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INDEX-BASED POLICIES FOR DISCOUNTED MULTI-ARMED
BANDITS ON PARALLEL MACHINES1

By K. D. Glazebrook and D. J. Wilkinson
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We utilize and develop elements of the recent achievable region ac-
count of Gittins indexation by Bertsimas and Niño-Mora to design index-
based policies for discounted multi-armed bandits on parallel machines.
The policies analyzed have expected rewards which come within an O�α�
quantity of optimality, where α > 0 is a discount rate. In the main, the
policies make an initial once for all allocation of bandits to machines, with
each machine then handling its own workload optimally. This allocation
must take careful account of the index structure of the bandits. The corre-
sponding limit policies are average-overtaking optimal.

1. Introduction. Ever since Gittins and Jones (1974) proved the classical
result establishing the optimality of Gittins index policies for multi-armed
bandits with discounted rewards earned over an infinite horizon, it has been
widely believed that policies based on such indices will perform very well
when the single machine/server of the Gittins and Jones model is replaced by
a collection of identical machines/servers working in parallel. Exploration of
such issues goes back to Glazebrook (1976). It has become clear that parallel
machine stochastic scheduling problems are much less tractable in general
than their single machine counterparts. See, for example, Weber (1982), Weber,
Varaiya and Walrand (1986) and Weiss (1990, 1992). Weiss (1995) has recently
given an account of index policies for a problem involving the scheduling of
a batch of stochastic jobs on parallel machines with a linear holding cost
objective.

New approaches to the analysis of such problems have emerged from recent
research on the so-called achievable region approach to stochastic optimiza-
tion. This approach develops solutions to stochastic optimization problems by
(1) characterising the space of all possible performances (the achievable region)
of the system of interest, and (2) optimizing the overall system-wide objective
over this space. Following foundational contributions by Coffman and Mitrani
(1980) and Shanthikumar and Yao (1992), Bertsimas and Niño-Mora (1996)
took this approach decisively further forward and gave an account of Gittins
indices from this perspective.

Recently, Glazebrook and Garbe (1999) explained how the achievable re-
gion approach could be deployed to analyze Gittins index policies for systems
in which the conditions sufficient to establish that such policies are fully op-
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timal fail narrowly. They analysed a general discounted multi-armed bandit
problem on parallel machines subject only to the condition that the Markov
chain modelling the evolution of each arm is irreducible and has finite state
space. In a continuous time formulation in which discounting is of the form
e−αt and hence total expected rewards from the implementation of any pol-
icy are O�1/α� where α > 0 is a discount rate, Glazebrook and Garbe (1999)
showed that a Gittins index policy implemented in the parallel machine envi-
ronment earns a reward which comes within O�1� of optimality. This in turn
implies that for small enough discount rate, the corresponding index policy is
average-reward optimal.

The current paper strengthens the available tools of analysis (see Section 2)
in a way that facilitates stronger results for the parallel machine version of
the discounted multi-armed bandit problem than those described in the pre-
vious paragraph. In Section 3 we are able to prove the remarkable fact that
it is possible to design an initial once for all allocation of bandits to machines
such that the policy which then ensures that each machine handles its own
allocated workload optimally (i.e., uses a Gittins index policy) has a reward
which comes within O�α� of optimality. This initial allocation must take ac-
count of the index structure of the bandits. Much practical and theoretical
interest attaches to cases with small discount rate α and to the related limit
α → 0. Plainly the O�α� result implies, inter alia, that as discounting disap-
pears (α → 0) so does the suboptimality gap associated with the policy. The
model structures elucidated by the analysis in Sections 2 and 3 are deployed
in Section 4 to strengthen the Glazebrook and Garbe (1999) result cited above
for certain classes of model. We obtain anO�α� suboptimality gap for a Gittins
index policy implemented in the parallel machine environment. In Section 5
we show that these O�α� results imply that the corresponding limit policies
(i.e., policies of equivalent structure but based upon limiting index values as
α → 0) are 1-optimal and average-overtaking optimal for our multi-armed
bandit problem with parallel machines. Finally, we discuss some instances of
the index-based policies of Section 3 in which there may be many initial al-
locations of bandits to machines for which the O�α� result is available. We
develop a load balancing problem in the form of an integer program whose
solution will guide the choice of initial allocation.

2. The model and tools of analysis. M identical machines are available
to process B projects or “bandits” as we shall call them, where B > M ≥ 1.
Bandits are of Q types and nq bandits of type q are in the system, where∑
q nq = B. A bandit of type q has finite state space Eq. The state of the

system is a B-vector whose bth component is the state of bandit b. Hence the
(finite) state space for the system is ×q�Eq�nq . Write E = ⋃

q Eq. Please note
that we have allowed for the possibility of there being many bandits of a single
type in order to facilitate the analysis later in the paper. See Lemma 4, Sec-
tion 4 and the discussion of load balancing in Section 5.

At each decision epoch t = 0�1�2� � � � M bandits are chosen for processing,
one on each machine. Should bandit b of type q be chosen for processing at
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time t when in state i ∈ Eq then with probability Pqij it will be in state j ∈ Eq

at time t + 1. This type q transition law is Markovian and distinct bandits
are assumed to evolve independently of each other. The B −M bandits not
chosen for processing at t remain stationary. The Markov chains determined
by the Q one-step transition matrices Pq (such a chain would be observed
in real time were a type q bandit to be processed without interruption) are
assumed irreducible and hence positive recurrent. Standard results indicate
that all first passage times Tij� i� j ∈ Eq in the Markov chain with transition
matrix Pq have a distribution with a tail no heavier than geometric and hence
have all positive moments finite. Please note that this assumption of positive
recurrence plays a central role in the analysis. Hence, for example, bandits
which terminate a period of active evolution by entering an absorbing state
are not covered by our results.

We study the classical multi-armed bandit problem with the discounted
reward criterion. To simplify our computations, we shall assume that a reward
of ri

∫ t+1
t e−αsds is earned when a bandit of type q is chosen for processing at

time t while in state i. The constant α > 0 is a discount rate. In this event, we
shall use the terminology “a job of type i is processed at time t.” Hence we use
“job type” to indicate members ofE. Rewards are additive across machines and
over time. A (nonanticipative) policy π is a rule which specifies an allocation
of M distinct bandits to the machines at each decision epoch as a function of
the history of the process to date. We shall express the total expected reward
earned under policy π from initial state k ∈ ×q�Eq�nq as

Rπ�k� = ∑
i∈E

rix
π
i �k�(1)

where

xπi �k� = Eπ

{∫ ∞

0
ni�t�e−αtdt
k

}
� i ∈ E�(2)

In (2) we take ni�t� to be the number of jobs of type i being processed at t.
Our goal is the analysis of the stochastic optimization problem

ROPT�k� = sup
π

∑
i∈E

rix
π
i �k��(3)

We will drop initial state k from the notation on occasion when no confusion
arises.

We now proceed to describe objects and ideas utilized by Bertsimas and
Niño-Mora (1996) in their analysis of the M = 1 case. Fix i ∈ Eq and subset
S ⊆ E containing i. Consider the evolution of a Markov chain with initial
state i and one-step transition matrix Pq. Write Xq�t� for the state of the
Markov Chain at time t. We define

TS
c

i ≡ inf
{
t
 t ≥ 1 andXq�t� ∈ S ∩Eq

}
as the first time after t = 1 at which the chain leaves Sc. Plainly TS

c

i ≤ Tii
a.s. and hence all positive moments of TS

c

i are finite. Following Bertsimas and
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Niño-Mora (1996), we define the matrix A ≡ �AS
i �i∈E�S⊆E as follows:

AS
i =

{
0� i /∈ S[
1−E

{
e−αT

Sc

i

}]/
�1− e−α�� i ∈ S�(4)

As will emerge in the course of the analysis, the quantities

Aπ�S�k� ≡ ∑
i∈S
AS
i x

π
i �k�(5)

play a central role. Plainly, for each subset S, (5) corresponds to an objective
of the form (1) in which entries from the matrix A give the reward rates.

Bertsimas and Niño-Mora (1996) describe a so-called adaptive greedy al-
gorithm AG�A� r� whose inputs are the matrix A and reward vector r and
whose outputs include a set of non-negative reals Gi� i ∈ E called generalised
Gittins indices. In the current context, the Gittins index Gi for a job of type
i ∈ Eq is a measure of the rate at which rewards can accrue from a bandit
of type q currently in state i. See Bertsimas and Niño-Mora (1996) for more
details. We shall suppose that the members of E are labelled �1�2� � � � � 
E
�
such that

G
E
 ≥ G
E
−1 ≥ · · · ≥ G2 ≥ G1�

We write Sj = �j� j − 1� � � � �1� for the subset of E of cardinality j with
the lowest Gittins indices. Note that in none of the results in the paper does
it matter how ties are broken between job types of equal index when some
policy based on the index values is used. While we do not need full details of
the algorithmAG�A� r� here, we shall require the following key fact regarding
its structure:

ri = G
E
A
E
i −


E
−1∑
j=i

�Gj+1 −Gj�A
Sj
i

= G
E
 −

E
−1∑
j=i

�Gj+1 −Gj�A
Sj
i � i ∈ E�

(6)

Equation (6) uses the fact [plain from (4)], that AE
i = 1� i ∈ E. It now yields

the following important calculation lemma which we shall use frequently.

Lemma 1. For all policies π and initial states k,

Rπ�k� = G
E


(
M

α

)
−


E
−1∑
j=1

�Gj+1 −Gj�Aπ�Sj�k��(7)

Proof. We utilize (6) to obtain

Rπ�k� = ∑
i∈E

rix
π
i �k�

= G
E

∑
i∈E

xπi �k� −
∑

i∈S
E
−1


E
−1∑
j=i

�Gj+1 −Gj�A
Sj
i x

π
i �k��

(8)
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To obtain (7) note first from (2) that

∑
i∈E

xπi �k� =
M

α

for all choices of π and k, then interchange the order of summation in the
second term on the r.h.s. of (8) and finally use (5). ✷

We now develop a class of stochastic optimization problems, one for each
subset S, given by

A�S�k� ≡ inf
π
Aπ�S�k��(9)

The following is an immediate consequence of Lemma 1.

Corollary 1. For all initial states k,

ROPT�k� ≤ G
E


(
M

α

)
−


E
−1∑
j=1

�Gj+1 −Gj�A�Sj�k��(10)

In the single machine case M = 1, (10) can be shown to be satisfied with
equality. This is a consequence of the fact, established by Bertsimas and Niño-
Mora (1996), that for each S ⊆ E, the infimum in (9) is achieved by any policy
π which chooses bandits for processing in such a way that job types in Sc are
always given priority over those in S. We write π � Sc → S for any such policy.
But any Gittins index policy πG which always chooses bandits consistent with
the ordering 
E
 → 
E
 − 1 → · · · → 2 → 1 is such that πG � Scj → Sj for all j.
Hence we have

AπG�Sj�k� = A�Sj�k�� 1 ≤ j ≤ 
E
 − 1�(11)

and the optimality of πG when M = 1 follows from Lemma 1, Corollary 1 and
(11).

In the parallel machine case M > 1 we do not have (11) in general for the
policy πG which chooses at each decision epoch the M bandits whose current
states have the highest indices among those present. However, as we shall see,
the difference between the two quantities in (11) is often small, implying that
ROPT−RπG is also small. We shall also see that there are other policies based
on Gittins indices which come close to optimality. The suboptimality bound
presented in Theorem 1 is our main tool for analysing the policies based on
Gittins indices described in the next sections. It is a trivial consequence of
Lemma 1 and Corollary 1.

Theorem 1 (Suboptimality bound for policy π).

ROPT�k� −Rπ�k� ≤

E
−1∑
j=1

�Gj+1 −Gj�
{
Aπ�Sj�k� −A�Sj�k�

}
�(12)
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In order to use Theorem 1 to obtain suboptimality bounds for given policies
we shall need access to the quantities A�Sj�k� or to lower bounds for them.
The lower bounds which will be utilized in our analyses of index-based policies
described in Sections 3 and 4 will be given in Lemma 2 below. To prepare for
this result we need some additional notation. We write

gq = min
{
j
 j ∈ Eq

}
for the state of lowest index in Eq. Now label the bandit types �1�2� � � � �Q�
such that

gQ > gQ−1 > · · · > g1 = 1�

and define ψj� j ∈ E, by

ψj =




0� j ≥ gQ�
Q∑
r=q

nr� gq − 1 ≥ j ≥ gq−1� Q ≥ q ≥ 2�
(13)

It plainly follows from (13) that

0 = ψ
E
 ≤ ψ
E
−1 ≤ · · · ≤ ψ1 =N− n1

and ψj has the interpretation as the total number of bandits whose smallest
state is indexed greater than j and therefore the total number of bandits
whose state spaces have no intersection with Sj. Denote byBj the collection of
bandits with these properties, j ∈ E. In cases where there are no ties between
index values, ψj is also the number of bandits all of whose associated Gittins
indices exceed Gj.

Suppose that j is such that ψj = 
Bj
 ≥ M. Under this condition there
exist policies π which only process bandits in Bj and hence never process a
job type in Sj. Plainly, for all such π,

Aπ�Sj�k� = 0�

which in turn implies that

A�Sj�k� = 0�

Now consider the case 0 ≤ ψj ≤ M − 1. Let bandit b /∈ Bj be of type q and
have initial state kb. Write Xq�t� for the state at time t of a Markov Chain
with initial state kb and one-step transition matrix Pq. We define

T�kb�Scj� ≡
{
0� kb ∈ Sj�
inf�t
 t ≥ 1 and Xq�t� ∈ Sj�� kb /∈ Sj�

as the amount of processing required for bandit b to escape Scj for the first
time. We then write

T�k� Scj� =
∑
b/∈Bj

T�kb�Scj�(14)
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for the total processing required for all bandits outside of Bj to escape Scj.
Note that the summands in (14) are independent random variables.

Lemma 2. (i) If 0 ≤ ψj ≤M− 1 then

A�Sj�k� ≥
�M− ψj�

α
E
[
exp

{− αT�k� Scj�/�M− ψj�
}]
�

(ii) If ψj ≥M then

A�Sj�k� = 0�

Proof. The proof of part (ii) is trivial and is contained in the above text.
Hence we suppose that 0 ≤ ψj ≤M−1 and prove part (i). We fix policy π and
denote by νi the number of times (which may be infinite) that a job of type
i is chosen under π and by τi�l� 1 ≤ l ≤ νi, the times at which this occurs.

With each τi�l is associated a random variable T
Scj
i�l which is the length of the

subsequent excursion of the corresponding bandit into Scj. For a given i, the

T
Scj
i�l are independent and identically distributed. All share the distribution of

T
Scj
i , defined in the preamble to (4). It is straightforward to show from the

definitions of the quantities involved that

Aπ�Sj�k� =
∑
i∈Sj

A
Sj
i x

π
i �k� =

∑
i∈Sj

Eπ


 νi∑
l=1

e−ατi�l
∫ TScji�l
0

e−αtdt
k

 �(15)

We infer from (15) that

A�Sj�k� ≥ inf
π

B∑
b=1

M∑
m=1

Eπ

[∫ ∞

0
Ibm�t�e−αtdt
k

]
(16)

where

Ibm�t� =




1� if machine m processes bandit b at time t, and where b has
paid its first visit to Sj at some time s ≤ t,

0� otherwise.

Inequality (16) follows from (15) by means of the following two observations:
firstly, the processing which bandit b receives from some τi�l� i ∈ Sj� 1 ≤
l ≤ νi, until b next enters Sj will be delivered during �τi�l� τi�l + T

Scj
i�l� at the

earliest. Secondly, once a bandit has paid its first visit to Sj, subsequent visits
to Sj will alternative with (possibly null) excursions into Scj.

We proceed to bound the r.h.s. of (16) below by considering a relaxation
of the minimization problem as follows: denote by the pair �m� t�� 1 ≤ m ≤
M� t = 0�1�2� � � � the decision opportunity afforded on machine m at time t.
Consider the mapping onto � given by

�m� t� → φ�m� t� ≡Mt+ �m− 1�
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in which this decision opportunity is thought to occur on a single machine at
time φ�m� t�. We relax the minimization in (16) by considering the class )
of “single machine” policies defined below. For this purpose we require iden-
tifiers for the bandits in Bj. (Note that in Section 2 we developed specified
numberings for job types and for bandit types, but not for individual ban-
dits.) For simplicity, we number the bandits in Bj from 1 to ψj. The reader
should recall that ψj < M. We now develop our “single machine” relaxation
as follows:

(i) a policy π ′ ∈ ) can only schedule bandit b, 1 ≤ b ≤ ψj, at times φ�b� t�,
t ≥ 0;

(ii) subject only to (i) a policy π ′ ∈ ) schedules a single bandit at each
decision epoch in � = �φ�m� t�
1 ≤m ≤M�t ≥ 0�;

(iii) the allocation at φ�m� t� under π ′ ∈ ) attracts discounting equal to
that at time t in the original parallel machine problem.

Note that (i)–(iii) are equivalent to building a policy for the parallel ma-
chine problem by allocating bandits to machines in numerical order at each
successive time point with repeat allocations allowed, subject to the require-
ment that each bandit b�1 ≤ b ≤ ψj, may only be allocated to machine b.
Naturally, any such policy which does schedule a bandit more than once at
some t is non-admissible for the parallel machine problem. Under this single
machine relaxation it is clear from (16) that

A�Sj�k� ≥ inf
π ′∈)

B∑
b=1

M∑
m=1

∞∑
t=0

Eπ

[{ ∫ t+1

t
e−αsds

}{ ∫ φ�m�t�+1

φ�m�t�
Ib�s� ds

}

k
]

(17)

where

Ib�s� =




1� if bandit b is processed at time s, having paid its first visit to
Sj at some time u ≤ s,

0� otherwise.

It is straightforward to obtain policies which achieve the infimum in the
single machine problem (17). Firstly, note that since the bandits b� 1 ≤ b ≤ ψj,
belong to Bj, they by definition can never visit Sj and hence cannot contribute
to the objective on the r.h.s. of (17). From this it is trivial to demonstrate that
any π ′ attaining the infimum in (17) must choose these bandits whenever
possible—that is, it must choose bandit b at all times φ�b� t�� t ≥ 0� 1 ≤ b ≤
ψj. Hence we can replace (17) by

A�Sj�k� ≥ inf
π ′∈)

B∑
b=ψj+1

M∑
m=ψj+1

∞∑
t=0

Eπ

[{ ∫ t+1

t
e−αsds

}

×
{ ∫ φ�m�t�+1

φ�m�t�
Ib�s� ds

}

k
](18)

to give us a minimization involving B−ψj bandits, all of which can enter Sj.
A simple interchange argument very similar to one used by Bertsimas and
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Niño-Mora (1996) serves to show that a minimizing π ′ ∈ ) will make choices
at the remaining decision epochs �φ�m� t�
 ψj + 1 ≤ m ≤ M
 t ≥ 0� which
enforce the priority Scj → Sj. Write

T�k� Scj� =
[
T�k� Scj�/�M− ψj�

]
�M− ψj� +R

where 0 ≤ R ≤M− ψj − 1 and �x� is the integer part of x. The argument in
the preceding paragraph enables us to compute the infimum in (18). A simple
calculation yields

A�Sj�k� ≥
�Re−α + �M− ψj −R��

α
E
(
exp

{− α[T(k� Scj�/�M− ψj�
]})

≥ �M− ψj�
α

E
[
exp

{− αT�k� Scj�/�M− ψj�
}]

as required. ✷

3. Index policies based on an initial allocation of projects to ma-
chines. We use the machinery developed in Section 2 to analyze a simple
class of index-based policies in which the collection of available bandits is
divided at time zero into M sub-collections, with sub-collection m to be pro-
cessed exclusively on machine m, 1 ≤ m ≤ M. If this initial division is done
appropriately, and if each machine operates an optimal policy (i.e., a Gittins
index policy) for its own sub-collection then the total reward earned by this
approach comes within an O�α� quantity of ROPT�k� for each initial state k.

More formally, suppose that M > 1 and that the collection of B bandits
is partitioned into M subsets βm, 1 ≤ m ≤ M. The bandits in βm are to
be processed (only) on machine m, 1 ≤ m ≤ M. Each machine processes
the bandits allocated to it according to a Gittins index policy, as described in
Section 2. In the numbering of job types we have adopted, i is preferred to j
on each machine if and only if i > j. We use the notation πG��� for any such
policy. Since Gittins index policies are optimal for the single machine problem
(M = 1), it is transparent that πG��� maximises the total reward available
for a given partition �. What is much less clear is that there exist partitions
� for which the performance of πG��� is very close to optimal for the parallel
machine problem (M> 1) in the sense of the following result.

Theorem 2.

ROPT�k� − sup
�
RπG����k� ≤ O�α�(19)

where the supremum in (19) is over all partitions and the O�α� bound is uni-
form in k.

We develop explicitly a partition �̃ for which the properties required for
Theorem 2 hold as follows: allocate one bandit to each of machines 1 through
M − 1 in increasing numerical order. In this initial allocation, the type Q
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bandits are assigned first, then (if nQ < M− 1) the type Q− 1 bandits, then
(if nQ + nQ−1 <M− 1) type Q− 2 and so on. Once these M− 1 single bandit
assignments have been made, all remaining bandits are assigned to machine
M. Note that in the case M = 1, πG��̃� is the single machine Gittins index
policy, and hence is optimal. The key to the proposed policy πG��̃� is, loosely
speaking, that it guarantees sufficient concentration on high index options.
Sufficient guarantees are actually rather more difficult to secure in relation
to, for example, a conventional Gittins index policy operating in the parallel
machine environment, as discussed in Section 4. The reader should also note
important similarities between the structure of the partition �̃ and that of the
single machine relaxation described in the proof of Lemma 2. We require the
following result.

Lemma 3.

ROPT�k� −RπG��̃��k� ≤ O�α��(20)

and the O�α� bound is uniform in k.

Proof. We first consider the machines 1�2� � � � �M − 1 to which a single
bandit is allocated under �̃. Let q�m� denote the bandit type allocated to
machine m� 1 ≤m ≤M− 1, by �̃. By construction we have

nQ + nQ−1 + · · · + nq�m�+1 < m ≤ nQ + · · · + nq�m��

where we adopt the convention that nQ+1 = 0. We denote the bandit on ma-
chine m by b�m� and call its initial state kb�m�� 1 ≤m ≤M−1. From Lemma

1, the contribution to the reward RπG��̃��k� from the processing on machine
m may be written

R
πG��̃�
m �k� = G
E


(
1
α

)
−


E
−1∑
j=1

�Gj+1 −Gj�AπG
{
Sj� kb�m�

}
�

1 ≤m ≤M− 1�

(21)

In (21) we use πG to denote a single machine Gittins index policy. Now, since
b�m� is of type q�m�, the processing on machine m, 1 ≤m ≤M− 1, satisfies

x
πG
i �kb�m�� = 0� i ∈ Sj� j ≤ gq�m� − 1

and hence

AπG�Sj� kb�m�� = 0� j ≤ gq�m� − 1�(22)

Now consider the quantities

AπG
{
Sj� kb�m�

}
� j ≥ gq�m�� 1 ≤m ≤M− 1�

For machine m, the first contribution to AπG
{
Sj� kb�m�

}
will occur from the

processing on machine m when a job type in Sj is chosen for the first time.
This will occur at time T�kb�m�� S

c
j�. Following this epoch, excursions to Scj
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will alternate with allocations to Sj. Hence, using the notation in (15), it is
straightforward to see that

AπG
{
Sj� kb�m�

} = ∑
i∈Sj∩Eq�m�

EπG


 νi∑
l=1

e−ατi�l
∫ TScji�l
0

e−αtdt
k



= 1
α
E
(
exp

[− αT�kb�m�� S
c
j�
])
� j ≥ gq�m��

1 ≤m ≤M− 1�

(23)

Substituting from (22) and (23) into (21) we conclude that

R
πG��̃�
m �k� = G
E


(
1
α

)

−1
α


E
−1∑
j=gq�m�

(
Gj+1 −Gj

)
E
(
exp

[− αT�kb�m�� S
c
j�
])
�

1 ≤m ≤M− 1�

(24)

Now consider machine M. In what follows we shall use q�M� to denote
the bandit of largest type allocated to M, b�M� the collection of bandits on
machineM and kb�M� the associated initial state. By the structure of the single
machine index policy πG, no job type j ≤ gq�M� − 1 will ever be processed by
machine M under policy πG��̃� since a job type associated with a bandit of
type q�M� will always be preferred. Hence, as in (22) we have

AπG
{
Sj�kb�M�

} = 0� j ≤ gq�M� − 1�

Following a calculation similar to that which yielded (23), we conclude from
Lemma 1 that

R
πG��̃�
M �k� = G
E


(
1
α

)

−1
α


E
−1∑
j=gq�M�

(
Gj+1 −Gj

)
E

(
exp

[
− αT{kb�M�� S

c
j

}])
�

(25)
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From (24) and (25) we conclude that

RπG��̃� =
M∑
m=1

R
πG��̃�
m �k�

= G
E


(
M

α

)
− 1
α

M∑
m=1


E
−1∑
j=gq�m�

(
Gj+1 −Gj

)
×E

(
exp

[
− αT{kb�m�� S

c
j

}])

= G
E


(
M

α

)
− 1
α


E
−1∑
j=gq�M�

(
Gj+1 −Gj

)

×
M∑

m=ψj+1

E

(
exp

[
− αT{kb�m�� S

c
j

}])
�

(26)

Note that in (26) and in what follows we have written kb�M� for kb�M� for ease
of notation. We now utilize Lemma 2 within (10) to deduce that

ROPT�k� ≤ G
E


(
M

α

)
− 1
α


E
−1∑
j=gq�M�

(
Gj+1 −Gj

) (
M− ψj

)
×E

[
exp

{
− αT(k� Scj)/�M− ψj�

}]
�

(27)

Combining (26) and (27) we conclude that

ROPT�k� −RπG��̃��k�

≤ 1
α


E
−1∑
j=gq�M�

�Gj+1 −Gj�

×
[{ M∑

m=ψj+1

E
(
exp

[− αT�kb�m�� S
c
j�
])}

− �M− ψj� E
[
exp

{
− αT(k� Scj)/(M− ψj

)}]]
�

(28)

However, by the definitions of the quantities involved and the construction of
the partition �̃ we have that

M∑
m=ψj+1

T
{
kb�m�� S

c
j

} = T�k� Scj�� gq�M� ≤ j ≤ 
E
 − 1�(29)

where the summands in the l.h.s. of (29) are independent. See equation (14).
Exploiting the existence of all positive moments of the random variables con-
cerned, we can easily deduce from (28) and (29) that

ROPT�k� −RπG��̃��k�

≤ α

2


E
−1∑
j=gq�M�

(
Gj+1 −Gj

) M∑
m=ψj+1

E

([
T�kb�m�� S

c
j�
]2)

�
(30)
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where the second moments in (30) are guaranteed to exist. We noted in the
preamble to (4) above that TS

c

i ≤ Tii a.s. when i ∈ S. It is a simple matter to
utilize that to bound the r.h.s. of (30) and deduce that

ROPT�k� −RπG��̃��k� ≤ α

2





E
−1∑
j=gq�M�

�Gj+1 −Gj�



×



Q∑
q=1

nqσ
2
q +

(
Q∑
q=1

nqµq

)2

 �

(31)

where

µq ≡ max
i∈Eq

E�Tii�� 1 ≤ q ≤ Q

and

σ2
q ≡ max

i∈Eq

var�Tii�� 1 ≤ q ≤ Q�

Note that the r.h.s. of (31) does not depend upon initial state k. We conclude
the proof by remarking that in consideration of the limit α → 0, the matrix
A defined in (4) is O�1�. The operation of algorithm AG�A� r� guarantees
that the indices Gi� i ∈ E, share this property. The result now follows from
(31). ✷

Theorem 2 is now an immediate consequence of Lemma 3.
It is possible to strengthen the above analysis in the case nQ ≥M in which

there are at least as many type Q bandits as machines. This includes the
special case in which all the bandits are of a single type, when we have
B = nQ = n1 ≥ M. See the comments following the proof of Lemma 4. With
this additional condition, we study all partitions �̂ which are such that the
collection of bandits allocated to each machine contains at least one of type Q.
The remaining bandits can be distributed between the machines in any fash-
ion. The next result states that for any such �̂, the reward earned by πG��̂�
comes within O�α� of optimality.

Lemma 4. If nQ ≥M then

ROPT�k� −RπG��̂��k� ≤ O�α�(32)

for any qualifying �̂, where the O�α� bound is uniform in k.

Summary Proof. Retaining the notation of the earlier proof we have that

nQ ≥M⇒ q�M� = Q and ψj = 0� j ≥ gq�M��(33)
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Hence (26) becomes, for any qualifying �̂,

RπG��̂��k� = G
E


(
M

α

)

−1
α


E
−1∑
j=gQ

(
Gj+1 −Gj

) M∑
m=1

E

(
exp

[
− αT{kb�m�� S

c
j

}])(34)

where b�m� now denotes the collection of bandits allocated by �̂ to
machine m.

In addition to (33) we can also deduce that

ψj ≥M� j ≤ gq�M� − 1(35)

and so from Corollary 1 and Lemma 2 we infer that

ROPT�k� ≤ G
E


(
M

α

)

−M
α


E
−1∑
j=gQ

(
Gj+1 −Gj

)
E
(
exp

[− αT{k� Scj}/M])(36)

From (34) and (36) the remainder of the proof follows closely the calculations
in the proof of Lemma 3 [from (26) and (27)]. ✷

Comment. As mentioned above, the stronger analysis of Lemma 4 is in
particular available for problems in which all bandits are of a single type.
Models of this kind are important, inter alia, as (finite state) approximations to
parallel server versions of many of the classical multi-armed bandit problems.
For example, in the Bernoulli reward process of Gittins (1989) the state �i� j�
of a bandit corresponds to the parameters of a (posterior) beta distribution. A
finite state approximation in which all bandits are of a single type (but with
possibly different initial states) and with common state space �0�1�2� � � � � n�2
for some suitably chosen large integer n will be available, for example, when
all the beta priors have parameters drawn from the integers. For such finite
state approximations which meet the requirement of irreducibility, Lemma 4
holds.

4. Gittins index policies implemented in the parallel machine en-
vironment. In this section, the policy of interest will be the Gittins index
policy implemented in the parallel machine environment, denoted πG. Under
any such policy, M bandits whose associated Gittins indices are maximal are
chosen at each decision epoch. To be specific, ties are broken such that the
priorities 
E
 → 
E
 − 1 → · · · → 2 → 1 are respected. This is as in earlier
sections. We shall strengthen the result of Glazebrook and Garbe (1999) for
those problems which satisfy the hypothesis of Lemma 4. As mentioned above,
this includes the important case in which all bandits are of a single type.
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Theorem 3. If nQ ≥M then

ROPT�k� −RπG�k� ≤ O�α�(37)

where the O�α� bound is uniform in k.

Proof. We shall utilize the upper bound for ROPT�k� in (36). Further, the
condition nQ ≥M guarantees that no job type j with j ≤ gQ−1 will be chosen
by πG for processing. Hence it follows that

AπG�Sj�k� = 0� j ≤ gQ − 1�

and so from Lemma 1,

RπG�k� = G
E


(
M

α

)
−


E
−1∑
j=gQ

(
Gj+1 −Gj

)
AπG�Sj�k��(38)

Now fix j in the range gQ ≤ j ≤ 
E
 − 1. Policy πG implements the priority
Scj → Sj. From initial state k, use T�πG� to denote the first decision epoch
at which πG chooses an Sj-job (i.e., a job type in Sj) for processing. It must
be true that at T�πG�, all of the B −M bandits not scheduled for processing
must have current state in Sj. It follows trivially that from T�πG� onwards
all Scj-jobs in the system will be scheduled for processing by πG. It will sim-
plify the argument if we assume (without loss of generality) that from T�πG�,
scheduling is on a “minimal switching” basis—namely, that a bandit is only
switched from processing on a particular machine at epochs at which πG takes
it out of processing altogether.

With the above in place we writeTm�πG� for the first time at which machine
m processes an Sj-job under πG. Hence

T�πG� = min
1≤m≤M

Tm�πG��

It is further clear that

M∑
m=1

Tm�πG� = T�k� Scj��(39)

since both sides of (39) are the total processing required for all bandits to
escape Scj for the first time.

Because of the “minimal switching” assumption, each interval �Tm�πG��∞�
may be expressed as a disjoint union of intervals of the form �τi� τi +T

Scj
i � for

some i ∈ Sj where τi is an epoch at which job type i is scheduled and τi+T
Sj
i

is the first subsequent epoch at which the corresponding bandit escapes Scj.
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It then follows simply, utilising the notation of (15), that

AπG�Sj�k� =
∑
i∈Sj

A
Sj
i x

πG
i �k�

= ∑
i∈Sj

EπG


 νi∑
l=1

e−ατi�l
∫ TScji�l
0

e−αtdt
k

(40)

= 1
α

M∑
m=1

E
(
exp

[− {
αTm�πG�

}])
�

We then have from (36), (38) and (40) that

ROPT�k� −RπG�k�

≤ 1
α


E
−1∑
j=gQ

(
Gj+1 −Gj

) { M∑
m=1

E
(
exp

[− αTm�πG�])(41)

−E
(
M exp

[− αT{k� Scj}/M])}

We now invoke (39) and (41) together with calculations like those which con-
clude the proof of Lemma 3 to prove the result. ✷

5. Asymptotic optimality and load balancing. We shall now consider
the problems described above in a limit as the discount rate α → 0. It will
assist clarity if we include α in the notation at key points. Hence, in this
section we shall write πG�α�� πG��̃� α�, πG��̂� α�, ROPT�k� α�� Rπ�k� α�� A�α�
and Gj�α�. First note from (4) that

lim
α→0

AS
i �α� = E

(
TS

c

i

)
≡ ĀS

i � i ∈ S�

It is easy to deduce that the limits

lim
α→0

Gi�α� ≡ Ḡi� i ∈ E�(42)

all exist and are finite. The limiting indices Ḡi� i ∈ E, may be computed
from the adaptive greedy algorithm AG�Ā� r� whose inputs are the matrix
Ā ≡ �ĀS

i �i∈E�S⊆E and reward vector r.
Our concern will be to analyze the limiting forms of the policies discussed in

Sections 3 and 4, all of which will be identified via the ¯ notation. For example,
when nQ ≥M (with nQ now defined with respect to the limiting indices Ḡi� i ∈
E), π̄G��̂� is the limiting form of the policy analyzed in Lemma 4—that is, �̂ is
such that each machine has (at least) one type Q bandit to process and π̄G��̂�
operates a Gittins index policy on the individual machines. Similarly, π̄G��̃�
is the limiting form of the policies discussed in Lemma 3. Following Section 4,
we shall use π̄G for an index policy (based on the Ḡi� i ∈ E) implemented in
the parallel machine environment.
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Suppose now that the limiting indices Ḡi� i ∈ E, are all distinct, namely
that

Ḡ
E
 > Ḡ
E
−1 > · · · > Ḡ2 > Ḡ1�(43)

In this case it is trivial to establish the existence of α∗ > 0 s.t. the policies
πG��̃� α�, πG��̂� α� and πG�α� are identical for α ∈ �0� α∗� in the sense that they
may only differ on how they choose from among bandits of the same state and
type. For α ∈ �0� α∗� these policies will correspond to the limiting forms π̄G��̃�,
π̄G��̂� and π̄G. It follows trivially from Lemmas 3 and 4 and Theorem 3 that
under appropriate conditions π̄G��̃�, π̄G��̂� and π̄G are 1-optimal in the sense
of Veinott (1966). This states in the case of π̄G that, for all k,

lim
α→0

{
ROPT�k� α� −Rπ̄G�k� α�

}
= 0

with corresponding statements for π̄G��̃� and π̄G��̂�. In general (43) does not
hold. However, it is a piece of straightforward analysis to establish that there
must always exist a sequence �αn� n ∈ �� and a numbering of the members
of E such that:

(i) limn→∞ αn = 0;
(ii) for all n ∈ �,

G
E
�αn� ≥ G
E
−1�αn� ≥ · · · ≥ G2�αn� ≥ G1�αn�

(iii)

Ḡ
E
 ≥ Ḡ
E
−1 ≥ · · · ≥ Ḡ2 ≥ Ḡ1�

The limit policies discussed below are all assumed to make choices in terms
of the indices Ḡi� i ∈ E, via the ordering 
E
 → 
E
 − 1 → · · · → 1 in (ii),
(iii) above. Theorem 4 is an easy consequence of the results in Sections 3 and
4, (i)–(iii) above and classical results of Blackwell (1962), Veinott (1966) and
Denardo and Miller (1968). We sketch the main ideas in the proof.

Theorem 4 (Asymptotic optimality of limit policies).

(a) Policies π̄G��̃� are 1-optimal and average-overtaking optimal.
(b) If nQ ≥M, policies π̄G��̂� and π̄G are 1-optimal and average-overtaking

optimal.

Sketch proof. For definiteness, we discuss (a); the proof of (b) is along
similar lines. Suppose that we have (i)–(iii) above. In that event

π̄��̃� αn� ≡ π̄G��̃�� n ∈ ��(44)

From Lemma 3 and (44) we plainly have, for all k,

lim
n→∞

{
ROPT�k� αn� −Rπ̄G��̃��k� αn�

}
= 0�(45)

However, for discounted MDPs with finite state and action-space, we can write

Rπ�k� α� = Rπ
1 �k�
α

+Rπ
2 �k� +O�α�(46)
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for stationary policy π, where Rπ
1 is the usual average return per unit time

for π. See Blackwell (1962). It follows easily from (45) and (46) that for all k

R
π̄G��̃�
1 �k� = sup

π
Rπ

1 �k�(47)

where the supremum is over all stationary policies and

R
π̄G��̃�
2 �k� = sup

π
Rπ

2 �k�(48)

where this supremum is over all those policies attaining the supremum in
(47) for all k. Note that (47) states that π̄G��̃� is average-reward optimal.
We now conclude the 1-optimality of π̄G��̃� from (46)–(48). That it is average-
overtaking optimal follows from (47), (48) and results of Veinott (1966) and
Denardo and Miller (1968). This concludes the proof. ✷

Comment. If we useRπ�k� t� to denote the (undiscounted) reward obtained
at time t when policy π is applied from initial state k, then stationary policy
π̄ is average-overtaking optimal if

lim inf
T→∞

1
T+ 1

[
T∑
t=0

t∑
s=0

E
{
Rπ̄�k� s�}− T∑

t=0

t∑
s=0

E
{
Rπ�k� s�}

]
≥ 0

for all policies π and initial states k. As is implied in the proof of Theorem 4,
the claim that our policies are average-overtaking optimal implies a claim that
they are also average-reward optimal.

In the case of the result in Lemma 4 we pursue one final issue. According
to that result, if nQ ≥ M then the reward from πG��̂� comes within O�α� of
the optimal reward for any partition �̂ of bandits to machines which guaran-
tees that at least one type Q bandit is allocated to each machine. We explore
the question of which partitions satisfying this requirement might perform
particularly well by seeking to make the leading �α� term in the bound on
ROPT − RπG��̂� developed in the proof Lemma 4 as small as possible. As we
shall see, a natural problem for balancing the initial load between the ma-
chines results.

From (34), (36) and (42) we can deduce that

ROPT�k� −RπG��̂��k�

≤ α

2


E
−1∑
j=qQ

(
Ḡj+1 − Ḡj

) { M∑
m=1

E

([
T
{
kb�m�� S

c
j

}]− T�k� Scj�
M

)2
}
+O�α2�

(49)

= α

2


E
−1∑
j=qQ

(
Ḡj+1 − Ḡj

) ( M∑
m=1

(
E
[
T
{
kb�m�� S

c
j

}])2

+ var
{
T
(
k� Scj

)}− E
[�T�k� Scj��2]

M

)
+O�α2��(50)
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To obtain (50) from (49) we utilize the independence of the random variables
T�kb�m�� S

c
j�� 1 ≤m ≤M, and the fact that

M∑
m=1

T�kb�m�� S
c
j� = T�k� Scj�� gQ ≤ j ≤ 
E
 − 1�

However, note in (50) that the random variables T�k� Scj�� gQ ≤ j ≤ 
E
 − 1
do not depend stochastically upon the partition �̂ of the bandits. Hence it is
natural to seek a partition of the bandit set which minimizes the quantity


E
−1∑
j=gQ

(
Ḡj+1 − Ḡj

) M∑
m=1

(
E
[
T
{
kb�m�� S

c
j

}])2
�(51)

Consider an initial state k in which there are ηi jobs of type i in the system.
Some allocation � sends ηi�m of these (or, equivalently, the bandits to which
they belong) for processing to machine m� 1 ≤ m ≤ M. The minimization of
the expression in (51) can then be formulated as the nonlinear integer program

minimize

E
−1∑
j=gQ

(
Ḡj+1 − Ḡj

) M∑
m=1


∑
i∈Scj

ηi�mµij




2

(52)

such that
M∑
m=1

ηi�m = ηi� gQ ≤ i ≤ 
E
�
∑
i∈EQ

ηi�m ≥ 1� 1 ≤m ≤M�
(53)

ηi�m ∈ �� gQ ≤ i ≤ 
E
� 1 ≤m ≤M�

Note that we have written µij for E�T�i�Scj�� in (52) and (53) expresses the
requirement that at least one typeQ bandit must be allocated to each machine.

The above optimization problem has a natural interpretation as a load bal-
ancing problem. There are simple solutions in some special cases. For example,
if each ηi is a multiple of M, then it will be optimal to give identical initial
allocations to the machines, such that ηim = ηim′ for all m �=m′ and for all i.
Consider also a problem in which

Ḡ
E
 = Ḡ
E
−1 = · · · = Ḡj+1 > Ḡj = · · · ḠgQ
�(54)

With the condition (54), (52) now becomes

minimize
M∑
m=1


∑
i∈Scj

ηi�mµij




2

�(55)

When j = 
E
 −1 in (54) and (55), the optimal initial allocation will share the

E
-jobs between machines as equally as possible, while guaranteeing that
each machine has at least one bandit of type Q allocated to it. For general j,
an allocation minimizing the objective in (55) will attempt to equalise the M
quantities

∑
i∈Scj ηi�mµij subject to the constraints (53).
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