FRACTIONAL BROWNIAN MOTIONS IN A LIMIT OF TURBULENT TRANSPORT ${ }^{1}$

By Albert Fannjiang and Tomasz Komorowski
University of California, Davis and Maria Curie-Skłodowska University, and Polish Academy of Sciences

Abstract

We show that the motion of a particle advected by a random Gaussian velocity field with long-range correlations converges to a fractional Brownian motion in the long time limit.

1. Introduction. The motion of a particle advected by a random velocity field is governed by

$$
\begin{equation*}
\frac{d \mathbf{x}(t)}{d t}=\mathbf{V}(t, \mathbf{x}(t)) \tag{1}
\end{equation*}
$$

where $\mathbf{V}(t, \mathbf{x})=\left(V_{1}(t, \mathbf{x}), \ldots, V_{d}(t, \mathbf{x})\right)$ is a random, mean-zero, time- stationary, space-homogeneous incompressible velocity field in dimension $d \geq 2$.

In certain situations, it is believed that the convergence of the Taylor-Kubo formula (see [8] and [14]) given by

$$
\begin{equation*}
\int_{0}^{\infty}\left\{\mathbf{E}\left[V_{i}(t, \mathbf{0}) V_{j}(0, \mathbf{0})\right]+\mathbf{E}\left[V_{j}(t, \mathbf{0}) V_{i}(0, \mathbf{0})\right]\right\} d t \tag{2}
\end{equation*}
$$

is a criterion for convergence of turbulent motion to Brownian motion in the long time limit. Indeed, it has been shown that the solution of

$$
\begin{equation*}
\frac{d \mathbf{x}_{\varepsilon}(t)}{d t}=\frac{1}{\varepsilon} \mathbf{V}\left(\frac{t}{\varepsilon^{2}}, \mathbf{x}_{\varepsilon}(t)\right), \quad \mathbf{x}_{\varepsilon}(0)=0 \tag{3}
\end{equation*}
$$

converges in law, as $\varepsilon \rightarrow 0$, to the Brownian motion with diffusion coefficients given by the Taylor-Kubo formula when the velocity field is sufficiently mixing in time (see [2], [6], [7] and [9]). Moreover, the solution of (3) converges to the same Brownian motion for a family of nonmixing Gaussian, Markovian flows with power-law spectra as long as the Taylor-Kubo formula converges (see [3]). In this paper, for the same family of power-law spectra, we show that, when the Taylor-Kubo formula diverges, the solution of the following equation

$$
\begin{equation*}
\frac{d \mathbf{x}_{\varepsilon}(t)}{d t}=\varepsilon^{1-2 \delta} \mathbf{V}\left(\frac{t}{\varepsilon^{2 \delta}}, \mathbf{x}_{\varepsilon}(t)\right), \quad \mathbf{x}_{\varepsilon}(0)=0 \tag{4}
\end{equation*}
$$

[^0]with some $\delta \neq 1$ depending on the velocity spectrum, converges, as $\varepsilon \rightarrow 0$, to a fractional Brownian motion (FBM), as introduced in [10] (see also [13]).

We define the family of velocity fields with power-law spectra as follows. Let (Ω, \mathscr{V}, P) be a probability space of which each element is a velocity field $\mathbf{V}(t, \mathbf{x}),(t, \mathbf{x}) \in R \times R^{d}$, satisfying the following properties:
(H1) $\mathbf{V}(t, \mathbf{x})$ is time stationary, space homogeneous, centered, that is, $\mathbf{E}\{\mathbf{V}\}=\mathbf{0}$, and Gaussian. Here \mathbf{E} stands for the expectation with respect to the probability measure P.
(H2) The two-point correlation tensor $\mathbf{R}=\left[R_{i j}\right]$ is given by

$$
\begin{align*}
R_{i j}(t, \mathbf{x}) & =\mathbf{E}\left[V_{i}(t, \mathbf{x}) V_{j}(0, \mathbf{0})\right] \\
& =\int_{R^{d}} \cos (\mathbf{k} \cdot \mathbf{x}) e^{-|\mathbf{k}|^{2 \beta} t} \widehat{\mathbf{R}}_{i j}(\mathbf{k}) d \mathbf{k} \tag{5}
\end{align*}
$$

with the spatial spectral density

$$
\begin{equation*}
\widehat{\mathbf{R}}(\mathbf{k})=\frac{a(|\mathbf{k}|)}{|\mathbf{k}|^{2 \alpha+d-2}}\left(\mathbf{I}-\frac{\mathbf{k} \otimes \mathbf{k}}{|\mathbf{k}|^{2}}\right) \tag{6}
\end{equation*}
$$

where $a:[0,+\infty) \rightarrow R_{+}$is a compactly supported, continuous, nonnegative function. The factor $\mathbf{I}-\mathbf{k} \otimes \mathbf{k} /|\mathbf{k}|^{2}$ in (6) is a result of incompressibility.
(H3) $\alpha<1, \beta \geq 0$ and $\alpha+\beta>1$.
It can be readily checked that the correlation function (5) is temporally integrable and, hence, the Taylor-Kubo formula is convergent if and only if $\alpha+\beta<1$.

The function $\exp \left(-|\mathbf{k}|^{2 \beta} t\right)$ in (5) is called the time correlation function of the flow \mathbf{V}. For $\beta>0$, the velocity field lacks the spectral gap and, thus, is not mixing in time. As the time correlation function is exponential, the Gaussian velocity field is an Ornstein-Uhlenbeck process. Because the function a has a compact support we may assume, without loss of generality, that \mathbf{V} is jointly continuous in both (t, \mathbf{x}) and is C^{∞} in \mathbf{x} almost surely. For $\alpha<1$, the spectral density $\widehat{\mathbf{R}}(\mathbf{k})$ is integrable in \mathbf{k} and, thus, (5)-(6) defines a random velocity field with a finite second moment. The exponent α is directly related to the decay exponent of \mathbf{R}. Namely, $|\mathbf{R}|(0, \mathbf{x}) \sim|\mathbf{x}|^{\alpha-1}$ for $|\mathbf{x}| \gg 1$. As α increases to 1 , the decay exponent of \mathbf{R} decreases to 0 .

Our main result is summarized in the following theorem (see also Figure 1).
ThEOREM 1. Under assumptions (H1)-(H3), the solution of (4) with the scaling exponent

$$
\begin{equation*}
\delta:=\frac{\beta}{\alpha+2 \beta-1} \tag{7}
\end{equation*}
$$

converges in law, as ε tends to 0 , to a fractional Brownian motion $\mathbf{B}_{H}(t)$, that is, to a Gaussian process with stationary increments whose covariance is given by

$$
\begin{equation*}
\mathbf{E}\left[\mathbf{B}_{H}(t) \otimes \mathbf{B}_{H}(t)\right]=\mathbf{D} t^{2 H} \tag{8}
\end{equation*}
$$

Fig. 1. Phase diagram for scaling limit.
with the coefficients \mathbf{D}

$$
\begin{equation*}
\mathbf{D}=\int_{R^{d}} \frac{e^{-|\mathbf{k}|^{2 \beta}}-1+|\mathbf{k}|^{2 \beta}}{|\mathbf{k}|^{2 \alpha+4 \beta-1}}\left(\mathbf{I}-\frac{\mathbf{k} \otimes \mathbf{k}}{|\mathbf{k}|^{2}}\right) \frac{a(0)}{|\mathbf{k}|^{d-1}} d \mathbf{k} \tag{9}
\end{equation*}
$$

and the Hurst exponent H

$$
\begin{equation*}
\frac{1}{2}<H=\frac{1}{2}+\frac{\alpha+\beta-1}{2 \beta}<1 . \tag{10}
\end{equation*}
$$

Moreover, we show that the process $\mathbf{x}_{\varepsilon}(t)$ is asymptotically, as $\varepsilon \rightarrow 0$, the same as the process

$$
\mathbf{y}_{\varepsilon}(t):=\mathbf{x}_{\varepsilon}(0)+\varepsilon \int_{0}^{t / \varepsilon^{2 \delta}} \mathbf{V}\left(s, \mathbf{x}_{\varepsilon}(0)\right) d s
$$

(see Section 4). Namely, the spatial dependence of the Lagrangian velocity is frozen. As a result, the asymptotic motions of N particles starting at $\mathbf{x}_{\varepsilon}^{1}(0)$, $\mathbf{x}_{\varepsilon}^{2}(0), \ldots, \mathbf{x}_{\varepsilon}^{N}(0)$, can be easily deduced and they are in stark contrast to the case of diffusive scaling (cf. [2], [3]).

Remark. Molecular diffusion can be added to the equation of motion so that instead of (1) we may consider an Itô stochastic differential equation

$$
d \mathbf{x}(t)=\mathbf{V}(t, \mathbf{x}(t)) d t+\sqrt{2 \kappa} d \mathbf{B}(t)
$$

with $\mathbf{B}(t), t \geq 0$, the standard Brownian motion, independent of \mathbf{V} and $\kappa \geq 0$. This, however, would not influence our results.
2. Multiple stochastic integrals. By the spectral theorem (see, e.g., [1]) we assume without loss of any generality that there exist two independent, identically distributed, real vector-valued, Gaussian spectral measures $\widehat{\mathbf{V}}_{l}(t, \cdot)$, $l=0,1$, such that

$$
\begin{equation*}
\mathbf{V}(t, \mathbf{x})=\int \widehat{\mathbf{V}}_{0}(t, \mathbf{x}, d \mathbf{k}) \tag{11}
\end{equation*}
$$

where

$$
\widehat{\mathbf{V}}_{0}(t, \mathbf{x}, d \mathbf{k}):=c_{0}(\mathbf{k} \cdot \mathbf{x}) \widehat{\mathbf{V}}_{0}(t, d \mathbf{k})+c_{1}(\mathbf{k} \cdot \mathbf{x}) \widehat{\mathbf{V}}_{1}(t, d \mathbf{k}),
$$

with $c_{0}(\phi) \equiv \cos (\phi), c_{1}(\phi) \equiv \sin (\phi)$. Define also

$$
\widehat{\mathbf{V}}_{1}(t, \mathbf{x}, d \mathbf{k}):=-c_{1}(\mathbf{k} \cdot \mathbf{x}) \widehat{\mathbf{V}}_{0}(t, d \mathbf{k})+c_{0}(\mathbf{k} \cdot \mathbf{x}) \widehat{\mathbf{V}}_{1}(t, d \mathbf{k}) .
$$

We have the relations

$$
\begin{align*}
& \partial \widehat{\mathbf{V}}_{0}(t, \mathbf{x}, d \mathbf{k}) / \partial x_{j}=k_{j} \widehat{\mathbf{V}}_{1}(t, \mathbf{x}, d \mathbf{k}), \tag{12}\\
& \partial \widehat{\mathbf{V}}_{1}(t, \mathbf{x}, d \mathbf{k}) / \partial x_{j}=-k_{j} \widehat{\mathbf{V}}_{0}(t, \mathbf{x}, d \mathbf{k}) . \tag{13}
\end{align*}
$$

Clearly, $\int \widehat{\mathbf{V}}_{1}(t, \mathbf{x}, d \mathbf{k})$ is a random field distributed identically to and independently of \mathbf{V}. We define the multiple stochastic integral

$$
\begin{equation*}
\int \cdots \int \psi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right) \widehat{\mathbf{V}}_{l_{1}}\left(t_{1}, \mathbf{x}_{1}, d \mathbf{k}_{1}\right) \otimes \cdots \otimes \widehat{\mathbf{V}}_{l_{N}}\left(t_{N}, \mathbf{x}_{N}, d \mathbf{k}_{N}\right) \tag{14}
\end{equation*}
$$

for any $l_{1}, \ldots, l_{N} \in\{0,1\}$ and a suitable family of functions ψ by using the Fubini theorem [see (15)]. For $\psi_{1}, \ldots, \psi_{N} \in \mathscr{\rho}\left(R^{d}\right)$, the Schwartz space, and $l_{1}, \ldots, l_{N} \in\{0,1\}$ we set

$$
\begin{array}{r}
\int \cdots \int \psi_{1}\left(\mathbf{k}_{1}\right) \cdots \psi_{N}\left(\mathbf{k}_{N}\right) \widehat{\mathbf{V}}_{l_{1}}\left(t_{1}, \mathbf{x}_{1}, d \mathbf{k}_{1}\right) \otimes \cdots \otimes \widehat{\mathbf{V}}_{l_{N}}\left(t_{N}, \mathbf{x}_{N}, d \mathbf{k}_{N}\right) \tag{15}\\
:=\int \psi_{1}\left(\mathbf{k}_{1}\right) \widehat{\mathbf{V}}_{l_{1}}\left(t_{1}, \mathbf{x}_{1}, d \mathbf{k}_{1}\right) \otimes \cdots \otimes \int \psi_{N}\left(\mathbf{k}_{N}\right) \widehat{\mathbf{V}}_{l_{N}}\left(t_{N}, \mathbf{x}_{N}, d \mathbf{k}_{N}\right)
\end{array}
$$

We then extend the definition of multiple integration to the closure \mathscr{H} of the Schwartz space $\mathscr{\rho}\left(\left(R^{d}\right)^{N}, R\right)$ under the norm

$$
\begin{align*}
\|\psi\|^{2}:=\int \cdots \int & \psi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right) \psi\left(\mathbf{k}_{1}^{\prime}, \ldots, \mathbf{k}_{N}^{\prime}\right) \\
& \times \mathbf{E}\left[\widehat{\mathbf{V}}_{l_{1}}\left(t_{1}, \mathbf{x}_{1}, d \mathbf{k}_{1}\right) \otimes \cdots \otimes \widehat{\mathbf{V}}_{l_{N}}\left(t_{N}, \mathbf{x}_{N}, d \mathbf{k}_{N}\right)\right. \tag{16}\\
& \left.\cdot \widehat{\mathbf{V}}_{l_{1}}\left(t_{1}, \mathbf{x}_{1}, d \mathbf{k}_{1}^{\prime}\right) \otimes \cdots \otimes \widehat{\mathbf{V}}_{l_{N}}\left(t_{N}, \mathbf{x}_{N}, d \mathbf{k}_{N}^{\prime}\right)\right] .
\end{align*}
$$

The expectation is to be calculated by the formal rule

$$
\begin{aligned}
& \mathbf{E}\left[\widehat{V}_{l, i}(t, \mathbf{x}, d \mathbf{k}) \widehat{V}_{l^{\prime}, i^{\prime}}\left(t^{\prime}, \mathbf{x}^{\prime}, d \mathbf{k}^{\prime}\right)\right] \\
& \quad=e^{-|\mathbf{k}|^{2 \beta}\left|t-t^{\prime}\right|} \delta_{l, l^{\prime}} c_{0}\left(\mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right) \widehat{R}_{i, i^{\prime}}(\mathbf{k}) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) d \mathbf{k} d \mathbf{k}^{\prime} .
\end{aligned}
$$

This approach to spectral integration follows [12].
When $\mathbf{i}=\left(i_{1}, \ldots, i_{d}\right), i_{1}, \ldots, i_{d} \in\{1,2, \ldots, d\}$, is fixed and $\mathbf{l}=\left(l_{1}, \ldots, l_{N}\right)$, $l_{1}, \ldots, l_{N} \in\{0,1\}$, we shall denote the corresponding component of the stochastic integral by $\Psi_{1, \mathrm{i}}$.

Note that $\Psi_{\mathbf{1}, \mathbf{i}} \in H^{N}(\mathbf{V})$-the Hilbert space obtained as a completion of the space of N th-degree polynomials in variables $\int \psi(\mathbf{k}) \widehat{\mathbf{V}}(t, \mathbf{x}, \mathbf{k})$ with respect to the standard L^{2}-norm.

Proposition 1. For any $\left(t_{1}, \mathbf{x}_{1}\right), \ldots,\left(t_{N}, \mathbf{x}_{N}\right) \in R \times R^{d}$ and $p>0, \Psi_{1, \mathbf{i}}$ belongs to $L^{p}(\Omega)$ and

$$
\begin{equation*}
\left(\mathbf{E}\left|\Psi_{1, \mathbf{i}}\right|^{p}\right)^{1 / p} \leq C\left(\mathbf{E}\left|\Psi_{1, \mathbf{i}}\right|^{2}\right)^{1 / 2}, \tag{17}
\end{equation*}
$$

with the constant C depending only on p, N and the dimension d. Moreover, $\Psi_{\mathbf{1}, \mathbf{i}}$ is differentiable in the mean square sense with

$$
\nabla_{\mathbf{x}_{j}} \Psi_{1, \mathbf{i}}\left(t_{1}, \ldots, t_{N}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)
$$

$$
\begin{align*}
& =(-1)^{l_{j}} \int \cdots \int \mathbf{k}_{j} \psi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right) \widehat{V}_{l_{1}, i_{1}}\left(t_{1}, \mathbf{x}_{1}, d \mathbf{k}_{1}\right) \cdots \widehat{V}_{1-l_{j}, i_{j}}\left(t_{j}, \mathbf{x}_{j}, d \mathbf{k}_{j}\right) \tag{18}\\
& \ldots \widehat{V}_{l_{N}, i_{N}}\left(t_{N}, \mathbf{x}_{N}, d \mathbf{k}_{N}\right) .
\end{align*}
$$

The proof of Proposition 1 is standard and follows directly from the wellknown hypercontractivity property for Gaussian measures (see, e.g., [5], Theorem 5.1 and its corollaries), so we do not repeat it here.

The field \mathbf{V} is Markovian, that is,

$$
\begin{align*}
& \mathbf{E}\left[\int \psi(\mathbf{k}) \widehat{\mathbf{V}}_{l}(t, \mathbf{x}, d \mathbf{k}) \mid \mathscr{V}_{-\infty, s}\right] \tag{19}\\
& \quad=\int e^{-|\mathbf{k}|^{2 \beta}(t-s)} \psi(\mathbf{k}) \widehat{\mathbf{V}}_{l}(s, \mathbf{x}, d \mathbf{k}), \quad l=0,1,
\end{align*}
$$

for all $\psi \in \mathscr{\rho}\left(R^{d}, R\right)$, where $\mathscr{V}_{a, b}$ denotes the σ-algebra generated by random variables $\mathbf{V}(t, \mathbf{x})$, for $t \in[a, b]$ and $\mathbf{x} \in R^{d}$.

To calculate a mathematical expectation of multiple products of Gaussian random variables, it is convenient to use a graphical representation, borrowed from quantum field theory. We refer to, for example, Glimm and Jaffe [4] and Janson [5]. A Feynman diagram \mathscr{F} (of order $n \geq 0$ and rank $r \geq 0$) is a graph consisting of a set $B(\mathscr{F})$ of n vertices and a set $E(\mathscr{F})$ of r edges without common endpoints. So there are r pairs of vertices, each joined by an edge, and $n-2 r$ unpaired vertices, called free vertices. Note that $B(\mathscr{F})$ is a set of positive integers. An edge whose endpoints are $m, n \in B$ is represented by $\widehat{m n}$ (unless otherwise specified, we always assume $m<n$); an edge includes its endpoints. A diagram \mathscr{F} is said to be based on $B(\mathscr{F})$. Denote the set of free vertices by $A(\mathscr{F})$, so $A(\mathscr{F})=\mathscr{F} \backslash E(\mathscr{F})$. The diagram is complete if $A(\mathscr{F})$ is empty and incomplete, otherwise. Denote by $\mathscr{G}(B)$ the set of all diagrams based on B, by $\mathscr{G}_{c}(B)$ the set of all complete diagrams based on B and by $\mathscr{G}_{i}(B)$ the set of all incomplete diagrams based on B. A diagram $\mathscr{F}^{\prime} \in \mathscr{G}_{c}(B)$ is called a completion of $\mathscr{F} \in \mathscr{G}_{i}(B)$ if $E(\mathscr{F}) \subseteq E\left(\mathscr{F}^{\prime}\right)$.

Let $B=\{1,2,3, \ldots, n\}$. Denote by $\mathscr{T}_{\mid k}$ the subdiagram of \mathscr{F}, based on $\{1, \ldots, k\}$. Define $A_{k}(\mathscr{F})=A\left(\mathscr{F}_{\mid k}\right)$. A special class of diagrams, denoted by $\mathscr{G}_{s}(B)$, plays an important role in the subsequent analysis: a diagram \mathscr{T} of
order n belongs to $\mathscr{G}_{s}(B)$ if $A_{k}(\mathscr{F})$ is not empty for all $k=1, \ldots, n$. We shall adopt the following multiindex notation. For any $P \in Z^{+}$, multiindex $\mathbf{n}=\left(n_{1}, \ldots, n_{P}\right),|\mathbf{n}|$ stands for $\sum n_{p}$. If $P^{\prime} \leq P$ we denote $\mathbf{n}_{\mid P^{\prime}}:=\left(n_{1}, \ldots, n_{P^{\prime}}\right)$. In addition, if k is any number we set $\mathbf{n} \cdot k:=\left(n_{1}, \ldots, n_{P}, k\right)$. We work out the conditional expectation for multiple spectral integrals using the Markov property (19).

Proposition 2. For any function $\psi \in \mathscr{H}$ and $l_{1}, \ldots, l_{N} \in\{0,1\}, i_{1}, \ldots$, $i_{N} \in\{1, \ldots, d\}$,

$$
\begin{align*}
& \mathbf{E}\left[\left.\int \cdots \int \psi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right) \widehat{V}_{l_{1}, i_{1}}\left(t, \mathbf{x}_{1}, d \mathbf{k}_{1}\right) \cdots \widehat{V}_{l_{N}, i_{N}}\left(t, \mathbf{x}_{N}, d \mathbf{k}_{N}\right)\right|^{V_{-\infty}, s}\right] \\
& =\sum_{\mathscr{F} \in \mathscr{G}\{\{1, \ldots, N\})} \int \cdots \int \exp \left\{-\sum_{m \in A(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}(t-s)\right\} \tag{20}\\
& \times \psi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right) \widehat{V}_{s, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}\left(d \mathbf{k}_{1}, \ldots, d \mathbf{k}_{N} ; \mathscr{F}\right),
\end{align*}
$$

with

$$
\begin{align*}
& \widehat{V}_{s, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}\left(d \mathbf{k}_{1}, \ldots, d \mathbf{k}_{N} ; \mathscr{F}\right) \\
& :=\prod_{m \in A(\mathscr{F})} \widehat{V}_{l_{m}, i_{m}}\left(s, \mathbf{x}_{m}, d \mathbf{k}_{m}\right) \prod_{\widehat{m n} \in E(\mathscr{F})}\left[1-e^{-\left(\left.\left|\mathbf{k}_{m}\right|\right|^{2 \beta}+\left|\mathbf{k}_{n}\right|^{2 \beta}\right)(t-s)}\right] \tag{21}\\
& \quad \times \mathbf{E}\left[\widehat{V}_{l_{m}, i_{m}}\left(s, \mathbf{x}_{m}, d \mathbf{k}_{m}\right) \widehat{V}_{l_{n}, i_{n}}\left(s, \mathbf{x}_{n}, d \mathbf{k}_{n}\right)\right] .
\end{align*}
$$

Proof. Without loss of generality we consider $\psi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right)=\mathbf{1}_{A_{1}}\left(\mathbf{k}_{1}\right) \ldots$ $\mathbf{1}_{A_{N}}\left(\mathbf{k}_{N}\right)$ for some Borel sets A_{1}, \ldots, A_{N}. Note that $\widehat{\mathbf{V}}_{l}\left(t, A_{i}\right)=\widehat{\mathbf{V}}_{l}^{0}\left(t, A_{i}\right)+$ $\widehat{\mathbf{V}}_{l}^{1}\left(t, A_{i}\right)$, where $\widehat{\mathbf{V}}_{l}^{0}(t, \cdot)$ is the orthogonal projection of $\widehat{\mathbf{V}}_{l}(t, \cdot)$ on $L_{-\infty, t}^{2}$ and $\widehat{\mathbf{V}}_{l}^{1}(t, \cdot)$ its complement. Here $L_{a, b}^{2}$ denotes L^{2} closure of the linear span over $\mathbf{V}(s, \mathbf{x}), a \leq s \leq b, \mathbf{x} \in R^{d}$. The conditional expectation in (20) equals

$$
\sum_{\mathscr{F} \in \mathscr{S}(\{1, \ldots, N\}) \widehat{m n} \in E(\mathscr{F})} \prod \mathbf{E}\left[\widehat{V}_{i_{m}, l_{m}}^{1}\left(t, A_{m}\right) \widehat{V}_{i_{n}, l_{n}}^{1}\left(t, A_{n}\right)\right] \prod_{m \in A(\mathscr{F})} \widehat{V}_{i_{m}, l_{m}}^{0}\left(t, A_{m}\right) .
$$

The statement follows upon the application of the relations

$$
\widehat{\mathbf{V}}_{l}^{0}(t, A)=\int_{A} e^{-|\mathbf{k}|^{2 \beta}(t-s)} \widehat{\mathbf{V}}_{l}(s, d \mathbf{k})
$$

and

$$
\begin{aligned}
& \mathbf{E}\left[\widehat{\mathbf{V}}_{l}^{1}(t, A) \otimes \widehat{\mathbf{V}}_{l^{\prime}}^{1}(t, B)\right] \\
& \quad=\int_{A} \int_{B} \delta_{l, l^{\prime}}\left\{\mathbf{E}\left[\widehat{\mathbf{V}}_{l}(t, d \mathbf{k}) \otimes \widehat{\mathbf{V}}_{l^{\prime}}\left(t, d \mathbf{k}^{\prime}\right)\right]-\mathbf{E}\left[\widehat{\mathbf{V}}_{l}^{0}(t, d \mathbf{k}) \otimes \widehat{\mathbf{V}}_{l^{\prime}}^{0}\left(t, d \mathbf{k}^{\prime}\right)\right]\right\} .
\end{aligned}
$$

3. Proof of tightness. Let us start with the following result, which establishes, among other things, that the family of continuous trajectory processes $\mathbf{x}_{\varepsilon}(t), t \geq 0$, is tight.

LEMMA 1. For the family of trajectories given by (4) we have

$$
\lim _{\varepsilon \downarrow 0} \mathbf{E}\left[\left(\mathbf{x}_{\varepsilon}(t)-\mathbf{x}_{\varepsilon}(u)\right) \otimes\left(\mathbf{x}_{\varepsilon}(t)-\mathbf{x}_{\varepsilon}(u)\right)\right]=\mathbf{D}(t-u)^{2 H} \quad \text { if } t>u
$$

where H and \mathbf{D} are given by (9) and (10), respectively.
Proof. First, let us observe that since $\mathbf{x}_{\varepsilon}(t)$ has stationary increments it is enough to prove the lemma for $u=0$. By the stationarity of $\mathbf{V}(s, \varepsilon \mathbf{x}(s))$ (see [11]), we can write that

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \mathbf{E}\left[\mathbf{x}_{\varepsilon}(t) \otimes \mathbf{x}_{\varepsilon}(t)\right]=\lim _{\varepsilon \downarrow 0} \varepsilon^{2} \int_{0}^{t / \varepsilon^{2 \delta}} d s \int_{0}^{s} \mathbf{E}\left[\mathbf{V}\left(s^{\prime}, \varepsilon \mathbf{x}\left(s^{\prime}\right)\right) \otimes \mathbf{V}(0, \mathbf{0})\right] d s^{\prime} \tag{22}
\end{equation*}
$$

Thus (22) equals

$$
\begin{equation*}
2 \sum_{n=1}^{N} \mathscr{I}_{n}+\mathscr{R}_{N} \tag{23}
\end{equation*}
$$

where

$$
\mathscr{I}_{n}=\varepsilon^{n+1} \int_{0}^{t / \varepsilon^{2 \delta}} d s \int_{0}^{s} d s_{1} \cdots \int_{0}^{s_{n-1}} \mathbf{E}\left[\mathbf{W}_{n-1}\left(s_{1}, \ldots, s_{n}, \mathbf{0}\right) \otimes \mathbf{V}(0, \mathbf{0})\right] d s_{n}
$$

and

$$
\begin{array}{rlr}
\mathbf{W}_{0}\left(s_{1}, \mathbf{x}\right) & =\mathbf{V}\left(s_{1}, \mathbf{x}\right), \\
\mathbf{W}_{n}\left(s_{1}, \ldots, s_{n+1}, \mathbf{x}\right) & =\mathbf{V}\left(s_{n+1}, \mathbf{x}\right) \cdot \nabla \mathbf{W}_{n-1}\left(s_{1}, \cdots, s_{n}, \mathbf{x}\right) \quad \text { for } n=1,2, \ldots,
\end{array}
$$

with the remainder term

$$
\begin{align*}
\mathscr{R}_{N}=2 \varepsilon^{N+2} \int_{0}^{t / \varepsilon^{2 \delta}} d s \int_{0}^{s} d s_{1} \ldots \int_{0}^{s_{N}} \mathbf{E}\left[\mathbf { W } _ { N } \left(s_{1}, \ldots, s_{N+1},\right.\right. & \left.\varepsilon \mathbf{x}\left(s_{N+1}\right)\right) \tag{24}\\
& \otimes \mathbf{V}(0, \mathbf{0})] d s_{N+1}
\end{align*}
$$

Estimates of \mathscr{I}_{n}. Elementary calculations show that

$$
\lim _{\varepsilon \downarrow 0} \mathscr{I}_{1}=\mathbf{D} t^{2 H}
$$

Since \mathbf{V} is Gaussian we deduce that

$$
\mathbf{E} \mathscr{I}_{n}=\mathbf{0}
$$

when $n \geq 2$ is even. We now show that

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \mathbf{E} \mathscr{I}_{n}=\mathbf{0} \tag{25}
\end{equation*}
$$

for $n \geq 3$ odd. The i, j th entry of the matrix \mathscr{I}_{n} is given by

$$
\begin{align*}
\mathscr{I}_{i, j}^{n}=2 \varepsilon^{n+1} \int_{0}^{t / \varepsilon^{2 \delta}} d s \int_{0}^{s} d s_{1} \cdots \int_{0}^{s_{n-1}} \mathbf{E}[& {\left[\mathbf{E}_{0} W_{n-1, i}\left(s_{1}, \ldots, s_{n}, \mathbf{0}\right)\right.} \tag{26}\\
& \left.\times V_{j}(0, \mathbf{0})\right] d s_{n}
\end{align*}
$$

We would like to express the conditional expectation appearing in (26) in terms of spectral measures associated with the velocity field. To do so, we introduce first the so-called proper functions of order $n, \sigma:\{1, \ldots, n\} \rightarrow\{0,1\}$ that appear in the statement of the next lemma. The proper function of order 1 is unique and is given by $\sigma(1)=0$. Any proper function, σ^{\prime}, of order $n+1$ is generated from a proper function σ of order n as follows. For some $p \leq n$,

$$
\begin{align*}
\sigma^{\prime}(n+1) & :=0 \\
\sigma^{\prime}(k) & :=\sigma(k) \quad \text { for } k \leq n \text { and } k \neq p \tag{27}\\
\sigma^{\prime}(p) & :=1-\sigma(p)
\end{align*}
$$

In other words, each proper function σ of order n generates n different proper functions of order $n+1$. Thus, the total number of proper functions of order n is $(n-1)$!. In the remainder of the paper, we sometimes write σ_{k} instead of $\sigma(k)$.

LEMMA 2. Let $n \geq 1$ and $s_{1} \geq s_{2} \geq \cdots \geq s_{n} \geq s_{n+1}, i \in\{1, \ldots, d\}, \mathbf{x} \in R^{d}$. We have then that

$$
\begin{align*}
& \mathbf{E}_{s_{n+1}} W_{n-1, i}\left(s_{1}, \ldots, s_{n}, \mathbf{x}\right) \\
& \quad:=\mathbf{E}\left[W_{n-1, i}\left(s_{1}, \ldots, s_{n}, \mathbf{x}\right) \mid \mathscr{V}_{\left.-\infty, s_{n+1}\right]}\right. \\
& =\sum \int \cdots \int \varphi_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) \exp \left\{-\sum_{m \in A_{n}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}\left(s_{n}-s_{n+1}\right)\right\} \tag{28}\\
& \quad \times P_{n-1}(\mathscr{F}) Q(\mathscr{F}) \prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{i_{m}, \sigma_{m}}\left(s_{n+1}, \mathbf{x}, d \mathbf{k}_{m}\right),
\end{align*}
$$

where $\varphi_{\mathbf{i}, \sigma}^{(n)}$ are some functions, with $\sup \left|\varphi_{\mathbf{i}, \sigma}^{(n)}\right| \leq 1$,

$$
\begin{align*}
P_{n-1}(\mathscr{F}) & =\prod_{j=1}^{n-1}\left(\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|\right) \exp \left\{-\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}\left(s_{j}-s_{j+1}\right)\right\}, \tag{29}\\
Q(\mathscr{F}) & =\prod_{\widehat{m m^{\prime} \in E(\mathscr{F})}} \mathbf{E}\left[\widehat{V}_{i_{m}, \sigma_{m}}\left(0, d \mathbf{k}_{m}\right) \widehat{V}_{i_{m^{\prime}}, \sigma_{m^{\prime}}}\left(0, d \mathbf{k}_{m^{\prime}}\right)\right] \tag{30}
\end{align*}
$$

The summation is over all multiindices \mathbf{i} of length n, whose first component equals i, all $\mathscr{F} \in \mathscr{G}_{s}$ and all proper functions σ of order n.

Before proving Lemma 2, we apply it to show (25). Notice that according to (28),

$$
\begin{aligned}
\int_{0}^{t / \varepsilon^{2 \delta}} d s \int_{0}^{s} d s_{1} \cdots \int_{0}^{s_{n-1}} & \mathbf{E}_{0} W_{n-1, i}\left(s_{1}, \ldots, s_{n}, \mathbf{0}\right) d s_{n} \\
=\sum \int_{0}^{t / \varepsilon^{2 \delta}} d s \int \cdots \int & \tilde{\varphi}_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) \exp \left\{-\sum_{m \in A_{n}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta} s\right\} \\
& \times P_{n-1}^{\prime}(\mathscr{F}) Q(\mathscr{F}) \prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{i_{m}, \sigma_{m}}\left(0, d \mathbf{k}_{m}\right)
\end{aligned}
$$

for $i=1, \ldots, d$. Here, adopting the convention $s_{n+1}:=0$, we set

$$
\begin{aligned}
& \widetilde{\varphi}_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) \\
& :=\frac{\int_{0}^{s} d s_{1} \cdots \int_{0}^{s_{n-1}} \varphi_{\mathbf{i}, \boldsymbol{\sigma}}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) \times \prod_{j=1}^{n} \exp \left\{-\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}\left(s_{j}-s_{j+1}\right)\right\} d s_{1} \cdots d s_{n}}{\int_{0}^{s} d s_{1} \cdots \int_{0}^{s} \prod_{j=1}^{n} \exp \left\{-\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta} s_{j}\right\} d s_{1} \cdots d s_{n}}
\end{aligned}
$$

and

$$
P_{n-1}^{\prime}(\mathscr{F})=\prod_{j=1}^{n-1}\left\{\left(\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|\right) \times \frac{1-\exp \left\{-\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta} s\right\}}{\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}}\right\}
$$

It is elementary to check that, due to $\left|\varphi_{\mathbf{i}, \sigma}^{(n)}\right| \leq 1$,

$$
\begin{equation*}
\left|\widetilde{\varphi}_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right)\right| \leq 1 \tag{31}
\end{equation*}
$$

Using Lemma 2, we infer that the left-hand side of (26) equals

$$
\begin{align*}
2 \varepsilon^{n+1} \sum \int_{0}^{t / \varepsilon^{2 \delta}} d s \int \cdots \int & \frac{\tilde{\varphi}_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right)}{\sum_{m \in A_{n}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}} P_{n-1}^{\prime}(\mathscr{F}) Q(\mathscr{F}) \tag{32}\\
& \times \mathbf{E}\left[\prod_{m \in A_{n}(\mathscr{F}) \cup\{n+1\}} \widehat{V}_{i_{m}, \sigma_{m}}\left(0, d \mathbf{k}_{m}\right)\right] .
\end{align*}
$$

Here the summation extends over all multiindices $\mathbf{i}=\left(i_{1}, \ldots, i_{n+1}\right)$ such that $i_{1}=i, i_{n+1}=j$, all Feynman diagrams $\mathscr{T} \in \mathscr{G}_{s}$ and all proper functions σ of order n. Using an elementary inequality stating that

$$
\frac{1-e^{-x / \varepsilon^{2 \delta}}}{x} \leq \frac{C}{\varepsilon^{2 \delta}+x}
$$

for a certain constant C independent of ε, x, we conclude that the absolute value of (32) is less than or equal to

$$
\begin{equation*}
2 t \varepsilon^{n+1-2 \delta} \sum \int_{0}^{K} \cdots \int_{0}^{K} \frac{p_{n-1, \varepsilon}(\mathscr{F})}{\varepsilon^{2 \delta}+\sum_{m \in A_{n}(\mathscr{F})} k_{m}^{2 \beta}} \prod_{\mathrm{mm}^{\prime}} \frac{\delta\left(k_{m}-k_{m^{\prime}}\right) d k_{m} d k_{m^{\prime}}}{k_{m}^{2 \alpha-1}}, \tag{33}
\end{equation*}
$$

with

$$
p_{n-1, \varepsilon}(\mathscr{T}):=\prod_{j=1}^{n-1} \frac{\sum_{m \in A_{j}(\mathscr{F})} k_{m}}{\varepsilon^{2 \delta}+\sum_{m \in A_{j}(\mathscr{F})} k_{m}^{2 \beta}} .
$$

Suppose first that $2 \beta>1$. There exists then a constant C, depending only on n, β and K such that, for any $m_{j} \in A_{j}(\mathscr{F})$,

$$
\begin{equation*}
\frac{\sum_{m \in A_{j}(\mathscr{F})} k_{m}}{\varepsilon^{2 \delta}+\sum_{m \in A_{j}(\mathscr{F})} k_{m}^{2 \beta}} \leq C \frac{\varepsilon^{\delta / \beta}+k_{m_{j}}}{\varepsilon^{2 \delta}+k_{m_{j}}^{2 \beta}} \tag{34}
\end{equation*}
$$

So,

$$
\begin{equation*}
\frac{p_{n-1, \varepsilon}(\mathscr{F})}{\varepsilon^{2 \delta}+\sum_{m \in A_{n}(\mathscr{F})} k_{m}^{2 \beta}} \leq C \prod_{j=1}^{n-1} \frac{\varepsilon^{\delta / \beta}+k_{m_{j}}}{\varepsilon^{2 \delta}+k_{m_{j}}^{2 \beta}} \times \frac{1}{\varepsilon^{2 \delta}+k_{m_{n}}^{2 \beta}} \tag{35}
\end{equation*}
$$

for any choice of $m_{j} \in A_{j}(\mathscr{F})$. Let $m_{j}:=j$ if j is not the right endpoint of an edge of the diagram \mathscr{F}. Otherwise, let m_{j} be the closest free vertex to the left of j.

Consequently, the expression on the right-hand side of (35) is less than or equal to

$$
\begin{equation*}
C \prod_{\widehat{m m^{\prime}} \in E(\mathscr{F})} \frac{\varepsilon^{\delta / \beta}+k_{m}}{\varepsilon^{2 \delta}+k_{m}^{2 \beta}} \prod_{m \in A_{n}(\mathscr{F}) \cup\{n+1\}} \frac{\left(\varepsilon^{\delta / \beta}+k_{m}\right)^{q_{m}+1-\delta_{m, m_{n}}}}{\left(\varepsilon^{2 \delta}+k_{m}^{2 \beta}\right)^{q_{m}+1}}, \tag{36}
\end{equation*}
$$

where $E(\mathscr{F})$ denotes the set of the edges of the diagram \mathscr{F} and $q_{m} \geq 0$ is the number of left endpoints between a free vertex $m \in A_{n}(\mathscr{F})$ and the next free vertex $m^{\prime} \in A_{n}(\mathscr{F})$, also by a convention $q_{n+1}:=-1$. Note that

$$
\begin{equation*}
c_{n}+2 \sum_{m \in A_{n}(\mathscr{F}) \cup\{n+1\}} q_{m}=n-2, \tag{37}
\end{equation*}
$$

with c_{n} denoting the cardinality of the set $A_{n}(\mathscr{F})$. Applying (36) to (33), we deduce that

$$
\begin{align*}
\left|\mathscr{I}_{n}\right| \leq C t \varepsilon^{n+1-2 \delta} \sum & \left(\int_{0}^{K} \frac{\left(\varepsilon^{\delta / \beta}+k\right) d k}{\left(\varepsilon^{2 \delta}+k^{2 \beta}\right) k^{2 \alpha-1}}\right)^{\left(n-c_{n}\right) / 2} \\
& \times \prod_{\widehat{m m^{\prime}} \in \mathscr{F}^{\prime}} \int_{0}^{K} \frac{\left(k+\varepsilon^{\delta / \beta}\right)^{2+q_{m}+q_{m^{\prime}}-r_{m, m^{\prime}}}}{\left(k^{2 \beta}+\varepsilon^{2 \delta}\right)^{2+q_{m}+q_{m^{\prime}}}} \times \frac{d k}{k^{2 \alpha-1}} . \tag{38}
\end{align*}
$$

Here the summation extends over all Feynman diagrams \mathscr{F} from $\mathscr{G}_{s}(\{1, \ldots, n\})$ and all complete diagrams \mathscr{F}^{\prime} made of the vertices of $A_{n}(\mathscr{F}) \cup\{n+1\}$ and $r_{m, m^{\prime}}:=\delta_{m, m_{n}}+\delta_{m^{\prime}, m_{n}}$. Using the definition of δ [see (7)], it is elementary to observe that

$$
\int_{0}^{K} \frac{\left(\varepsilon^{\delta / \beta}+k\right) d k}{\left(\varepsilon^{2 \delta}+k^{2 \beta}\right) k^{2 \alpha-1}} \leq C\left(1+\varepsilon^{\gamma}\right)
$$

and

$$
\int_{0}^{K} \frac{\left(k+\varepsilon^{\delta / \beta}\right)^{2+q_{m}+q_{m^{\prime}}-r_{m, m^{\prime}}}}{\left(k^{2 \beta}+\varepsilon^{2 \delta}\right)^{2+q_{m}+q_{m^{\prime}}}} \times \frac{d k}{k^{2 \alpha-1}} \leq C\left(1+\varepsilon^{\gamma\left(\widehat{m m^{\prime}}\right)}\right)
$$

with

$$
\begin{align*}
\gamma & :=\frac{3-2 \alpha-2 \beta}{\alpha+2 \beta-1}, \tag{39}\\
\gamma\left(\widehat{m m^{\prime}}\right) & :=\frac{4-2 \alpha-4 \beta+\left(q_{m}+q_{m^{\prime}}\right)(1-2 \beta)-r_{m, m^{\prime}}}{\alpha+2 \beta-1} . \tag{40}
\end{align*}
$$

Fig. 2. Regions A, B and C for estimating \mathscr{I}_{n}.

Hence we obtain

$$
\begin{equation*}
\left|\mathscr{I}_{n}\right| \leq C \varepsilon^{n+1-2 \delta}\left(1+\varepsilon^{\left(n-c_{n}\right) \gamma / 2}\right) \varepsilon^{\kappa} \tag{41}
\end{equation*}
$$

with

$$
\kappa:=\frac{2 r(2-\alpha-2 \beta)+\sum^{\prime}\left[(1-2 \beta)\left(q_{m}+q_{m^{\prime}}\right)-r_{m, m^{\prime}}\right]}{\alpha+2 \beta-1} .
$$

Here the summation \sum^{\prime} extends over the edges $\widehat{m m^{\prime}}$ of the diagram \mathscr{F}^{\prime} for which $\gamma\left(\widehat{\mathrm{mm}^{\prime}}\right)<0$ and

$$
\begin{equation*}
r \leq\left(c_{n}+1\right) / 2 \tag{42}
\end{equation*}
$$

denotes the number of such edges. In case there are no such edges we set $\kappa:=0$. The estimate of the right-hand side of (41) consists of considering all possible situations depending on signs of the expressions $3-2 \alpha-2 \beta$, $2-\alpha-2 \beta$ appearing in (39) and (40). As shown in Figure 2, there are three cases corresponding to three regions (A, B and C) in the (α, β) plane. In each region we can deduce that

$$
\begin{equation*}
\left|\mathscr{I}_{n}\right| \leq C \varepsilon^{(n-1) \mu} \tag{43}
\end{equation*}
$$

Indeed, in region A we have

$$
\kappa \geq \frac{4(1-\alpha-\beta)+(1-2 \beta)\left(n-c_{n}\right)}{2(\alpha+2 \beta-1)}
$$

and $\mu:=(2(\alpha+\beta)-1) / 2(\alpha+2 \beta-1)$; in region B we have

$$
\kappa \geq \frac{-2 \alpha+c_{n}(3-2 \alpha-2 \beta)+(1-2 \beta) n}{2(\alpha+2 \beta-1)}
$$

and $\mu:=(2(\alpha+\beta)-1) / 2(\alpha+2 \beta-1)$; in region C we have κ as in the previous case and $\mu:=1 /(\alpha+2 \beta-1)$.

When, on the other hand, $2 \beta<1$, we conclude that $p_{n-1, \varepsilon}(\mathscr{F}) \leq C$ for a certain constant $C>0$. From (33) we obtain that

$$
\begin{aligned}
\left|\mathscr{I}_{n}\right| & \leq C t \varepsilon^{n+1-2 \delta} \sum \int_{0}^{K} \cdots \int_{0}^{K} \frac{1}{\varepsilon^{2 \delta}+\sum_{m \in A_{n}(\mathscr{F})} k_{m}^{2 \beta}} \prod_{m m^{\prime}} \frac{\delta\left(k_{m}-k_{m^{\prime}}\right) d k_{m} d k_{m^{\prime}}}{k_{m}^{2 \alpha-1}} \\
& \leq C t \varepsilon^{n+1-2 \delta} \varepsilon^{2(1-\alpha-\beta) \delta / \beta} \int_{0}^{K / \varepsilon^{-\delta / \beta}} \frac{d k}{\left(k^{2 \beta}+1\right) k^{2 \alpha-1}} \leq C t \varepsilon^{n-1} .
\end{aligned}
$$

In conclusion, we deduce that all terms \mathscr{I}_{n} vanish as $\varepsilon \downarrow 0$ when $n \geq 2$.
Estimates of \mathscr{R}_{N}. Note that according to (24)

$$
\begin{aligned}
& \mathscr{R}_{N}=2 \varepsilon^{N+2} \int_{0}^{t / \varepsilon^{28}} d s \int_{0}^{s} d s_{1} \cdots \int_{0}^{s_{N}} \mathbf{E}\left[\mathbf{E}_{s_{N+1}} \mathbf{W}_{N}\left(s_{1}, \ldots, s_{N+1}, \varepsilon \mathbf{x}\left(s_{N+1}\right)\right)\right. \\
&\otimes \mathbf{V}(0, \mathbf{0})] d s_{N+1} .
\end{aligned}
$$

By the Cauchy-Schwarz inequality we get that

$$
\left|\mathscr{R}_{N}\right|^{2} \leq 4 t^{2} \varepsilon^{4(1-\delta)+2 N} \mathbf{E}|\mathbf{V}(0, \mathbf{0})|^{2}
$$

$$
\begin{align*}
\times \max _{0 \leq s \leq t / \varepsilon^{2 \delta}} \mathbf{E} \mid & \int \cdots \int_{s \geq s_{1} \geq \cdots \geq s_{N+1} \geq 0} \mathbf{E}_{s_{N+1}} \tag{45}\\
& \times\left.\mathbf{W}_{N}\left(s_{1}, \ldots, s_{N}, s_{N+1}, \varepsilon \mathbf{x}\left(s_{N+1}\right)\right) d s_{1} \cdots d s_{N+1}\right|^{2} .
\end{align*}
$$

The stationarity of the Lagrangian velocity field implies that the maximum in (45) is equal to

$$
\begin{array}{r}
\max _{0 \leq s \leq t / \varepsilon^{28}} \mathbf{E}\left|\int_{0}^{s} d s^{\prime} \int \cdots \int_{s^{\prime} \geq s_{1} \geq \cdots \geq s_{N} \geq 0} \mathbf{E}_{0} \mathbf{W}_{N}\left(s_{1}, \ldots, s_{N}, 0, \mathbf{0}\right) d s_{1} \cdots d s_{N}\right|^{2} \\
46) \leq C \max _{0 \leq s \leq t / \varepsilon^{28}} \mathbf{E} \mid \int_{0}^{s} d s^{\prime} \int \cdots \int_{s^{\prime} \geq s_{1} \geq \cdots \geq s_{N} \geq 0} \mathbf{E}_{0} \nabla \mathbf{W}_{N-1}\left(s_{1}, \ldots, s_{N-1}, s_{N}, \mathbf{0}\right) \tag{46}\\
\times\left. d s_{1} \cdots d s_{N}\right|^{2} \mathbf{E}|\mathbf{V}(0, \mathbf{0})|^{2} .
\end{array}
$$

In the last line we used that $\mathbf{W}_{N} \in H^{N}(\mathbf{V})$ and the resulting hypercontractive property of L^{p}-norms with respect to a Gaussian measure on the space $H^{N}(\mathbf{V})$ (cf. Proposition 1). Using subsequently Lemma 2 to represent the conditional
expectations on the right-hand side of (46), we deduce that the left-hand side of the preceding formula is less than or equal to

$$
\begin{align*}
& \left.C \frac{t^{2}}{\varepsilon^{4 \delta}} \times \mathbf{E} \right\rvert\, \sum \int \cdots \int \psi_{\mathbf{i}, \sigma}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right) P_{N}(\mathscr{F}) Q(\mathscr{F}) \\
& \times\left.\prod_{m \in A_{N}(\mathscr{F})} \widehat{V}_{i_{m}, \sigma_{m}}\left(0, d \mathbf{k}_{m}\right)\right|^{2} \tag{47}
\end{align*}
$$

with some $\left|\psi_{\mathbf{i}, \sigma}\right| \leq 1$. The summation in (47) above extends over all Feynman diagrams $\mathscr{F} \in \mathscr{G}_{s}$, the relevant proper functions σ and multiindices \mathbf{i}.

Thus, we have

$$
\begin{equation*}
\mathscr{R}_{N}^{2} \leq C t^{4} \varepsilon^{2 N+4(1-2 \delta)} \sum \int_{0}^{K} \cdots \int_{0}^{K} p_{N, \varepsilon}^{2}(\mathscr{F}) \prod_{\widehat{m m^{\prime}}} \frac{\delta\left(k_{m}-k_{m^{\prime}}\right) d k_{m} d k_{m^{\prime}}}{k_{m}^{2 \alpha-1}} . \tag{48}
\end{equation*}
$$

Here the summation extends over all possible diagrams $\mathscr{F} \in \mathscr{G}_{s}(\{1, \ldots, N\})$, $\mathscr{F}^{\prime} \in \mathscr{\mathscr { G }}_{c}\left(A_{N}(\mathscr{F}) \cup N+A_{N}(\mathscr{F})\right)$. The product is taken over all edges of \mathscr{F}^{\prime} with $A_{N}(\mathscr{F})$ denoting the set of free edges of \mathscr{F}. Let c_{N} be the cardinality of $A_{N}(\mathscr{T})$. Arguing as in (38), when $2 \beta>1$, we obtain that, for $q_{m} \geq 0$, $m \in A_{N}(\mathscr{F}) \cup N+A_{N}(\mathscr{F})$ as in (36) satisfying

$$
2 c_{N}+2 \sum q_{m}=2 N
$$

we have

$$
\begin{align*}
\left|\mathscr{R}_{N}\right|^{2} \leq C t^{4} \varepsilon^{2 N+4(1-2 \delta)} \sum & \left(\int_{0}^{K} \frac{\left(\varepsilon^{\delta / \beta}+k\right) d k}{\left(\varepsilon^{2 \delta}+k^{2 \beta}\right) k^{2 \alpha-1}}\right)^{N-c_{N}} \\
& \times \prod_{\overline{m m}^{\prime}} \int_{0}^{K}\left(\frac{k+\varepsilon^{\delta / \beta}}{k^{2 \beta}+\varepsilon^{2 \delta}}\right)^{2+q_{m}+q_{m^{\prime}}} \times \frac{d k}{k^{2 \alpha-1}} . \tag{49}
\end{align*}
$$

The ranges of the sum and the product in (49) remain the same as in (48). Repeating the argument made after (42), we deduce that there exists $\mu_{1}>0$ such that

$$
\begin{equation*}
\left|\mathscr{R}_{N}\right|^{2} \leq C t^{4} \varepsilon^{N \mu_{1}-8 \delta} \tag{50}
\end{equation*}
$$

The same inequality, with $\mu_{1}=1$, holds also when $2 \beta \leq 1$. This can be deduced repeating the corresponding argument used to obtain (44). We infer therefore that \mathscr{R}_{N} vanishes as $\varepsilon \downarrow 0$ for a sufficiently large N. In conclusion, we proved that the left-hand side of (22) tends to $\mathbf{D} t^{2 H}$ as $\varepsilon \downarrow 0$, provided that $\alpha+\beta>1$.

REMARK. The foregoing argument can be used to infer, via an application of the hypercontractivity property of the L^{p}-norms over Gaussian measures on $H^{N}(\mathbf{V})$, that for an arbitrary $p \geq 1$ and $T>0$ there exists a constant $C>0$ such that, for any $T \geq t \geq s \geq 0, \varepsilon>0$,

$$
\begin{equation*}
\mathbf{E}\left|\mathbf{x}_{\varepsilon}(t)-\mathbf{x}_{\varepsilon}(s)\right|^{p} \leq C(t-s)^{2 H p} . \tag{51}
\end{equation*}
$$

Proof of Lemma 2. We prove the lemma by induction. The case $n=1$ is obvious by choosing $\varphi_{i}^{(0)} \equiv 1$. Suppose that the result holds for n. For the sake of convenience we assume without loss of generality that $s_{n+2}=0$. Then

$$
\begin{align*}
& \mathbf{E}_{0} W_{n+1, i}\left(s_{1}, \ldots, s_{n+1}, \mathbf{x}\right) \\
& \quad=\mathbf{E}_{0}\left\{\mathbf{V}\left(s_{n+1}, \mathbf{x}\right) \cdot \nabla \mathbf{E}_{s_{n+1}} W_{n, i}\left(s_{1}, \ldots, s_{n}, \mathbf{x}\right)\right\} \tag{52}
\end{align*}
$$

By virtue of the inductive assumption we can represent $\mathbf{E}_{s_{n+1}} W_{n, i}$ using (28) and as a result (52) becomes

$$
\begin{align*}
\sum \mathbf{E}_{0}[& {\left[\int \cdots \varphi_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right)\right.} \\
& \times \exp \left\{-\sum_{m \in A_{n}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}\left(s_{n}-s_{n+1}\right)\right\} P_{n-1}(\mathscr{F}) Q(\mathscr{F}) \tag{53}\\
& \left.\times \widehat{\mathbf{V}}_{0}\left(s_{n+1}, \mathbf{x}, d \mathbf{k}_{n+1}\right) \cdot \nabla\left\{\prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{i_{m}, \sigma_{m}}\left(s_{n+1}, \mathbf{x}, d \mathbf{k}_{m}\right)\right\}\right] .
\end{align*}
$$

To calculate (53), we decompose each $\widehat{V}_{\sigma, i}(s, \mathbf{x}, d \mathbf{k})$ as

$$
\begin{equation*}
\widehat{V}_{\sigma, i}(s, \mathbf{x}, d \mathbf{k})=\widehat{V}_{\sigma, i}^{0}(s, \mathbf{x}, d \mathbf{k})+\widehat{V}_{\sigma, i}^{1}(s, \mathbf{x}, d \mathbf{k}) \tag{54}
\end{equation*}
$$

and use (13)-(12) where

$$
\begin{equation*}
\widehat{V}_{\sigma, i}^{0}(s, \mathbf{x}, d \mathbf{k})=e^{-|\mathbf{k}|^{2 \beta}(s-t)} \widehat{V}_{\sigma, i}(t, \mathbf{x}, d \mathbf{k}) \tag{55}
\end{equation*}
$$

is the orthogonal projection of $\widehat{V}_{\sigma, i}$ on $\mathscr{V}_{-\infty, t}$. Expression (53) becomes

$$
\begin{align*}
\sum \mathbf{E}_{0}[& \int \cdots \int \varphi_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) \\
& \left.\times \exp \left\{-\sum_{m \in A_{n}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}\left(s_{n}-s_{n+1}\right)\right\} P_{n-1}(\mathscr{T}) Q(\mathscr{F}) \mathscr{K}(\mathscr{F})\right] \tag{56}
\end{align*}
$$

with

$$
\begin{aligned}
\mathscr{K}(\mathscr{F}):= & \sum_{\substack{\varrho=\left\{\varrho_{j}\right\} \\
j \in A_{n}(\mathscr{F}) \cup\{n+1\}}} \widehat{\mathbf{V}}_{0}^{\varrho_{n+1}}\left(s, \mathbf{x}, d \mathbf{k}_{n+1}\right) \\
& \times \nabla\left\{\prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{\sigma_{m}, i_{m}}^{\varrho_{m}}\left(s, \mathbf{x}, d \mathbf{k}_{m}\right)\right\} .
\end{aligned}
$$

The term corresponding to $\varrho_{j} \equiv 1$ vanishes, as is clear from the following calculation:

$$
\begin{align*}
& \mathbf{E}\left\{\int \cdots \int \varphi_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) P_{n-1}(\mathscr{F}) Q(\mathscr{F})\right. \\
& \left.\quad \times \widehat{\mathbf{V}}_{0}^{1}\left(s, \mathbf{x}, d \mathbf{k}_{n+1}\right) \cdot \nabla\left(\prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{\sigma_{m}, i_{m}}^{1}\left(s, \mathbf{x}, d \mathbf{k}_{m}\right)\right)\right\} \\
& =\nabla \cdot \mathbf{E}\left\{\int \cdots \int \varphi_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) P_{n-1}(\mathscr{F}) Q(\mathscr{F})\right. \tag{57}\\
& \left.\quad \times \widehat{\mathbf{V}}_{0}^{1}\left(s, \mathbf{x}, d \mathbf{k}_{n+1}\right) \prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{\sigma_{m}, i_{m}}^{1}\left(s, \mathbf{x}, d \mathbf{k}_{m}\right)\right\}=0
\end{align*}
$$

by homogeneity of the velocity field. By (13)-(12),

$$
\begin{align*}
& \widehat{\mathbf{V}}_{0}\left(s, \mathbf{x}, d \mathbf{k}_{n+1}\right) \cdot \nabla\left\{\prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{\sigma_{m}, i_{m}}\left(s, \mathbf{x}, d \mathbf{k}_{m}\right)\right\} \tag{58}\\
& \quad=\sum_{m^{\prime} \in A_{n}(\mathscr{F})} \mathbf{k}_{m^{\prime}} \cdot \widehat{\mathbf{V}}_{0}\left(s, \mathbf{x}, d \mathbf{k}_{n+1}\right) \times \prod_{m \in A_{n}(\mathscr{F})} \widehat{V}_{\sigma_{m}^{m^{\prime}}, i_{m}}\left(s, \mathbf{x}, d \mathbf{k}_{m}\right)
\end{align*}
$$

where

$$
\sigma_{m}^{m^{\prime}}:= \begin{cases}1-\sigma_{m^{\prime}}, & \text { if } m^{\prime}=m \tag{59}\\ \sigma_{m}, & \text { otherwise }\end{cases}
$$

By (55), (54), (58) and definition (29), (56) further reduces to

$$
\begin{align*}
& \sum \int \cdots \int \sum_{i_{n+1}=1}^{d} \sum_{m^{\prime} \in A_{n}(\mathscr{F})} \sum_{\mathscr{F}^{\prime}} \varphi_{\mathbf{i}, \sigma}^{(n)} \frac{k_{m^{\prime}, i_{n+1}}^{\sum_{m \in A_{n}(\mathscr{F})}\left|\mathbf{k}_{m}\right|}}{} \quad \times \exp \left\{-\sum_{m \in A\left(\mathscr{F}^{\prime}\right)}\left|\mathbf{k}_{m}\right|^{2 \beta} s_{n+1}\right\} P_{n}(\mathscr{F}) Q(\mathscr{F}) \\
& \quad \times \prod_{m \in A\left(\mathscr{F}^{\prime}\right)} \widehat{V}_{\sigma_{m}^{m^{\prime}}, i_{m}}\left(t, \mathbf{x}, d \mathbf{k}_{m}\right) \\
& \quad \times \prod_{\widehat{p q} \in E\left(\mathscr{F}^{\prime}\right)}\left[1-e^{-\left(\left|\mathbf{k}_{p}\right|^{2 \beta}+\left|\mathbf{k}_{q}\right|^{2 \beta}\right)(s-t)}\right] \tag{60}\\
& \quad \times \mathbf{E}\left[\widehat{V}_{\tilde{\sigma}_{p, m^{\prime}}, i_{p}}\left(0, \mathbf{0}, d \mathbf{k}_{p}\right) \widehat{V}_{\tilde{\sigma}_{q, m^{\prime}}, i_{q}}\left(0, \mathbf{0}, d \mathbf{k}_{q}\right)\right]
\end{align*}
$$

with $\tilde{\sigma}_{1, m^{\prime}}=0$ and $\tilde{\sigma}_{j+1, m^{\prime}}=\sigma_{j}^{m^{\prime}}$ and all incomplete Feynman diagrams \mathscr{F}^{\prime} based on the set $A_{n}(\mathscr{F}) \cup\{n+1\}$. Lemma 2 follows with

$$
\begin{aligned}
\varphi_{\mathbf{i}, \sigma_{m^{\prime}}^{\prime}}^{(n+1)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n+1}\right):= & \varphi_{\mathbf{i}, \sigma}^{(n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) \frac{k_{m^{\prime}, i_{n+1}}}{\sum_{m^{\prime} \in A_{n}(\mathscr{F})}\left|\mathbf{k}_{m^{\prime}}\right|} \\
& \times \prod_{\widehat{p q} \in E\left(\mathscr{F}^{\prime}\right)}\left[1-e^{-\left(\left(\left.\mathbf{k}_{p}\right|^{2 \beta}+\left|\mathbf{k}_{q}\right|^{2 \beta}\right) s_{n+1}\right.}\right] .
\end{aligned}
$$

4. Proof of weak convergence. It is a straightforward matter to verify that the Gaussian processes

$$
\begin{equation*}
\mathbf{y}_{\varepsilon}(t):=\varepsilon \int_{0}^{t / \varepsilon^{2 \delta}} \mathbf{V}(s, \mathbf{0}) d s, \quad t \geq 0 \tag{61}
\end{equation*}
$$

converge weakly to the fractional Brownian motion $\mathbf{B}_{H}(t), t \geq 0$, given by (8). In addition, we have

$$
\underset{\varepsilon \downarrow 0}{\lim \sup } \mathbf{E}\left|\mathbf{y}_{\varepsilon}(t)\right|^{p}<+\infty
$$

for any $p \geq 1, t \geq 0$.
We now prove that

$$
\begin{array}{rl}
\lim _{\varepsilon \vee 0} & \mathbf{E}\left\{\left[x_{\varepsilon, i_{1}}\left(t_{1}\right)-x_{\varepsilon, i_{1}}\left(t_{2}\right)\right]^{p_{1}} \cdots\left[x_{\varepsilon, i_{M}}\left(t_{M}\right)-x_{\varepsilon, i_{M}}\left(t_{M+1}\right)\right]^{p_{M}}\right\} \tag{62}\\
& =\mathbf{E}\left\{\left[B_{H, i_{1}}\left(t_{1}\right)-B_{H, i_{1}}\left(t_{2}\right)\right]^{p_{1}} \cdots\left[B_{H, i_{M}}\left(t_{M}\right)-B_{H, i_{M}}\left(t_{M+1}\right)\right]^{p_{M}}\right\} .
\end{array}
$$

Equation (62) implies that the limiting law of the family of processes $\mathbf{x}_{\varepsilon}(t), t \geq$ 0 , whose tightness, as $\varepsilon \downarrow 0$, has been established in the previous section, is that of the fractional Brownian motion $B_{H}(t), t \geq 0$. Equation (62) is a consequence of

$$
\begin{align*}
\lim _{\varepsilon \vee 0} \mid \mathbf{E} & \left\{\left[x_{\varepsilon, i_{1}}\left(t_{1}\right)-x_{\varepsilon, i_{1}}\left(t_{2}\right)\right]^{p_{1}} \cdots\left[x_{\varepsilon, i_{M}}\left(t_{M}\right)-x_{\varepsilon, i_{M}}\left(t_{M+1}\right)\right]^{p_{M}}\right. \tag{63}\\
& \left.-\left[y_{\varepsilon, i_{1}}\left(t_{1}\right)-y_{\varepsilon, i_{1}}\left(t_{2}\right)\right]^{p_{1}} \cdots\left[y_{\varepsilon, i_{M}}\left(t_{M}\right)-y_{\varepsilon, i_{M}}\left(t_{M+1}\right)\right]^{p_{M}}\right\} \mid=0,
\end{align*}
$$

with $\mathbf{y}_{\varepsilon}(t)=\left(y_{\varepsilon, 1}(t), \ldots, y_{\varepsilon, d}(t)\right)$. Equation (63) follows from the next lemma.
Lemma 3. For any positive integers M, p_{1}, \ldots, p_{M}, multiindices \mathbf{i}_{j} $\in\{1, \ldots, d\}^{p_{j}}$ for $j=1, \ldots, M$ and $t_{1} \geq \cdots \geq t_{M} \geq t_{M+1}=0$, we have

$$
\begin{align*}
\lim _{\varepsilon \downarrow 0} \mid \mathbf{E} & {\left[Z _ { \varepsilon , \mathbf { i } _ { 1 } } ^ { (p _ { 1 }) } (t _ { 2 } , t _ { 1 }) \cdots Z _ { \varepsilon , \mathbf { i } _ { M } } ^ { (p _ { M }) } \left(t_{M+1}, t_{M}\right.\right.} \tag{64}\\
& \left.-W_{\varepsilon, \mathbf{i}_{1}}^{\left(p_{1}\right)}\left(t_{2}, t_{1}\right) \cdots W_{\varepsilon, \mathbf{i}_{M}}^{\left(p_{M}\right)}\left(t_{M+1}, t_{M}\right)\right] \mid=0 .
\end{align*}
$$

Here for any integer $N \geq 1$, multiindex $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in\{1, \cdots, d\}^{N}$ and $t \geq s$, we define

$$
Z_{\varepsilon, \mathbf{i}}^{(N)}(s, t):=\varepsilon^{N} \iint_{\Delta_{N}(s, t)} \ldots \prod_{p=1}^{N} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right) d s_{1} \cdots d s_{N}
$$

and

$$
W_{\varepsilon, \mathbf{i}}^{(N)}(s, t):=\varepsilon^{N} \int_{\Delta_{N}(s, t)} \ldots \int_{p=1}^{N} \prod_{i_{p}}^{N}\left(_{p}, \mathbf{0}\right) d s_{1} \cdots d s_{N},
$$

with $\triangle_{N}(s, t):=\left\{\left(s_{1}, \ldots, s_{N}\right): t / \varepsilon^{2 \delta} \geq s_{1} \geq \cdots \geq s_{N} \geq s / \varepsilon^{2 \delta}\right\}$.
Proof. To avoid cumbersome expressions that may obscure the essence of the proof, we consider only the special case of $M=1$ and $t_{1}=t, t_{2}=0$. The general case follows from exactly the same argument. We shall proceed with the induction argument on $p_{1}=P$. The case when $P=1$ is trivial because the stationarity of the relevant processes implies that the expression under the limit in (64) vanishes. In fact, as a consequence of the remark made after the proof of Lemma 2, we can conclude that, for any $q \geq 1$,

$$
\underset{\varepsilon \downarrow 0}{\lim \sup } \mathbf{E}\left|Z_{\varepsilon, \mathbf{i}}^{(1)}(0, t)\right|^{q}<+\infty .
$$

Assume now that (64) has been proven for a certain $P-1 \geq 1$ and that for any $q \geq 1$ we have

$$
\begin{equation*}
\underset{\varepsilon \downarrow 0}{\lim \sup } \mathbf{E}\left|Z_{\varepsilon, \mathbf{i}}^{(P-1)}(0, t)\right|^{q}<+\infty . \tag{65}
\end{equation*}
$$

In analogy with (23) we write that

$$
\begin{equation*}
\mathbf{E} Z_{\varepsilon, \mathbf{i}}^{(P)}(0, t)=\sum_{n=0}^{N-1} \mathscr{I}_{n}(0, t)+\mathscr{R}_{N}(0, t), \tag{66}
\end{equation*}
$$

with

$$
\begin{align*}
\mathscr{I}_{n}(0, t):=\varepsilon^{P+n+1} \int \cdots \int_{\Delta_{P}^{(n)}(0, t)} & \mathbf{E}\left\{\mathbf{E}_{s_{2}} W_{i_{1}}^{n}\left(\mathbf{s}_{1}^{(n)}, \varepsilon \mathbf{x}\left(s_{2}\right)\right)\right. \\
& \left.\times \prod_{p=2}^{P} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right)\right\} d \mathbf{s}_{1}^{(n)} d s_{2} \cdots d s_{P}, \tag{67}
\end{align*}
$$

$$
\mathscr{R}_{N}(0, t):=\varepsilon^{P+N+1} \int \cdots \int_{\Delta_{P}^{(N)}(0, t)} \mathbf{E}\left\{\mathbf{E}_{s_{1, N+1}} W_{i_{1}}^{N}\left(\mathbf{s}_{1}^{(N)}, \varepsilon \mathbf{x}\left(s_{1, N+1}\right)\right)\right.
$$

$$
\begin{equation*}
\left.\times \prod_{p=2}^{P} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right)\right\} d \mathbf{s}_{1}^{(N)} d s_{2} \cdots d s_{P} \tag{68}
\end{equation*}
$$

Here

$$
\Delta_{P}^{(n)}(s, t):=\left\{\left(\mathbf{s}_{1}^{(n)}, s_{2}, \ldots, s_{P}\right): t / \varepsilon^{2 \delta} \geq \mathbf{s}_{1}^{(n)} \geq s_{2} \geq \cdots \geq s_{P} \geq s / \varepsilon^{2 \delta}\right\}
$$

with $\mathbf{s}_{1}^{(n)}:=\left(s_{1,1}, \ldots, s_{1, n+1}\right)$. We say that $t \geq \mathbf{s}_{1} \geq s$, where $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ is an ordered n-tuple, that $s_{1} \geq \cdots \geq s_{n}$, when $t \geq s_{1} \geq s_{n} \geq s$.

The argument used in the proof of Lemma 2 together with (65) shows that

$$
\lim _{\varepsilon \downarrow 0} \mathscr{I}_{n}(0, t)=0
$$

for $n \geq 1$ and

$$
\lim _{\varepsilon \downarrow 0} \mathscr{R}_{N}(0, t)=0,
$$

provided that N is chosen sufficiently large. Asymptotically then, as $\varepsilon \downarrow 0$ the behavior of $\mathbf{E} Z_{\varepsilon, \mathbf{i}}^{(P)}(0, t)$ is the same as that of the term

$$
\begin{align*}
\mathscr{I}_{0}(0, t):=\varepsilon^{P+1} \int \cdots \int_{\Delta_{P}^{(0)}(0, t)} \mathbf{E}\{ & V_{i_{1}}\left(s_{1}, \varepsilon \mathbf{x}\left(s_{2}\right)\right) \\
& \left.\times \prod_{p=2}^{P} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right)\right\} d s_{1} \cdots d s_{P} . \tag{69}
\end{align*}
$$

In order to deal with (69), we need a generalization of the argument used in the proof of Lemma 2. Let us introduce some additional notation. For any multiindex $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right)$ and $p \geq 1$ we define $W_{\mathbf{i}}^{p, n}$ by induction as follows. We set

$$
\begin{aligned}
& W_{i_{1}, \ldots, i_{p}}^{p, 0}\left(s_{1}, \ldots, s_{p}, \mathbf{x}\right) \\
& \quad:=V_{i_{1}}\left(s_{1}, \mathbf{x}\right) \cdots V_{i_{p}}\left(s_{p}, \mathbf{x}\right)-\mathbf{E}\left\{V_{i_{1}}\left(s_{1}, \mathbf{x}\right) \cdots V_{i_{p}}\left(s_{p}, \mathbf{x}\right)\right\}
\end{aligned}
$$

and assuming that $W_{i_{1}, \ldots, i_{p}}^{p, n}\left(s_{1}, \ldots, s_{p-1}, \mathbf{s}_{p}^{(n)}, \mathbf{x}\right)$ has been defined for any ordered $n+1$-tuple $\mathbf{s}_{p}^{(n)}=\left(s_{p, 1}, \ldots, s_{p, n+1}\right) \leq s_{p-1}$ we set

$$
\begin{aligned}
& W_{i_{1}, \ldots, i_{p}}^{p, n+1}\left(s_{1}, \ldots, s_{p-1}, \mathbf{s}_{p}^{(n+1)}, \mathbf{x}\right) \\
& \quad:=\nabla W_{i_{1}, \ldots, i_{p}}^{p, n}\left(s_{1}, \ldots, \mathbf{s}_{p}^{(n)}, \mathbf{x}\right) \cdot \mathbf{V}\left(s_{p, n+2}, \mathbf{x}\right)
\end{aligned}
$$

for any ordered $n+2$-tuple $\mathbf{s}_{p}^{(n+1)}=\left(s_{p, 1}, \ldots, s_{p, n+1}, s_{p, n+2}\right)$. Expanding the left-hand side of (69) in analogy with (23), we obtain

$$
\begin{aligned}
\mathscr{I}_{0}(0, t)= & \varepsilon^{P+1} \int \cdots \int_{\Delta_{P}^{(0)}(0, t)} \mathbf{E}\left\{V_{i_{1}}\left(s_{1}, \varepsilon \mathbf{x}\left(s_{2}\right)\right) V_{i_{2}}\left(s_{2}, \varepsilon \mathbf{x}\left(s_{2}\right)\right)\right\} \\
& \times \mathbf{E}\left\{\prod_{p=3}^{P} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right)\right\} d s_{1} d s_{2} \cdots d s_{P} \\
& +\sum_{n=0}^{N-1} \mathscr{I}_{1, n}(0, t)+\mathscr{R}_{1, N}(0, t),
\end{aligned}
$$

where

$$
\begin{align*}
& \mathscr{I}_{1, n}(0, t):=\varepsilon^{P+n+1} \int \cdots \int_{\Delta_{P}^{(1, n)}(0, t)} \mathbf{E}\left\{\mathbf{E}_{s_{3}} W_{i_{1}, i_{2}}^{2, n}\left(s_{1}, \mathbf{s}_{2}^{(n)}, \varepsilon \mathbf{x}\left(s_{3}\right)\right)\right. \\
& \left.\times \prod_{p=3}^{P} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right)\right\} d s_{1} d \mathbf{s}_{2}^{(n)} d s_{2} \cdots d s_{P}, \tag{70}\\
& \mathscr{R}_{1, N}(0, t):=\varepsilon^{P+N+1} \int \cdots \int_{\Delta_{P}^{(1, N)}(0, t)} \mathbf{E}\left\{\mathbf{E}_{s_{2, N+1}} W_{i_{1}, i_{2}}^{2, N}\left(s_{1}, \mathbf{s}^{(N)}, \varepsilon \mathbf{x}\left(s_{2, N+1}\right)\right)\right. \\
& \left.\times \prod_{p=3}^{P} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right)\right\} d s_{1} d \mathbf{s}_{2}^{(N)} d s_{3} \cdots d s_{P} \tag{71}\\
& \Delta_{P}^{(1, n)}(0, t):=\left\{\left(s_{1}, \mathbf{s}_{2}^{(n)}, s_{3}, \ldots, s_{P}\right): t / \varepsilon^{2 \delta} \geq s_{1} \geq \mathbf{s}_{2}^{(n)} \geq \cdots \geq s_{P} \geq 0\right\} .
\end{align*}
$$

We represent the conditional expectations appearing in (70) and (71) using a generalization (Lemma 4) of Lemma 2.

To formulate it, we need a generalized notion of a proper function, which we call a p-proper function. Let p be a positive integer. The p-proper function of order 1 is unique and is given by $\sigma(i)=0, i=1, \ldots, p$. Any p-proper function, σ^{\prime}, of order $n+1$ is generated from a p-proper function σ of order n as follows. For some $q \leq p+n$,

$$
\begin{align*}
\sigma^{\prime}(p+n+1) & :=0 \\
\sigma^{\prime}(k) & :=\sigma(k) \quad \text { for } k \leq n+p \text { and } k \neq q, \tag{72}\\
\sigma^{\prime}(q) & :=1-\sigma(q) .
\end{align*}
$$

We also distinguish a special class of Feynman diagram $p \mathscr{G}_{s}(B)$: a diagram \mathscr{F} of order $n+p$ belongs to $p \mathscr{G}_{s}(B)$ if $A_{k}(\mathscr{F})$ is not empty for all $k=p, \ldots, n+p$.

LEMMA 4. For any positive integer $p, s_{1} \geq \cdots \geq s_{p-1} \geq \mathbf{s}_{p}^{(n-1)} \geq s$, a multiindex $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right) \in\{1, \ldots, d\}^{p}$, we have

$$
\begin{align*}
& \mathbf{E}_{s} W_{\mathbf{i}}^{p, n-1}\left(s_{1}, \ldots, s_{p-1}, \mathbf{s}_{p}^{(n-1)}, \mathbf{x}\right) \\
&=\sum \int \cdots \int \varphi_{\mathbf{j}, \sigma}^{(p, n)}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{p+n}\right) \\
& \times \exp \left\{-\sum_{m \in A_{n+p}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}\left(s_{p, n}-s\right)\right\} P_{p, n-1}(\mathscr{T}) Q(\mathscr{T}) \tag{73}\\
& \times \prod_{m \in A_{n+p}(\mathscr{F})} \widehat{V}_{i_{m}, \sigma_{m}}\left(s, \mathbf{x}, d \mathbf{k}_{m}\right),
\end{align*}
$$

where $\varphi_{\mathbf{j}, \sigma}^{(p, n)}$ are functions satisfying $\left|\varphi_{\mathbf{j}, \sigma}^{(p, n)}\right| \leq 1$ and

$$
\begin{align*}
P_{p, n}(\mathscr{F})= & \prod_{j=p}^{n+p-1}\left(\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|\right) \\
& \times \exp \left\{-\sum_{m \in A_{j}(\mathscr{F})}\left|\mathbf{k}_{m}\right|^{2 \beta}\left(s_{p, j-p}-s_{p, j-p+1}\right)\right\}, \tag{74}\\
Q(\mathscr{F})= & \prod_{\widehat{m m^{\prime}} \in E(\mathscr{F})} \mathbf{E}\left[\widehat{V}_{i_{m}, \sigma_{m}}\left(0, d \mathbf{k}_{m}\right) \widehat{V}_{i_{m^{\prime}}, \sigma_{m^{\prime}}}\left(0, d \mathbf{k}_{m^{\prime}}\right)\right] .
\end{align*}
$$

The summation is over all multiindices $\mathbf{j}=\left(j_{1}, \ldots, j_{n+p}\right)$, such that $\mathbf{j}_{\mid p}=\mathbf{i}$, all $\mathscr{F} \in p \mathscr{G}_{s}$ and all p-proper functions σ of order n. Here by a convention $s_{p, 0}:=s_{p-1}$.

The proof of Lemma 4 is exactly the same as that of Lemma 2 and is omitted.
Using Lemma 4 and the argument presented in the foregoing to demonstrate that $\mathscr{I}_{0}(0, t)$ is asymptotically equal to $\mathbf{E} Z_{\varepsilon, \mathbf{i}}^{(P)}(0, t)$, as $\varepsilon \downarrow 0$, we can show that

$$
\begin{aligned}
& \varepsilon^{P+1} \int \cdots \int_{\Delta_{P}(0, t)} \mathbf{E}\left\{V_{i_{1}}\left(s_{1}, \varepsilon \mathbf{x}\left(s_{3}\right)\right) V_{i_{2}}\left(s_{2}, \varepsilon \mathbf{x}\left(s_{3}\right)\right)\right. \\
&\left.\times \prod_{p=3}^{P} V_{i_{p}}\left(s_{p}, \varepsilon \mathbf{x}\left(s_{p}\right)\right)\right\} d s_{1} d s_{2} \cdots d s_{P}
\end{aligned}
$$

is asymptotically equal to $\mathbf{E} Z_{\varepsilon, \mathrm{i}}^{(P)}(0, t)$, as $\varepsilon \downarrow 0$. Repeating the preceding argument p times, we obtain (64). Finally, we notice that the hypercontractivity properties of the L^{p} norms over Gaussian measure space allow us to conclude that (65) holds with $P-1$ replaced by P.

REFERENCES

[1] Adler, R. J. (1981). Geometry of Random Fields. Wiley, New York.
[2] CARMONA, R. A. and FOUQUE, J. P. (1994). Diffusion approximation for the advection diffusion of a passive scalar by a space-time Gaussian velocity field. In Seminar on Stochastic Analysis. Random Fields and Applications (E. E. Bolthausen, M. Dozzi and F. Russ, eds.) 37-50. Birkhäuser, Basel.
[3] Fannjiang, A. and Komorowski, T. (2000). Diffusion approximation for particle convection in Markovian flows. Bull. Polish. Acad. Sci. Math. 48 253-275.
[4] Glimm, J. and Jaffe, A. (1981). Quantum Physics. Springer, New York.
[5] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Univ. Press.
[6] Kesten, H. and Papanicolaou, G. C. (1979). A limit theorem for turbulent diffusion. Comm. Math. Phys. 65 97-128.
[7] KhasminskiI, R. Z. (1966). A limit theorem for solutions of differential equations with a random right hand side. Theory. Probab. Appl. 11 390-406.
[8] Kubo, R. (1963). Stochastic Liouville equation. J. Math. Phys. 4 174-183.
[9] Kunita, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press.
[10] Mandelbrot B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. $10422-437$.
[11] Port, S. C. and Stone, C. (1976). Random measures and their application to motion in an incompressible fluid. J. Appl. Probab. 13 499-506.
[12] Schirayev, A. N. (1960). Some questions on spectral theory of higher moments. Theory Probab. Appl. 5 295-313 (in Russian).
[13] Samorodnitsky, G. and TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York.
[14] TAYLOR, G. I. (1923). Diffusions by continuous movements. Proc. London Math. Soc. Ser. 2 20 196-211.

DEPARTMENT OF MATHEMATICS
University of California
Davis, California 95616-8633
E-MAIL: fannjian@math.ucdavis.edu

InstituTe of Mathematics
Maria Curie-Skłodowska University
Lublin
Poland

[^0]: Received June 1999; revised December 1999.
 ${ }^{1}$ The research of Fannjiang was supported in part by NSF Grant DMS-96-00119. This work was finished while Komorowski was visiting the Department of Statistics, University of California, Berkeley.

 AMS 1991 subject classifications. Primary 60F05,76F05,76R05; secondary 58F25.
 Key words and phrases. Turbulent diffusion, mixing, fractional Brownian motion.

