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r-SCAN STATISTICS OF A MARKER ARRAY IN MULTIPLE
SEQUENCES DERIVED FROM A COMMON PROGENITOR1

By Samuel Karlin and Chingfer Chen

Stanford University

This study is motivated by problems of molecular sequence compar-
isons for biological traits conserved or lost over evolution time. A marker of
interest is distributed in the genome of the ancestor and inherited among l
offspring species which descend from this common ancestor. Each marker
will be retained or lost during the evolution of the descendent species. The
objective of the analysis here is to ascertain probabilities of clustering or
overdispersion of the marker array among the sequences of the descendent
species. Limiting distributions for the extremal r-scan statistics (defined
in text) of the trait distributed among the l dependent offspring processes
are derived by adapting the Chen–Stein Poisson approximation method.
Results that accommodate new occurrences of the trait (gene) arising from
duplications and transposition occurrences are also described. The r-scan
statistical analysis is further applied to a multi sequence combined Poisson
model where �B1� � � � �Bl� are generated from m independent Poisson pro-
cesses �A1� � � � �Am� such thatBk = ∪i∈Zk

Ai, where �Zk�1≤k≤l are subsets
of �1�2� � � � �m�.

1. Introduction. The r-scan statistics (see below) of a single sequence
were introduced in Karlin and Macken (1991) for purposes of characterizing
nonrandomness in the distribution of a marker array in DNA or amino acid
sequence data. r-scan statistics can also be used to identify significant peaks
in analysis of counts in sliding windows. The new models and statistics pre-
sented in this paper aim to handle correlated sequence data and multiple
arrays of markers. A marker of interest is distributed in the genome of an
ancestor and species descendent from this common ancestor where their DNA
sequences maintain some characteristics of the ancestor. Each marker will
be retained or lost and some will be newly acquired during the evolution of
the descendent species. The objective of our analysis is to evaluate probabil-
ities of clustering or overdispersion of the marker array across the ensemble
sequences of the descendent species. In separate publications, we will present
models that extend the r-scan statistics to deal with processes of gene and/or
marker deletions, duplication and displacement.

Studies of inhomogeneities in long DNA sequences can be insightful to the
organization of the human genome. Particular markers (e.g., specific DNA
restriction sites, nucleosome placements, gene locations) are distributed over
the genome along chromosomes. Let Xi be the gap (in DNA units) between
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710 S. KARLIN AND C. CHEN

the ith and the i+ 1th markers. Questions about spacings of a marker array
and general issues of sequence heterogeneity lead to statistical considerations
of the r-scan process �Ri =

∑i+r−1
j=i Xj�, the array of distances between the

ith and the i+ rth markers, i = 1�2�3� � � � � where r is an integer parameter.
By varying r, organization on different scales can be detected, for example,
r = 2 and 3 can aptly detect near neighbor interactions while r = 10 can dis-
cern marker concentrations over a greater range. Moreover, the r-scan 	r ≥ 2�
statistics are better able to tolerate measurement errors and reduce effects
of statistical fluctuations compared with r = 1 lengths. For previous litera-
ture and applications of r-scan statistics in molecular sequence analysis, see
Karlin and Macken (1991), Dembo and Karlin (1992), Karlin and Brendel
(1992), Masse, Karlin, Schachtel and Mocarski (1992), Karlin and Cardon
(1994), Karlin, Mrázek and Campbell (1996), Gerstein (1997) and Reinert and
Schbath (1998). For studies of clustering in other domains with an extensive
bibliography, see Naus (1979, 1982).

Consider a marker distributed in the genome of an ancestor and l species
descendent from this common ancestor. The DNA sequences of the l offspring
species maintain some characteristics of the forebear according to the follow-
ing assumptions. (1) The occurrences of the marker in the ancestor sequence
are distributed randomly as the points of a renewal process A following a dis-
tribution function F	x� governing the interval lengths �Xi�i≥1 between suc-
cessive marker points. (2) With each marker point in the ancestor sequence,
there is a corresponding random indicatorD of l components that describes the
retention of the marker in the l offspring sequences. Thus if the kth component
of the indicator is 1, the marker is retained in the kth species sequence and
deleted otherwise. (3) All the indicator variables �Di�i≥1 are independently
distributed following the distribution PD on �0�1�l. Then the construction of
the l offspring processes from the ancestor array A depends on the realiza-
tion of �Di�i≥1 such that if the kth component of Di equals 1, the ith marker
point of A is maintained in the kth sequence; otherwise, there is no point in
the kth sequence at the given location. The following display illustrates the
construction:

A • • • • • • •
A1 • • • •
A2 • • • •

where D1 =
(1
0

)
�D2 =

(0
1

)
�D3 =

(0
0

)
�D4 =

(1
1

)
�D5 =

(0
1

)
and D6 =

(1
0

)
� � � � �

There is another model, which we refer to as the combined Poisson model,
which is also of interest from an evolutionary perspective. Explicitly, given
m independent Poisson processes A1�A2� � � � �Am, there are l dependent point
processesB1�B2� � � � �Bl, constructed from these independent arrays according
to l subsets of �1�2� � � � �m�, labeled Z1�Z2� � � � �Zl. The point process Bk�1 ≤
k ≤ l, is generated by aggregating all the events (points) from �Ai�i∈Zk

, pro-
ducing Bk = ∪i∈Zk

Ai. Let �ai�mi=1 denote the parameters for the Poisson pro-
cesses �Ai�mi=1. The parameter for the Poisson process Bk is bk = ∑

i∈Zk
ai.
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We assume, for convenience, a smallest value among �bk�lk=1� b1 < min	b2�
b3� � � � � bl�. In Section 5, the asymptotic distributions of the smallest and the
largest r-scan lengths among the l dependent arrays �Bk�lk=1 is set forth rely-
ing on Theorems 1 and 2 of this paper.

In the course of evolution, the number of markers in each offspring species
sometimes increases (e.g., by duplications and transpositions caused by species
specific selection). We can accommodate this effect in the following formula-
tion. Assume the ancestral marker is distributed as a homogeneous Poisson 	α�
array. Consider l descendent sequences of retained or deleted trait positions.
Assume, in addition, new trait positions are added to each offspring sequence
distributed as independent Poisson processes with parameters γ1� γ2� � � � � γl,
respectively. Then the trait distribution in sequence k� k = 1�2� � � � � l, is again
Poisson with parameter αpk+γk, where pk is a probability that a trait position
of the ancestral sequence is retained in the kth offspring process.

A concrete example for the combined Poisson model related to evolutionary
phylogeny can be instructive. Consider three independent Poisson processes on
	0�∞� with parameters α�β and γ, labeled ProcessesA�B and C, respectively.
We construct two dependent Poisson processes A1 and A2 from A in such a
way that each A point is retained in Processes A1 and A2 with probability p1
and p2 separately. This applies independently for each point of A. Join points
from Processes A1 and B to form the point process B1. Also join points from
Processes A2 and C to form a point process C1. The asymptotic distributions
of the smallest and largest r-scan lengths among the processes of B1 and C1
can be deduced from a two-array model as follows. First consider a Poisson
process Ã with parameter α + β + γ. Let q1 = 1 − p1 and q2 = 1 − p2.
Then processes B1 and C1 can be extracted from Ã specifying the probability
density PD on �0�1�2 as

PD

(
1
1

)
= α

α+ β+ γ
p1p2� PD

(
1
0

)
= β

α+ β+ γ
+ α

α+ β+ γ
p1q2�

PD

(
0
1

)
= γ

α+ β+ γ
+ α

α+ β+ γ
q1p2 and PD

(
0
0

)
= α

α+ β+ γ
q1q2�

We return to the general model of an ancestor sequence and l descen-
dent sequences. To analyze the smallest r-scan length among the descendent
sequences, we will first construct an associated rth order Markov chain real-
izing the evolutionary process. Let �Si� denote a sequence of l× 	r+ 1� ran-
dom matrices, which are generated from �Di� as follows. Let 1 designate the
l-length column vector with all components 1. For each realization �di�, define
S1 = 	1� d1� � � � � dr�, and Si = 	di−1� � � � � di+r−1� for i ≥ 2. Clearly �Si� is a
Markov chain of order r, whose stationary distribution is

�		d1� � � � � d1+r�� =
r+1∏
i=1

PD	di��

Let Q be the collection of possible realizations of Si� i ≥ 2� Also let Qr

be a subset of Q, consisting of all states containing at least one row with all
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components 1. In the ongoing discussion, let Fm denote them-fold convolution
of F, for m ≥ 1. The following theorem describes the asymptotic distribution
of the minimum r-scan length for the l-array model.

Theorem 1. Let mt be the minimum r-scan length in 	0� t� from all the l
subprocesses, and let nt be the renewal count of the A process in 	0� t�. For a
prescribed positive constant λ, let at be determined to satisfy the equation

λ = 	Nt − r+ 1�
( ∑

	d1� d2� ���� dr+1�∈Qr

�
(
	d1� d2� � � � � dr+1�

))
Fr	at��(1)

where Nt = E�nt�. Then mt has the asymptotic distribution

lim
t→∞

Pr�mt > at� = exp�−λ��(2)

An error estimate for the asymptotic distribution 	2� is given by

O

(√
ln t
t

)
+O	MF	at�� +O

(
max
s∈Qr

E(t

∣∣∣∣1− n	s�(t�
Ns� t

∣∣∣∣
)
�

for MF	a� =
∑∞

k=1Fk	a� 	the renewal function of F�,
(t= the sample path of 	S1� S2� � � � � SNt−r+1��

n	s�(t� = the number of occurrences of the state s given the realization (t�
Ns� t= the unconditional mean number of occurrences of state s in

S1� S2� � � � � SNt−r+1�

The proof is elaborated in Section 3.
For the discussion of the limiting distribution of the maximal r-scan length

Mt, let H denote the set of all the l-length column vectors �d = 	d1� d2�
� � � � dl�� d1� d2� � � � � dl ∈ �0�1��. The marginal probability pk for an A point
to be retained in the kth subprocess is pk = ∑

d∈H�dk=1PD	d��1 ≤ k ≤ l. The
distribution F of the A-renewal process is assumed to satisfy the property

lim
x→∞

1−F1	x− a�
1−F2	x�

= 0 for each positive constant a�(3)

and consequently the property

lim
x→∞

1−Fm	x− a�
1−Fm+1	x�

= 0 for all m ≥ 1

[see Lemma 4.2, Dembo and Karlin (1992)]. The general condition

0 < F	x� < 1 for 0 < x <∞ and F	x� is continuous at 0(4)

is assumed for F.
Let G	k��1 ≤ k ≤ l, denote the distribution of interval lengths between

events in the kth subprocess. An easy calculation gives

1−G	k�	x� = 	1−F	x�� +
∞∑
ν=1

�Fν	x� −Fν+1	x��	1− pk�ν�(5)
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Let G	k�
m denote them-fold convolution of G	k�, form ≥ 1. If p1 < pk, for k ≥ 2,

(5) yields easily

1−G	k�	x� < 1−G	1�	x� for all x > 0�

and consequently,

1−G
	k�
m 	x� < 1−G

	1�
m 	x� for m = 1�2� � � � �(6)

Again, let n	k�
t denote the renewal count of the kth subprocess in 	0� t� and

N
	k�
t = �E�n	k�

t ��, for 1 ≤ k ≤ l. The asymptotic limit law for the maximal
r-scan length is as follows.

Theorem 2. Let Mt be the maximum r-scan length in 	0� t� from all the l
subprocesses. Assume the distribution function F possesses properties 	3� and
	4�, and among the marginal probabilities p1� p2� � � � � pl, say for definiteness,
p1 < min	p2� p3� � � � � pl�. For a given positive constant µ, let bt be determined
to satisfy the condition

µ = 	N	1�
t − r+ 1�	1−G

	1�
r 	bt���(7)

We have

lim
t→∞

Pr�Mt < bt� = exp�−µ��(8)

An error estimate for the Poisson distribution (8) is

O

(√
ln t
t

)
+ 	2r− 1�O

(
1−G

	1�
r 	bt�

)
+O

(r−1∑
j=1

Pr�R̃j+1 ≥ bt�R̃1 ≥ bt�
)

+O

(
max
2≤k≤l

{
1−G

	k�
r 	bt�

1−G
	1�
r 	bt�

})
�

where R̃j =∑j+r−1
i=j X̃i, with �X̃i� ∼ G	1� i�i�d�

See Section 4 for the proof of Theorem 2.

2. Preliminary lemmas. Proofs are based on application of the Chen–
Stein Poisson approximation method. Error estimates of the approximation
typically involve only the first two moments of the sum in question. Within
the context of this paper, let Zλ denote the Poisson	λ� random variable and
let the total variation distance of two random variables U�V be defined as
usual and written as

d	U�V� = sup
�

�Pr�U ∈ � � − Pr�V ∈ � ���

Several elementary properties of the total variation distance which are refer-
enced in the sequel are reviewed in Dembo and Karlin [(1992), page 336].
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The Chen–Stein method following the Arratia, Goldstein and Gordon (1989)
formulation is stated in the following lemma [see also Chen (1975), Barbour,
Holst and Janson (1992)].

Lemma 1 [Arratia, Goldstein and Gordon (1989)]. Let �Ui� be Bernoulli
random variables with corresponding parameters �θi� and C =∑

i∈I Ui, where
I is a finite or countable index set. Then

d	C�Zλ� ≤ 	c1 + c2�
1− e−λ

λ
+ c3 min

(
1�

√
2√
λ

)
�(9)

where

λ =∑
i∈I
θi� c1 =

∑
i∈I

∑
j∈�i

θi θj�

c2 =
∑
i∈I

∑
j∈�i

j �=i

E�UiUj�� c3 =
∑
i∈I
E��E�Ui��Uj�j �∈�i

� − θi���

and ��i� is an appropriate family of subsets indexed by I.

The r-scan process �Ri =
∑i−r+1

j=i Xj� generated by �Xj� of i.i.d. variables
is discussed in the paper of Dembo and Karlin (1992). In that context, the
Chen–Stein method is applied to the Bernoulli sums C−	a� = ∑n−r+1

i=1 U−
i 	a�

and C+	b� = ∑n−r+1
i=1 V+

i 	b�, for U−
i 	a� = I�Ri ≤ a� and V+

i 	b� = I�Ri ≥ b�,
where I�·� denotes the indicator function of �·�. The Poisson approximations
of C−	a� and C+	b� by Zλ and Zµ, for λ = E�C−	a�� and µ = E�C+	b��, is
described in the following lemma.

Lemma 2. Let X1�X2� � � � �Xn be i.i.d. positive random variables with dis-
tribution function F	x� and denote by Fm	x� the m-fold convolution of F	x�.
Define

λ = 	n− r+ 1�Fr	a�� µ = 	n− r+ 1��1−Fr	b���
Then

d	C−	a��Zλ� ≤ 	1− e−λ�
[
	2r− 1�Fr	a� + 2

r−1∑
m=1

Fm	a�
]
�

d	C+	b��Zµ� ≤ 	1− e−µ�
[
	2r− 1�	1−Fr	b�� + 2

r−1∑
m=1

Pr�Rm+1 > b�R1 > b�
]
�

The extremal statistics for the r-scan lengths from a stationary process are
also developed in Dembo and Karlin 	1992�. We state next the corresponding
result.
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Lemma 3. Consider a finite state stationary Markov chain � taking values
from a finite set S = �1�2� � � � � s�. Conditioned on the realization 31� 32� � � � � 3n
from � , let Y1� � � � �Yn be independent positive random variables and iden-
tically distributed for those 3i in the same state, say γ, with the distribu-
tion function F	γ�. We abbreviate the event 31 = l1� 32 = l2� � � � � 3n = ln by
�n = l �n = 	1� � � � � n�� l = 	l1� � � � � ln��. Then

d	C−	a��Zλ� ≤ 4rmax
γ

F	γ�	a� +E�n
�λ	�n� − λ��

d	C+	b��Zµ� ≤ 4r max
γ1� ���� γr+1

Pr
( r+1∑
i=2

Yi	γi� > b

∣∣∣∣
r∑
i=1

Yi	γi� > b

)

+E�n
�µ	�n� − µ��

for

λ = E�C−	a��� λ	�n� = E�C−	a���n��
µ = E�C+	b��� µ	�n� = E�C+	b���n��

3. The asymptotic theorem for the minimal r-scan length.

Proof of Theorem 1. Let Ri =
∑i+r−1

j=i Xj denote the ith r-scan length of

the A process and let R	r+1�� i =
∑i+r

j=i Xj denote the ith 	r + 1�-scan length
of A. We then define the Bernoulli random variables U−

i 	at� = I�Si ∈ Qr,
Ri ≤ at�, for i ≥ 1. Two sums of the Bernoulli variables, C̃−

t 	at� =∑nt−r+1
i=1 U−

i 	at� and C−
Nt−r+1	at� =

∑Nt−r+1
i=1 U−

i 	at�, are constructed. Parallel-
ing the discussion of Dembo and Karlin (1992), we bound the total variation
distance between these two Bernoulli sums by conditioning its value on the
following two events:

�t =
{∣∣∣∣ ntNt

− 1
∣∣∣∣ ≤

√
ln t
t

}
�

� c
t = the complement of �t�

The Berry–Esseen estimate applied to nt gives

d	C̃−
t 	at��C−

Nt−r+1	at�� ≤ O

(√
ln t
t

)
+O

(√
1
t

)
= O

(√
ln t
t

)
�(10)

For �t a sample path of �Si�Nt−r+1
i=1 , let 	λ��t� = E�C−

Nt−r+1	at���t� and
	Zλ��t� = Z	λ��t�. Then by specifying the neighborhood sets ��i� as �i =
�j: �j− i� ≤ r�, the Poisson approximation for C−

Nt−r+1	at� can be deduced by
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the Chen–Stein method (Lemma 1) as follows:

d
(
C−
Nt−r+1	at��Zλ�
≤ E�t

[
d		C−

Nt−r+1	at���t�� 	Zλ��t�
)]+E�t

�d		Zλ��t��Zλ��

≤ E�t

{
1− exp	−	λ��t��

	λ��t�
(Nt−r+1∑

i=1

∑
j∈�i

E�U−
i 	at���t�E�U−

j 	at���t�(11)

+
Nt−r+1∑
i=1

∑
j∈�i� j�=i

E�U−
i 	at�U−

j 	at���t�
)}

+E�t
�	λ��t� − λ�

≤ O	Fr	at�� +O	MF	at�� +E�t
�	λ��t� − λ��

The first two terms of (11) will converge to 0 as at tends to 0, stipulating
that F is continuous at 0. And following the argument of (7.14) of Dembo and
Karlin (1992), we evaluate the last term of (11),

E�t
�	λ��t� − λ� ≤ ∑

s∈Qr

Ns� tE�Ri ≤ at�Si = s�E�t

∣∣∣∣1− n	s��t�
Ns� t

∣∣∣∣
≤ λmax

s∈Qr

E�t

∣∣∣∣1− n	s��t�
Ns� t

∣∣∣∣�
The quantity above approaches 0 by the ergodic theorem.

Finally, since

�C̃−
t 	at� = 0� = �mt > at� C̃−

t 	at� = 0� ∪ �mt ≤ at� C̃−
t 	at� = 0�

= �mt > at� ∪ �mt ≤ at� C̃−
t 	at� = 0�

and

�mt ≤ at� C̃−
t 	at� = 0� ⊆ �∃ i� i ≤ nt − r� Si �∈ Qr� R	r+1�� i ≤ at��

we have

�Pr�mt > at� − Pr�C̃−
t 	at� = 0��

≤ Pr�∃ i� i ≤ nt − r� Si �∈ Qr� R	r+1�� i ≤ at�
≤ Pr�∃ i� i ≤ nt − r� R	r+1�� i ≤ at�

≤ Pr
{∣∣∣∣ ntNt

− 1
∣∣∣∣ ≤

√
ln t
t

� ∃i� i ≤ nt − r� R	r+1�� i ≤ at

}

+ Pr
{∣∣∣∣ ntNt

− 1
∣∣∣∣ >

√
ln t
t

}

≤ λ

(
1+

√
ln t
t

)
O	F	at�� +O

(√
1
t

)
�

(12)
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The conjunction of (10), (11) and (12) produces the estimate

�Pr�mt > at� − exp�−λ��

≤ O

(√
ln t
t

)
+O	MF	at�� +O

(
max
s∈Qr

E�t

∣∣∣∣1− n	s��t�
Ns� t

∣∣∣∣
)
�

This completes the proof of Theorem 1. ✷

4. The asymptotic theorem for the largest r-scan length. Under the
formulation of the multiple-array model, the l subprocesses are also renewal
processes with the sojourn distributions �G	k��lk=1 defined in (5). To validate
Theorem 2, the following lemmas are germane.

Lemma 4. If F has the property of 	3�, then for any fixed constant a ≥ 0�
G	1� possesses the same property,

lim
x→∞

1−G	1�	x− a�
1−G

	1�
2 	x�

= 0�(13)

Proof. The formulation of (5) yields

1−G	1�	x�
1−G

	1�
2 	x�

= 	1−F	x�� +∑∞
ν=1	Fν	x� −Fν+1	x��	1− p1�ν

	1−F2	x�� +
∑∞

ν=2	Fν	x� −Fν+1	x���	1− p1�ν + νp1	1− p1�ν−1�

≤ 1−F	x�
1−F2	x�

+
∑L−1

ν=1 	Fν	x� −Fν+1	x��	1− p1�ν
	FL	x� −FL+1	x��	1− p1�L

(14)

+ �∑∞
ν=L	Fν	x� −Fν+1	x��	1− p1�ν�

L	p1/	1− p1���
∑∞

ν=L	Fν	x� −Fν+1	x��	1− p1�ν�

≤ 1−F	x�
1−F2	x�

+
∑L−1

ν=1 	Fν	x� −Fν+1	x��	1− p1�ν
	FL	x� −FL+1	x��	1− p1�L

+ 1− p1

Lp1
�

First we choose L large to make the last term of (14) small. Then, for L
fixed, we can choose x large to make the first two terms small under the force
of (3). This assures limx→∞�	1 − G	1�	x��/	1 − G

	1�
2 	x��� = 0. For any fixed

constant a > 0, we exploit the renewal structure of the A process and write
G	1�	x� 	x ≥ 2a� as

1−G	1�	x� =
∫ x
0
�1−G	1�	x− y��	1− p1� dF	y� + 	1−F	x��

≥
∫ 2a

a
�1−G	1�	x− y��	1− p1� dF	y�

≥ 	1−G	1�	x− a��	1− p1�	F	2a� −F	a���
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Therefore,

1−G	1�	x− a�
1−G	1�	x� ≤ 1

	1− p1�	F	2a� −F	a�� �

It follows that

lim
x→∞

1−G	1�	x− a�
1−G

	1�
2 	x�

= lim
x→∞

1−G	1�	x− a�
1−G	1�	x�

1−G	1�	x�
1−G

	1�
2 	x�

≤ 1
	1− p1�	F	2a� −F	a�� lim

x→∞
1−G	1�	x�
1−G

	1�
2 	x�

= 0�

The proof of Lemma 4 is now complete. ✷

Also from (13) and Dembo and Karlin [(1992), Lemma 4.2], we have that
for any integer m ≥ 1,

lim
x→∞

1−G
	1�
m 	x− a�

1−G
	1�
m+1	x�

= 0�(15)

The following lemma can be validated from the above lemma.

Lemma 5. Suppose p1 < min	p2� � � � � pl� and F satisfies the conditions 	3�
and 	4�. Then for 2 ≤ k ≤ l,

lim
t→∞

	N	k�
t − r+ 1�	1−G

	k�
r 	bt�� = 0�

Proof. Since limt→∞	N	k�
t /N

	1�
t � = pk/p1, we only need to prove

lim
t→∞

1−G
	k�
r 	bt�

1−G
	1�
r 	bt�

= 0�(16)

To this end, first we claim

lim
x→∞

1−G	k�	x�
1−G	1�	x� = 0�
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A direct calculation from (5) yields

1−G	k�	x�
1−G	1�	x�

= 	1−F	x�� +∑∞
ν=1�Fν	x� −Fν+1	x��	1− pk�ν

	1−F	x�� +∑∞
ν=1�Fν	x� −Fν+1	x��	1− p1�ν

≤ 	1−F	x�� +∑L−1
ν=1 �Fν	x� −Fν+1	x��	1− pk�ν

�FL	x� −FL+1	x��	1− p1�L

+
∑∞

ν=L�Fν	x� −Fν+1	x��	1− pk�ν∑∞
ν=L�Fν	x� −Fν+1	x��	1− p1�ν

≤ 	1−F	x�� +∑L−1
ν=1 �Fν	x� −Fν+1	x��	1− pk�ν

�FL	x� −FL+1	x��	1− p1�L

+
∞∑
ν=L

�Fν	x� −Fν+1	x��	1− pk�ν
�Fν	x� −Fν+1	x��	1− p1�ν

= 	1−F	x�� +∑L−1
ν=1 �Fν	x� −Fν+1	x��	1− pk�ν

�FL	x� −FL+1	x��	1− p1�L
+
(
1− pk
1− p1

)L 1− p1

pk − p1
�

First we choose L large, and then x appropriately large to confirm the desired
convergence.

Next we advance the induction from r to r+ 1 for (16). Consider

1−G
	k�
r+1	x�

1−G
	1�
r+1	x�

= 1

1−G
	1�
r+1	x�

·
[
1−G

	k�
r 	x� +

∫ x−L
0

(
1−G	k�	x− η�)dG	k�

r 	η�

+
∫ x
x−L

(
1−G	k�	x− η�)dG	k�

r 	η�
]

≤ 1−G
	k�
r 	x�

1−G
	1�
r 	x�

+
∫ x−L
0

(
1−G	k�	x− η�)dG	k�

r 	η�
1−G

	1�
r+1	x�

+ 1−G
	k�
r 	x−L�

1−G
	1�
r+1	x�

�

(17)

The first term of (17) goes to 0 owing to the induction hypothesis.
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The third term of (17) is estimated above by

1−G
	k�
r 	x−L�

1−G
	1�
r+1	x�

= 1−G
	k�
r 	x−L�

1−G
	1�
r 	x−L�

1−G
	1�
r 	x−L�

1−G
	1�
r+1	x�

<
1−G

	1�
r 	x−L�

1−G
	1�
r+1	x�

�

(18)

The second term of (17) is estimated above by∫ x−L
0 	1−G	k�	x−η��dG	k�

r 	η�
1−G	1�

r+1	x�

=
∫ x−L
0

[(
1−G	k�	x−η�)/(1−G	1�	x−η�)]�1−G	1�	x−η��dG	k�

r 	η�
1−G	1�

r+1	x�

≤sup
η̃≥L

[
1−G	k�	η̃�
1−G	1�	η̃�

]
1−G	1� ∗G	k�

r 	x�
1−G	1�

r+1	x�
(here ∗ denotes the convolution operation)

<sup
η̃≥L

[
1−G	k�	η̃�
1−G	1�	η̃�

]
�

(19)

Therefore, choose L large and then x sufficiently large after L is fixed to make
all three terms of (17) small. The induction is established.

Since bt → ∞ as t→ ∞, the proof of Lemma 5 is now complete. ✷

Let C̃+
k 	bt� denote the number of the r-scan intervals in 	0� t� generated

from the kth subprocess and with lengths ≥ bt. Lemma 5 also assures that
for k ≥ 2,

Pr�C̃+
k 	bt� �= 0�

≤ Pr

{
C̃+
k 	bt� �= 0�

∣∣∣∣ n
	k�
t

N
	k�
t

− 1
∣∣∣∣ ≤

√
ln t
t

}
+ Pr

{∣∣∣∣ n
	k�
t

N
	k�
t

− 1
∣∣∣∣ >

√
ln t
t

}

≤ O

(
1−G

	k�
r 	bt�

1−G
	1�
r 	bt�

)
+O

(√
1
t

)

→ 0�

From the above result we can prove the convergence result that

lim
t→∞

d
(
C̃+

1 	bt�� 	C̃+
1 	bt� � C̃+

k 	bt� = 0� ∀k�2 ≤ k ≤ l�
)
= 0�

To this end, let
˜�t = �C̃+

k 	bt� = 0� ∀k�2 ≤ k ≤ l��
˜� c
t = complement of ˜�t�
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Then for � a set of nonnegative integers,

Pr�C̃+
1 	bt� ∈ � �

= Pr�C̃+
1 	bt� ∈ � � ˜�t�Pr� ˜�t� + Pr�C̃+

1 	bt� ∈ � � ˜� c
t �Pr� ˜� c

t ��
and thus ∣∣∣Pr�C̃+

1 	bt� ∈ � � − Pr�C̃+
1 	bt� ∈ � � ˜�t�

∣∣∣
≤ Pr�C̃+

1 	bt� ∈ � � ˜�t�
∣∣∣Pr� ˜�t� − 1

∣∣∣+ Pr� ˜� c
t �

≤ 2 Pr� ˜� c
t ��

Since the above bound does not depend on the choice of � , it is true that

d	C̃+
1 	bt�� 	C̃+

1 	bt� � C̃+
k 	bt� = 0� ∀k�2 ≤ k ≤ l��

≤ 2 Pr� ˜� c
t �

≤ O

(
max
2≤k≤l

{
1−G

	k�
r 	bt�

1−G
	1�
r 	bt�

})
+O

(√
1
t

)

→ 0 as t→ ∞�

Now we are ready to prove Theorem 2.

Proof of Theorem 2. The Poisson approximation for C̃+
1 	bt� is assured

by the Chen–Stein method as discussed in Dembo and Karlin (1992) when
G	1� possesses the property of (13). Thus for C̃+	bt� = ∑l

k=1 C̃
+
k 	bt�, we can

discuss the total variation distance d	C̃+	bt��Zµ� by conditioning on the two
events: ˜�t = �C̃+

k 	bt� = 0� ∀k� 2 ≤ k ≤ l� and ˜� c
t = the complement of ˜�t. The

following calculation produces the desired result:

d	C̃+	bt��Zµ�
≤ d		C̃+	bt� � ˜�t��Zµ�Pr� ˜�t� + d		C̃+	bt�� ˜� c

t ��Zµ�Pr� ˜� c
t �

≤ d		C̃+	bt� � C̃+
k 	bt� = 0� ∀k�2 ≤ k ≤ l��Zµ� + Pr� ˜� c

t �
= d		C̃+

1 	bt� � C̃+
k 	bt� = 0�∀k�2 ≤ k ≤ l��Zµ� + Pr� ˜� c

t �
≤ d	C̃+

1 	bt��Zµ� + d	C̃+
1 	bt�� 	C̃+

1 	bt� � C̃+
k 	bt� = 0� ∀k�2 ≤ k ≤ l�� + Pr�� c

t �

≤ O

(√
ln t
t

)
+ 	2r− 1�O	1−G

	1�
r 	bt�� +O

(
r−1∑
j=1

Pr�R̃j+1 ≥ bt � R̃1 ≥ bt�
)

+O

(
max
2≤k≤l

{
1−G

	k�
r 	bt�

1−G
	1�
r 	bt�

})

→ 0�
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where R̃i =
∑i+r−1

j=i X̃j� for �X̃j� ∼ G	1� i.i.d. The proof of Theorem 2 is now
complete. ✷

5. The asymptotic theorem for the combined Poisson model. Fol-
lowing the construction and notations of the combined Poisson model as for-
mulated in Section 1, we first discuss the embedding into a multiple-array
model described in the previous part of this paper. Let Ã denote a Poisson
process with parameter ã = ∑m

i=1 ai. Given a family of sets �Zk�lk=1, there
are m l-length column vectors D1�D2� � � � �Dm which can be determined as
follows. For 1 ≤ η ≤ m� Dη = 	dη�1� dη�2� � � � � dη� l�, where dη�k is 1 if η ∈ Zk

and 0 otherwise. Generally, there could exist η �= ζ, such that Dη = Dζ .
By rearranging the order of �Dη�mη=1, let �Dη�wη=1�w ≤ m, denote the largest
subset of �Dη�mη=1 which has different representations for each column vec-
tor Dη. We then define a discrete probability density PD on �0�1�l such that
for 1 ≤ η ≤ w,

PD	Dη� =
∑

1≤ζ≤m
Dζ=Dη

aζ
ã
�(20)

From Ã� �Dη�wη=1 and PD, we can construct l dependent arrays following the
rule of the l-array model. To clarify the construction, we introduce an example
first. Suppose there are three independent Poisson processes, A1�A2 and A3,
with parameters a1� a2 and a3, respectively. We combine A1 and A2 yielding
the B1 process, and combineA1 andA3 yielding the B2 process. The Ã process
for this problem is a Poisson process with parameter a1 + a2 + a3. The sets
Z1�Z2 are

Z1 = �1�2�� Z2 = �1�3��
and the vectors �Dη� as well as the probability density of D are

D1 =
(
1
1

)
� D2 =

(
1
0

)
� D3 =

(
0
1

)
�

such that

PD	D1� =
a1
ã
� PD	D2� =

a2
ã
� PD	D3� =

a3
ã
� ã = a1 + a2 + a3�

The equivalence between the newly constructed l arrays and the original
combined Poisson arrays can be assured by the classical coloring theorem of
Poisson processes given in the following.

Lemma 6 (Coloring theorem of the Poisson process). Assume the existence
of a homogeneous Poisson	θ� process � in 	0�∞�. Given 	p1� p2� � � � � pm��
pi > 0 and p1+p2+· · ·+pm = 1, we generatem point processes,�1��2� � � � � �m,
from � in such a way that pi is the probability for each � point to occur in
the �i process but be absent from the other point processes ��j�j �=i. The
determinations are independent with respect to each � point. Then, the point
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processes ��i�mi=1 are independent Poisson processes with the parameters
θp1� θp2� � � � � θpm, respectively.

Thus the independent Poisson processes A1�A2� � � � �Am are induced from
the Poisson process Ã by fixing pi = ai/ã� 1 ≤ i ≤m, and �Di�mi=1 and PD are
assured as before. Then the asymptotic distributions for the largest and the
smallest r-scan lengths across the l induced Poisson arrays can be ascertained
by the results from the multiple-array model, Theorems 1 and 2, leading to
the following result.

Theorem 3. Let Bk = ∪i∈Zk
Ai� 1 ≤ i ≤ l, be dependent Poisson processes

as described before and let PD be the probability law on �0�1�l defined as
in 	20�. For bk = ∑

i∈Zk
ai� 1 ≤ k ≤ l, assume b1 < min2≤k≤l�bk�. Then the

asymptotic distributions for the smallest and the largest r-scan lengths, mt

and Mt, across the l dependent Poisson arrays in 	0� t� are as follows:

lim
t→∞

Pr
{
mt >

r

√
x

t

}
= exp

{
−	∑m

i=1 ai�r+1x
r!

∑
	d1� d2� ���� dr+1�∈Qr

(r+1∏
i=1

PD	di�
)}
�(21)

lim
t→∞

Pr
{
Mt <

ln t+ 	r− 1�ln ln t+ x∑
i∈Z1

ai

}
= exp

{
−e−x 	

∑
i∈Z1

ai�
	r− 1�!

}
�(22)

where

di = l-length vector with values in �0�1��
Qr = set of l× 	r+ 1� matrices with elements taking values in �0�1�

such that each matrix of Qr contains at least one row with
all components 1.

The r-scan analysis of the concrete example related to evolutionary phy-
logeny mentioned in Section 1 ensues from the above theorem. In this case,
the corresponding probability density PD on �0�1�2 is

PD

(
1
1

)
= α

α+ β+ γ
p1p2 = z1�

PD

(
1
0

)
= β

α+ β+ γ
+ α

α+ β+ γ
p1q2 = z2�

PD

(
0
1

)
= γ

α+ β+ γ
+ α

α+ β+ γ
q1p2 = z3�

PD

(
0
0

)
= α

α+ β+ γ
q1q2 = z4

as stated in Section 1.
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Letmt be the minimal r-scan length across the r-scans of Processes B1 and
C1 in 	0� t�. Then according to (21), we have

lim
t→∞

Pr
{
mt >

r

√
x

t

}

= exp

{
−
[
	z1 + z2 + z3�r+1 −

∑
i+j+k=r+1
j>0� k>0

	r+ 1�!
i!j!k!

zi1z
j
2z

k
3

]

× x	α+ β+ γ�r+1
r!

}
�

(23)

Also the asymptotic distribution for the smallest r-scan length of the ancestor
Poisson process A can be determined as satisfies

lim
t→∞

Pr
{
st >

r

√
x

t

}
= exp

{
−xα

r+1

r!

}
�(24)

Thus from (23) and (24), a simple comparison shows that if

	z1 + z2 + z3�r+1 −
∑

i+j+k=r+1
j>0� k>0

	r+ 1�!
i!j!k!

zi1z
j
2z

k
3 >

αr+1

	α+ β+ γ�r+1 �(25)

then asymptotically 	t→ ∞�

Pr
{
mt >

r

√
x

t

}
< Pr

{
st >

r

√
x

t

}
for all positive x�

This means that mt is stochastically smaller than st as t→ ∞.
For r = 1, a sufficient condition for (25) is

	αp1p2 + β+ γ�2 > α2 + 2βγ�

For the maximal r-scan length, we need only consider the Poisson process
B1 or C1, whichever has the smaller parameter as discussed in Section 4.
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Karlin, S., Mrázek, J. and Campbell, A. (1996). Frequent oligonucleotides and peptides of the
Haemophilus influenzae genome. Nucleic Acids Research 24 4263–4272.

Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes, 2nd ed. Academic
Press, New York.

Masse, M. J. O., Karlin, S., Schachtel, A. and Mocarski, E. S. (1992). Human cytomegalovirus
origin of DNA replication (oriLyt) resides within a highly complex repetitive region.
Proc. Nat. Acad. Sci. U.S.A. 89 5246–5250.

Naus, J. I. (1979). An indexed bibliography of clusters clumps and coincidences. Internat. Statist.
Rev. 47 47–78.

Naus, J. I. (1982). Approximation of distributions of scan statistics. J. Amer. Statist. Assoc. 77
177–183.

Reinert, G. and Schbath, S. (1998). Compound Poisson and Poisson approximations for occur-
rences of multiple words in Markov chains. J. Comput. Biology 5 223–253.

Stein, C. (1986). Approximation Computation of Expectations. IMS, Hayward, CA.

Department of Mathematics
Stanford University
Stanford, California 94305-2125
E-mail: fd.zgg@forsythe.stanford.edu


