.2
of [17]. ✷

The random d.f.F∗
��U ∈ �3 is measurable with respect to the σ-field � ∗

M. We
write µ∗

n�U for its law on �3. Since the law νn is defined on � ∗
M, the measurable

mapping F∗
��U from ���� ∗

M� νn� to �3 induces a law on �3 which we denote by
µ�U :µ�U �G� = νn�F∗

��U ∈ G� for G ∈ ���3�. This is an approximation to the
law µ∗

n�U� An important point is that the law µ�U does not depend on n. To
see this, first note that working with the scaled triplets �Xu� cnY

u� cnZ
u� in

Section 5.1 is equivalent to replacing the point processes Muv by their time-
scaled versions M̃uv defined at the end of section 4.3. But under νn the M̃uv’s
are independent Poisson processes of rate 1 on 9, and this law clearly does
not depend on n.

The following result is immediate now from Theorem 4.2.

Lemma 5.6. We have

dTV
(
µ∗
n�U�µ�U 

) ≤ ψ0�εn	U� ≡ 14U4εn	 log ε∗
n	3/2�

Proof of Theorem 2.1. Using Lemma 5.5 to turn Lemma 5.4 into a state-
ment about the Prohorov distance between laws on �3, we obtain, for all ε > 0
and U = 1�2� � � � �

dPr
(
µn�µ

∗
n�U

) ≤ 3ε+ ψ1�U	ε� + 2
ε2U

+ ψ2�εn	ε�U��
Using this with Lemma 5.6 and the triangle inequality, we get

dPr
(
µn�µ�U 

)≤dPr
(
µn�µ

∗
n�U

)+ dPr
(
µ∗
n�U�µ�U 

)
≤3ε+ ψ1�U	ε� + 2

ε2U
+ ψ2�εn	ε�U� + ψ0�εn	U��

(5.6)

Here we have used the fact that the Prohorov metric is dominated by the total
variation distance. It follows that µn�n = 1�2� � � � � is a Cauchy sequence. This
is because, for any given δ > 0, we can make the right-hand side here smaller
than this δ by first choosing ε = ε0 = δ/30, and then choosing for U a fixed
value U0 so large that both ψ1�U0 	 ε0� < δ/10 and 2/�ε20U0� < δ/10 hold.
Having chosen ε = ε0 and U = U0, we see that for all sufficiently large n each
of the last two terms on the right-hand side, ψ2�εn 	 ε0�U0� and ψ0�εn 	 U0�,
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are less than δ/10, by the homogeneous limit condition limn→∞ εn = 0, (2.5).
It then follows that for all sufficiently large n and n′ we have

dPr
(
µn�µn′

) ≤ dPr
(
µn�µ�U0 

)+ dPr
(
µn′� µ�U0 

) ≤ δ

2
+ δ

2
= δ�

Thus µn is a Cauchy sequence as claimed. As the space �� ��3� of probability
measures on �3 is complete under the Prohorov metric, these have a limit µ.
This completes the proof. ✷

6. Concluding remarks.

6.1. Relationships with analysis of discretizations. First we explain in a
little more detail how Theorem 2.1 relates to the analysis of discretizations
of dynamical systems with chaotic behavior. We consider a transformation
f: �0�1� → �0�1� with absolutely continuous Sinai–Ruelle–Bowen invariant
measure χf. As in Section 1, we write fn for the discretization fn�i� = �nf�i/
n��+, which is a transformation on �1�2� � � � � n�. We consider the simplified
triplets (

#Co�i� fn��#Cy�i� fn��#Tr�i� fn�
)
� i ∈ �1�2� � � � � n��(6.1)

These differ from the triplets of (2.2) in that component size is now also mea-
sured by cardinality (#). We use a superscript # in the following discussion
whenever component size is measured by cardinality. For given f and n we
consider the distribution function F#

fn
of these triplets when the label i is

selected at random from �1�2� � � � � n�. We are interested in the ensemble of
d.f.s F#

fn
� n = n0 + 1� n0 + 2� � � � � n0 + n1� for large n0 and n1.

The most natural way to approximate an ensemble of discretizations of f by
a random mapping � is the following. We take the distribution pn of images
of � to be a discretization of the invariant measure χf of f:

pni ≡ χf
((�i− 1�/n� i/n])�(6.2)

The following hypothesis expresses the expected relationship between the ran-
dom mapping � and the discretizations of f.

Hypothesis 1. For large n0� n1 the empirical law of F#
fn
, n = n0 + 1� n0 +

2� � � � � n0+n1� is close to the law of the random d.f. F#
� of the simplified triplets

associated with the random mapping � with the preceding choice pn of the
distribution of images.

See [14], [18] and [21] for detailed discussion. We do not know how to prove
such a hypothesis, nor can we even test it empirically without detailed knowl-
edge of the measure χf. Consider, however, the case where χf has a density
χ′
f bounded by a constant K < ∞. Then the distribution of images pn satis-

fies the inequalities pni ≤ K/n� and so, since we always have cn ≥ 1/
√
n by

Jensen’s inequality,

pni
cn

≤ K√
n
�
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Thus the homogeneous limit condition (2.5) holds and Theorem 2.1 is applica-
ble to F�. Furthermore, we have here that

cn ≈ θ√
n

with θ =
∫ 1

0

(
χ′
f�t�

)2
dt�

The preceding hypothesis in conjunction with Theorem 2.1 then gives rise to
the following hypothesis.

Hypothesis 2. There exists a positive constant θ such that for large n0 and
n1 the empirical law of the sequence of d.f.’sF#

fn� θ
, n = n0+1� n0+2� � � � � n0+n1�

of the scaled triplets(
#Co�i� fn�

n
� θ

#Cy�i� fn�√
n

� θ
#Tr�i� fn�√

n

)
� i ∈ �1�2� � � � � n��

is close to the law µ of Theorem 2.1.

[We ignore the technicality that component size in the simplified triplets
(6.1) is measured using the uniform distribution rather than pn as in Theorem
2.1.] This hypothesis may be viewed as a more precise form of the italicized
principle stated in the first paragraph of Section 1. It is much more convenient
to work with than Hypothesis 1, because all of the details of f and χf have
disappeared in the limit, except for the scalar parameter θ. Hypothesis 2 is
easily tested in numerical experiments. Figure 2 in Section 1 presents such
a test, and lends support to the hypothesis by exhibiting the proximity of
Fα�· 	H1� and F∞

α .

6.2. Remark on mappings with attracting centers. To understand the role
of the homogeneity condition (2.5) of Theorem 2.1, we consider the situation
where all weights pni but one are the same. Specifically, we suppose that there
is a constant β such that, for all n,

pn1
cn

= β√
β2 + 1

�
pni
cn

= 1√
β2 + 1

√
n− 1

� i = 2� 3� � � � � n�

Thus, in a sense, the homogeneous limit condition (2.5) holds for all balls but
the first. In this case � is the classical mapping with a single attracting center
[27]. Certain limiting properties of the corresponding random d.f. F� are well
known and these are quite different from those of the completely random
mapping. The methods of this paper are applicable to random mappings with
attracting centers. We will devote a future paper to detailed analysis of this
situation. In the meantime, let us quote one result.

Theorem 6.1. Suppose that for each n = 1�2� � � � we have a probability
measure pn on �1�2� � � � � n�. Suppose further that

lim
n→∞

pn1
cn

= a < ∞ and lim
n→∞max

i>1

pni
cn

= 0�
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Let � be the random transformation with distribution of images pn, and let
µn denote the law of the random d.f. F� of the scaled triplets defined by (2.4).
Then there exists a probability measure µ�a� over � 3 such that µn converges
weakly to µ�a� as n → ∞. The law µ�a� depends on the pn’s only through a.

This may be proved using Theorem 4.2 to approximate the matches involv-
ing labels 2� 3� � � � � n, and then noting that, in the urn model, draws of label
1 form a Poisson process independent of draws of the other labels.

6.3. Relationships with analysis of discretizations: continuation. We now
discuss some experimentation showing that the completely random mapping
model fails to capture the behavior of discretizations of certain interesting
dynamical systems. This is a situation in which results along the lines of
Theorem 6.1 could be useful.

Let us consider the transformation f����x� = 1− 	2x−1	�� x ∈ �0�1�� where
� > 2. (See [13] for a study of discretizations of this. The case � = 2 is the
logistic mapping discussed in Section 1.) In this case there exists an abso-
lutely continuous Sinai–Ruelle–Bowen invariant measure χ���, but its density
is unbounded at the endpoints of the interval. In fact, there is a positive θ0
for which

χ����0� x�
x1/�

→ θ0 and
χ����1− x�1�

x1/�
→ θ0 as x → 0�

Using (6.2) for the distribution of images pn of a random transformation
approximating the behavior of an ensemble of discretizations of f, we have

pni ≈
θ0i

1/�−1

�n1/�
� pn�n−i ≈

θ0i
1/�−1

�n1/�
� cn = !pn!2 ≈ θ1

n1/�

for some θ1 > 0. Thus in this case pni = O�cn� and pn�n−i = O�cn� as n → ∞,
and so, in the terminology of the previous section, we might say loosely that
every ball is an attracting center. Numerical experiments show again that
the statistical behavior of the d.f.’s of scaled triplets over ensembles of dis-
cretizations of f��� is inconsistent with predictions based on the theory of com-
pletely random mappings. Let us denote byH� the ensemble of discretizations
f

���
n � n = 106 + 1�106 + 2� � � � �106 + 103. Figure 5 graphs the distribution func-

tions Fα�·	H�� [of the same parameter α�·� treated in Section 1] for a selection
of values of � > 2 against the prediction F∞

α based on a completely random
mapping. In sharp contrast to Figure 2, all d.f.’s are quite distinct. [The behav-
ior of Fα�· 	H�� as � increases is a little complex. At most argument values,
if not all, these d.f.’s increase as � increases from 2 to about 2.5. Thereafter
they typically decrease in �. These observations are based on much careful
experimentation.]

6.4. Relationship with the continuum random tree. While the triplets
defined in Section 2 are indeed the most important descriptors of a random
transformation when we are not interested in the individual identities of the
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Fig. 5. The distribution function F∞
α (dashed line) and the empirical distribution functions

Fα�· 	H2�5�� Fα�· 	H3�� Fα�· 	H4� and Fα�· 	H5�, which appear from top to bottom.

elements of the domain, there are many other quantities of interest. For exam-
ple, when the cycles are removed, the graph � becomes a forest [26], and we
may ask about the distribution of the sizes of the trees in this forest. A com-
plete picture of what can be achieved in this direction requires an embedding
of the entire graph � in a large space in such a way that the induced laws are
tight. Aldous has shown how to do this for a natural family of random trees.
The connection with Aldous’s compact continuum random tree (see [2] and [3],
and further references in the latter) is very close. Indeed, we believe that the
trees in the forest described previously converge to the compact continuum
random tree under the homogeneous limit condition (2.5). To indicate the con-
nection, the Poisson processes on the triangle 9, which were so essential in
Sections 4.2 and 4.3, capture the same “dynamics” as Aldous’s inhomogeneous
Poisson process with rate t and uniformly distributed marks (see Section 4
of [2]). The random mapping is not a tree, but there is an elegant way to
construct a sequence of approximations to the limit process using the Poisson
law νn of Section 4.2 that is analogous to Aldous’s presentation of the compact
continuum tree. This is to be the subject of a future paper.
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