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THE SUPREMUM OF A NEGATIVE DRIFT RANDOM
WALK WITH DEPENDENT HEAVY–TAILED STEPS
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University of Groningen and Cornell University

Many important probabilistic models in queuing theory, insurance
and finance deal with partial sums of a negative mean stationary process
(a negative drift random walk), and the law of the supremum of such a
process is used to calculate, depending on the context, the ruin probability,
the steady state distribution of the number of customers in the system or
the value at risk. When the stationary process is heavy-tailed, the corre-
sponding ruin probabilities are high and the stationary distributions are
heavy-tailed as well. If the steps of the random walk are independent,
then the exact asymptotic behavior of such probability tails was described
by Embrechts and Veraverbeke. We show that this asymptotic behavior
may be different if the steps of the random walk are not independent, and
the dependence affects the joint probability tails of the stationary process.
Such type of dependence can be modeled, for example, by a linear process.

1. Introduction. In various applied fields, such as insurance mathemat-
ics, queuing theory, finance and time series analysis among others, the model
of a random walk with negative drift occurs in a natural way. For example,
the probability of ruin in a homogeneous insurance portfolio can be written
in terms of the distribution of the supremum of such a random walk; see
Embrechts, Klüppelberg and Mikosch (1997) (Hereafter EKM), Chapter 1. The
tail probability of solutions to stochastic recurrence equations, including the
tails of ARCH and GARCH processes, can be obtained in a similar way; see
EKM (1997), Section 8.4, and the references therein. The solution to the most
important random recursion in queuing theory, the Lindley equation, is of the
same form; see for instance Baccelli and Brémaud (1994). In the latter case
the tail distribution of the stationary solution is often viewed as an overflow
probability.
There exists extensive literature on the asymptotic behavior of the ruin

probability and the tails of the stationary solutions to random recursions.
Both the cases of light-tailed step distributions and heavy-tailed step distri-
butions have been considered. Most of this literature deals with the “usual”
random walk, which means iid steps. We refer the reader to EKM [(1997),
Chapter 1] for the most important results and additional references. The basic
result for heavy-tailed random walks with iid steps is due to Embrechts and
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Fig. 1. The dependent step random walk generated by teletraffic data; see Section 3 for a precise
description of this set. These data are extremely heavy-tailed and dependent. The above computer
graph shows the random walk (Sn) with mean −�1+ 0�05�µn, where µ is the estimated value of
the expectation of the (positive) teletraffic data. The unit on the y-axis is 10 millions.

Veraverbeke (1982); compare Theorem 1.3.6 in EKM. Let Xn� n ∈ �, be iid
subexponential random variables [that is, P�X1 +X2 > λ� ∼ 2P�X1 > λ� as
λ → ∞; see Chistyakov (1964)]. They generate the random walk

S0 = 0� Sn = X1 + · · · +Xn� n ≥ 1�(1.1)

LetF denote the common law of theXn’s, and −µ < 0 be the common negative
mean. Then

P
(
sup
n≥0

Sn > λ
)
∼ 1

µ

∫ ∞

λ
�1−F�x��dx as λ → ∞�(1.2)

In most applications (except, perhaps, insurance) the assumption of inde-
pendent step sizes is, clearly, unrealistic. For example, in the queuing context
a typical model has steps distributed as the difference between service times
and interarrival times of successive customers, and the independence assump-
tion is universally believed not to hold. Rather, one hopes that the dependence
existing in the data does not matter as far as quantities of interest, such as
the ruin probability or the overflow probability, are concerned. Certain results
available to date confirm this hope. For example, Asmussen, Schmidli and
Schmidt (1999) show that the Embrechts and Veraverbeke result (1.2) remains
valid (in the queuing context) under fairly general dependence structure of the
interarrival times if the service times are still independent.
An important type of dependence is that of clustering of exceedances of

high thresholds. This is a well-known phenomenon in econometric modeling
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where ARCH and GARCH types of models are commonly used for precisely
that feature: data exhibit periods of high activity and low activity. We will show
in this paper that this kind of dependence can result in a situation where the
tail equivalence (1.2) is no longer valid; see the statement of Theorem 2.1
below and see relation (1.12).
In this paper we choose to model the steps Xn� n ∈ �, of the random walk

as a two-sided linear process,

Xn = −µ+
∞∑

j=−∞
ϕn−j εj� n ∈ ��(1.3)

where �εn�n∈� is a sequence of zero mean iid random variables and µ > 0 is
a constant. Note that it is, actually, abuse of terminology to call the process
�Sn�n≥0 in (1.1) a random walk if the step sizes are not iid. We choose, however,
to use this name because of its clear intuitive meaning, and we believe that
no confusion will result. Notice that ARMA and fractional ARIMA processes
have representation as one-sided, that is, causal, linear processes (i.e., ϕn = 0
for n < 0); see for example Brockwell and Davis (1991).
In this paper we assume that ε = ε0 satifies the following regular variation

and tail balance conditions:
P��ε� > λ� = L�λ�λ−α�

lim
λ→∞

P�ε > λ�
P��ε� > λ� = p� lim

λ→∞
P�ε < −λ�
P��ε� > λ� = q�

(1.4)

as λ → ∞, for some α > 1 and 0 < p ≤ 1. Here L is a slowly varying (at
infinity) function. The coefficients ϕj, not all of which are equal to zero, are
assumed to satisfy the following condition:

∞∑
j=−∞

�jϕj� < ∞�(1.5)

A few remarks are, obviously, in order.

Remark 1.1. Condition (1.5) excludes linear processes with long-range
dependence which condition can be defined via

∑
j �ϕj� = ∞. Such a condi-

tion is fulfilled, for example for finite variance FARIMA(p�d� q) processes
with d ∈ �0�0�5�; see Brockwell and Davis [(1991), Section 13.2]. However,
the weak dependence condition (1.5) is not uncommon in many results of
time series analysis and trivially satisfied for causal invertible ARMA(p�q)
processes [Brockwell and Davis (1991), Chapter 3]. If one departs from (1.5),
proofs might become even more technical because (ϕj) can be close to being not
absolutely summable. See for example Kokoszka and Taqqu (1996) in order
to get some flavor of the difficulties one has to face. Moreover, a condition
of type (1.5) is needed for our main result. To be more specific, the formula-
tion of our main result [see (1.12)] involves the infinite series

∑
j ϕ

±
j which

have to be finite. Thus Theorem 2.1 is not applicable to FARIMA(p�d� q) pro-
cesses of order d ∈ �0�0�5�. Whether the additional �j� in (1.5) can be avoided,
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and Theorem 2.1 be applied to, for example, FARIMA(p�d� q) processes with
d ∈ �−0�5�0�, is an open question. Finally, the reader will observe that, to
the best of our knowledge, even results on the tail of a series with indepen-
dent terms of the type presented in Lemma A.3 require, in general, conditions
stronger than those needed for convergence of the series. By not striving to
achieve the weakest possible conditions, one gains somewhat in the trans-
parency of the results.

Remark 1.2. There is well-founded skepticism about using heavy-tailed
linear processes for probabilistic modeling. Indeed, in classical time series
analysis the main attraction of using linear processes is the fact that their
correlations (or spectra) are flexible enough to approximate the correlations
(or spectrum) of an arbitrary second-order stationary process. However, corre-
lations and spectra, even when defined, are not natural to concentrate on in
the heavy-tailed case. In fact, sample autocorrelations of heavy-tailed linear
processes can behave very differently from those of other important classes of
heavy-tailed processes, and the autocorrelations in available data often do not
support the assumption of a linear model. See, for example, Resnick (1997)
and Resnick, Samorodnitsky and Xue (1999). However, we are NOT inter-
ested in correlations. Rather, we are interested in the tails, which is exactly
the reason why heavy-tailed processes are important in the first place. Lin-
ear processes are well suited to model a great variety of dependence in the
tails of stationary heavy-tailed processes. This means that heavy-tailed linear
processes can be used to model the clusters of high-threshold exceedances by
a dependent stationary sequence in terms of limiting compound Poisson pro-
cesses. The description of the clustering behavior of dependent sequences is
one of the keys to the understanding of their extremal behavior and related
topics. See the discussion and references in EKM (1997), Sections 5.5 and 8.1.

Remark 1.3. Random variables with regularly varying tails are also sub-
exponential. We do not know if an appropriate analogue of our results holds
when the εj’s have a subexponential distribution. The argument of Embrechts
and Veraverbeke (1982) for the supremum tail (1.2) in the case of iid steps
requires Wiener–Hopf factorization and Markov property. We conjecture that
the result holds in some form in the subexponential case. The argument we
use is relatively easy to extend to bigger subclasses of the subexponential class
of distributions (e.g., the distributions with so called intermediate regularly
varying tails).

Remark 1.4. Conditions (1.4), (1.5) and Eε = 0 imply that the infinite
series in (1.3) converges absolutely with probability 1 and that X = X0 has
expectation −µ. Furthermore, by Lemma A.3 in the Appendix,

P�X > λ�
P��ε� > λ� ∼

∞∑
j=−∞

�ϕj�α�pI�ϕj>0� + qI�ϕj<0�� =� �ϕ�αα asλ → ∞�(1.6)
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Observe that the (dependent step) random walk �Sn�n≥0 has negative drift.
Since �Xn� is mixing [see Rosenblatt (1962), page 112] this implies that
Sn/n → −µ a.s. In particular, supn≥1Sn < ∞ a.s., and we will concentrate on

ψ�λ� = P

(
sup
n≥0

Sn > λ

)
as λ → ∞. If �Sn�n≥0 had iid steps with the samemarginal distribution [or even
only the same negative mean and the same tail behavior as X has in (1.6)],
then the Embrechts and Veraverbeke result (1.2) and Karamata’s theorem
[see Theorem 1.5.11 in Bingham, Goldie and Teugels (1987)] would show that

ψind�λ� ∼
1

µ�α− 1�λP�X > λ� ∼ �ϕ�αα
α− 1

1
µ
λP��ε� > λ�(1.7)

as λ → ∞. (We use the notation ψind to remind us that we are dealing with
iid steps.) We will see that in the case of dependent steps (1.7) is, in general,
false.
The following heuristics give us a taste of what the true behavior of the

tail ψ�λ� may be. It also provides us with a road map of the proof in the next
section. However, heuristics cannot replace the very technical proof; only its
study will enable one to understand the complicated mechanism which causes
the asymptotic behavior of the ruin probabilities to deviate from the iid case.
Because of the heavy tails, we expect the event �supn Sn > λ� for large λ

to occur because of a single very large positive or very small negative value of
the noise εn. The largest ever contribution of the “important” noise variables
εj to the state of the random walk can be seen from the expression

Sn = −nµ+
n∑

k=1

∞∑
j=−∞

εk−jεj

= −nµ+
∞∑

j=−∞
εj

n−j∑
k=1−j

ϕk�

(1.8)

Let us concentrate first on the large positive values of the noise. A potentially
large positive contribution of ε+j to Sn is multiplied by

∑n−j
k=1−j ϕk. Here, as

usual, for any real number x,

x+ = max�0� x� and x− = −min�0� x��
When j is a very small negative number, this factor is by (1.5) small, uniformly
(in n). We do not expect each individual ε+j to make a sizable contribution to
the tail of the process. Indeed, the tail P�ε > λ� of each individual ε+j is of a
smaller order than that predicted either by the Embrechts and Veraverbeke
result (1.7) or what we expect in (1.12) below. Furthermore, because of the
negative drift, the contribution of each noise variable dissipates with time. It
is now easy to convince ourselves that, if very small negative j’s do not play
an important role, and neither is this role played by any individual value of j,
then the “important” noise variables εj are those with high j’s, in which case
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the multiplicative factor of ε+j becomes about
∑n−j

k=−∞ ϕk, and the largest this
factor can ever get over all possible n’s (i.e., over all positions of the random
walk) is

m+
ϕ = sup

−∞<n<∞

n∑
k=−∞

ϕk�(1.9)

Clearly, the values of Sn in which ε+j gets multiplied by this factor are those
with n being about equal to j (simply because we choose n such that n−j lies
in a particular region), and because of ergodicity of the step sizes the random
walk is at that time at about the level −jµ. If we apply the same reasoning
to the small negative values of the noise variables εj and use the notation

m−
ϕ = sup

−∞<n<∞

n∑
k=−∞

�−ϕk��(1.10)

we expect that the following asymptotic relation holds:

ψ�λ� ∼
∞∑
j=1

(
P�m+

ϕε
+
j > λ+ jµ� +P�m−

ϕε
−
j > λ+ jµ�

)
∼

∫ ∞

1
P�m+

ϕε
+ > λ+ yµ�dy+

∫ ∞

1
P�m−

ϕε
− > λ+ yµ�dy

∼ m+
ϕ

µ

∫ ∞

λ/m+
ϕ

P�ε > y�dy+ m−
ϕ

µ

∫ ∞

λ/m−
ϕ

P�ε < −y�dy�

(1.11)

Of course, the reason for adding up the probabilities above is that we do not
expect more than one event in question to occur. Furthermore, because of
our conclusion that individual values of the noise variables εj do not play an
important role in the asymptotic behavior of ψ�λ�, we can start the summation
at any given place; indeed, it is simple to check that the asymptotic behavior
derived above does not depend on the position of the first term in the sum.
Applying once again Karamata’s theorem, we expect then to have

ψ�λ� ∼ �p�m+
ϕ �α + q�m−

ϕ �α�
α− 1

1
µ
λP��ε� > λ�

∼
[
�p�m+

ϕ �α + q�m−
ϕ �α�

�ϕ�αα

]
1

µ�α− 1�λP�X > λ��
(1.12)

as λ → ∞. Here we interpret the right-hand side as o�λP�X > λ�� if the
bracket vanishes. Notice that the bracket equals one if (Xn) is an iid sequence;
compare (1.7). It is impossible to interpret the bracket in terms of known
measures of dependence such as the autocorrelation function or the extremal
index of linear processes; see, for example, EKM (1997), Sections 7.3 and 8.1.
However, the bracket can be thought of as a means of describing the strength
of the tail dependence in the random walk. Intuitively, the higher is, say,
m+

ϕ , the higher can be the contribution of a positive value of a given noise
variable to the position of the random walk. Compare this to an example
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from a different universe: the variance of a sum of terms with equal variance
each may be thought of as a measure of the dependence between the terms.
Similarly, the higher m−

ϕ is, the higher can be the contribution of a negative
value of a given noise variable to the position of the random walk.
The limiting relation (1.12) will be proved in the next section. It is important

to note that in the case p = 1 and m+
ϕ = 0 the tail of ψ�λ� is of a smaller

order than that promised by (1.7). This will be the case, for example, when
ϕ0 = 1� ϕ−1 = −1 and ϕj = 0 for j �= −1�0 (and p = 1). The true order of
magnitude of the tail of ψ�λ� will depend, in that case, on the relationship
between the left and the right tails of the noise variables (that is, one needs
information more precise than just p = 1). This point, however, is not pursued
in this paper. We note that in this example (with ϕ0 = 1� ϕ−1 = −1 and
ϕj = 0 for j �= −1�0) the tail of ψ�λ� is still of the same order as in (1.7) if
0 ≤ p < 1. Intuitively, this happens because very small negative values of the
noise variables εj get a chance to affect the position of the random walk before
they get cancelled on the next step. This is not possible if p = 1, because then
the noise variables are not as likely to take very small negative values.
On the other hand, in the case of a causal (i.e., one-sided) linear process for

which ϕj = 0 for j < 0 and ϕ0 > 0 we have

m+
ϕ ≥ ϕ0 > 0�

This implies (for p > 0) that the order of magnitude of ψ�λ� cannot be smaller
than in the iid case.
This paper is organized as follows. In the next section we prove (1.12),

which is the main result of this paper. In Section 3 we perform an exploratory
statistical analysis of a data set with file sizes requested via Internet. It is
our intention to emphasize that this data set has heavy-tailed marginal dis-
tributions and lacks independence. Finally, in the Appendix we collect and
prove some related results, dealing with the tail behavior of an infinite linear
combination of random variables with regularly varying tails, and with large
deviations of the partial sums of the infinite moving average (1.3). Although
not all of these results are needed for the proof of (1.12), they provide addi-
tional information about sums and maxima of a linear process with regularly
varying tails and might also be of independent interest.

2. The asymptotics of the ruin probability. The following is the main
result of this paper.

Theorem 2.1. Let �Xn� be a linear process (1.3) with a negative mean −µ
and assume that the iid mean-zero noise sequence �εn� satisfies the regular
variation and tail balance conditions (1.4) for some α > 1� Moreover, suppose
that the real coefficients ϕn satisfy (1.5). Then (1.12) holds.

Proof. Our argument frequently uses the notation

βnj =
n−j∑

i=1−j

ϕi�(2.1)
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with which we can rewrite the representation (1.8) of the random walk in the
form

Sn = −nµ+
∞∑

j=−∞
εjβnj� n ≥ 0�(2.2)

In what follows we prove several lemmas which involve any value of µ > 0,
and some of the lemmas can be formulated even for µ = 0� but we omit
further details. For the proof of the theorem, we will apply these lemmas not
necessarily for the value µ in the formulation of the theorem; it will, however,
become clear from the contextwhich value of µwill be utilized in which lemma.
The result is proved by a series of technical lemmas. Before we start with

a detailed analysis we give a short outline of the main ideas of the proof.

A. In Section 2.1 we start with proving Theorem 2.1 in the case p = 1,
that is, when the right tail of the noise variables is fatter than the left tail.
We further assume m+

ϕ > 0. Since we want to study the tail probability
P�supn≥0 Sn > λ�, we have to find out for which values of n the random
walk Sn is closest to its supremum and which summands εjβnj in (2.2) make
a main contribution to Sn.

1. We show that the contributions of the following terms are asymptotically
negligible as λ → ∞ when compared with ψ�λ�:
(a) The values of −nµ+∑k

j=−∞ εjβnj for all n and fixed k (Lemma 2.2).
(b) The values of −nµ+∑∞

j=n+k εjβnj for all n and large k (Lemma 2.3).

2. Thus it suffices to study the asymptotic behavior of

P�sup
n≥0

�−nµ+
n+k∑
j=k̃

εjβnj > λ�

for large λ, large (but fixed) k̃ and large (but fixed) k.
3. We proceed by splitting the supremum into different parts.
4. We show that the contribution of the following probabilities to ψ�λ� is

asymptotically negligible, first letting λ → ∞, then M → ∞:

P

(
sup

n≤λ/M

(
−nµ+

n+k∑
j=k̃

εjβnj > λ

)
for fixed k� k̃ (Lemma 2.4)�

P

(
sup
n≥0

(
−nµ+

λ/M∑
j=k̃

εjβnj

)
> λ

)
for fixed k̃ (Lemma 2.5)�

5. Thus it suffices to study the probabilityP�supn≥λ/M�−nµ+∑n+k
j=�λ/M� εjβnj >

λ� for large λ�M and large (but fixed) k.
6. We show that the latter probability is of the same asymptotic order as

P

(
sup

n≥λ/M

(
−nµ+

n+k∑
j=�λ/M�

εjβ
+
nj

)
> λ

)
(2.3)
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and that the latter probability is of the same order as

P

(
εj >

jµ+ λ

m+
ϕ

for some j ≥ 1

)
∼ �m+

ϕ �α
�α− 1�µλP�ε > λ��(2.4)

This goal is achieved by a series of lemmas.

(a) Lemmas 2.6–2.8 are, essentially, large deviations results that establish
that exactly one noise variable is responsible for the high value of the
supremum of the random walk. They are used to derive the right upper
bound in (2.4) for the probability (2.3) (Lemma 2.9).

(b) We show that the probability (2.3) with β+
nj replaced by −β−

nj does not
contribute to the asymptotic order in (2.4) (Lemma 2.10).

(c) We establish the matching lower bound in (2.4) by utilizing the same
preliminary estimates (Lemma 2.12).

This proves the theorem for p = 1 and m+
ϕ > 0.

B. In Section 2.2 we proceed with the case p = 1 and m+
ϕ = 0�

C. In Section 2.3 we treat the case 0 < p < 1.

2.1. The case p = 1 andm+
ϕ > 0. We start by truncating the infinite series

in (2.2) from below.

Lemma 2.2. For every k > −∞,

lim
λ→∞

P
(
supn≥1

(
−nµ+∑k

j=−∞ εjβnj

)
> λ

)
λP�ε > λ� = 0�(2.5)

Proof. Obviously,

pk �= P

(
sup
n≥1

(
−nµ+

k∑
j=−∞

εjβnj

)
> λ

)
≤ P

(
k∑

j=−∞
�εj�

∞∑
i=1−j

�ϕi� > λ

)
�

Write ϕ̃ �= ∑∞
j=−∞ �ϕj� < ∞. Since (1.5) holds, Lemma A3.7 applies. Therefore

and since α > 1,

lim sup
λ→∞

pk

P�ε > λ� ≤
k∑

j=−∞

( ∞∑
i=1−j

�ϕi�
)α

≤ ϕ̃α
k∑

j=−∞

∞∑
i=1−j

��ϕj�/ϕ̃��

The right-hand side is finite by virtue of (1.5). This proves the lemma. ✷

The next step consists of truncating the infinite series (2.2) from above.

Lemma 2.3.

lim
k→∞

lim sup
λ→∞

P
(
supn≥1

( −nµ+∑∞
j=n+k εjβnj

)
> λ

)
λP�ε > λ� = 0�(2.6)
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Proof. Notice that

qk �= P

(
sup
n≥1

(
−nµ+

∞∑
j=n+k

εjβnj

)
> λ

)

≤
∞∑

n=1
P

( ∞∑
j=n+k

�εj�
n−j∑

i=−∞
�ϕi� > λ+ nµ

)

=
∞∑

n=1
P

( ∞∑
j=k

�εj�
−j∑

i=−∞
�ϕi� > λ+ nµ

)
and by (1.5) there exists a constant c > 0 such that

qk ≤
∞∑

n=1
P

( ∞∑
j=k

��εj� −E�ε1��
−j∑

i=−∞
�ϕi� > λ+ nµ− c

)
�

An application of (1.5), Lemma A.3 and Karamata’s theorem yield that

lim sup
λ→∞

qk

λP�ε > λ� ≤ const
−k∑

j=−∞
�jϕj��

Now let k → ∞. This proves the lemma. ✷

Next we consider the main part of the exceedance probability ψ�λ�. For
fixed k� k̃ ≥ 1 we study the behavior of

P

(
sup
n≥1

(
−nµ+

n+k∑
j=k̃

εjβnj

)
> λ

)
(2.7)

as λ → ∞. Later the integers k� k̃ will be chosen sufficiently large. We split the
supremum in (2.7) into separate parts. We start by showing that the values of
n much smaller than λ do not matter asymptotically; a large deviation result
for sums of iid heavy-tailed random variables indicates why this is expected;
see Lemma A.1.

Lemma 2.4. For every fixed k� k̃ ≥ 1,

lim
M→∞

lim sup
λ→∞

P
(
supn≤λ/M

( −nµ+∑n+k

j=k̃
εjβnj

)
> λ

)
λP�ε > λ� = 0�(2.8)

Proof. The following elementary inequality holds:

P

(
sup

n≤λ/M

(
−nµ+

n+k∑
j=k̃

εjβnj

)
> λ

)

≤ P

(
sup

n≤λ/M

n+k∑
j=k̃

εjβnj > λ

)
≤ P

(
m�ϕ�

∑
k̃≤j≤λ/M+k

�εj� > λ

)
�

(2.9)
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where

m�ϕ� =
∞∑

j=−∞
�ϕj��(2.10)

For M > m�ϕ�E�ε�, a large deviation result for sums of iid mean-zero random
variables with regularly varying tails (see Lemma A.1 in the Appendix) implies
that the probability in (2.9) is asymptotically of the order

λ

M
P

(
ε > λ

(
1

m�ϕ�
− E�ε�

M

))
as λ → ∞�

This and the fact that P�ε > λ� is regularly varying with index α > 1 prove
the lemma. It is the factor 1/M that yields the result in the limit. ✷

In what follows, we assume for ease of representation that λ/M is an integer.
Our next step is to show that the noise variables εj with j much smaller

than λ do not contribute to the order of magnitude of ψ�λ�.

Lemma 2.5. For every k̃ ≥ 1,

lim
M→∞

lim sup
λ→∞

P

(
supn≥0

(
−nµ+∑λ/M

j=k̃
εjβnj

)
> λ

)
λP�ε > λ� = 0�

Proof. We have

P

(
sup
n≥0

(
−nµ+

λ/M∑
j=k̃

εjβnj

)
> λ

)
≤ P

(
m�ϕ�

λ/M∑
j=1

��εj�−E�ε�� > λ−m�ϕ�E�ε� λ

M

)
�

The right-hand side probability can be estimated in the same way as in the
proof of Lemma 2.4. This proves the lemma. ✷

The next few lemmas treat the supremum in the probability (2.7) for the
values of n of the order λ (or higher). Our task is to formalize the statement
that the event �supn Sn > λ� for large λ occurs due to a single large jump
in the noise. We show first that, asymptotically, we cannot have this event
occurring without observing a value of εj of the order λ. To make it easier to
see the effect of positive values of εj’s we look first at the positive parts β+

nj

of the coefficients βnj. Notice that the statements of Lemmas 2.2, 2.3, 2.4 and
2.5 remain valid if we similarly replace the βnj’s with their positive parts in
the corresponding statements.

Lemma 2.6. For every M > 0, there exists a small θ > 0 such that for all
k ≥ 1,

lim
λ→∞

P�⋃n≥λ/M�−nµ+∑n+k
l=λ/Mεlβ

+
nl>λ�εj≤θ�j+λ� forj=λ/M�����n+k��
λP�ε>λ�

=0�
(2.11)
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Proof. Our first observation is that it is enough to prove the lemma in the
case when the noise variables εj have a continuous distribution. Indeed, let
�Un�n∈� be a sequence of iid random variables uniformly distributed in (−1�1)
and independent of the noise sequence �εn�n∈�. Let ε′n = εn + Un� n ∈ �.
Observe that the sequence �ε′n�n∈� satisfies all the requirements we placed
on the original sequence �εn�n∈�. Moreover, it has a continuous distribution.
Furthermore, for every M > 0� θ > 0 and k ≥ 1 we have, by symmetry, for all
λ > 2/θ,

P

( ⋃
n≥λ/M

{
−nµ+

n+k∑
l=λ/M

εlβ
+
nl>λ� εj≤

θ

2
�j+λ� for j=λ/M�����n+k

})

≤2P
( ⋃

n≥λ/M

{
−nµ+

n+k∑
l=λ/M

ε′lβ
+
nl>λ� ε′j≤θ�j+λ� for j=λ/M�����n+k

})
�

That is, once one proves the statement of the lemma for the sequence �ε′n�n∈�
and halves the value of θ, the statement of the lemma for the sequence �εn�n∈�
follows.
We proceed, therefore, to prove the lemma under the assumption of conti-

nuity of the distribution of the noise variables. Observe that for any θ > 0,

P

( ⋃
n≥λ/M

{
−nµ+

n+k∑
l=λ/M

εlβ
+
nl > λ� εj ≤ θ�j+ λ�

for j = λ/M� � � � � n+ k

})

≤ ∑
n≥λ/M

P

(
n+k∑

l=λ/M

εlβ
+
nl > nµ� εj ≤ θnk� j = λ/M� � � � � n+ k

)
�

(2.12)

where

θnk = θ�1+M��n+ k��
For any a > 0, since EεI�−∞� a� < 0� it is possible to define

a∗ = inf�b > 0� EεI�−b�a��ε� ≤ 0��(2.13)

Since Eε = 0 we have

EεI�−a∗� a��ε� = 0�(2.14)

because of the continuity of the distribution of ε.
Furthermore, in view of condition (1.4) on the tails, together with the cur-

rent assumption that p = 1, we also have

a∗ ≤ a for all sufficiently large a�(2.15)

Indeed, by (2.14),

−EεI�−∞�−a∗��ε� = EεI�a�∞��ε�
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and now (2.15) follows from

−EεI�−∞�−a∗��ε� = a∗P�ε < −a∗� +
∫ −a∗

−∞
P�ε ≤ u�du�

EεI�a�∞��ε� = aP�ε > a� +
∫ ∞

a
P�ε > u�du�

From now on for any θ we consider λ so large that (2.15) holds for a = θnk and
all n ≥ λ/M.
Let

ε̃j = εjI�−�θnk�∗�θnk��εj�� j = 1� � � � � n�(2.16)

Then Eε̃j = 0 and �ε̃j� ≤ θnk for all j, and we observe that

P

(
n+k∑

l=λ/M

εlβ
+
nl>nµ� εj≤θnk� j=λ/M�����n+k

)
≤P

(
n+k∑

l=λ/M

ε̃lβ
+
nl>nµ

)
=�pn�

Using Lemma A.2 in the Appendix, we conclude that

pn ≤ exp
{
− nµ

2θnk m�ϕ�
arsinh

θnknµ

2�n+ k− λ/M+ 1�m�ϕ� var�ε̃1�
}
�

Here we make use of the fact that arsinh y > ln y for y > 1. Since α > 1,
there are constants β < 2 and c1 > 0 such that n var�ε̃1� ≤ c1n

β for all n and
hence, for some constant c2 = c2�k� > 0�

pn ≤ exp
{
− µ

2�1+M�m�ϕ�

ln�c2θn2−β�
θ

}
�(2.17)

Now choose θ so small that

�2− β�µ
2�1+M�m�ϕ�

1
θ

> α+ 1�

We then have by (2.17) that for all n ≥ λ/M and λ sufficiently large,

pn ≤ const n−�α+1��

which, together with (2.17), implies that the right-hand side of (2.12) is
bounded by constλ−α� This concludes the proof of the lemma. ✷

The following result tells us that it is very unlikely to have two different
noise variables εj that are large enough to contribute to very high values of
supn≥0Sn�

Lemma 2.7. For every M > 0 and θ > 0,

lim
λ→∞

P�εj > θj for at least two j ≥ λ/M�
λP�ε > λ� = 0�(2.18)
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Proof. Indeed, let

N = inf�j ≥ λ/M: εj > θj��
Then

P�εj > θj for at least two j ≥ λ/M�
= ∑

l≥λ/M

P�N = l� εj > θj for at least one j > l�(2.19)

≤ ∑
l≥λ/M

P�N = l�P�N < ∞� = �P�N < ∞��2�

But for large λ and a constant depending on M and θ, an application of
Karamata’s theorem yields

P�N < ∞� ≤ ∑
j≥λ/M

P�ε > θj� ≤ constλP�ε > λ��

The latter relation together with (2.19) proves (2.18). ✷

The following lemma is the key to the upper bound on ψ�λ�. It is a refined
version of Lemma 2.6. Not only the event �supn Sn > λ� for large λ requires
a noise variable εj not much smaller than j+ λ, but this large noise variable
has to take us almost all the way across the level λ.

Lemma 2.8. For every M > 0� δ ∈ �0�1� and k ≥ 1,

lim
λ→∞

P
(
supn≥λ/M

(−nµ+∑n+k
l=λ/Mεlβ

+
nl

)
>λ� εj≤�1−δ��jµ+λ�/m+

ϕ allj≥λ/M
)

λP�ε>λ�
=0�(2.20)

Proof. Write for any θ > 0,

ψ1�λ� �= P

(
sup

n≥λ/M

(
−nµ+

n+k∑
r=λ/M

εrβ
+
nr

)
> λ� εj ≤ �1− δ��jµ+ λ�/m+

ϕ

for all j ≥ λ/M� for exactly one l ≥ λ/M we have εl > θ�l+ λ�
)
�

By Lemmas 2.7 and 2.6, there exists a θ sufficiently small such that

P

(
sup

n≥λ/M

(
−nµ+

n+k∑
l=λ/M

εlβ
+
nl

)
>λ� εj≤�1−δ��jµ+λ�/m+

ϕ for all j≥λ/M

)
=ψ1�λ�+o�λP�ε>λ�� as λ→∞�

Let

N1 = inf�j ≥ λ/M: εj > θ�j+ λ���
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Choose λ so large that for j > λ/M,
1−j∑

i=−∞
ϕi ≥ − δ/2

1− δ
m+

ϕ �

Observe that with this choice of λ,

βnj =
n−j∑

i=−∞
ϕi −

−j∑
i=−∞

ϕi ≤ m+
ϕ − δ/2

1− δ
m+

ϕ = 1− δ/2
1− δ

m+
ϕ �

Then we have

ψ1�λ� ≤
∑

l≥λ/M

P�N1 = l�A
�1�
l � + ∑

l≥λ/M

P�N1 = l� A
�2�
l � =� ψ2�λ� + ψ3�λ��

where

A
�1�
l = ⋃

λ/M≤n<l−k

{
−nµ+

n+k∑
i=λ/M

εiβ
+
ni > λ� εj ≤ θ�j+λ�� j=λ/M� � � � � l−1

}
�

A
�2�
l = ⋃

n≥l−k

{
−nµδ/2+

n+k∑
i=λ/M�i�=l

εiβ
+
ni > δλ/2−kµ�1−δ/2�� εj ≤ θ�j+λ��

j = λ/M� � � � � n+ k� j �= l

}
�

By Lemma 2.6 we have that for θ > 0 small enough,

ψ2�λ� = o�λP�ε > λ��� λ → ∞�

Since Eε = 0� P�ε > 0� > 0. Let �ε̂n� be an independent copy of �εn�. Then
ψ3�λ�≤

∑
l≥λ/M

1
P�0<ε̂l≤θ�l+λ��

×P

( ⋃
n≥l−k

{
N1=l� −nµδ/2+ ε̂lβ

+
nl+

n+k∑
i=λ/M�i�=l

εiβ
+
ni>δλ/2−kµ�1−δ/2��

εj≤θ�j+λ�� j=λ/M�����n+k� j �=l� 0<ε̂l≤θ�l+λ�
})

�

Note that �N1 = l� ⊂ �εl > θ�l + λ�� which event is independent of �εi�i�=l.
Hence the probability P�εl > θ�l + λ�� can be factored out and, by observing
that P�0 < ε̂l ≤ θ�l+ λ�� ≥ 0�5P�ε > 0� for sufficiently large λ, we have

ψ3�λ� ≤
2

P�ε > 0�
∑

l≥λ/M

P
(
ε > θ�l+ λ�

)

×P

( ⋃
n≥l−k

{
−nµδ/2+

n+k∑
i=λ/M

εiβ
+
ni > δλ/2− kµ�1− δ/2��

εj ≤ θ�j+ λ�� j = λ/M� � � � � n+ k

})
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≤ 2
P�ε > 0�

∑
l≥λ/M

P
(
ε > θ�l+ λ�

)

×P

( ⋃
n≥�λ/M�−k

{
− nµδ/2+

n+k∑
i=λ/M

εiβ
+
ni > δλ/2− kµ�1− δ/2��

εj ≤ θ�j+ λ�� j = λ/M� � � � � n+ k

})
�

By Lemma 2.6 the right-hand side of the latter relation is o�λP�ε > λ�� pro-
vided θ is chosen small enough in comparison with δ. This concludes the proof
of (2.20). ✷

Now we are ready to derive an upper bound for ψ�λ�. Observe that we are
still treating the case when p = 1 and m+

ϕ > 0. Let

ψ+�λ� = P

(
sup
n≥1

(
−nµ+

∞∑
l=−∞

εlβ
+
nl

)
> λ

)
�

Lemma 2.9. The following relation holds:

lim sup
λ→∞

ψ+�λ�
λP�ε > λ� ≤ �m+

ϕ �α
α− 1

1
µ
�(2.21)

Proof. A straightforward argument [similar to (2.25) below] in combina-
tion with Lemmas 2.2–2.5 and 2.8 gives for any δ ∈ (0, 1),

lim sup
λ→∞

ψ+�λ�
λP�ε > λ� ≤ lim sup

λ→∞

P
(
εj > ��1−δ�/m+

ϕ ��jµ+λ� for some j≥ 1
)

λP�ε > λ� �

However, by Karamata’s theorem,

P

(
εj >

1− δ

m+
ϕ

�jµ+ λ� for some j ≥ 1

)

≤
∞∑
j=1

P

(
ε >

1− δ

m+
ϕ

�jµ+ λ�
)
∼ �m+

ϕ �α
�1− α��1− δ�α

1
µ
λP�ε > λ��

Since we may choose δ as close to zero as we wish, we conclude that (2.21)
holds. ✷

What happens if one replaces the positive parts β+
nj of the coefficients βnj

with −β−
nj? The following lemma provides the answer. Recall that we still

consider the case p = 1.

Lemma 2.10. For any µ > 0,

lim
λ→∞

P
(
supn≥1

( −nµ−∑n
j=1 εjβ

−
nj

)
> λ

)
λP�ε > λ� = 0�(2.22)
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Proof. Choose K so large that

rK �= EεI�−∞�K��ε� ≥ −µ/�2m�ϕ���(2.23)

where m�ϕ� is defined in (2.10). Write

ε̃
�K�
j = εjI�−∞�K��εj�� ε̂

�K�
j = −�ε̃�K�

j − rK�� j = 1�2� � � � �

We have by (2.23),

p̃ � = P

(
sup
n≥1

(
−nµ−

n∑
j=1

εjβ
−
nj

)
>λ

)
≤P

(
sup
n≥1

(
−nµ−

n∑
j=1

ε̃
�K�
j β−

nj

)
>λ

)

≤ P

(
sup
n≥1

(
−nµ/2+

n∑
j=1

ε̂
�K�
j β−

nj

)
>λ

)
�

(2.24)

The random variables ε̂
�K�
j are iid, have mean zero and are bounded from

below. In view of the tail balancing condition (1.4) and the current assumption
p = 1, for any ρ > 0 we can find a sequence �ηj� of iid random variables such
that:

1. η1
st≥ ε̂

�K�
1 , where

st≥ stands for stochastic domination, that is, P�η1 > x� ≥
P�ε̂�K�

1 > x� for all x.
2. Eη1 = 0.
3. η1 is bounded from below.
4. limλ→∞

P�η1>λ�
P�ε>λ� = ρ.

Hence, the sequence �ηj� satisfies all assumptions imposed on �εj�, and so
we may utilize all the results proved so far with �εj� replaced with �ηj�. Recall
that stochastic domination of ε̂�K�

i by ηj implies that the sequence �ηj� has a
higher probability to belong to any measurable increasing set in �∞ than the
sequence �ε̂�K�

j � does [see, e.g., Strassen (1965)]. Therefore, (2.24), Lemma 2.9
and stochastic domination imply that

limsup
λ→∞

p̃

λP�ε>λ� ≤ limsup
λ→∞

P
(
supn≥1

(
−nµ/2+∑n

j=1 ε̂
�K�
j β−

nj

)
>λ

)
λP�ε>λ�

≤ limsup
λ→∞

P�η1>λ�
P�ε>λ�

P
(
supn≥1

(
−nµ/2+∑n

j=1ηjβ
−
nj

)
>λ

)
λP�η1>λ�

≤ ρ
mα

�ϕ�
α−1

2
µ
�

Now let ρ → 0. This establishes (2.22). ✷
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We can now put the pieces together and bound the probability ψ�λ� from
above. From its definition, for δ ∈ (0, 1),

ψ�λ�≤P

(
sup
n≥1

(
−nµ�1−δ�+

n∑
j=1

β+
njεj

)
+sup

n≥1

(
−nµδ−

n∑
j=1

β−
njεj

)
>λ

)
�(2.25)

Combining (2.25) with Lemmas 2.9 and 2.10, we immediately conclude the
lemma.

Lemma 2.11.

lim sup
λ→∞

ψ�λ�
λP�ε > λ� ≤ �m+

ϕ �α
α− 1

1
µ
�

This yields the upper bound in (1.12). It remains to show the lower bound.

Lemma 2.12.

lim inf
λ→∞

ψ�λ�
λP�ε > λ� ≥ �m+

ϕ �α
α− 1

1
µ
�(2.26)

Proof. Recall that by Lemma 2.2 for any K1 > −∞,

liminf
λ→∞

ψ�λ�
λP�ε>λ� ≥ liminf

λ→∞

P
(
supn≥1

(
−nµ+∑∞

j=K1+1εjβnj

)
>λ

)
λP�ε>λ� �(2.27)

Fix δ ∈ (0, 0.5) and choose K1 so large that

j∑
l=−∞

ϕl ≤ δm+
ϕ

for all j ≤ −K1. Choose a fixed i = i�δ� such that

i∑
l=−∞

ϕl ≥ �1− δ�m+
ϕ �

The above inequalities imply that for all n ≥ K1,{
m+

ϕ �1−2δ�εn>�1+δ��nµ+λ��−iµ+δnµ+
∞∑

j=K1+1�j�=n

εjβn+i�j>−δλ

}

⊂
{
−�n+i�µ+

∞∑
j=K1+1

εjβn+i�j>λ

}
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and so

P

(
sup
n≥1

(
−nµ+

∞∑
j=K1+1

εjβnj

)
> λ

)

≥ P

(
sup

n≥K1+i

(
−nµ+

∞∑
j=K1+1

εjβnj

)
> λ

)

≥ P

( ⋃
n≥K1

{
m+

ϕ �1− 2δ�εn > �1+ δ��λ+ nµ��

− iµ+ δnµ+
∞∑

j=K1+1� j �=n

εjβn+i� j > −δλ
})

�

Furthermore, for a θ > 0 the latter probability cannot be smaller than

P

( ⋃
n≥K1

{
m+

ϕ �1−2δ�εn>�1+δ��λ+nµ�
})

−P

( ⋃
n≥K1

{
−iµ+δnµ+

∞∑
j=K1+1

εjβn+i�j≤−δλ�

�εj�≤θ�j+λ�� j=1�����n−1
})

−P

( ⋃
n≥K1

{
m+

ϕ �1−2δ�εn>�1+δ��λ+nµ�� −iµ+δnµ

+
∞∑

j=K1+1
εjβn+i�j≤−δλ� �εj�>θ�j+λ� for some j=1�����n−1

})
�

For θ small enough relative to δ, the first probability being subtracted above
is of a smaller order than λP�ε > λ� as λ → ∞ by Lemma 2.6 (notice that the
lemmas preceding Lemma 2.6 show that taking the supremum over a large set
and different bounds of summation contribute only terms of a smaller order as
well). Here (and in the sequel) “small enough relative to δ” means that θ/δ are
small enough for the requirements of Lemma 2.6. Similarly, Lemma 2.7 and
the remark just made show that for any θ > 0 the second probability being
subtracted above is of a smaller order than λP�ε > λ� as λ → ∞. Therefore,
we conclude that

P

(
sup
n≥1

(
−nµ+

∞∑
j=K1+1

εjβnj

)
> λ

)

≥ P

( ⋃
n≥K1

{
m+

ϕ �1− 2δ�εn > �1+ δ��λ+ nµ�
})

− o�λP�ε > λ���
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Yet another application of Lemma 2.7 shows now that the right-hand side
above is

∞∑
n=K1

P
(
m+

ϕ �1− 2δ�εn > �1+ δ��λ+ nµ�
)
− o�λP�ε > λ���

Therefore,

lim inf
λ→∞

ψ�λ�
λP�ε > λ� ≥ lim inf

λ→∞

∑∞
n=K1

P
(
m+

ϕ �1− 2δ�εn > �1+ δ��λ+ nµ�
)

λP�ε > λ�

=
(
1− 2δ
1+ δ

)α �m+
ϕ �α

α− 1
1
µ
�

Letting δ → 0, we finally arrive at the lower bound (2.26). This proves the
lemma. ✷

That is, we have proved Theorem 2.1 in the case p = 1 and m+
ϕ > 0.

2.2. The case p = 1 and m+
ϕ = 0. Pick a θ > 0 and choose an i = i�θ� that

has the following property: if one defines

ϕ̃j =
{
ϕj� if j �= −i,
θ+ ϕ−i� if j = −i,

(2.28)

then for the new set of coefficients one has

m+
ϕ �θ� �= sup

−∞<n<∞

n∑
k=−∞

ϕ̃k > 0�

Clearly,

m+
ϕ �θ� ≤ θ�(2.29)

For a fixed 0 < δ < min�µ�1� let

X
�θ�
n = −�µ− δ� +

∞∑
j=−∞

ϕ̃n−jεj� n ∈ ��

and consider the dependent step random walk �S�θ�
n �n≥0,

S
�θ�
0 = 0� S

�θ�
n = X

�θ�
1 + · · · +X

�θ�
n � n ≥ 1�

Since we have already proved the theorem in the case m+
ϕ > 0, it follows

from (2.29) that

lim
λ→∞

P
(
supn≥0 S

�θ�
n > λ

)
λP�ε > λ� = �m+

ϕ �θ��α
α− 1

1
µ− δ

≤ θα

α− 1
1

µ− δ
�(2.30)

Observe that

S
�θ�
n = Sn + θ

n∑
k=1

εk+i + δn� n ≥ 1�



THE SUPREMUM OF A RANDOM WALK 1045

Therefore,

P

(
sup
n≥0

S
�θ�
n > λ�1− δ�

)
≥ P

(
sup
n≥0

Sn > λ� inf
n≥0

(
θ

n∑
k=1

εk+i + δn

)
≥ −δλ

)

≥ P

(
sup
n≥0

Sn > λ

)
−P

(
inf
n≥0

(
θ

n∑
k=1

εk+i + δn

)
< −δλ

)
�

Since we are still assuming that p = 1, it follows by the Embrechts and
Veraverbeke result (1.2) that

P

(
inf
n≥0

(
θ

n∑
k=1

εk+i + δn

)
< −δλ

)
= o�λP�ε > λ�� as λ → ∞�

Therefore, it follows from (2.30) that

lim sup
λ→∞

P
(
supn≥0 Sn > λ

)
λP�ε > λ� ≤ �1− δ�1−αθα

α− 1
1

µ− δ
�

Since θ can be taken arbitrarily small, the statement of the theorem in the
case p = 1 and m+

ϕ = 0 follows.

2.3. The case 0 < p < 1. Denote

ε̂±j = ε±j −Eε±j � j ∈ ��

Observe that �ε̂+j �j∈� and �ε̂−j �j∈� are two (nonindependent) sequences of iid
zero-mean random variables that satisfy the regular variation and tail balance
conditions (1.4) (corresponding to the parameter p = 1). Let

Q±
n =

∞∑
j=1

ε̂±j βnj� n ∈ ��

We will now study the contributions of �Q+
n� and �Q−

n� to the overall ruin
probability. Lemma 2.2 allows us to disregard the influence of the noise vari-
ables εj with j ≤ 0, which turns out to be useful in the sequel. We have

ψ�λ� = P

(
sup
n≥0

(
−nµ+

∞∑
j=1

εjβnj

)
> λ

)
+ o�λP�ε > λ��

= P

(
sup
n≥0

�−nµ+Q+
n −Q−

n � > λ

)
+ o�λP�ε > λ��

=� P�A� + o�λP�ε > λ���
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An application of Lemmas 2.6 and 2.7 shows that for any θ > 0 small enough
(compared to µ),

P�A� = P

(
A� �εj�>θ�j+λ� for exactly one j≥1

)
+o�λP�ε>λ��

= P

(
A� εj<−θ�j+λ� for exactly one j≥1� εj≤θ�j+λ� for all j≥1

)
+P

(
A� εj>θ�j+λ� for exactly onej≥1�

εj≥−θ�j+λ� for all j≥1
)
+o�λP�ε>λ��

=� P�A�1��+P�A�2��+o�λP�ε>λ���

Hence

lim
λ→∞

ψ�λ�
λP�ε > λ� = lim

λ→∞
P�A�1��

λP�ε > λ� + lim
λ→∞

P�A�2��
λP�ε > λ� �(2.31)

We have for any δ ∈ �0�1�,

P�A�1�� ≤ P

(
sup
n≥0

�−nµ�1− δ� −Q−
n � > λ�1− δ�

)

+ P

(
sup
n≥0

(−nµδ+Q+
n

)
> λδ� ε̂+j ≤ θ�j+ λ� for all j ≥ 1

)
= � P

(
A�1�1�

)
+P

(
A�1�2�

)
�

If θ is small (compared to δ), we conclude by the same arguments as in
Section 2.1 (where Lemmas 2.6 and 2.10 play a key role) that

lim
λ→∞

P�A�1�2��
λP�ε > λ� = 0�

On the other hand, since the theorem has already been proved in the case
p = 1, we immediately conclude that

lim
λ→∞

P�A�1�1��
λP�ε > λ� = lim

λ→∞
P�A�1�1��

λP�ε̂− > λ�
P�ε̂− > λ�
P�ε > λ� = q

1
�1− δ�α

�m−
ϕ �α

α− 1
1
µ
�

Since δ can be taken arbitrarily small, we have

lim sup
λ→∞

P�A�1��
λP�ε > λ� ≤ q

�m−
ϕ �α

α− 1
1
µ
�(2.32)
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On the other hand, for any δ > 0 one has by Lemmas 2.6 and 2.7,

P�A�1�� ≥ P

(
sup
n≥0

( −nµ�1+ δ�Q−
n

)
> λ�1+ δ�

)

−P

(
sup
n≥0

�nµδ+Q+
n � ≤ −λδ� ε̂+j ≤ θ�j+ λ� for all j ≥ 1

)
− o�λP�ε > λ��

= � P�A�1�−1�� −P�A�1�−2�� − o�λP�ε > λ���
The same argument as above shows that, if θ is small (compared to δ), then

lim
λ→∞

P
(
A�1�−2�)

λP�ε > λ� = 0 and lim
λ→∞

P
(
A�1�−1�)

λP�ε > λ� = q
1

�1+ δ�α
�m−

ϕ �α
α− 1

1
µ
�

Since δ can be taken arbitrarily small, we have

lim inf
λ→∞

P
(
A�1�)

λP�ε > λ� ≥ q
�m−

ϕ �α
α− 1

1
µ
�

which together with (2.32) shows that

lim
λ→∞

P
(
A�1�)

λP�ε > λ� = q
�m−

ϕ �α
α− 1

1
µ
�(2.33)

An identical argument shows that

lim
λ→∞

P
(
A�2�)

λP�ε > λ� = p
�m+

ϕ �α
α− 1

1
µ
�(2.34)

and combining (2.31), (2.33) and (2.34) we obtain the statement of the theorem
in its full generality. This completes the proof of the theorem. ✷

Remark 2.13. A careful analysis of the proof shows that Theorem 2.1
remains valid if the step sequence �Xn� of the random walk �Sn� is replaced
with �Xn +Yn� where �Yn� is an iid sequence independent of �Xn� such that
P�Y1 > x� = o�P�X1 > x�� as x → ∞ and −∞ < E�X1 +Y1� < 0. However,
one has to replace µ in (1.12) with −E�X1 +Y1�. A special case occurs when
one considers the ruin probability

P
(
sup
t≥0

�SN�t� − ct� > λ
)
= P

(
sup
n≥1

n∑
i=1

�Xi − cZi� > λ

)
�

where �Zi� is a sequence of iid nonnegative random variables with positive
mean, independent of �Xi�,

N�t� = #�i:Z1 + · · · +Zi ≤ t�� t ≥ 0

is the corresponding renewal counting process and c > 0 is positive constant.
In the latter case no assumptions on the distribution of the Zi’s are necessary,
apart from finiteness of the mean.
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3. A teletraffic data set. Many important queuing systems of today are
found in computer communication networks. A data set we consider is a part
of a larger data set collected and reported by Cunha, Bestavaros and Crovella
(1995). It consists of traces of WWW sessions run from 32 workstations in
an undergraduate computer lab in Boston University from November 1994
through February 1995. We use only the data for January 1995. The traces
of the sessions come with the sizes of the files that a user requested and
with the time stamp of the request. We have combined the file sizes for the
month of January in a single time series ordered according to the time of
the request. Those requests that could be filled using cached files did not
require network transmission and, hence, were deleted from the time series.
The remaining 17,675 requests must be fed to a communication link, and then
they are responsible for the right tail of the steps in the Lindley equation
that describes the behavior of that link. It is not our goal here to fit any
particular model to this time series. Rather, we would like to show that this
data set exhibits the characteristics that led us to the present study in the
first place: it is heavy-tailed, and there is obvious dependence in the right tails
of the observations. Figure 1 shows the graph of a negative drift random walk
generated by this data.
We start by estimating the thickness of the tail. An exploratory means is

to consider the asymptotic behavior of the ratio

Tn�p� =
maxi=1� ���� n X

p
i∑n

i=1X
p
i

(3.1)

for some p > 0; see EKM (1997), Section 6.2.6. Indeed, for a stationary ergodic
sequence, if EXp < ∞, the ergodic theorem implies that Tn�p� → 0 a.s. as
n → ∞. A glance at the left part of Figure 3 convinces one that this is hardly
the case for p = 1�3 and so we may guess that the 1.3th moment is infinite.
Further confirmation of this fact comes from considering the Hill estimator,

H
�m�
n =

(
1
m

m∑
i=1

ln X�i� − ln X�m�

)−1
�

whereX�n� ≤ · · · ≤ X�1� are the order statistics of the sampleX1� � � � �Xn. The
statistic H

�m�
n is a consistent estimator for the parameter α of the tail P�X >

x� = L�x�x−α for some α > 0 and a slowly varying function L, provided that

m = mn → ∞ and m/n → 0�(3.2)

It is also asymptotically normal for a weakly dependent sequence and under
further conditions on L. For an extensive discussion of the Hill and related
tail parameter estimators, see EKM [(1997), Section 6.4]. The right part of
Figure 3 shows a Hill-plot,

�m�H
�m�
n �(3.3)

with asymptotic confidence bands corresponding to an iid sequence �Xi� with
tail P�X > x� ∼ const x−α. We may conclude that the Hill-plot gives an
estimate of the value 1.3 in the m-region �50�400�, say.
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We now look at the dependence in the time series �Xi�. To this end we use
various tools. The most common one is the sample autocorrelation function.
It is given in the left part of Figure 4 for the first 1500 lags. We omitted the
asymptotic ±1�96/n1/2 confidence bands which correspond to an iid Gaussian
sequence. In view of the extremely heavy tails of X (the second moment does
not exist) it is not clear what the sample autocorrelation function actually
represents. Work by Davis and Resnick (1985, 1986) [see also Section 13.3
in Brockwell and Davis (1991)], shows that the sample autocorrelation at lag
h estimates the quantity

∑
j ϕjϕj+h/

∑
j ϕ

2
j which can be interpreted as the

autocorrelation at lag h of a linear process (1.3) with an iid standard Gaussian
sequence �εj�. However, recent work by Davis and Resnick (1996), Resnick,
Samorodnitsky and Xue (1999) and Davis and Mikosch (1998) shows that the
sample autocorrelations of nonlinear stationary sequences can be extremely
unreliable in the sense that the convergence rate can be very slow or that the
sample autocorrelations can have nondegenerate weak limits. Therefore, we
prefer here to consider some alternative methods to detect dependence in a
time series.
Consider a random walk S̃n = Y1+· · ·+Yn for a stationary sequence �Yi� of

random variables assuming values 0 and 1, where P�Y1 = 1� = p ∈ �0�1�. We
may assume that the sequence �Yi� is generated from a stationary sequence
�Xi� as follows:

Yi = I�u�∞��Xi�� i = 1�2� � � � �

for some given threshold u > 0. If the sequence �Xi� is iid, a well-established
theory exists for the longest run of 1’s. A run of length j in Y1� � � � �Yn is
defined as a subsequence �Yi+1� � � � �Yi+j� of �Y1� � � � �Yn� such that

Yi = 0� Yi+1 = · · · = Yi+j = 1� Yi+j+1 = 0�

where we formally set Y0 = Yn+1 = 0. Some theory about the asymptotic
behavior of the longest run Zn of 1’s in an iid sequenceX1� � � � �Xn is provided
in EKM (1997), Section 8.5. Corollary 8.5.10 in the latter reference states that
the longest run Zn, with probability 1, falls for large n in the interval �αn�βn�,
where

αn =
[
ln�nq� − ln3�nq� − 0�001

− lnp

]
− 1

and

βn =
[
ln�nq� + ln2�nq� + 1�001 ln3�nq�

− lnp

]
�

where �x� denotes the integer part of x� q = 1 − p� ln2 x = ln lnx and
ln3 x = ln ln lnx. The right part of Figure 4 shows the graphs of αn�βn together
with the longest run of 1’s for an iid sequence �I�u�∞��Xi�� with the property
that P�X > u� = 0�1 for an appropriately chosen threshold u (this curve lies
nicely between αn and βn) and for the teletraffic data �Xn�. In this case it is
obvious that the longest runs of 1’s of the indicators �I�u�∞��Xi�� are signifi-
cantly longer than for an iid sequence. This implies that there is dependence
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in the teletraffic sequence �Xn� and that exceedances of the high threshold u
occur in clusters.
Another tool for detecting dependence and clusters in data is the extremal

index θ. For a stationary sequence �Xn� the quantity θ ∈ [0, 1] satisfies the
relation

lim
n→∞P

(
max

i=1� ���� n
Xi ≤ un

)
= e−τθ

for �un� with limn→∞ nP�X > un� = τ > 0. See EKM (1997), Section 8.1,
for the definition, interpretation and statistical estimation of θ. It has been
mentioned, for example in Hsing, Hüsler and Leadbetter (1988), that θ can be
interpreted as the reciprocal of the mean cluster size Eξi of the weak limit of
the point processes of exceedances

n∑
i=1

δn−1iI�un�∞��Xi� ⇒
∞∑
i=1

ξiδ8i
�

where δx is the Dirac measure at x� 8i are the points of a homogeneous
unit rate Poisson process and �ξi� is the iid sequence of the cluster sizes,
independent of �8i�. Clearly, for iid data, θ = 1.
Natural estimators of θ are

θ
�1�
n = k

n

ln�1−K/k�
ln�1−N/n� and θ

�2�
n = K

N
�(3.4)

where N is the number of exceedances of un by X1� � � � �Xn, K is the number
of blocks of length r:

Xlr+1� � � � �X�l+1�r� l = 0� � � � � k− 1�

in which at least one of the observations exceeds un. Further, k = �n/r�,
r = rn → ∞, r/n → 0, and the threshold sequence �un� is such that

lim
n→∞nP�X > un� = τ for some τ > 0�

For obvious reasons, this method of estimation is called the blocks method. In
Figure 5 the behavior of θ�1�n and θ

�2�
n is illustrated as a function of the threshold

u = un. Both estimator indicate that θ is about 0.9. This makes it clear that
the observations �Xi� exhibit significant dependence in the tails.

APPENDIX

In this section we collect several results, some of which are needed for the proof
of the main result of the paper in Section 2. Further results here describe addi-
tional extremal features of the dependent step random walk with steps (1.3).
In what follows, �Yn� is a sequence of mean-zero random variables and

S̃n = Y1 + · · · +Yn� n = 1�2� � � � �
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Fig. 5. The estimators θ
�1�
n (solid line) and θ

�2�
n of the extremal index θ as a function of the

threshold u� see �3�4�� The unit on the u-axis is one million. Above the threshold u = 3 millions
only seven values were observed; therefore the estimate of 1 for θ is not meaningful.

Large deviations for sums of iid random variables with regularly varying
tails. The following large deviation result for sums of iid random variables
with regularly varying tails can be found in Nagaev (1969a, b) in the case
α > 2 and for α > 1 in Cline and Hsing (1991).

Lemma A.1. Let �Yn� be an iid sequence such that P�Y1 > λ� = L�λ�λ−α

for some α > 1 and a regularly varying function L. Then for every δ > 0,

sup
λ≥δn

∣∣∣∣∣ P�S̃n > λ�
nP�Y1 > λ� − 1

∣∣∣∣∣ → 0� n → ∞�

Tail estimate for sums of independent random variables. The following
inequality is due to Prokhorov (1959); compare Petrov (1995), 2.6.1 on page 77.

Lemma A.2. Let �Yn� be such that �Yn� ≤ c for some c > 0. Then

P�S̃n > λ� ≤ exp
{
− λ

2c
arsinh

cλ

2 var�S̃n�

}
� λ > 0�
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The tail of an infinite series of independent random variables. In this sub-
section we consider the right tail of an infinite series

X =
∞∑

j=−∞
ϕjεj�(A.1)

Here �εn�nε� is a sequence of iid random variables satisfying the regular vari-
ation and tail balance conditions (1.4) with any α > 0 (and not only α > 1 as in
the first part of this paper), and the coefficients ϕj are such that the infinite
series (A.1) converges. It is a part of the folklore that under some conditions
one has

P�X > x�
P��ε� > x� ∼

∞∑
j=−∞

�ϕj�α�pI�ϕj>0� + qI�ϕj<0�� =� ��ϕ��αα�(A.2)

We are aware of a large number of publications where such results are proved
or referred to (and, undoubtedly, there are many publications that we are
not aware of that deal with such results). However, these results are usually
proved for particular cases, under generally more stringent conditions on �ϕn�
than necessary, and are sometimes misquoted. We prove here (A.2) in all cases
and under conditions that are close to being necessary. Observe that the very
statement of (A.2) requires the condition ��ϕ��α < ∞ which, in general, is not
sufficient for a.s. convergence in (A.1). [This is just the three-series theorem;
see, for example, Petrov (1995), Theorem 6.1 on page 205; it is easy to con-
struct an example with α ∈ �0�2� in which ��ϕ��α < ∞ but the series does
not converge.] We introduce the following conditions on �ϕn� which are more
restrictive than ��ϕ��α < ∞:

∞∑
j=−∞

ϕ2
j < ∞� for α > 2,

∞∑
j=−∞

�ϕj�α−∈ < ∞� for some ε > 0 for α ≤ 2�
(A.3)

Lemma A.3. Let the iid sequence �εn�nε� satisfy the regular variation and
tail balance conditions (1.4) with an α > 0. If α > 1� assume that Eε = 0. If
the coefficients ϕn satisfy condition (A.3), then the infinite series (A.1) converges
a.s. and (A.2) holds.

The statement of Lemma A.3 coincides with the one of Lemma 4.24 in
Resnick (1987) [attributed to Cline (1983a, b)] if α ≤ 1, and with the one
of Theorem 2.2 in Kokoszka and Taqqu (1996) if α ∈ (1, 2). For α > 2 the
conditions in (A.3) are the weakest possible since they are necessary for a.s.
convergence of the series (A.1). For 0 < α ≤ 2 we will show in the sequel that
the α− ε power in (A.3) can be replaced by α under certain conditions on the
slowly varying function L in (1.4).

Proof. Convergence with probability 1 of the infinite series (A.1) follows
from the three-series theorem [see, e.g., Petrov (1995), Theorem 6.1 on page
205], so we concentrate on the tails. For simplicity of representation we only
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consider one-sided processes X = ∑∞
j=0 ϕjεj; the two-sided case is completely

analogous. Write X = X�K� +Y�K�, where

X�K� =
K∑

j=0
ϕjεj� K = 0�1� � � � �

Then for δ ∈ �0�1�,
P

(
X�K� >λ�1+δ�)−P

(
Y�K� ≤−δλ

) ≤ P
(
X�K� >λ�1+ δ��Y�K� >−δλ

)
≤ P�X>λ�(A.4)

≤ P
(
X�K� >λ�1−δ��+P�Y�K� >δλ

)
�

Using standard results for convolutions of distributions with regularly varying
tails [e.g., EKM (1997), Lemmas A3.26 or 1.3.1], it is not difficult to see that

P
(
X�K� > λ

)
P��ε� > λ� ∼

K∑
j=1

�ϕj�α�pI�ϕj>0� + qI�ϕj<0��� λ → ∞�

From this relation and (A.4) it follows that it suffices to prove that

lim
K→∞

lim sup
λ→∞

P
(∣∣Y�K�∣∣ > λ

)
P��ε� > λ� = 0�(A.5)

We will show (A.5) with P
(∣∣Y�K�∣∣ > λ

)
replaced by P

(
Y�K� > λ

)
; the case of

P
(
Y�K� < −λ

)
is analogous.

It follows from Lemma 4.24 in Resnick (1987) that (A.5) holds for α ≤ 1.
Now assume that α ∈ �1�2�. Without loss of generality we may assume that
the random variables εn are symmetric: indeed, since the sequence

(
Y�K�)

K≥1
is tight, we may choose anM = Mϕ independently ofK so large thatP

(
Y�K� ≤

M
) ≥ 0�5 for all K ≥ 1. Then for an independent copy Ỹ�K� of Y�K�,

P
(
Ỹ�K� −Y�K� > λ−M

) ≥ P
(
Ỹ�K� > λ�Y�K� ≤ M

) ≥ 1
2P

(
Y�K� > λ

)
�

and so if (A.5) is established for the sequence of symmetric sums �Ỹ�K� −
Y�K��K≥1, then it will follow for the original sequence

(
Y�K�)

K≥1 as well.
Let �Nn� be a sequence of iid standard normal random variables, inde-

pendent of �εn�. Then, using a strong domination inequality [see, e.g.,
Theorem 3.2.1 in Kwapień and Woyczyński (1992)],

P
(
Y�K� > λ

) ≤ c1P

( ∞∑
j=K+1

ϕjNjεj > c2λ

)

= c1P

(
N1

( ∞∑
j=K+1

ϕ2
jε

2
j

)1/2

> c2λ

)(A.6)

for positive constants c1 and c2. Applying the result for the case α ≤ 1 it
follows that the tail of

∑∞
j=K+1 ϕ

2
jε

2
j is regularly varying with index −α/2 ∈
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�−1�0�. Since N1 is independent of �εn�, we conclude that the right-hand side
expression in (A.6) is asymptotically of the order

c3

∞∑
j=K+1

�ϕj�αP�ε > λ� asλ → ∞�

for some constant c3 > 0 independent of K. This proves the lemma for
α ∈ �1�2�.
In the general case α ∈ �2k−1�2k� for some integer k > 1 one can follow the

steps of the proof above: first symmetrize Y�K�, then replace the Rademacher
sequence by a Gaussian sequence and reduce the problem of bounding the tail
to a corresponding task for

∑∞
j=K+1 ϕ

2
jε

2
j. By doing so one reduces the index of

regular variation to α/2 ∈ �k − 0�5� k�, and one can use an obvious inductive
procedure. ✷

For α ∈ �0�2�, the assumptions (A.3) on the coefficients ϕn can be relaxed
provided the slowly varying function L in (1.4) satisfies certain additional
assumptions. We consider two such possible assumptions:

L�λ2� ≤ cL�λ1� for λ0 < λ1 < λ2� some constants c� λ0 > 0�(A.7)

L�λ1λ2� ≤ cL�λ1�L�λ2� for λ1� λ2 ≥ λ0 > 0� some constants c� λ0 > 0�(A.8)

Lemma A.4. Assume that the regular variation and tail balance condition
�1�4� holds for some α ∈ �0�2�, that the infinite series (A.1) converges a.s.,

∞∑
j=−∞

�ϕj�α < ∞�(A.9)

and one of the conditions (A.8) or (A.7) is satisfied. Then relation (A.2) holds.

Thus (A.2) holds not only under the condition (A.3), but also under (A.9)
provided (A.8) or (A.7) hold. Notice that (A.8) holds for Pareto-like tails P�ε >
λ� ∼ cλ−α and in particular for α-stable random variables ε. Moreover, (A.8) is
satisfied for slowly varying functions L�λ� = �lnk�λ��β for any real β, where
lnk λ is the k times iterated logarithm of λ.

Proof. Following the steps in the proof of Lemma A.3, it suffices to show
that (A.5) holds for α < 1. In the latter proof we used Lemma 4.24 in Resnick
(1987); for its application we needed condition (A.3) for some ε > 0. A careful
study of pages 228 and 229 in Resnick (1987) shows that this condition is only
needed for proving

lim
λ→∞

∞∑
j=−∞

P��ϕjε� > λ�
P�ε > λ� =

∞∑
j=−∞

�ϕj�α�(A.10)

in which case the relation
P��ϕjε� > λ�
P��ε� > λ� ≤ const �ϕj�α−ε
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allows one to apply Lebesgue dominated convergence in (A.10) when inter-
changing the sum and the limit as λ → ∞.
Now assume that (A.8) holds. Then we have for large λ,

P��ϕjε� > λ�
P�ε > λ� =

�ϕj�αL
(
�ϕj�−1λ

)
L�λ� ≤ c�ϕj�αL

(
�ϕj�−1

)
= cP��ϕjε� > 1��

Since series (A.1) converges a.s.,
∞∑

j=−∞
P��ϕjε� > 1� < ∞�

by virtue of the three-series theorem. Using the latter bound, we may apply
Lebesgue dominated convergence in (A.10), and so Lemma 4.24 in Resnick
(1987) remains valid under assumption (A.8).
Now assume that (A.7) holds. Then for large λ,

P��ϕjε� > λ�
P��ε� > λ� =

�ϕj�αL
(
�ϕj�−1λ

)
L�λ� ≤ c�ϕj�α�

By virtue of (A.9) and the latter bound, one may apply Lebesgue dominated
convergence to obtain (A.10). ✷

Large deviations for sums of linear processes with a regularly varying tail.
In what follows, we extend the large deviation result of Lemma A.1 for sums
of iid random variables to sums of linear processes. As before, �Xn� denotes
a two-sided linear process (1.3) with iid noise variables εnwith Eε = 0 satis-
fying the regular variation condition (1.4) for some α > 1 and coefficients ϕn

satisfying (1.5). We also assume that µ = 0 in (1.3).

Lemma A.5. Let

m�0�
ϕ �=

∞∑
j=−∞

ϕj�

If m
�0�
ϕ < 0 we also assume that 0 < p < 1. Then the relation

sup
λ≥λn

∣∣∣∣ P�Sn > λ�
nP��ε� > λ� −

([(
m�0�

ϕ

)+]α
p+

[(
m�0�

ϕ

)−]α
q
)∣∣∣∣ → 0� n → ∞(A.11)

holds for every sequence �λn� of positive numbers converging to infinity such
that

sup
λ≥λn

∣∣∣∣∣P
(∑n

j=1 εj > cλ
)

nP�ε > λ� − c−α

∣∣∣∣∣ → 0� n → ∞ for every fixed c > 0�(A.12)

if m
�0�
ϕ > 0;

sup
λ≥λn

∣∣∣∣∣P
(∑n

j=1 εj ≤ −cλ
)

nP�ε ≤ −λ� − c−α

∣∣∣∣∣ → 0� n → ∞ for every fixed c > 0�(A.13)

if m
�0�
ϕ < 0 and 0 < p < 1.
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Remark A.6. If α > 1, (A.12) holds for λn = δn for any δ > 0; see
Lemma A.1. If α > 2 then (A.12) holds for λn = �ann lnn�1/2, where �an�
is any sequence of real numbers an → ∞; see Nagaev (1979).

Proof. We will prove the lemma in the case m
�0�
ϕ > 0. All other cases are

similar. We have

Sn =
∞∑

j=−∞
εjβnj =

0∑
j=−∞

εjβnj +
∞∑

j=n

εjβnj +
n∑

j=1
εjβnj

= S
�1�
n +S

�2�
n +S

�3�
n �

By virtue of Lemma A.3,

P
(∣∣∣S�1�

n +S
�2�
n

∣∣∣>λ
)
≤ P

(
0∑

j=−∞
�εj�

∞∑
i=1−j

�ϕi�+
∞∑

j=n

�εj�
n−j∑

i=−∞
�ϕi�>λ

)

≤ constP��ε�>λ�
[

0∑
j=−∞

( ∞∑
i=1−j

�ϕi�
)α

+
∞∑
j=0

( −j∑
i=−∞

�ϕi�
)α]

�

Since both λ and n converge to ∞, it suffices to show that

sup
λ≥λn

∣∣∣∣∣P�S�3�
n > λ�

nP�ε > λ� − [
m�0�

ϕ

]α∣∣∣∣∣ → 0� n → ∞�

We have

S
�3�
n = m�0�

ϕ

n∑
j=1

εj −
n∑

j=1
εj

(
1−j−1∑
i=−∞

ϕi +
∞∑

i=n−j+1
ϕi

)

= S
�3�1�
n +S

�3�2�
n �

By virtue of assumption (A.12) we have

sup
λ≥λn

∣∣∣∣∣P�S�3�1�
n > λ�

nP�ε > λ� − [
m�0�

ϕ

]α∣∣∣∣∣ → 0� n → ∞�

Thus it remains to show that the contribution of S�3�2�
n to the large deviations

is negligible. Again by Lemma A.3,

P
(∣∣∣S�3�2�

n

∣∣∣ > λ
)
≤ P

(
n∑

j=1
�εj�

∞∑
i=n−j+1

�ϕi� > λ/2

)
+P

(
n∑

j=1
�εj�

1−j−1∑
i=−∞

�ϕi� > λ/2

)

≤ constP��ε� > λ�
[ ∞∑
j=0

( ∞∑
i=j

�ϕi�
)α

+
∞∑
j=1

(
1−j−1∑
i=−∞

�ϕi�
)α]

�

This concludes the proof of the lemma. ✷
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For iid random variables Yi with regularly varying tail a simple compu-
tation shows that one also has, in addition to the conclusion of Lemma A.1
that

sup
λ≥δn

∣∣∣∣P�maxi=1� ���� n Yi > λ�
nP�Y > λ� − 1

∣∣∣∣ → 0� n → ∞�

for every δ > 0, and so, in particular, for every such δ one has also

sup
λ≥δn

∣∣∣∣∣ P�S̃n > λ�
P�maxi=1� ���� n Yi > λ� − 1

∣∣∣∣∣ → 0� n → ∞�

The following lemma shows that this result does in general not remain valid
for the linear process (1.3).

Lemma A.7. Let[
m�1�

ϕ

]α = pϕα
+ + qϕα

− and ϕ+ = sup
n

ϕ+
n � ϕ− = sup

n
ϕ−

n �

Under the assumptions of Lemma A.5 the following relation holds for every
δ > 0:

sup
λ≥δn

∣∣∣∣∣P�maxi=1� ���� n Xi > λ�
nP�X > λ� −

[
m

�1�
ϕ

]α
��ϕ��αα

∣∣∣∣∣ → 0� n → ∞�(A.14)

where ��ϕ��α is defined in �1�6�. In particular,

sup
λ≥δn

∣∣∣∣∣ P�Sn > λ�
P�maxi=1� ���� n Xi > λ� −

[(
m

�0�
ϕ

)+]α
p+ [(

m
�0�
ϕ

)−]α
q[

m
�1�
ϕ

]α
∣∣∣∣∣

→ 0� n → ∞�

(A.15)

Observe that m�1�
ϕ > 0 under the assumptions of Lemma A.5.

Proof. It follows from Lemmas A.3 and A.5 that both claims will follow
once we prove that for every δ > 0,

sup
λ≥δn

∣∣∣∣P�maxi=1�����n Xi > λ�
nP��ε� > λ� − [

m�1�
ϕ

]α∣∣∣∣ → 0� n → ∞�(A.16)

For k > 1 write

Xi =
0∑

j=−∞
εjϕi−j +

n+k∑
j=1

εjϕi−j +
∞∑

j=n+k+1
εjϕi−j =� X�1�

i +X
�2�
i� n +X

�3�
i� n�

Exactly as in the proof of Theorem 2.1 it is enough to consider the case p = 1
and ϕ+ > 0. It follows from Lemma A.3 that

sup
λ≥δn

P
(
maxi=1�����n X

�1�
i > λ

)
nP��ε� > λ� = sup

λ≥δn

P
(
X

�1�
1 > λ

)
nP��ε� > λ� → 0� n → ∞�
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and that

lim
k→∞

lim sup
n→∞

sup
λ≥δn

P
(
maxi=1�����n X

�3�
i� n > λ

)
nP��ε� > λ�

≤ lim
k→∞

lim sup
n→∞

sup
λ≥δn

∑n
i=1P

(
X

�3�
i� n > λ

)
nP��ε� > λ� = 0�

Therefore, (A.16) will follow once we prove that for every k > 1,

sup
λ≥δn

∣∣∣∣∣P
(
maxi=1�����n X

�2�
i� n > λ

)
nP��ε� > λ� − [

m�1�
ϕ

]α∣∣∣∣∣ → 0� n → ∞�(A.17)

Repeating the argument of Lemma 2.6 one sees that there is a θ > 0 small
enough compared to δ such that

sup
λ≥δn

∣∣∣∣∣P
(
maxi=1�����n X

�2�
i� n > λ� εj ≤ θλ for j = 1� � � � � n+ k

)
nP��ε� > λ�

∣∣∣∣∣
→ 0� n → ∞�

(A.18)

Fix a τ ∈ �0�1�. It follows from (A.18) and the argument of Lemma 2.8 that

sup
λ≥δn

P
(
maxi=1�����n X

�2�
i� n > λ

)
nP��ε� > λ�

−
P

(
maxi=1�����n X

�2�
i� n > λ� εj > �1−τ��ϕ+�−1λ for some 1≤ l≤n+k

)
nP��ε� > λ�


→ 0� n → ∞�

Since

P
(
max

i=1�����n
X

�2�
i� n > λ� εj > �1− τ��ϕ+�−1λ for some 1 ≤ l ≤ n+ k

)
≤ P

(
εj > �1− τ��ϕ+�−1λ for some 1 ≤ l ≤ n+ k

)
≤ �n+ k�P(

ε > �1− τ��ϕ+�−1λ
)
�

we immediately conclude that

lim sup
n→∞

sup
λ≥δn

P
(
maxi=1�����n X

�2�
i� n > λ

)
nP��ε� > λ� −

[
m�1�

ϕ

]α ≤ (�1− τ�−α − 1
)[
m�1�

ϕ

]α
�

and letting τ → 0 we obtain

lim sup
n→∞

sup
λ≥δn

P
(
maxi=1�����n X

�2�
i� n > λ

)
nP��ε� > λ� −

[
m�1�

ϕ

]α ≤ 0�(A.19)
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Furthermore, define for a K ≥ 1,

X
�2�
i� n�K =

n−K∑
j=K+1

εjϕi−j�

Then

sup
λ≥δn

∣∣∣∣∣∣
P

(
maxi=1�����n X

�2�
i� n > λ

)
nP��ε� > λ� −

P
(
maxi=1�����n X

�2�
i� n�K > λ

)
nP��ε� > λ�

∣∣∣∣∣∣
→ 0� n → ∞�

(A.20)

Let, once again, τ be a number in (0, 1). Choose a K so large that

sup
1−K≤j≤K

ϕ+
j ≥ �1+ τ�−1ϕ+�

We have by the choice of K, for any θ > 0 small enough, as in Lemma 2.6,

P

(
max

i=1� ���� n
X

�2�
i� n�K > λ

)

≥ P

(
max

i=1� ���� n
X

�2�
i� n�K > λ� εj ≥ �1+ τ�2�ϕ+�−1λ

for some K+ 1 ≤ l ≤ n−K� εl ≤ θλ for all other K+ 1 ≤ l ≤ n−K

)

=
n−K∑

l=K+1
P

(
max

i=1�����n
X

�2�
i� n�K > λ� εl > �1+ τ�2�ϕ+�−1λ�

εj ≤ θλ� j = K+ 1� � � � � n−K�j �= l

)

≥
n−K∑

l=K+1
P

(
εl > �1+ τ�2�ϕ+�−1λ

)− hn�λ��

with hn satisfying

sup
λ≥δn

∣∣∣∣ hn�λ�
nP��ε� > λ�

∣∣∣∣ → 0� n → ∞�

We immediately conclude by (A.20) that

lim sup
n→∞

sup
λ≥δn

[
m�1�

ϕ

]α
−

P
(
maxi=1�����n X

�2�
i� n > λ

)
nP��ε� > λ�

 ≤ (
1− �1+ τ�−2α)[m�1�

ϕ

]α
�

and letting τ → 0 we obtain

lim sup
n→∞

sup
λ≥δn

[
m�1�

ϕ

]α
−

P
(
maxi=1�����n X

�2�
i� n > λ

)
nP��ε� > λ�

 ≤ 0�(A.21)

The claim of the lemma now follows from (A.19) and (A.21). ✷
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