
The Annals of Applied Probability
2000, Vol. 10, No. 3, 753–778

SELF-SIMILAR COMMUNICATION MODELS AND
VERY HEAVY TAILS

By Sidney Resnick1 and Holger Rootzén2

Cornell University and Chalmers University

Several studies of file sizes either being downloaded or stored in the
World Wide Web have commented that tails can be so heavy that not only
are variances infinite, but so are means. Motivated by this fact, we study
the infinite node Poisson model under the assumption that transmission
times are heavy tailed with infinite mean. The model is unstable but we
are able to provide growth rates. Self-similar but nonstationary Gaussian
process approximations are provided for the number of active sources, cu-
mulative input, buffer content and time to buffer overflow.

1. Introduction. The identification of self-similarity in various types of
teletraffic flow rates has created widespread interest in the possible origins
and effects of the self-similarity. Self-similarity of packet counts per unit time
in LANS and WANS is discussed in [31], [23], [24], [34], [25], [35], [36] and
a parallel discussion of self-similarity of bytes per unit time in WWW traffic
was conducted by [6], [7], [10] and [8]. Crovella, Kim and Park [9] conducted
a large simulation study to assess the causes and effects of self-similarity in
situations that involved slowdown nodes, buffers, varying rates and varying
tail parameters. Errammilli and Willinger [13] used experimental queueing
analysis to show why classical models without long-range dependence would
seriously underestimate delays. Resnick and Samorodnitsky [29] constructed
an example of a single exponential server fed by a long-range dependent input
which had queue lengths and waiting times which were heavy tailed. Math-
ematical studies of the connection between on-off inputs with heavy tailed
on-periods appeared in [31], [18] and [19].
Attempts to explain network self-similarity have largely focussed on heavy

tailed transmission times of sources sending data to one or more servers. The
common assumption is that transmission times have iid random lengths with
common distribution F where F has a Pareto or regularly varying tail. We
assume

1−F�x� ∼ x−αL�x�� x→ ∞�(1.1)
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and L�x� a slowly varying function, or equivalently,

lim
t→∞

F̄�tx�
F̄�t� = x−α� x > 0�(1.2)

where F̄ = 1 − F�x�. The usual assumption on α is that 1 < α < 2. This
means the variance is infinite but the mean is finite. The practical reason for
this assumption is the extensive traffic measurements of on periods reported
in [35] where measured values of α were in the interval �1�2�. The theoretical
reason for the assumption is that mathematical analysis has been based on
renewal theory, and, without a finite mean, stationary versions of renewal
processes do not exist and (uncontrolled) buffer content stochastic processes
would not be stable.
Despite the prevalence of this assumption that 1 < α < 2, it is clear that

other assumptions have to be considered. The Boston University study ([6],
[7], [11]) suggests that self-similarity of web traffic stems from heavy tailed
file sizes and reports an overall estimate for a five-month measurement period
(see [11]) of α = 1	05. However, there is considerable month-to-month variation
in these estimates and, for instance, the estimate for November 1994 in room
272 places α in the neighborhood of 0	66. Figure 1 gives the QQ and Hill plots
([17], [30], [21], [3]) of the file size data for the month of November in the
Boston University study.
Furthermore, studies of sizes of files accessed on various servers by the

Calgary study [1], report estimates of α from 0	4 to 0	6. So accumulating
evidence already exists which suggests values of α outside the range �1�2�
should be considered. Also, as user demands on the web grow and access
speeds increase, there may be a drift toward heavier file size distribution
tails. However, this is a hypothesis that is currently untested.
This paper focusses on the case 0 < α < 1. An important feature of this case,

as implied above, is that this assumption leads to unstable models where the
amount of ongoing traffic and the contents of buffers grow without limit. This
is not an accurate model for behavior of real networks over long periods of time,
since such networks operate under controls such as those imposed by TCP as
well as physical limitations such as system resets or disruptions of very long
transmissions. Both factors prevent unbounded growth. Another unrealistic
model feature is our assumption that the point process of connection initiations
has constant intensity. In reality there is typically a strong diurnal, weekly
and seasonal variation in usage of networks. Despite these limitations, this
model gives a useful description of the behavior of the network over short and
medium time periods with high traffic before other mechanisms set in and
describes what sort of uncontrolled behavior is to be expected.
The plan of the paper is as follows. Section 2 reviews a standard infinite

node, Poisson based model with heavy tailed transmission times and assumes
(1.1) with α < 1. A buffer content process is defined and since it will be unsta-
ble due to the assumption α < 1, we make some comments about the first-order
content growth and the time to hit high levels. Section 2 develops first-order
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Fig. 1. QQ and Hill plots of November 1994 file lengths.

approximations to the number of active nodes, the net input process, the con-
tent process and the time to buffer overflow. Section 3 considers a Gaussian
approximation to the input process and shows this is self similar. This ap-
proximation is in the spirit of [31]. Sections 4 and 5 give Gaussian process
approximations to the content process and time to buffer overflow.

2. An infinite node, Poisson-based communication model. We first
review the elements of a communication model used in [19] and [16]. Let
	
k� k ≥ 1� be the points of a rate λ homogeneous Poisson process on R+ =

0�∞� so that 	
k+1−
k� k ≥ 1� is a sequence of iid exponentially distributed
random variables with parameter λ. We imagine that a communication system
has an infinite number of nodes, sometimes called sources, and at time 
k some
node turns on and begins a transmission at unit rate to the server. The length
of this transmission is a random variable Lk. We assume 	Lk� k ≥ 1� is iid
and independent of 	
k� and

P
Lk > x� = F̄�x� = x−αL�x�� x→ ∞� 0 < α < 1�(2.1)

where L�x� is a slowly varying function. We note that

M =
∞∑
k=1
ε�
k�Lk��(2.2)



756 S. RESNICK AND H. ROOTZÉN

the counting function on R+ × �0�∞� corresponding to the points 	�
k�Lk��
k ≥ 1�, is a two-dimensional Poisson process on R+ × �0�∞� with mean mea-
sure λL ×F� where L stands for Lebesgue measure (cf. [28]).
The first quantity of interest is N�t�, the number of active sources at time

t. So

N�t� =
∞∑
k=1
1

k≤t<
k+Lk�

=M�	�γ� l� ∈ R+ × �0�∞�� γ ≤ t < γ + l��	
The second expression makes it clear that for each t,N�t� is a Poisson random
variable with parameter

λL ×F�	�γ� l� ∈ R+ × �0�∞�� γ ≤ t < γ + l�� = λ
∫ t
0
F̄�t− γ�dγ

= λ
∫ t
0
F̄�s�ds =�m�t�	

(2.3)

Because of Karamata’s theorem [5], [28],

m�t� ∼ λ

1− αtF̄�t� =
λ

1− αt
1−αL�t�� t→ ∞	(2.4)

During a transmission, the transmitting node is sending data to the server
at unit rate. In the fluid-queueing terminology, the source pours water into
the server at unit rate. The total accumulated input in 
0� t� is

A�t� �=
∫ t
0
N�s�ds	

Assume the server works at constant rate r (or assume in fluid-queueing ter-
minology that a store drains at rate r). The content of the buffer at time t,
X�t�, satisfies the storage equation

dX�t� =N�t�dt− r1
X�t�>0� dt(2.5)

or ([15], [2], [26])

X�t� =
t∨
s=0


A�t� −A�s� − r�t− s��

=
t∨
s=0

∫ t
s
�N�s� − r� ds�

(2.6)

where we have assumed the initial condition X�0� = 0	
From these observations, we can rapidly draw some conclusions about first-

order behavior. Consider the Laplace transform ofN�T�/m�T�. SinceN�T� is
Poisson distributed with parameter m�T� → ∞ we have for θ > 0 as T→ ∞,

E�exp	−θN�T�/m�T��� = exp	m�T�(exp	−θ/m�T�� − 1)�
→ exp	−θ� = E(exp	−θ1�)	
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This means that as T→ ∞,

N�T�/m�T� P→ 1	

Therefore, for each fixed t > 0, as T→ ∞,
N�Tt�
m�T� = N�Tt�

m�Tt�
m�Tt�
m�T�

P→ t1−α�

by (2.4). It is easy to extend this convergence [27] to weak convergence in
D
0�∞�:

N�T·�
m�T� ⇒ �·�1−α	(2.7)

Since integration is a continuous functional fromD
0�∞� �→ D
0�∞�, we have
for any t > 0 as T→ ∞,∫ t

0

N�Tu�
m�T� du⇒

∫ t
0
u1−α du = t2−α

2− α�

that is, ∫ Tt
0

N�s�
Tm�T� ds⇒

t2−α

2− α
or

A�T·�
Tm�T� ⇒ �·�2−α

2− α �(2.8)

in D
0�∞�.
Since for any t > 0,

A�t� − rt ≤X�t� ≤ A�t��
we get, as T→ ∞,

X�T�
Tm�T�

P→ 1
2− α

and hence for any t > 0, as T→ ∞,
X�Tt�
Tm�T�

P→ t2−α

2− α
and in D
0�∞�,

X�T·�
Tm�T� ⇒ �·�2−α

2− α 	(2.9)

The map x�·� �→ ∨s≤�·�x�s� is an almost surely continuous map, and there-
fore X∨�t� �= ∨s≤tX�s� has the property

X∨�T·�
Tm�T� ⇒ �·�2−α

2− α �T→ ∞�	(2.10)
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If we define

τ�L� �= inf	t > 0� X�t� ≥ L�
= inf	t > 0� X∨�t� ≥ L� = �X∨�←�L��

then (2.10) implies that for L > 0, as T→ ∞,
τ�TL�
V←�T� ⇒ ��2− α�L�1/�2−α��

where V�T� = Tm�T� ∼ λT2−αL�T�/�1− α� so that the inverse function V←

is regularly varying with index 1/�2−α�. So the time necessary for the content
to reach a critical high level L is of algebraic order L1/�2−α�. This is monotone
in α, meaning the smaller the α (i.e., the fatter the tail) the quicker a high
level is achieved.

3. Self-similar Gaussian approximations. We begin by considering
the family of processes 	GT�·��T > 0� defined by

GT�t� =
N�Tt� −m�Tt�√

m�T� � t ≥ 0(3.1)

and showing convergence to a limiting Gaussian process.
First observe that by the central limit theorem for Poisson random vari-

ables,

GT�1� =
N�T� −m�T�√

m�T� ⇒N�0�1�

in R, since m�T� → ∞� and hence for any fixed t ≥ 0,

GT�t� =
N�Tt� −m�Tt�√

m�Tt�

√
m�Tt�
m�T� ⇒ t�2−α�/2N�0�1� =N�0� t2−α��

by (2.4). In fact, GT�·� is readily seen to converge in the sense of finite-
dimensional distributions to a limiting Gaussian process. We verify this by
illustrating the technique with two time points t1 < t2.
Write (see Figure 2)

A
�T�
1 = 	�γ� l� ∈ R+ × �0�∞�� γ ≤ Tt1� Tt1 < γ + l ≤ Tt2��
A

�T�
2 = 	�γ� l� ∈ R+ × �0�∞�� γ ≤ Tt1�Tt2 < γ + l��
A

�T�
3 = 	�γ� l� ∈ R+ × �0�∞�� Tt1 < γ ≤ Tt2�Tt2 < γ + l��

so that 	A�T�
i � i = 1�2�3� are disjoint regions. Therefore, 	M�A�T�

i �� i = 1�2�3�
are independent Poisson random variables and

m
�T�
1 = E(M�A�T�

1 �) = ∫ Tt1
0
λ
(
F̄�Tt1 − γ� − F̄�Tt2 − γ�

)
dγ�
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Fig. 2. Three disjoint regions.

m
�T�
2 = E(M�A�T�

2 �) = ∫ Tt1
0
λF̄�Tt2 − γ�dγ�

m
�T�
3 = E(M�A�T�

3 �) = ∫ Tt2
Tt1

λF̄�Tt2 − γ�dγ	

Since m�T�
i → ∞ as T→ ∞ for i = 1�2�3, we have by independence and the

central limit theorem for Poisson random variables that
M�A�T�

i � −m�T�
i√

m
�T�
i

� i = 1�2�3


⇒ �Ni� i = 1�2�3��

where the limit consists of three independent N�0�1� random variables. Now
observe that

m
�T�
1 +m�T�

2 =m�Tt1�� N�Tt1� =M
(
A

�T�
1

)
+M

(
A

�T�
2

)
and

m
�T�
2 +m�T�

3 =m�tT2�� N�Tt2� =M
(
A

�T�
2

)
+M

(
A

�T�
3

)
�

and that applying Karamata’s theorem, as T→ ∞�
m

�T�
1

m�T� → t1−α1 − 
t1−α2 − �t2 − t1�1−α� =�m�∞�
1 �(3.2)

m
�T�
2

m�T� → t1−α2 − �t2 − t1�1−α =�m�∞�
2 �(3.3)

m
�T�
3

m�T� → �t2 − t1�1−α =�m�∞�
3 	(3.4)
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Therefore in R
3,

(
M�A�T�

i � −m�T�
i√

m�T� � i = 1�2�3
)

=


M�A�T�

i � −m�T�
i√

m
�T�
i

� i = 1�2�3



√
m

�T�
i

m�T�

⇒
(√
m

�∞�
i Ni� i = 1�2�3

)

and so(
GT�t1�
GT�t2�

)
= m�T�−1/2

(
M�A�T�

1 � −E(M�A�T�
1 �)+M�A�T�

2 � −E(M�A�T�
2 �)

M�A�T�
2 � −E(M�A�T�

2 �)+M�A�T�
3 � −E(M�A�T�

3 �)
)

⇒
( √

m
�∞�
1 N1 +

√
m

�∞�
2 N2√

m
�∞�
2 N2 +

√
m

�∞�
3 N3

)
	

The covariance of the limit random vector is

Var�
√
m

�∞�
2 N2� =m�∞�

2 = t1−α2 − �t2 − t1�1−α	
Now let

C�s� t� = �s ∨ t�1−α − �t− s�1−α� 0 ≤ s ≤ t�(3.5)

and let 	G�t�� t ≥ 0� be a zero mean Gaussian process whose covariance func-
tion is C�s� t�. We have G�0� = 0 and the discussion of Section 3.1 using
Billingsley’s theorem 15.5 [4] will show there is a version with continuous
paths. Note that G�·� is not stationary, does not have stationary increments
and is not a fractional Brownian motion. As we expect from Lamperti’s the-
orem [22], [12], we do have that G�·� is self-similar, since for any c > 0 and
s < t,

C�cs� ct� = c1−αC�s� t��
so that in the sense of equality of finite-dimensional distributions

G�c·� d= c�1−α�/2G�·�	
We now state function space convergence.

Theorem 1. Assume 0 < α < 1, and define GT�t� by (3.1). Then in
D
0�∞�,

GT�·� ⇒ G�·��
where the limit is a zero mean, continuous path, self-similar Gaussian process
with covariance function C�s� t� given by (3.5).
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For the proof, convergence of the finite-dimensional distributions has al-
ready been discussed and it remains to verify tightness. This is discussed in
Subsection 3.1.
If xn� x ∈ D
0�∞� and x�·� is continuous and xn → x in the Skorohod metric

on D
0�∞�, then this convergence is equivalent to local uniform convergence.
See [4]. Further, the functional

x�·� �→
∫ �·�

0
x�u�du�

is continuous with respect to local uniform convergence. From Theorem 1, we
thus quickly obtain the following corollary.

Corollary 1. Assume 0 < α < 1. In C
0�∞�, as T→ ∞,

ĜT�·� �=
∫ �·�

0
GT�u�du⇒

∫ �·�

0
G�u�du =� Ĝ�·��

that is,

ĜT�·� �=
A�T·� − ∫ T�·�

0 m�s�ds
T
√
m�T� ⇒ Ĝ�·��(3.6)

where Ĝ is a zero mean, continuous path, self-similar Gaussian process satis-
fying

Ĝ�c·� d= c�3−α�/2Ĝ�·�� c > 0

and having covariance function Ĉ�s� t� given by

Ĉ�s� t� =
∫ s
u=0

∫ t
v=0
C�u� v�dudv� 0 ≤ s ≤ t	

3.1. Tightness for the contents process. We now verify that the family of
processes 	GT�·��T > 0� is tight. The proof uses chaining and bracketing
arguments as described in [32]. As in Chapter 2.2 of [32], we define

ψ�x� = ex − 1� x ≥ 0�
and let �X� be the Orlicz norm defined by

�X� = inf	c > 0� Eψ�c−1�X�� ≤ 1�	
We begin with a simple lemma.

Lemma 1. Suppose N is a Poisson random variable with mean m. Then
for m ≥ 1, there exists a constant K not depending on m ≥ 1 such that

�N−m� ≤K√
m	(3.7)
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Proof. Write

�N−m� ≤ ��N−m�+� + ��N−m�−�(3.8)

and we claim

��N−m�+� ≤K1
√
m�(3.9)

with a similar inequality for the other piece. Now, from the definition of the
Orlicz norm, keep in mind that (3.9) requires us to show

E exp	�N−m�+�/K1
√
m� ≤ 2	(3.10)

With p+ = supm≥1 P
N ≤ m� ∈ �0�1�, since by the central limit theorem
P
N ≤m� → 1/2� as m→ ∞� we have for a constant c > 0,

E exp �c−1�N−m�+� ≤ E exp �c−1�N−m�� +P
N ≤m�
= exp	m�exp �c−1� − 1− c−1�� + p+�

by the standard formula for the moment generating function for the Poisson
distribution. So E exp	c−1�N−m�+� ≤ 2 if

exp �c−1� − 1− c−1 ≤m−1 log�2− p+�	(3.11)

From m ≥ 1 and 0 < p+ < 1 we get c−1 ≤ 2, and then using the inequality
ex − 1− x ≤ exx2/2, x > 0, we get

exp �c−1� − 1− c−1 ≤ �c−1�2e2/2�
and hence (3.11) holds if

�c−1�2 ≤m−1 log�2− p+�2e−2	
The claim (3.9) follows with

K1 =
1√

2e2 log�1+P
N > m�� �

and since parallel arguments provide a bound for the second piece in (3.8), the
lemma is proved. ✷

To prove tightness of 	GT�·�� in D
0�∞�, it is enough to show that 	GT�t��
0 ≤ t ≤K0� is tight in D
0�K0� for any K0 > 0. For simplicity of notation we
suppose K0 = 1	 By [4], Theorem 15.5, tightness in D
0�1� occurs if for any
ε > 0, η > 0, there are T0 and δ > 0 such that

P
 sup
�s−t�≤δ
0≤s� t≤1

�GT�t� −GT�s�� > ε� < η for T ≥ T0	(3.12)

For convenience we will use δ’s which are dyadic rationals of the form 2−i for
i a positive integer and define

Fj �= 	k2−j � 0 ≤ k ≤ 2j�	
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Referring to the probability in (3.12), we fix an integer i to satisfy the
inequality (3.17) below and for any ν ≥ i which grows with T in a specific way
given by (3.16) below, we have for δ = 2−i that

sup
�s−t�<δ

�GT�t� −GT�s�� ≤ max
s� t∈Fν� �s−t�≤δ

�GT�t� −GT�s��

+2
2ν−1∨
k=0

2−ν∨
u=0

�GT�k2−ν + u� −GT�k2−ν��	

So by standard arguments, (3.12) holds if for given ε� η > 0, there are
T0� δ > 0 such that

P

[
max

s� t∈Fν� �s−t�≤δ
�GT�t� −GT�s�� > ε

]
< η for T ≥ T0(3.13)

and if

2ν−1∨
k=0

2−ν∨
u=0

�GT�k2−ν + u� −GT�k2−ν� �
P→ 0	(3.14)

We now state a lemma. We continue to denote byK generic constants whose
specific value is immaterial. The value of K need not be the same with each
usage.

Lemma 2. Define

mj =
2j∨
k=1

�GT�2−jk� −GT�2−j�k− 1���	(3.15)

Then, for T so large that m�T2−j� ≥ 1, we have for some constant K =
K�m�T2−j��,

�mj� ≤Kj
√
m�T2−j�
m�T� 	

Proof. Refer to Figure 2 with t1 = �k− 1�/2j and t2 = k/2j. Then

�GT�k2−j� −GT��k− 1�2−j�� ≤
∥∥∥∥∥M�A�T�

1 � −E�M�A�T�
1 ��√

m�T�

∥∥∥∥∥
+
∥∥∥∥∥M�A�T�

3 � −E�M�A�T�
3 ��√

m�T�

∥∥∥∥∥
≤K



√
E�M�A�T�

1 ��
m�T� +

√
E�M�A�T�

3 ��
m�T�



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by Lemma 1, providedT is so large thatE�M�A�T�
1 ��∧E�M�A�T�

3 �� ≥ 1	 [Recall
(3.2) and (3.4).] However both expectations are bounded by m�T2−j� (for A�T�

1
this requires a moment’s reflection from the definition) so we end with a bound
of the form (remember the K’s can change)

�GT�k2−j� −GT��k− 1�2−j�� ≤K
√
m�T2−j�
m�T� 	

Then from Lemma 2.2.2, page 96 of [32], we have∥∥∥∥∥
2j∨
k=1

�GT�k2−j� −GT��k−1�2−j��
∥∥∥∥∥≤Kψ←�2j�

2j∨
k=1

∥∥∥∥∥GT�k2−j� −GT��k−1�2−j�
∥∥∥∥∥

and the result follows from the form of ψ. ✷

We now verify (3.13) and (3.14). We first consider (3.13) which uses a chain-
ing argument. Begin by defining the integer ν = ν�T� by

2−ν ≥ m
←�1�
T

> 2−ν−1�(3.16)

so that as T→ ∞, ν→ ∞. For a constantK′, given ε� ε′ < 1−α and η, choose
i fixed such that

2K′
∞∑
j=i
j�2−j�1−α−ε′ < ε

log�1+ η−1� �(3.17)

and assume T is large enough to make ν ≥ i. For t ∈ 
0�1�, define tj �=
sup	w ∈ Fj � w ≤ t�. Then t ∈ Fν implies Tν = t, and tj−1 equals tj or
tj − 2−j, and �t− s� ≤ 2−i implies ti = si or ti = si ± 2−i	 Write

GT�t� =
ν∑

j=i+1

(
GT�tj� −GT�tj−1�

)+GT�ti�
with a similar expression for s. It follows that if t� s ∈ Fν, �t− s� ≤ 2−i,

�GT�t� −GT�s�� ≤
ν∑

j=i+1
�GT�tj� −GT�tj−1�� +

ν∑
j=i+1

�GT�sj� −GT�sj−1��

+�GT�ti� −GT�si��

≤ 2
ν∑

j=i+1
mj +mi ≤ 2

ν∑
j=i
mj�

where mj is defined in (3.15). This bound does not depend on the specific
s� t ∈ Fν with �t− s� ≤ 2−i, so

ξ �= ∨
t� s∈Fν� �t−s�≤2−i

�GT�t� −GT�s�� ≤ 2
ν∑
j=i
mi
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and therefore,

�ξ� =
∥∥∥∥∥

∨
t� s∈Fν� �t−s�≤2−i

�GT�t� −GT�s��
∥∥∥∥∥ ≤

ν∑
j=i

�mi�

≤ 2K
ν∑
j=i
j

√
m�T2−j�
m�T� �

by Lemma 2, provided m�T2−j� ≥ 1 for j = i 	 	 	 � ν; but this is guaranteed by
the choice of ν in (3.16). The Potter bounds on a regularly varying function
(see [5], [14], [28]) guarantee that for given ε′ > 0, there exists T0 such that
for T2−ν ≥ T0,

m�T2−ν�
m�T� ≤ 2�2−ν�1−α−ε′ 	

Therefore,

�ξ� ≤ 2K′
ν∑
j=i
j�2−j�1−α−ε′ ≤ ε/ log�1+ η−1�

from the choice of i in (3.17). Thus,

P
 ∨
s� t∈Fν

�GT�t� −GT�s�� > ε� = P
ξ > ε� = P
ψ�ξ/c� > ψ�ε/c�� ≤
Eψ�ξ/c�
ψ�ε/c�

and choosing c = inf	c � Eψ�ξ/c� ≤ 1� we get the bound

≤ 1
ψ�ε/�ξ�� = 1

exp	ε/�ξ�� − 1

≤ 1
exp	ε log�1+ η−1�/ε� − 1

= η�
as required for the proof of (3.13).
We now cope with (3.14). Refer to Figure 2 and let A�T�

1 �k2−ν� �k+u�2−ν� be
the A�T�

1 region of the figure with t1 = k2−ν and t2 = �k+u�2−ν with a similar
definition of A�T�

3 �k2−ν� �k+ u�2−ν�. Then√
m�T� sup

0≤u≤2−ν
�GT�k2−ν + u� −GT�k2−ν��

= sup
0≤u≤2−ν

∣∣∣M�A�T�
1 �k2−ν� �k+ u�2−ν� −EM(

A
�T�
1 �k2−ν� �k+ u�2−ν�)

+M�A�T�
3 �k2−ν� �k+ u�2−ν� −EM(

A
�T�
3 �k2−ν� �k+ u�2−ν�)∣∣∣

≤M�A�T�
1 �k2−ν� �k+ 1�2−ν� +M(�k2−ν� �k+ 1�2−ν� × 
0�∞�)
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+m(A�T�
1 �k2−ν� �k+ 1�2−ν�)+T2−ν

≤
∣∣∣M�A�T�

1 �k2−ν� �k+ 1�2−ν�� −E(M�A�T�
1 �k2−ν� �k+ 1�2−ν��)∣∣∣

+
∣∣∣M(�k2−ν� �k+ 1�2−ν� × 
0�∞�)−E(M(�k2−ν� �k+ 1�2−ν� × 
0�∞�))∣∣∣

+2m�A�T�
1 �k2−ν� �k+ 1�2−ν�� + 2T2−ν	

Therefore, from Lemma 1, since m�T2−ν� ≥ 1, and T2−ν ≥ 1 [by (3.16)],∥∥∥∥ sup
0≤u≤2−ν

∣∣∣GT�k2−ν + u� −GT�k2−ν∣∣∣
∥∥∥∥ ≤K

√
m�T2−ν�
m�T� +K

√
2−ν

m�T�

+2m�T2−ν�√
m�T� + 2T2−ν√

m�T�
= A+B+C+D	

Thus, again by Lemma 2.2.2, page 96 of [32],∥∥∥∥∥
2ν−1∨
k=0

2−ν∨
u=0

∣∣∣GT�k2−ν + u� −GT�k2−nu�∣∣∣
∥∥∥∥∥ ≤Kψ←�2ν��A+B+C+D��

where ψ←�2ν� is bounded by a constant times log T. Further, as T→ ∞,

A ≤K log T

√
m�2m←�1��
m�T� → 0�

B ≤K log T

√
2m←�1�
Tm�T� → 0�

C ≤ 2 log Tm�2m←�1�T−1�√
m�T� → 0�

D ≤ 4 log T m
←�1�√
m�T� → 0

and (3.14) and hence tightness is proved. ✷

4. Gaussian approximation for the workload process. We now in-
vestigate a Gaussian approximation to the workload process defined by (2.6).
In order to do this, we must consider the work rate r as a function of T and
so we write r = rT and set for T > 0, t ≥ 0,

XT�t� =
Tt∨
s=0

(
A�Tt� −A�s� − rT�Tt− s�

)
=

t∨
s=0

(
A�Tt� −A�Ts� − rTT�t− s�

)
	

(4.1)
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We will continue the practice of putting a hat on a function to indicate the
integral and thus

m̂�t� =
∫ t
0
m�s�ds	

Another notational convention that we will use is that if f� R+ �→ R+, we will
write

f∨�t� =
t∨
s=0
f�s�

for the supmeasure generated by f evaluated on 
0� t�.
An appropriate way to let r depend on t is to fix y > 0 and set

r = rT =m�Ty�� r > 0� y > 0	(4.2)

Note that from (4.1), the release rate for XT�·� is TrT = Tm�Ty� and since
(2.8) holds, this form of the release rule is needed to provide some balance to
the input.
From (3.6) and (4.2) we can modify (4.1) to get

XT�t� = T
√
m�T�ĜT�t� + m̂�Tt� −Tm�Ty�t+

t∨
s=0


Tm�Ty�s−A�Ts��

and after dividing through by Tm�T� and rearranging terms we get
XT�t�
Tm�T� −

(
m̂�Tt�
Tm�T� −

m�Ty�
m�T� t

)
= ĜT�t�√

m�T� +
t∨
s=0
ξT�s��(4.3)

where

ξT�s� �=
m�Ty�
m�T� s−

A�Ts�
Tm�T� 	(4.4)

Note that ξT�·� is continuous, ξT�0� = 0� and the derivative is
d

ds
ξT�s� =� ξ′T�s� =

m�Ty�
m�T� − N�Ts�

m�T� 	

Furthermore, from the definition (4.4) and (3.6) we have

ξT�s� =
m�Ty�
m�T� s−

(
ĜT�s�√
m�T� +

m̂�Ts�
Tm�T�

)
(4.5)

so that √
m�T�(ξT�s� − bT�s�) = −ĜT�s� ⇒ −Ĝ�s�(4.6)

in D
0�∞�, where we have written

bT�s� =
m�Ty�
m�T� s−

m̂�Ts�
Tm�T� 	
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To evaluate the supremum in (4.3), the idea is the following. Note that

d

ds
bT�s� =� b′T�s� =

m�Ty�
m�T� − m�Ts�

m�T�
is strictly positive for s < y and strictly negative for s > y and thus bT�·� has
a unique maximum at y. The process ξT�·� is (locally) uniformly close to bT�·�
and hence the place where ξT�·� achieves its maximum should be close to y
and ξ∨T�t� should be of the order of bT�y� and

√
m�T��ξ∨T�t� − bT�y�� should

be near −Ĝ�y� from (4.6).
We now examine these ideas more carefully.
Set

sT = sT�y� �= inf	s ≥ 0� N�Ts� ≥m�Ty��
= inf	s ≥ 0� N∨�Ts� ≥m�Ty�� = �N∨�←�m�Ty��

T

(4.7)

where �N∨�← is the left-continuous inverse of the monotone function N∨.
Observe that on �0� sT�, ξT�·� has a nonnegative derivative and hence is non-
decreasing. Therefore, for t < sT, the maximum in (4.3) is achieved at t.
From (4.1) it is immediate that X�Tt� = 0 for t ≤ sT. So when analyzing

the asymptotic behavior of XT�·�, we will concentrate on the region where
t > sT.
It turns out that sT is approximately equal to y. To see this, observe that

from (2.7), we get by applying the maximum functional that

N∨�Ts�
m�T�

P→ s1−α

in D
0�∞� and since the limit is continuous and increasing we may invert to
get

�N∨�←�sm�T��
T

P→ s1/�1−α�	

Since the limit is continuous, the convergence is in the topology of local uni-
form convergence and hence we may replace s with

m�Ty�/m�T� → y1−α

to get

sT�y� =
�N∨�←�m�Ty��

T
→ y(4.8)

in D
0�∞�.
The process N�·� has only finitely many jumps of size ±1 in any finite

interval and therefore ξ′T�·� is piecewise constant with jumps of size ±1/m�T�.
Therefore ξT�·� is piecewise linear. Define a local maximum to be any point
s
�0�
T such that for some neighborhood 5 of s�0�T ,

ξT�s�0�T � ≥ ∨
v∈5
ξT�v��
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and for some v ∈ 5� ξT�s�0�T � > ξT�v�	 The smallest local maximum is at sT. At
any local maximum s�0�T , there must be a turning point; that is,

ξ′T�s�0�T +� ≤ 0� ξ′T�s�0�T −� ≥ 0
and because ξ′T�·� changes by jumps of ±1/m�T�,

0 ≤ ξ′T�s�0�T � = N�Ts�0�T �
m�T� − m�Ty�

m�T� ≤ 1
m�T�

or

0 ≤N�Ts�0�T � −m�Ty� ≤ 1�(4.9)

where we have assumed N�·� is right continuous.
Fix a large t′ > y and letMT�t′� be the set of local maxima in 
0� t′�. Since

sT
P→ y from (4.8), we have for t′ > y that P
MT�t′�  = ∅� → 1, as T→ ∞. We

begin with an analysis of the asymptotics of any s�0�T ∈MT�t′� for t′ > y. We
state the results as a proposition.

Proposition 1. Suppose F satisfies the regular variation condition (1.1)

with 0 < α < 1. Fix t′ > y. If MT�t′�  = ∅, let s
�0�
T be any local maximum in

MT�t′�. IfMT�t′� = ∅� set s
�0�
T = t′.

(i) First-order behavior: as T→ ∞�

s
�0�
T

P→ y	

In fact,

�s�0�T − y � ≤ ε1�T� t′� y�
P→ 0� T→ ∞�(4.10)

where ε1�T� t′� y� is a bound depending only on T� t′� y.
(ii) Second-order behavior: assume in addition to (1.1) that the following

second-order condition holds. For some function ψ� R+ �→ R, we have

lim
T→∞

√
m�T�

(
m�Ts�
m�T� − s1−α

)
= ψ�s�� s ≥ 0	(4.11)

Then as T→ ∞�

G∗
T�y� �=

√
m�T�(s�0�T − y)⇒ − 1

1− αy
αG�y� =� G∗�y�	(4.12)

In fact, ∣∣∣∣
√
m�T�(s�0�T − y)+ yαGT�y�

1− α

∣∣∣∣ ≤ ε2�T� t′� y� P→ 0(4.13)

as T→ ∞, where ε2�T� t′� y� is a bound depending only on T� t′� y.
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Proof. (i) From (4.9), on 
M�t′�  = ∅�,

0 ≤
√
m�T�GT�s�0�T � +m�Ts�0�T � −m�Ty� ≤ 1�

so that

0 ≤ GT�s
�0�
T �√

m�T� + m�Ts�0�T �
m�T� − m�Ty�

m�T� ≤ 1
m�T� 	(4.14)

Set

vT�u� =
m�Tu�
m�T� �(4.15)

so that vT�u� → u1−α� locally uniformly in u ≥ 0 as T→ ∞ since the index of
regular variation is positive [5], [14]. Also, define

B1 =
GT�s�0�T �√
m�T� + vT�s�0�T � − vT�y��

so that

0 ≤ B11
M�t′� =∅� ≤
1

m�T� 	(4.16)

On 
M�t′�  = ∅�,

vT�s�0�T � = B1 + vT�y� −
GT�s�0�T �√
m�T�

and

�s�0�T − y� =
∣∣∣v←T (B1 + vT�y� − GT�s

�0�
T �√

m�T�
)− y∣∣∣

≤ sup
{
�v←T �s� − y� � vT�y� −

�GT�∨�t′�√
m�T�

≤ s ≤ 1
m�T� + vT�y� +

�GT�∨�t′�√
m�T�

}

=� B2	
On 6,

�s�0�T − y� ≤ B2 + �t′ − y�1
sT≥t′ �	
The right side is a bound which is independent of the particular local maxi-
mum and which converges in probability to 0. This follows from the uniform
convergence of vT�u� in (4.15) and GT ⇒ G which implies �GT�∨�t′� ⇒ �G�∨�t′�
in R.
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(ii) Rewrite (4.11) as

vT�s� =
ψT�s�√
m�T� + s

1−α�(4.17)

where ψT → ψ locally uniformly as T→ ∞. From (4.14), on 
M�t′�  = ∅�,√
m�T�

(
vT

(
s
�0�
T − vT�y�

))
+GT�y� =

√
m�T�B1 +GT�y� −GT

(
s
�0�
T

)
or using (4.17), on 
M�t′�  = ∅�,√

m�T�
(
�s�0�T �1−α − y1−α

)
+GT�y�

=
√
m�T�B1 +GT�y� −GT

(
s
�0�
T

)
−
(
ψT

(
s
�0�
T

)
− ψT�y�

)
(4.18)

=� B3	
Note, as in (i),

�B3�1
M�t′� =∅� ≤ ε2�T� t′� y�
P→ 0	

Furthermore, √
m�T�

((
s
�0�
T

)1−α
− y1−α

)
= B3 −GT�y�

and by the mean value theorem, the left side is√
m�T�

(
s
�0�
T − y

)
�1− α��y∗�−α�

where y∗ is between s�0�T and y, so√
m�T�

(
s
�0�
T − y

)
+ yαGT�y�

1− α
= (
B3 +GT�y�

(
yα − �y∗�α)) /�1− α�

=� B4
on 
M�t′�  = ∅�. Therefore, on 6,√

m�T�
(
s
�0�
T − y

)
+ yαGT�y�

1− α

= B41
M�t′� =∅� +
(√
m�T��t′ − y� + yαGT�y�

1− α

)
1
M�t′�=∅� =� B5

and

�B5� ≤ ε3�T� t′� y�
P→ 0	 ✷
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Remark 1 [Remarks on the second-order condition (4.11)]. Condition
(4.11) is equivalent to

lim
T→∞

sα−1Tα−1m�Ts� −Tα−1m�T�
Tα−1

√
m�T� = sα−1ψ�s�	

This places it in a standard framework of extended regular variation theory.
See [5], [14]. Since the denominator Tα−1

√
m�T� is regularly varying with

index,

α− 1+ 1− α
2

= −
(
1− α
2

)
�

there is a second-order index,

ρ �= −
(
1− α
2

)
< 0

and l ∈ R+ such that

lim
T→∞

Tα−1m�T� = l
exists and for a constant c,

l−Tα−1m�T� ∼ cTα−1
√
m�T��

which is regularly varying with index −�1 − α�/2. This means that for some
other constant k, the limit ψ is of the form

ψ�s� = ks1−α�sρ − 1�	

Remark 2. If we consider s�0�T as a function of y, the results of Proposition
1 could be formulated in the space D
0�∞�.

We are now ready to evaluate the limit law for XT�·�. Fix t′ ≥ t ≥ y.
The process ξT�·� is continuous on 
0� t� and hence assumes its maximum
somewhere in 
0� t�. With probability approaching 1, the maximum cannot be
at 0, since ξT�0� = 0 and

P
ξ∨T�t� = 0� = P
ξT�s� ≤ 0� ∀0 ≤ s ≤ t�

≤ P
ξT�y� ≤ 0� = P
[
A�Ty�
Tm�T� ≥ m�Ty�

m�T� y
]
	

Since regular variation implies

m�Ty�
m�T� y→ y1−αy = y2−α

and from (2.8),

A�Ty�
Tm�T�

P→ y2−α

2− α
and 2− α > 1� we have P
ξ∨T�t� = 0� → 0� as T→ ∞.
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If t > y, with probability approaching 1 as T→ ∞, the maximum in 
0� t�
cannot be assumed at t since then ξT�t� ≥ ξT�y�. However,

P
ξT�t� ≥ ξT�y�� = P
[
m�Ty�
m�T� �t− y� ≥ A�Tt� −A�Ty�

Tm�T�
]
	

Since (2.8) implies

A�Tt� −A�Ty�
Tm�T�

P→ t2−α − y2−α
2− α > y1−α�t− y� = lim

T→∞
m�Ty�
m�T� �t− y��

we have P
ξT�t� ≥ ξT�y�� → 0, as T→ ∞.
So apart from events whose probability approach 0 as T → ∞, either the

maximum is assumed at an internal point of 
0� t� and is hence a local maxi-
mum, or if t = y, the maximum might be assumed at y or be assumed at an
internal point. Let s�0�T be the point where the maximum is assumed on 
0� t�.
If s�0�T is internal to 
0� t�, then it is a local maximum and√

m�T�(ξ∨T�t� − bT�y�) = √
m�T�

(
ξT

(
s
�0�
T

)
− bT�y�

)
=
√
m�T�

(
ξT

(
s
�0�
T

)
− bT

(
s
�0�
T

))
+
√
m�T�

(
bT

(
s
�0�
T

)
− bT�y�

)
= −ĜT�s�0�T � +

√
m�T�

(
bT

(
s
�0�
T

)
− bT�y�

)
�

while if t = y and s�0�T = y, then√
m�T�

(
ξ∨T�t� − bT�y�

)
=
√
m�T�

(
ξT�y� − bT�y�

)
= −ĜT�y�	

In either case,∣∣∣√m�T�
(
ξ∨T�t� − bT�y�

)
+ ĜT�s�0�T �

∣∣∣
≤
√
m�T��bT

(
s
�0�
T

)
− bT�y��

=
∣∣∣vT�y�√m�T�

(
s
�0�
T − y

)
− vT�y#�

√
m�T��s�0�T − y�

∣∣∣�
where, by the mean value theorem, y# is between y and s�0�T . Note the second
absolute value term converges in probability to 0. Summarizing, we observe
that by (4.12),∣∣∣√m�T�(ξ∨T�t� − bT�y�)+ ĜT�s�0�T �

∣∣∣ ≤ ε4�T� t′� y� P→ 0	(4.19)
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From (4.3), we get

XT�t�
Tm�T� −

(
m̂�Tt�
Tm�T� −

m�Ty�
m�T� t

)
= ξ∨T�t� +

ĜT�t�√
m�T�

= ĜT�t� − ĜT�s
�0�
T �√

m�T� + op�1�√
m�T� + bT�y�

and therefore, setting

cT�t� �=
m̂�Tt�
Tm�T� −

m�Ty�
m�T� t+

(
m�Ty�y
m�T� − m̂�Ty�

Tm�T�
)
�(4.20)

we conclude that in D
y�∞�,√
m�T�

(
XT�t�
Tm�T� − cT�t�

)
= ĜT�t� − ĜT�s�0�T � + op�1�

⇒ Ĝ�t� − Ĝ�y�	
As a consequence of the second-order assumption (4.11), the centering by

cT�t� can be replaced by a function independent ofT at the cost of a translation
in the limit. To see this, observe that

cT�t� =
(
m̂�Tt� − m̂�Ty�

Tm�T�
)
−
(
m�Ty�
m�T� �t− y�

)

→ t2−α − y2−α
2− α − y1−α�t− y� =� c∞�t�

(4.21)

and√
m�T�(cT�t� − c∞�t�)
=
√
m�T�

(
m̂�Tt� − m̂�Ty�

Tm�T� − t
2−α − y2−α
2− α −

(
m�Ty�
m�t� − y1−α

)
�t− y�

)

=
√
m�T�

(∫ t
y

m�Tu�
m�T� du−

∫ t
y
u1−α du

)
−
√
m�T�

(
m�Ty�
m�t� − y1−α

)
�t− y�

=
∫ t
y

√
m�T�

[m�Tu�
m�T� − u1−α

]
du−

√
m�T�

(
m�Ty�
m�t� − y1−α

)
�t− y�

→
∫ t
y
ψ�u�du− ψ�y��t− y�	

Therefore,√
m�T�

(
XT�t�
Tm�T� − c∞�t�

)

=
√
m�T�

(
XT�t�
Tm�T� − cT�t�

)
+
√
m�T� �cT�t� − c∞�t��

⇒ Ĝ�t� − Ĝ�y� +
∫ t
y
ψ�u�du− ψ�y��t− y�	
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We summarize by stating the following theorem.

Theorem 2. Suppose 	XT�t�� t ≥ 0� is the contents process of (4.1) and
1−F satisfies the first-order condition (1.1) and second-order condition (4.11).
Suppose the work rate r depends on T so that (4.2) holds for a fixed y > 0.
Then for t ≤ sT�y�, XT�t� = 0 and for t < y we have XT�t� ⇒ 0 in D
0� y�.
Furthermore in D
y�∞�,√

m�T�
(
XT�·�
Tm�T� − cT�·�

)
⇒ Ĝ�·� − Ĝ�y��(4.22)

where cT�·� is given in (4.20) and√
m�T�

(
XT�t�
Tm�T� − c∞�t�

)
⇒ Ĝ�t�− Ĝ�y�+

∫ t
y
ψ�u�du−ψ�y��t−y��(4.23)

where c∞�·� is defined by (4.21) and ψ is from the second-order condition (4.11).

So given a work rate r, define y by y = m←�r�/T, and then for t > y� the
content XT�t� is approximately distributed as

Tm�T�
(
Ĝ�t� − Ĝ�y�√

m�T� + cT�t�
)
	

5. Gaussian approximation for buffer overflow times. We now apply
the results of the previous section to obtain Gaussian approximations to the
buffer overflow probabilities. We begin with the following lemma which is a
minor variant of Lemma 3.3.3, page 45, and Lemma 3.1.4, page 39, of [33].

Lemma 3. Suppose f�·� ∈ C
0�∞�, xn�·� ∈ D
0�∞� and g satisfies g�0� =
0, g�∞� = ∞, g is differentiable and g′�x� > 0 on 
0�∞�. Then if 	cn� is a
sequence satisfying cn → ∞,

cn�xn − g� → f�

locally uniformly on 
0�∞�, implies

cn�x←n �γ� − g←�γ�� → (−f ◦ g�γ�) ( 1
g′�γ�

)
�

for each γ > 0 where

x←n �γ� = inf	s ≥ 0� xn�s� ≥ γ�	

We seek to apply this lemma to Theorem 2. Define

d∞�s� = c∞�y+ s�� DT�s� =XT�y+ s�� s ≥ 0	(5.1)
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From Theorem 2 we get in D
0�∞�,√
m�T�

(
DT�s�
Tm�T� − d∞�s�

)
⇒H�s��

where

H�s� �= Ĝ�y+ s� − Ĝ�y� +
∫ y+s
y

ψ�u�du− ψ�y�s	

Lemma 3 yields the consequence that for γ > 0,√
m�T�

(( DT�·�
Tm�T�

)←
�γ� − d←

∞�γ�
)
⇒ −H�d∞�γ��

(
1

c′∞�γ�
)
�= L�γ�	(5.2)

Observe( DT�·�
Tm�T�

)←
�γ� = inf	s ≥ 0� XT�y+ s� ≥ Tm�T�γ�

= �inf	v ≥ 0� XT�v� ≥ Tm�T�γ� − y�1
∨yu=0XT�u�≤Tm�T�γ�	

However, it is unlikely that in 
0� y� the process XT�·� can exceed Tm�T�γ
since

P

[
y∨
u=0
XT�u� ≥ Tm�T�γ

]
≤ P

[
sT < y�

y∨
u=sT

XT�u� ≥ Tm�T�γ
]

(
since XT�u� = 0 for u < sT

)

≤ P
[
y−ε≤ sT <y�

y∨
u=sT

XT�u� ≥Tm�T�γ
]
+op�1�

(
since sT

P→ y
)

≤ P
[
y− ε ≤ sT < y�

y∨
u=y−ε

XT�u� ≥ Tm�T�γ
]

≤ P 
A�Ty� −A�T�y− ε�� ≥ Tm�T�γ�
→ 0�

as T→ ∞ for sufficiently small ε > 0 by (2.8.)
We summarize this discussion.

Theorem 3. Suppose the assumptions of Theorem 2 hold and set

τT�v� = inf	s ≥ 0� XT�s� ≥ v�
for the first time buffer content exceeds v. Then as T → ∞, we have for each
γ > 0, √

m�T� �τT�Tm�T�γ� − �y+ d←
∞�γ�� ⇒ L�γ��

where L is defined in (5.2) and d∞�γ� is given in (5.1) and (4.21).
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6. Concluding remarks. It remains to be seen how useful and accurate
these Gaussian approximations will be. We are currently examining telecom-
munication packet flow rate data, some of which do and some of which do not
look Gaussian. As remarked in [31] (see also [20]), one has a choice of whether
to try to approximate by Gaussian processes or by jump processes. We will be
investigating the fit of Gaussian processes to data and also seeking alternate
approximations.
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