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EFFICIENT MARKOVIAN COUPLINGS: EXAMPLES
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By Krzysztof Burdzy1 and Wilfrid S. Kendall2

University of Washington and University of Warwick

In this paper we study the notion of an efficient coupling of Markov
processes. Informally, an efficient coupling is one which couples at the max-
imum possible exponential rate, as given by the spectral gap. This notion
is of interest not only for its own sake, but also of growing importance
arising from the recent advent of methods of “perfect simulation”: it helps
to establish the “price of perfection” for such methods. In general, one can
always achieve efficient coupling if the coupling is allowed to “cheat” (if
each component’s behavior is affected by the future behavior of the other
component), but the situation is more interesting if the coupling is required
to be co-adapted. We present an informal heuristic for the existence of an
efficient coupling, and justify the heuristic by proving rigorous results and
examples in the contexts of finite reversible Markov chains and of reflecting
Brownian motion in planar domains.

1. Introduction. We will call a diffusion coupling “efficient” if it can be
used to obtain a sharp estimate for the spectral gap of the operator which is
the generator of the diffusion in question. The main results of this paper show
that among well-known couplings one can find both efficient and inefficient
couplings. Moreover, we give examples of Markov processes for which there
is no “efficient” Markovian coupling. We will present techniques which can be
used to prove efficiency for many concrete examples of couplings.
Coupling techniques can be applied to obtain various estimates in probabil-

ity and analysis, both in purely theoretical research and in situations directly
related to applications ([32] provides a good introduction; see also [24, 25]).
Their importance in applications has recently increased dramatically with the
advent of coupling-based “perfect simulation” due to Propp and Wilson [40]
and Fill [22]. It is now a matter of pressing importance better to understand
the price which must be paid for using such coupling-based approaches—the
“price of perfection.” One measure of this price is the extent to which coupling
occurs at a slower rate than the approach to equilibrium, and this therefore
provides a strong motivation for the idea of efficiency and the explorations
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which we describe below. As pointed out to us by Terry Lyons, in high- or
infinite-dimensional settings it is of more interest to consider the relationship
of perfect simulation to log-Sobolev inequalities (see [18] for a useful exposi-
tory article on log-Sobolev inequalities in the context of finite Markov chains),
and we hope to consider this in later work.
The reader is advised that here we are considering only couplings of Markov

chains or diffusions which are co-adapted, which is to say that either one of
the random processes behaves as a Markov process when we take into account
the past of both the random processes in question. This is an important point:
it is possible (by rather soft arguments) to produce efficient couplings in which
a process is allowed to “cheat” by looking ahead into the future of the other
process. See, for example, [1, 2] (which contain much else of relevance to the
general concerns which prompted our paper). The imposition of the co-adapted
property turns efficiency into a non-trivial notion: it also corresponds to rea-
sonable (though not entirely inevitable) assumptions about how one might
implement actual couplings, for example, in a perfect simulation context.
The concept of strong uniform times [1, 2] is also motivated by the desire

to get a handle on rates of convergence to stationarity, but uses randomized
stopping times rather than coupling ideas, and delivers total variation bounds
rather than the L2-inspired arguments discussed below. Both the kind of cou-
pling considered here and the strong uniform times have led to practical sim-
ulation algorithms (respectively “Coupling From The Past” (CFTP) [40] and a
sophisticated rejection sampler [17, 22]). Note, however, that Matthews [35]
uses spectral decomposition to obtain a near-optimal strong stationary time.
The idea of an efficient coupling is illustrated in this paper by two kinds of

examples. First, we consider continuous-time Markov chains with finite state
space. These results apply to many “attractive systems,” similar to the Ehren-
fest model discussed in Example 2 below. We restrict ourselves to Markov
chains reversible with respect to counting measure (hence with symmetric
transition probability functions): the ideas of this paper extend to irreversible
chains and Rajesh Nandy is investigating this.
The second family of examples is concerned with reflected Brownian motion

in planar domains. This is related to work on applications of couplings to
estimation of the spectral gap for diffusions on manifolds; recently [8, 10, 12,
48], though the basic idea dates back as far as [19]. An extensive bibliography
of the notion of couplings as used in spectral gap theory can be found in [11];
see also [43] for a useful introductory account of analytical approaches.
Wide applications of the coupling technique inevitably lead to the question:

which couplings are “good” and which are not? Chen [9, 10] has contributed
to this question, introducing the concept of “optimal” couplings. However, the
terminology is somewhat deceptive, as what is being optimized is a time-
varying quantity rather auxiliary to any notion of rapid coupling. In general,
one expects there to be many different notions of good coupling, depending on
whether one seeks high probability of early coupling, high probability of suc-
cessful coupling or low exponential moment Ɛ�exp�ατ�� of coupling time τ. The
notion of “efficient” couplings introduced below isolates those co-adapted cou-
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plings which can be used to give a sharp estimate for the “spectral gap.” We will
show that some Chen-optimal couplings are not efficient because there may be
no efficient couplings for some Markov chains. It is natural to expect, although
we do not prove it, that some efficient couplings are not Chen-optimal.
We note here that there are of course many other ways of estimating rates

of convergence other than coupling: see [41, 42] for examples closely tied to
the demands of Markov chain Monte Carlo.
We now present a brief and informal review of the concepts of coupling

and spectral gap and their relationship. Consider a positive-recurrent Markov
process X, symmetric with respect to some reference measure m. For many
processes the following eigenfunction expansion holds for the density pt�x	y�
relative to m:

p�t	 x	 y� = c+ g�x	y� exp�−µ2t� +R�t	 x	 y��(1.1)

The first eigenvalue for the process generator is equal to 0 and the first eigen-
function is the constant function c while µ2 stands for the second eigenvalue
and g is a combination of corresponding eigenfunctions;

g�x	y� = ∑
ϕ

ϕ�x�ϕ�y�	

where the ϕ are orthogonal eigenfunctions with eigenvalue µ2. The remainder
R�t	 x	 y� converges to 0 faster than exp�−µ2t� as t→∞, uniformly in x and
y for regular cases. Hence µ2, the “spectral gap” between the first and second
eigenvalues, determines the speed of convergence of the transition distribution
[density p�t	 x	 ·�] to the stationary distribution as t→∞.
Notice that we may replace g�x	y� by ϕ�x�ϕ�y� when the second eigenvalue

is multiplicity-free. Notice also that reversibility considerably simplifies the
above analysis, since otherwise the multipliers of the g�x	y� term may include
a factor which is polynomial in t. Fortunately, reversibility holds in many of
the most important applications.
A “coupling” is a pair of (typically dependent) copies of the Markov process

X, the first one, X1, starting from x1 and the second one, X2, starting from
x2. “Good” couplings are characterized by small coupling time τ, the minimum
time t for which X1

t and X
2
t are equal. Applications of the coupling technique

depend on the fact that we may, and we do, construct X1 and X2 in such a
way that X1

t =X2
t for all t ≥ τ.

The eigenfunction representation (1.1) now gives

p�t	 x1	 y� − p�t	 x2	 y�
= (

g�x1	 y� − g�x2	 y�
)
exp�−µ2t� +R�t	 x1	 y� −R�t	 x2	 y�	

(1.2)

while the coupling yields∣∣p�t	 x1	 y�dy− p�t	 x2	 y�dy
∣∣

= ∣∣�(X1
t ∈ dy X1

0 = x1
)− �

(
X2

t ∈ dy X2
0 = x2

)∣∣
≤ �

(
X1

t ∈ dy	 t < τ X1
0 = x1

)+ �
(
X2

t ∈ dy	 t < τ X2
0 = x2

)
�

(1.3)
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Suppose that one can prove that ��τ > t  X1
t = x1	X

2
t = x2� ≈ exp�−µ∗t) for

“generic” x1 �= x2. Given a suitable sense for “generic,” we can combine (1.2)
and (1.3) to show that µ∗ is a lower bound for µ2 (and in most applications it
is the lower bound which counts). We will call µ∗ the coupling exponent.
The above argument has been used in various forms to estimate µ2, as, for

example, in [12], Theorem 1.7, or [48].
The following informal definition and heuristic capture the spirit of the

results and examples of this paper.

Informal definition of efficiency. We will call a coupling �X1	X2� an
efficient Markovian coupling if �X1	X2� is a Markov process and µ∗ = µ2.

Informal efficient coupling heuristic. A coupling �X1	X2� is efficient
if and only if, for all t, and given �t < τ�, the conditional distributions of
�X1

t 	X
2
t � and �X2

t 	X
1
t � are singular with respect to each other.

The above heuristic is not true in a rigorous sense, as will be shown in
Section 2, but it works in sufficiently many circumstances to make it “almost
true.”
The efficient coupling heuristic is closely related to “monotonicity” in the

sense of [31], Section II.2. The connection will be made more precise in Theo-
rem 2.6 below. The importance of monotonicity or ordering for effective estima-
tion of the rate of convergence of a Markov chain to its stationary distribution
is clear, for example, in [34]. The results in Section 2 below are closely related
to those in that paper except that our focus is different—the couplings are
the main object of study in this paper, rather than just an effective techni-
cal tool. The literature on estimating the rate of convergence for Markov pro-
cesses is enormous. The forthcoming book [1] or the articles [26, 36] may serve
as starting points. The importance of monotonicity is explained in [22],
Section 4.
Also note that [1], Chapter 14, Section 7.1, describes another way of mea-

suring efficiency for a Markov coupling, in the sense of the mean coupling time
of a graph-based Markov chain of size n increasing fast with n.
We point out that our use of “monotonicity” is somewhat different from that

in the sources quoted above. The difference is perhaps best explained by the
example of obtuse and acute triangles, discussed in Section 3. The triangles in
both families can be expressed as partially ordered sets in a similar way, but
efficient couplings for reflected Brownian motion exist only in obtuse triangles,
as far as we can tell.
On the practical side, being able to construct an efficient Markovian cou-

pling does not guarantee having a good estimate for the rate of convergence
of the process to the stationary distribution. Estimating the coupling expo-
nent µ∗ itself may be a hard task, especially when the state space and the
transition probabilities do not have a simple structure. Note, however, that
the ideas of perfect simulation [22, 40] finesse this problem away in suitably
regular cases.
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We will give several distinct formal definitions of efficiency, one for Markov
processes with finite state space and continuous time and two for reflected
Brownian motion in planar domains. The goal of this paper is to introduce the
idea of efficiency and some accompanying techniques, not to provide a rigid
definition and a general theorem. We will adjust our definition to fit particular
families of Markov processes and couplings.
The remainder of the paper consists of three sections. Section 2 is devoted

to continuous-time Markov chains with finite state space. Section 3 studies the
mirror coupling of reflected Brownian motions in triangles. Section 4 presents
a few informal examples involving mirror couplings for reflected Brownian
motion in planar domains. This last section is specialized to a very narrow
family of processes but it is at least partly justified by the fact that the tech-
nique developed for this case has been subsequently successfully applied in
a different context; indeed the methods discussed below have already been
used in [3] to prove a number of positive results on the “hot spots” conjecture
of Rauch and more recently to construct a counterexample to the conjecture
[5, 6].

2. Couplings for symmetric Markov chains with finite state space.
We devote this section to symmetric Markov processes with continuous time
and a finite state space, where the reference measure m is the counting mea-
sure. This simple case fully illustrates the main idea of our test for efficiency
but avoids technical issues which arise when the state space is continuous.
ThusX = �Xt� t ≥ 0� is a continuous-time symmetric Markov process with

a finite state space D and transition probabilities p�t	 y	 x� = p�t	 x	 y� =
��Xs+t = y  Xs = x�. The following eigenvalue expansion (1.1) holds for X
([14], page 183):

p�t	 x	 y� = c+ g�x	y� exp�−µ2t� +R�t	 x	 y� �(2.1)

Here g�x	y� is a combination of eigenfunctions corresponding to the second
eigenvalue µ2, as in (1.1), and the remainder R�t	 x	 y� converges to 0 faster
than exp�−µ2t� when t→∞.
Suppose now that �X1	X2� is a Markovian coupling for the process X.

That is to say, each of the three processes ��X1
t 	X

2
t �� t ≥ 0�, �X1

t � t ≥ 0� and
�X2

t � t ≥ 0� is Markov with respect to the filtration generated jointly by X1

and X2, and the processes X1 and X2 have the same transition probabilities
as X. We call the time τ = inf�t ≥ 0� X1

t =X2
t � the coupling time for X1 and

X2. It is convenient to stipulate that X1
t =X2

t for all t ≥ τ.
We also require that the coupling is invariant under the transposition of its

components; this is to say that the transition probabilities for �X1	X2� are the
same as for �X2	X1�. In fact, this entails no loss in generality, since standard
stochastic control arguments (randomizing between an asymmetric coupling
transition kernel and its transposition) show that coupling times are stochas-
tically minorized by those obtained by transposition-invariant couplings.
Since the state space D2 = D×D for the Markov process �X1	X2� is finite,

we can apply the Perron–Frobenius theory for nonnegative matrices to the
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transition probability matrix of the coupling process �X1	X2�. From this we
deduce that there exists a µ′ = µ′�x1	 x2�, the coupling exponent function, such
that, for all t ≥ 0 and for all �x1	 x2� ∈ D2,

c1�x1	 x2� exp�−µ′t� ≤ �
(
τ > t  (X1

0	X
2
0

) = �x1	 x2�
) ≤ c2�x1	 x2� exp�−µ′t� �

[Of course, for x1 = x2 = x we take c1�x	 x� = c2�x	 x� = 0 and then µ′�x	 x�
is not well defined.] We set

µ∗ = min
x1	x2∈D

µ′�x1	 x2� 	(2.2)

the coupling exponent. The following simple inequality can be found, for ex-
ample, in [12], Theorem. 1.7, but we state and prove it here for the sake of
completeness. Our main result about finite-state-space Markov processes uses
a generalization of its proof.

Lemma 2.1. If g�x1	 ·� and g�x2	 ·� are not identical, then µ′�x1	 x2� ≤ µ2.
It follows that we always have µ∗ ≤ µ2.

Proof. Choose x1	 x2 ∈ D and y ∈ D such that g�x1	 y� �= g�x2	 y�. By
(2.1),

p�t	 x1	 y� − p�t	 x2	 y�
= [

g�x1	 y� − g�x2	 y�
]
exp�−µ2t� +R�t	 x1	 y� +R�t	 x2	 y��

(2.3)

Another representation for the same quantity comes from the coupling,
namely,∣∣p�t	 x1	 y� − p�t	 x2	 y�

∣∣
= ∣∣�(X1

t = y X1
0 = x1

)− �
(
X2

t = y X2
0 = x2

)∣∣
= ∣∣�(X1

t = y	 t < τ X1
0 = x1

)− �
(
X2

t = y	 t < τ X2
0 = x2

)∣∣
≤ �

(
t < τ X1

0 = x1	X
2
0 = x2

)
≤ c exp

(−µ′�x1	 x2�t
)
�

Since this estimate and (2.3) both hold for arbitrarily large t, we can use the
condition on our choices of x1, x2, y to show that µ′�x1	 x2� ≤ µ2.

This shows that the worst-case coupling exponential decay is never faster
than the exponential decay rate of convergence to equilibrium (to wit, the
second eigenvalue), and thus motivates our definition of an efficient coupling.

Definition 2.2. Recall the coupling exponent µ∗ = minx1	x2∈D µ′�x1	 x2�
defined by (2.2). The coupling �X1	X2� will be called efficient if µ∗ = µ2.

Before we state and prove some tests for efficiency, we discuss its definition.
The definition is intended to encapsulate a desirable property of couplings
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in the context of spectral gap estimation. Suppose that one can prove that
µ′�x1	 x2� ≥ a for some a and some pair of points x1	 x2 ∈ D. Does it necessarily
follow that µ2 ≥ a? Example 2.3 below shows that the answer is “no.” To prove
this lower bound for the spectral gap, it suffices, in view of Lemma 2.1, to show
that µ′�x1	 x2� ≥ a for some x1	 x2 ∈ D with g�x1	 ·� and g�x2	 ·� not identical.
A practical strategy might be to prove that µ′�x1	 x2� ≥ a for all distinct
x1	 x2 ∈ D. This will be illustrated in Example 2 below. We proceed with the
aforementioned example showing that the bound µ′�x1	 x2� ≥ a for a single
pair �x1	 x2� does not necessarily imply the same bound for the spectral gap.

Example 2.3. LetD = �0	1	 � � � 	100�×�0	1	 � � � 	10�. Suppose the process
X jumps only to its nearest neighbors in D, and let the jump rate be equal to
1 for every pair of neighbors. (So X is a reflected simple symmetric random
walk on a rectangular portion of the planar square lattice �2.) Consider a
coupling �X1	X2� such that:

(a) The first components of X1 and X2 are collectively independent of the
second components, so that we can describe the joint evolution of �X1	X2�
by specifying how the first components behave and separately how the second
components behave.
(b) The first components ofX1 andX2 evolve independently until they first

agree, after which they remain equal.
(c) The second components behave similarly (independently until they first

agree, after which they stick together).

The components of X are independent so it is not hard to check that the
second eigenvalue µ2 for X is the same as for its first component. However,
if X1

0 = �a	 b� and X2
0 = �a	 c� with b �= c, then µ′��a	 b�	 �a	 c�� is the same

as the second eigenvalue for the second component of X and so it is strictly
larger than µ2.
Of course, it can be checked directly here that, in the notation of Lemma 2.1,

g��a	 b�	 ·� ≡ g��a	 c�	 ·��

Definition 2.4. We say that �y1	 y2� is accessible from �x1	 x2� if

�
[�X1

t 	X
2
t � = �y1	 y2�  �X1

0	X
2
0� = �x1	 x2�

]
> 0

for some (and, therefore, all) t > 0.

Accessibility is clearly a transitive property: if �y1	 y2� is accessible from
�x1	 x2� and �z1	 z2� is accessible from �y1	 y2�, then �z1	 z2� is accessible from
�x1	 x2�. Note that the accessibility of states inD2 is a property of the coupling
and not just X: in fact, it is the same as accessibility for the coupling Markov
chain �X1	X2� restricted to D2 \ �, where � ⊂ D2 is the diagonal.
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Definition 2.5. We will say that the coupling �X1	X2� has the transpo-
sition property relative to x1 if:

(A) For all x2 with x1 �= x2, and for all y1 and y2 with y1 �= y2, the accessibility
of �y1	 y2� from �x1	 x2� implies accessibility of both �x1	 x2� and �x2	 x1�
from �y1	 y2�.

(B) For every x2 �= x1, there is at least one pair �y1	 y2�, distinct from �x1	 x2�,
which is accessible from �x1	 x2� [so for �X1	X2� restricted to D2 \� there
are no isolated states involving x1].

We will say that D2 is irreducible with respect to a given coupling if every
state �y1	 y2� with y1 �= y2 is accessible from any other state �x1	 x2� with
x1 �= x2.
Note that the transposition property relative to x1 can also be reduced to

considerations about state classification for the coupling chain �X1	X2�, bear-
ing in mind that we are only considering coupling chains which are symmetric
under the permutation �x1	 x2� ↔ �x2	 x1�. It can be shown that the transpo-
sition property is equivalent to the requirement that, for any x2 with x2 �= x1,
the communicating class of �x1	 x2� under the chain �X1	X2� restricted to
D2 \ � is essential and is saturated under the symmetry �x1	 x2� ↔ �x2	 x1�.
The following fundamental result uses these properties to identify many

chains which are efficient and many chains which are not.

Theorem 2.6.

(i) If the coupling �X1	X2� has the transposition property relative to a
point x1 ∈ D, then µ′�x1	 x2� < µ2 for some x2 ∈ D2 distinct from x1, and so
the coupling is not efficient.
(ii) Suppose that for some x1	 x2 ∈ D there exists a function f� D→ � with

the property that f�X1
t � − f�X2

t � almost surely remains strictly positive for
t < τ, given X1

0 = x1 and X2
0 = x2. Then µ′�x1	 x2� ≥ µ2.

The following statement follows immediately from Theorem 2.6.

Corollary 2.7.

(i) If D2 is irreducible for the coupling �X1	X2�, then this coupling is not
efficient.
(ii) Suppose that for every pair of distinct points x1	 x2 ∈ D there exists a

function f�D→ � with the property that f�X1
t �−f�X2

t � almost surely remains
strictly positive for t < τ, given X1

0 = x1 and X2
0 = x2. Then the coupling is

efficient.

Remark. An interesting example to which Corollary 2.7 applies is the in-
dependence sampler discussed in [46]. Here one can compute the eigenvalues
(and indeed the transition matrix) explicitly [33, 45] and verify (at least for
finite state space) that the Markov chain is efficient. As pointed out by Cai
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[7], this chain possesses a monotonicity structure. Cai uses this monotonicity
to build a CFTP algorithm, but it also guarantees efficiency as above.

We will show in Examples 2.9 and 2.10 that neither of the conditions in
parts (i) and (ii) of Theorem 2.6 is necessary. Theorem 2.6 should be compared
with [40], Section 5, which implies that bounded monotone Markov chains are
efficient.

Proof of Theorem 2.6. (i) Suppose that the coupling �X1	X2� has the
transposition property relative to some x1. Fix any point x2 ∈ D distinct from
x1 and assume that �X1

0	X
2
0� = �x1	 x2�. Consider a coupling �X̃1	 X̃2�which is

independent of �X1	X2�, having the same transition probabilities as �X1	X2�
but starting from �x2	 x1� rather than from �x1	 x2�. Let τ̃ denote the coupling
time for �X̃1	 X̃2�.
We will estimate the chance that �X1	X2� and �X̃1	 X̃2� have not met before

time s, given �τ > s	 τ̃ > s�. The invariance of the coupling under the transpo-
sition of its components, the transitivity of the accessibility property and the
transposition property relative to x1 can be used to show that the accessibil-
ity of any �y1	 y2� from �x1	 x2� implies accessibility of �y2	 y1� from �x1	 x2�.
Consider any integer k > 0. Since we have assumed that �X1

0	X
2
0� = �x1	 x2�

and �X̃1
0	 X̃

2
0� = �x2	 x1�, at time t both processes can only take those pairs of

values from which they can reach �x1	 x2� (we are using the transposition prop-
erty here). The state space is finite, so the processes can reach �x1	 x2� within
an arbitrarily small time, less than 1/4 say, with some strictly positive prob-
ability not depending on their values at time t = k. We will need a stronger
version of this statement. Condition the processes �X1

t 	X
2
t � and �X̃1

t 	 X̃
2
t � on

their values at times t = k and t = k + 1 (we consider only the values that
can be taken with strictly positive probabilities). The transposition property
can be used again to show that there are possible trajectories which take the
processes to the intermediate state �x1	 x2� for all t ∈ �k + 1/4	 k + 3/4�. The
finiteness of the state space can now be invoked to see that such an event has
a probability bounded below. More precisely, there exists a probability p > 0
such that, for all integers k > 0 and all s ≥ k+ 1,

�
[
X1

t = X̃1
t = x1	X

2
t = X̃2

t = x2 for k+ 1/4 ≤ t ≤ k+ 3/4
X1

k	X
1
k+1	X

2
k	X

2
k+1	 X̃

1
k	 X̃

1
k+1	 X̃

2
k	 X̃

2
k+1	 τ > s	 τ̃ > s

]
> p �

We are interested only in large s so we will assume that s > 1. Let j be the
largest integer with j ≤ s. Condition the processes �X1	X2� and �X̃1	 X̃2� on
their values at times 0	1	2	 � � � 	 j and on the event �τ > s	 τ̃ > s�. It follows
that

�
[�X1

t 	X
2
t � �= �X̃1

t 	 X̃
2
t � for 0 ≤ t < s  τ > s	 τ̃ > s

]
≤ �1− p�j ≤ exp�−µs�

(2.4)

for appropriate µ > 0.
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Let σ be the smallest t such that �X1
t 	X

2
t � = �X̃1

t 	 X̃
2
t �. Thus inequality

(2.4) gives

�
[
σ > s  τ > s	 τ̃ > s	X1

0 = x1	X
2
0 = x2

] ≤ exp�−µs��(2.5)

We now make a simple observation about the relative behavior of the pro-
cesses �X1	X2� and �X̃1	 X̃2� after the meeting time σ . We use the strong
Markov property applied to �X1	X2	 X̃1	 X̃2� at time σ , to deduce the
following:

�
[
X1

s = y	 s ≥ σ X1
σ	X

2
σ	 X̃

1
σ	 X̃

2
σ	 σ	 s < τ	 s < τ̃	X1

0 = x1	 X̃
1
0 = x2

]
= �

[
X̃1

s = y	 s ≥ σ X1
σ	X

2
σ	 X̃

1
σ	 X̃

2
σ	 σ	 s < τ	 s < τ̃	X1

0 = x1	 X̃
1
0 = x2

]
(we suppress the conditioning on X2

0 = x2 and X̃
2
0 = x1, since, by definition,

we have X2
0 = X̃1

0 and X̃
2
0 = X1

0). Hence we can use integration and rewrite
the conditioning in terms of �X1

0	X
2
0�, respectively �X̃1

0	 X̃
2
0�, to show that

�
[
X1

s = y	 s ≥ σ  s < τ	 s < τ̃	X1
0 = x1	X

2
0 = x2

]
= �

[
X̃1

s = y	 s ≥ σ  s < τ	 s < τ̃	 X̃1
0 = x2	 X̃

2
0 = x1

]
�

We now generalize the proof of Lemma 2.1. First, we find points x2	 y ∈ D
such that g�x1	 y� �= g�x2	 y�. Note that such points exist using the orthog-
onality of the eigenfunctions ϕ in g�x	y� = ∑

ϕ ϕ�x�ϕ�y� and the fact that
eigenfunctions corresponding to the second eigenvalue must change sign.
We recall (2.3), namely,

p�s	 x1	 y� − p�s	 x2	 y� =
[
g�x1	 y� − g�x2	 y�

]
exp�−µ2s�

+R�s	 x1	 y� +R�s	 x2	 y��
(2.6)

The estimate based on coupling is more complicated in the present case. We
use symmetry, inequality (2.5), and follow the method described in the proof
of Lemma 2.1. We find∣∣p�s	 x1	 y� − p�s	 x2	 y�

∣∣
= ∣∣�(X1

s = y X1
0 = x1

)− �
(
X2

s = y X2
0 = x2

)∣∣
= ∣∣�(X1

s = y	 s < τ X1
0 = x1	X

2
0 = x2

)
− �

(
X2

s = y	 s < τ X1
0 = x1	X

2
0 = x2

)∣∣
= ∣∣�(X1

s = y  s < τ	X1
0 = x1	X

2
0 = x2

)
�
(
s < τ X1

0 = x1	X
2
0 = x2

)
− �

(
X2

s = y  s < τ	X1
0 = x1	X

2
0 = x2

)
�
(
s < τ X1

0 = x1	X
2
0 = x2

)∣∣
≤ ∣∣�(X1

s = y  s < τ	X1
0 = x1	X

2
0 = x2

)
− �

(
X2

s = y  s < τ	X1
0 = x1	X

2
0 = x2

)∣∣× c�x1	 x2�exp�−µ′�x1	 x2�s�
= ∣∣�(X1

s = y  s < τ	 s < τ̃	X1
0 = x1	X

2
0 = x2

)
− �

(
X̃1

s = y  s < τ	 s < τ̃	 X̃1
0 = x2	 X̃

1
0 = x1�

∣∣× c exp�−µ′s��
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This last step uses the fact that �X1	X2�, �X̃1	 X̃2� are independent to justify
the insertion of conditioning on both s < τ and s < τ̃ for both probabilities.
We now use the conditional probability identity noted above to cancel between
the two conditional probabilities to yield∣∣∣�(X1

s = y  s < τ	 s < τ̃	X1
0 = x1	X

2
0 = x2

)

− �
(
X̃1

s = y  s < τ	 s < τ̃	 X̃1
0 = x2	 X̃

2
0 = x1

)∣∣∣× c exp�−µ′s�

=
∣∣∣�(X1

s = y	 s < σ  s < τ	 s < τ̃	X1
0 = x1	X

2
0 = x2

)

− �
(
X̃1

s = y	 s < σ  s < τ	 s < τ̃	 X̃1
0 = x2	 X̃

2
0 = x1

)∣∣∣× c exp�−µ′s�

≤ �
(
s < σ  s < τ	 s < τ̃	X1

0 = x1	 X̃
1
0 = x2

)
c exp�−µ′s�

≤ exp�−µs�c exp�−µ′s��
The last estimate and (2.6) hold for arbitrarily large s, so µ2 ≥ µ′�x1	 x2�+µ >
µ′�x1	 x2� and we see that the coupling is not efficient.
(ii) Find a function f� D→ � corresponding to x1	 x2, as in the statement of

the theorem. Let ρ = inf�f�x� − f�y�� f�x� > f�y��. Note that ρ > 0 because
D is finite. If X1

0 = x1 and X
2
0 = x2, then f�X1

t � − f�X2
t � ≥ ρ for t < τ.

Let n be the smallest index for an eigenvalue µn such that ϕn�x1� �= ϕn�x2�.
Such an index must exist because otherwise the eigenfunction expansions
would be identical for p�t	 x1	 y� and p�t	 x2	 y� and, consequently, these func-
tions would be identical; this is not the case since x1 �= x2.
By replacing the function f�x� with f�x�exp�αf�x��, for an appropriate α,

if necessary, we may assume that S = ∑
y∈D f�y�ϕn�y� �= 0. From an eigen-

function expansion similar to (2.1) but listing higher order terms, we obtain

Ɛ
[
f�X1

t � X1
0 = x1

]− Ɛ
[
f�X2

t � X2
0 = x2

]
= ∑

y∈D
f�y�p�t	 x1	 y� −

∑
y∈D

f�y�p�t	 x2	 y�

= ∑
y∈D

f�y�{[ϕn�x1� − ϕn�x2�
]
ϕn�y� exp�−µnt�

+ R̃�t	 x1	 y� + R̃�t	 x2	 y�
}

= S
[
ϕn�x1� − ϕn�x2�

]
exp�−µnt� + R̂�t	 x1	 x2	 y�	

(2.7)

where R̂�t	 x1	 x2	 y� goes to 0 faster than exp�−µnt� as t→∞. Recalling the
definition of µ′,

Ɛ
[
f�X1

t � X1
0 = x1

]− Ɛ
[
f�X2

t � X2
0 = x2

]
= Ɛ

[
f�X1

t �I�t<τ� X1
0 = x1

]− Ɛ
[
f�X2

t �I�t<τ� X2
0 = x2

]
= Ɛ

[�f�X1
t � − f�X2

t ��I�t<τ� X1
0 = x1	X

2
0 = x2

]
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≥ ρƐ
[
I�t<τ� X1

0 = x1	X
2
0 = x2

]
≥ ρc�x1	 x2�exp

(−µ′�x1	 x2�t
)
�

Comparing this with (2.7) for large t shows that µ′�x1	 x2� ≥ µn ≥ µ2. This
concludes the proof of the theorem. ✷

Note that Corollary 2.7(ii) follows because µ∗ = minµ′�x1	 x2� ≥ µ2. Since
we always have µ∗ ≤ µ2, we see µ∗ = µ2, as required.
The following notation will be used for the rest of the section. For distinct

d1	 d2 ∈ D, we will denote the jump rate from d1 to d2 by q�d1	 d2�, that is,

q�d1	 d2� = lim
s→0
1
s
��Xt+s = d2 Xt = d1��

Note that by symmetry we have q�d1	 d2� = q�d2	 d1�. Consider any coupling
�X1	X2� for X. In a slight abuse of notation we will also use q for the tran-
sition rates for the coupling process �X1	X2�: for distinct pairs �d1	 d2� and
�d3	 d4� we set

q
(�d1	 d2�	 �d3	 d4�)

= lim
s→0
1
s
�
[�X1

t+s	X
2
t+s� = �d3	 d4�  �X1

t 	X
2
t � = �d1	 d2�

]
�

Since the processes X1 and X2 are Markov and have the same transition
probabilities as X, for all d1	 d2	 d3 ∈ D with d1 �= d3 we must have∑

d4∈D
q��d1	 d2�	 �d3	 d4�� = q�d1	 d3��(2.8)

For the same reason, if d2 �= d4 then∑
d3∈D

q��d1	 d2�	 �d3	 d4�� = q�d2	 d4��(2.9)

We will say that X1 and X2 make independent jumps from �d1	 d2� if
q��d1	 d2�	 �d3	 d2�� = q�d1	 d3�

and

q��d1	 d2�	 �d1	 d4�� = q�d2	 d4�
for all d3 �= d1, d4 �= d2.
Consider a simple example with the state space D = �0	1	 � � � 	100�2. Sup-

pose that X is a continuous time Markov process on D such that its jumps
form the simple random walk reflected on the “boundary” of D. Let X1 and
X2 be run as independent copies ofX until their coupling time τ. It is no sur-
prise to note that �X1	X2� is not efficient, by Corollary 2.7(i). However, this
“independent” coupling is efficient when the state space is ordered. Moreover,
a very weak condition ensures efficiency in this case, so that the family of effi-
cient couplings is rather large: it is required only that the coupling maintains



374 K. BURDZY AND W. S. KENDALL

the ordering. We state the following result for skip-free chains:

Corollary 2.8. Suppose the state space D is a finite subinterval of the
integers � and X can jump from x only to x− 1 or x+ 1, for every x. (So X is
a finite-state-space generalized birth–death process.) Assume that �X1

t 	X
2
t � al-

most surely never jumps to �X2
t−	X

1
t−�. Then �X1	X2� is an efficient coupling.

In particular, the coupling is efficient if X1 and X2 have independent jumps
until the coupling time τ.

Proof. The corollary follows from Corollary 2.7(ii). It suffices to use either
f�x� ≡ x or f�x� ≡ −x.
The next two examples show that neither of the conditions in parts (i) and

(ii) of Theorem 2.6 is necessary.

Example 2.9. We construct aMarkov process and a couplingwith µ′�x1	 x2�
≥ µ2 for a specific pair of points x1 and x2, although there is no function f
satisfying condition (ii) of Theorem 2.6 for this pair of points. We also show that
ϕ2�x1� �= ϕ2�x2�, since otherwise this example would not be an improvement
on Example 2.3 [where we have µ′�x1	 x2� > µ2 for some points but only for
those with ϕ2�x1� = ϕ2�x2�].
Fix some large n and let the state space of the process be

D = {
a10	 a

1
1	 a

1
2	 a

1
3	 a

2
0	 a

2
1	 a

2
2	 a

2
3	 � � � 	 a

n
0 	 a

n
1 	 a

n
2 	 a

n
3

}
�

Figure 1 illustrates all possible jumps for the process. We take q�aj0	 aj+10 � = 1
for j = 1	2	 � � � 	 n − 1, and q�d1	 d2� = q̃ for all other vertices d1 and d2
connected by an edge in the graph. We will choose a value for q̃ later in the
example.
Consider a coupling with the jump rates

q
(�ajm	 akm�	 �ajl 	 akl �) = q�ajm	 ajl �

for all j	 k	 l and m, with j �= k. Suppose that

q
(�aj0	 ak0�	 �aj+10 	 ak0�

) = 1	 j �= k	 j = 1	 � � � 	 n− 1	
q
(�aj0	 ak0�	 �aj−10 	 ak0�

) = 1	 j �= k	 j = 2	 � � � 	 n	
q
(�aj0	 ak0�	 �aj0	 ak+10 �) = 1	 j �= k	 k = 1	 � � � 	 n− 1	

q
(�aj0	 ak0�	 �aj0	 ak−10 �) = 1	 j �= k	 k = 2	 � � � 	 n�

We require that X1 and X2 make independent jumps from all other points
�d1	 d2�.

If �X1
0	X

2
0� = �ajl 	 ajm� for some l �= m, then ���X1

s 	X
2
s� = �ajm	 ajl �� >

0 for every s > 0, so there does not exist a function f� D → � such that
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a
1
1

a1
2 a

1
3

a
2
1

a
2

2
a

2

3

a3
1

a
3
2 a

3
3

a
n
1

a
n
2 a

n
3

a1
0

a2
0

a
3
0

a
n
0

Fig. 1.

f�X1
t � − f�X2

t � is strictly positive until the coupling time. However, we will
argue that µ′�ajl 	 ajm� = µ2 for some j and l �=m, if q̃ is large enough.
If both X1

t and X
2
t lie on the “spine” �a10	 a20	 � � � 	 an0� at some time s, then

from this time on, they will make excursions into side alleys of the form
�aj0	 aj1	 aj2	 aj3� at the same time and they will return from those excursions to
the spine at the same time. It follows that if �X1

s 	X
2
s� = �aj0	 ak0� with j < k,

then X1
t will lie to the left of X

2
t for all t ∈ �s	 τ�. We let f�ajm� = j and use

Theorem 2.6(ii) to see that µ′�aj0	 ak0� ≥ µ2 for j �= k.
We will estimate µ′�aj0	 ak0�. First, suppose that the processes X1 and X2

start from distinct points on the spine. Then their evolution may be described
as that of two independent copies of X along the spine except that they may
make simultaneous excursions into the side alleys of the form �aj0	 aj1	 aj2	 aj3�.
Those side excursions can only delay the coupling time τ for X1 and X2 so
τ is stochastically minorized by the coupling time for a pair of independent
random walks on the spine, reflected at the endpoints of the spine. Hence, by
Corollary 2.8,

�
[
τ > t  �X1

0	X
2
0� = �aj0	 ak0�

] ≥ c�j	 k� exp�−µ̂t�	
for all j �= k, where µ̂ is the second eigenvalue for the process restricted to
the spine. Note that µ̂ does not depend on q̃.
Suppose that �X1	X2� starts from �ajl 	 ajm� for some j and l �= m. If we

choose sufficiently large q̃, then the processes X1 and X2 will rapidly and
independently jump along the edges connecting the elements of the family
�aj0	 aj1	 aj2	 aj3�. It is clear that they will rapidly couple, before leaving this
set. As a consequence, for sufficiently large q̃ one can choose c1 such that, for
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all j	 l and m,

�
[
τ > t  �X1

0	X
2
0� = �ajl 	 ajm�

] ≤ c1 exp�−2µ̂t��
It follows that, for large t,

�
[
τ > t  �X1

0	X
2
0� = �ajl 	 ajm�

] ≤ c1 exp�−2µ̂t� ≤ min
r�=k

c�r	 k� exp�−µ̂t�

≤ min
r�=k �

[
τ > t  �X1

0	X
2
0� = �ar0	 ak0�

]
�

Hence minjminl�=m µ′�ajl 	 ajm� ≥ maxr�=k µ′�ar0	 ak0� ≥ µ2.

Finally, we will show that g�ajl 	 ·� and g�ajm	 ·� are not identical for some
j and l �= m. Suppose that the converse holds. Fix some j and note that
if g�ajl 	 ·� = g�ajm	 ·� for all l and m, then g�aj1	 ·� is an average in the first
argument of the other g�ajm	 ·�, and indeed g is harmonic in its first argument
at aj1. As a function of its first argument, g is an eigenfunction corresponding
to µ2; therefore we must have g�ajl 	 ·� = 0 for all l. If this is true for all j,
then g is identically equal to 0, which is a contradiction.
We conclude that for some j and l �= m we have µ′�ajl 	 ajm� ≥ µ2 and

g�ajl 	 ·�, g�ajm	 ·� not identical. However, there is no function f which would
satisfy condition (ii) of Theorem 2.6 for ajl and a

j
m.

Example 2.10. We present a Markov process, a coupling and a pair of
points x1	 x2 with µ′�x1	 x2� < µ2 although neither x1 nor x2 satisfies the
transposition property of Theorem 2.6(i). Let D = �−100	−99	 � � � 	100� ×
�0	1	 � � � 	50� be a bounded portion of �2. Let the process X be able to jump
only to its nearest neighbors in D, and let the jump rate be equal to 1 for
every pair of neighbors. We consider a coupling �X1	X2� with the jump rates

q
(�−j	 k�	 �j	 k�)	 (�−l	m�	 �l	m�) = 1

for j ≥ 1, j − l + k −m = 1. The processes X1 and X2 have independent
jumps from all points which are not symmetric with respect to the vertical
axis K.

Suppose thatX1 andX2 start from distinct points x1 and x2 which are not
symmetric with respect to K. Then these processes are independent copies
of X until the time T when X1 hits X2 or the symmetric image of X2 with
respect toK. The second eigenvalue µ2 forX is the same as the second eigen-
value for its first component. The following few assertions are quite clear but
we will not go into a detailed proof of them as it would take too much space.
We have ��T > t� ≥ c exp�−µt) for some c and µ < µ2. This is justified by
comparing T to U, where U is the time when X hits K, and by the fact that
��U > t� ≤ c exp�−µ2t). We obtain µ′�x1	 x2� ≤ µ < µ2.
Let x3 be the point symmetric to x1 with respect to K. Note that �x1	 x3�

is accessible from �x1	 x2� for this particular coupling but neither �x1	 x2� nor
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�x2	 x1� is accessible from �x1	 x3�. Hence neither x1 nor x2 has the transpo-
sition property.
Our next example is a continuous version of [21] Exercise 5.9.

Example 2.11 (Ehrenfest model or random walk on hypercube). Consider
two urns with n marked balls distributed among them. At every arrival time
for a Poisson process, a ball is randomly chosen from among all balls in both
urns and moved to the other urn.
A formal description of the model is the following. The state spaceD for our

process is the set of all binary sequences �i1	 i2	 � � � 	 in� of length n, so each ij
is equal to 0 or 1. Let Uk	k ≥ 1, be independent exponential (mean 1) random
variables and set Tk = U1+· · ·+Uk. Consider random variablesNk which are
independent of each other and of the Tk’s and which are uniformly distributed
over the fixed range �1	2	 � � � 	 n�. Finally, let �Jk� be a sequence of random
variables, independent of each other, of the Tk’s and of theNk’s and such that
��Jk = 0� = ��Jk = 1� = 1/2. We define the process X on D by prescribing
its initial value X0 = �i1	 i2	 � � � 	 in� and by specifying its jumps; X jumps at
times Tk (and only at these times), the jump at time Tk taking the process
from XTk− = �j1	 j2	 � � � 	 jNk

	 � � � 	 jn� to XTk
= �j1	 j2	 � � � 	 Jk	 � � � 	 jn�. If the

process jumped instead to �j1	 j2	 � � � 	1 − jNk
	 � � � 	 jn� at time Tk, then we

would have obtained a model directly corresponding to the informal “urn”
representation. However, the two processes X, corresponding to two kinds of
jumps, can be transformed into each other by speeding up or slowing down
the clock for X.
We construct a coupling �X1	X2� by using just one family of random vari-

ables �Tk	Nk	Jk�k≥1 for both processes X1 and X2. Specifically, the tran-
sition probabilities for �X1	X2� are specified by the requirement that the
process �X1	X2� jumps at times Tk (and only at these times) from

(
X1

Tk−	X
2
Tk−

) = (�j11	 j12	 � � � 	 j1Nk
	 � � � 	 j1n�	 �j21	 j22	 � � � 	 j2Nk

	 � � � 	 j2n�
)

to

(
X1

Tk
	X2

Tk

) = (�j11	 j12	 � � � 	 Jk	 � � � 	 j
1
n�	 �j21	 j22	 � � � 	 Jk	 � � � 	 j

2
n�
)
�

It is immediate that �X1	X2� and also X1 and X2 are all Markov processes;
moreover the latter two have the same transition probabilities as X.
Suppose that X1

0 = �j11	 j12	 � � � 	 j1n�. Let f�i1	 i2	 � � � 	 in� be the number of k
such that ik = j1k. It is elementary to check that if X

1
0 �= X2

0, then f�X1
t � −

f�X2
t � stays strictly positive for all t < τ. By Corollary 2.7(ii), our coupling is

efficient.
Recall µ∗ defined before Lemma 2.1 in (2.2). To estimate µ∗, we consider

the worst-case scenario, that is, that initially no components of X1
0 and X2

0
are equal. For a fixed k, the waiting time for the kth components of X1 and
X2 to meet is exponential with mean n. Once these components meet, they
will be equal to each other forever, although they will not be constant. It is an



378 K. BURDZY AND W. S. KENDALL

easy consequence of the theory of Poisson point processes with independent
marks that the waiting times for different components are independent. The
probability that a specified pair of components have not merged by time t
is equal to exp�−t/n� so the probability that there exists at least one such
pair is equal to 1 − �1 − exp�−t/n��n which is between �1/2�nexp�−t/n� and
nexp�−t/n� for large t. We conclude that µ∗ = 1/n, and since our coupling is
efficient, we see that the spectral gap is also equal to 1/n.
Consider now the asymptotics when n→∞. In this example, the mean time

to coupling is not of order 1/µ∗ = n. The expected waiting time between the
kth coupling of a pair of components of X1 and X2 and the �k+1�th coupling
is n/�n− k�, so that the expected time until all components are coupled is of
order

∑n−1
k=0 n/�n−k� ≈ n log n, which is larger than 1/µ∗ by a factor of log n.

Example 2.12. We construct a symmetric Markov process Xt for which
there are no efficient Markovian couplings. The state space consists of 11
points:

D = {
a1	 a2	 a3	 b1	 b2	 b3	 c1	 c2	 � � � 	 c5

}
�

The edges in Figure 2 show all possible jumps for the process; in other words,
points d1	 d2 ∈ D are connected by an edge in Figure 2 if and only if q�d1	 d2�
> 0. The jump rates are q�a1	 a2� = 1, q�a2	 a3� = 2, and q�d1	 d2� = 4 for all
other edges in Figure 2.

Consider any coupling �X1	X2� for this process. Suppose that d1	 d2 ∈
D \ �a2� are such that q�d1	 d2� > 0, and, therefore, q�d1	 d2� = 4. Since
q�a2	 a1� = 1 and q�a2	 a3� = 2, the identities (2.8) and (2.9) imply that
q��d1	 a2�	 �d2	 a1�� ≤ 1 and q��d1	 a2�	 �d2	 a3�� ≤ 2. By another application of
(2.8) and (2.9), we deduce from these inequalities that q��d1	 a2�	 �d2	 a2�� > 0,
since q�a2	 a1� = 1, q�a2	 a3� = 2 and the sum of all q��d1	 a2�	 �d2	 ai��
equals 4.

a1

a
2

a3

b1

b2

b3

c1
c2

c
3

c
4

c5

Fig. 2.
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We will describe an evolution of the process �X1	X2� before the coupling
time which may happen with positive probability, no matter what coupling is
used.
First, we consider the case when one of the processes X1 or X2 starts from

a2. Without loss of generality suppose that X
1
0 = a2 and X2

0 = d0 �= a2. It
follows from what we have just proved that q��d0	 a2�	 �d2	 a2�� > 0, where d2
is any “neighbor” of d0 in the “rectangle” D \ �a2�. Hence there is a positive
probability that X2 will move through a sequence of points in D \ �a2� and
reach b2 at time t1, before the time when X1 leaves a2.
We note that for any coupling �X1	X2� and any position �d1	 d2� of this

process at time s, if X can jump with a positive probability from d1 to d3,
then there is a positive probability that the first jump of X1 after time s
will take it to d3, and, moreover, the jump of X1 will occur before or at the
same time whenX2 makes its first jump after time s. Thus there is a positive
probability thatX1 will jump to a1 at some time t2 > t1, butX2 will not jump
within interval �t1	 t2� at all or it will have only one jump, at time t2. Hence
there is positive probability that for some t2 we have X1

t2
= a1 and X2

t2
= bk

for some k.
The same argument shows that, with a positive probability, X1 will jump

after time t2 from a1 to c1, c2 and c3 at times t3	 t4 and t5, while X2
t will have

at most three jumps for t ∈ �t2	 t5�, and, moreover, all of the jumps of X2 will
occur at times t3	 t4 and/or t5. It may happen that X2 hits a1 or a3 at some
time t6 ∈ �t2	 t5�. If this is the case, thenX2

t6
∈ �a1	 a3� whileX1

t6
∈ �c1	 c2	 c3�.

If X2 does not hit a1 or a3 before or at the time t5, then X2
t5
∈ �b1	 b2	 b3�

and X1
t5
= c3. In this case, a possible evolution of the process after time t5 is

that X2 will make one or two jumps that will take this process to either a1
or a3, whichever is closer to X2

t5
. Let t7 be the time when X2 hits a1 or a3.

With positive probability, X1 will make at most two jumps during the time
interval �t5	 t7� and so we will have X1

t7
∈ �c1	 c2	 c3	 c4	 c5�. We see that, with

positive probability, there is a finite time t8, equal either to t6 or t7, such that
X2

t8
∈ �a1	 a3� and X1

t8
∈ �c1	 c2	 c3	 c4	 c5�.

With positive probability, the process X2 can jump to a2 at time t9 > t8,
while X1 will not jump during �t8	 t9�. We will have X2

t9
= a2 and X1

t9
∈

D \ �a2�. Then X1
t may reach d0 (the initial position of X2) at time t10 > t9,

before X2 leaves a2, by the argument presented earlier in the proof. We have
shown that, with a positive probability, the coupling �X1	X2� may go from
�a2	 d0� to �d0	 a2�, before the coupling time.
Next we consider an arbitrary initial position �d1	 d2� for �X1	X2� with

d1 �= d2. We assume that d1	 d2 ∈ D \ �a2� because the other case has been
discussed in the first part of the proof. With positive probability, the process
X1 may keep jumping in the clockwise direction around D \ �a2�, while X2

will jump only at the same times when X1 jumps. The same remark applies
to jumps of X1 in the counterclockwise direction; it also applies when we
reverse the roles of X1 and X2. An elementary argument now shows that,
for any starting position, one or both processes may hit �a1	 a3� before the
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coupling time. First, suppose that only one of them hits the set �a1	 a3�. Then
this process may jump to a2 before or at the same time when the other process
jumps. At this instant, one of the processes will be at a2 while the other will
be in D \ �a2�. The other possibility is that both processes hit �a1	 a3� at the
same instant, before the coupling time. Then, since q�a3	 a2� > q�a1	 a2�, and
using (2.8) and (2.9), there is a positive chance that the process at the point
a3 will jump to a2 before the other process jumps to a2. Hence, just as in the
first part of the proof, we will have one of the processes at a2 and the other
at a point of D \ �a2�. The process which happens to be in D \ �a2� may go to
any other point of D \ �a2� strictly before the other process leaves a2.
We have proved that, for every �d1	 d2� and every d3 ∈ D \ �a2�, either

�a2	 d3� is accessible from �d1	 d2� or �d3	 a2� is accessible from the same point.
By the first part of the proof, �a2	 d3� is accessible from �d3	 a2� and vice versa,
so by transitivity, both �a2	 d3� and �d3	 a2� are accessible from �d1	 d2�. In
particular, if �d1	 d2� is accessible from �a2	 d3�, then both �a2	 d3� and �d3	 a2�
are accessible from �d1	 d2�. In other words, every coupling �X1

t 	X
2
t � has the

transposition property relative to a2. We conclude that no coupling is efficient
for this Markov chain, by Theorem 2.6(i). Since, for every �d1	 d2�with d1 �= d2,
�a2	 d3� is accessible from �d1	 d2�, it easily follows that µ′�d1	 d2� < µ2 for
every pair of distinct points d1	 d2 ∈ D.

Remark. We list three open problems inspired by Example 2.

1. Give necessary and sufficient conditions in terms of q�x	y� for the existence
of an efficient coupling for a continuous-time symmetric Markov process
with finite state space.

2. A quantitative version of problem 1 is the following. Let µ = supµ∗, where
the supremum is taken over all couplings for a given Markov process. Can
we have µ < µ2? If so, how can one calculate µ2 − µ starting from q�x	y�?

3. If the state space D has only three elements, then there exists an efficient
coupling (we omit an easy proof). Does an efficient coupling exist for ev-
ery Markov process whose state space is a loop: namely, the state space is
�0	1	 � � � 	 n� for some n and q�j	 k� > 0 if and only if j − k = 1 or n? We
conjecture that the answer is no if n ≥ 3.
As with many coupling problems, it may help to think of this problem in

terms of a game. Suppose that player � begins at state x1 and player �
begins at a different state x2. Player � can make various moves according
to possibilities admitted by the Q-matrix of the Markov process in question
and weighted by the off-diagonal terms of the Q-matrix. Player � must pre-
declare his moves in terms of either what � might do or electing to move
independently, dividing weights between various possibilities so as (a) to add
up to the weights prescribed by the off-diagonal terms of the Q-matrix and
(b) such that a move predeclared in terms of a � -move must have weight no
greater than that of the � -move. (Thus a viable strategy for� corresponds to
an admissible coupling.) Player � wins the game if he can choose a sequence
of � - and � -moves compatible with � ’s predeclared options and such that
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at some stage the positions of � and � interchange from what they were at
a previous occasion. By Theorem 2.6(i), there is no efficient coupling exactly
when for some initial point x1 for � it is the case that player � can win the
game whatever viable strategy is chosen by � .

3. Reflected Brownian motion in a triangle. We will illustrate the
concept of efficiency for Markovian couplings for continuous processes by a
detailed analysis of two couplings for reflected Brownian motion in a triangle.
We have chosen this example as the role of “partial ordering” is clear in this
case. Moreover, our methods developed for this example have laid a foundation
for some results on the “hot spots” conjecture of Rauch [3, 5, 6]. We remark in
passing that not much can be said about the exact values of eigenvalues for
reflected Brownian motion in a triangle: see [38, 39] for the equilateral case.
We will discuss “synchronous” and “mirror” couplings. The synchronous cou-

plings have been studied, for example, by Cranston and Le Jan [15, 16]. The
mirror couplings seem to be a more effective tool than the synchronous cou-
plings for estimating the spectral gap [48]. We will start with synchronous
couplings. Our results are not as complete in this case as in the case of mirror
couplings and for this reason this part of the presentation is less technical.
First, we will give a construction of the synchronous coupling. Note that the

notation is changed from the last section in the following respect: previously
X1 and X2 denoted copies of X, while in this section they will stand for
the components of the two-dimensional process X. The coupling process will
consist of X and an identically distributed (but not independent!) copy Y.
Let X̃ = �X̃1	 X̃2� be a two-dimensional Brownian motion with X̃0 =

�x1	 x2�, where x2 > 0. Let LX
t = −�0 ∧ mins≤t X̃2

s�. Then the Skorokhod
lemma ([28], Lemma 3.6.14) implies that the process X, defined by Xt =
�X̃1

t 	 X̃
2
t + LX

t �, is a reflected Brownian motion in the upper half-plane. Let
Ỹt = �Ỹ1t 	 Ỹ2t � = �X̃1

t + �y1 − x1�	 X̃2
t + �y2 − x2��, where y2 > 0. Then

Ỹ is a Brownian motion starting from �y1	 y2�. Arguing as before, LY
t =

−�0 ∧ mins≤t Ỹ2s� can be used to define a reflected Brownian motion Y by
means of the formula Yt = �Ỹ1t 	 Ỹ2t +LY

t �. Let Kt be the straight line passing
through the two planar points Xt and Yt and let � Kt ∈ �−π/2	 π/2� be the
angle between Kt and the horizontal axis. (If Xt = Yt, then let Kt be the
horizontal line passing through Xt.) If � K0 = π/2, then Kt will stay perpen-
dicular to the horizontal axis until Xt and Yt meet at some time u and then
Xt = Yt for t > u. If � K0 �= π/2, then � Kt will converge in a monotone way
to 0 as t→∞ and, moreover, � Kt will be constantly equal to 0 after both Xt

and Yt hit the horizontal axis. The pair �X	Y� of reflected Brownian motions
will be called a synchronous coupling.
The above construction generalizes in a straightforward way to polygonal

domains D: given a pair of starting points x	y ∈ D, we can define a pair
of reflected Brownian motions �X	Y� in D with �X0	Y0� = �x	y�, and such
that X −Y remains constant on every interval during which both processes
stay in the interior of the domain. It should be noted that neither of X and Y
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can hit any vertices of ∂D; this follows either by the results of Varadhan and
Williams [47] or indeed by viewingX, Y in polar coordinates centered at each
of the finitely many polygonal vertices. Finally, it is not hard to prove (e.g.,
using Brownian excursion theory based on excursions from the side visited
immediately prior to coupling) that with positive probability there will be u
such thatXu = Yu if and only ifK0 is perpendicular to one of the sides of the
polygon ∂D or if ∂D contains a perpendicular pair of line segments. If such a
u exists, then Xt = Yt for all t ≥ u.
Chen explains how the spectral gap can be estimated using couplings ([10],

Theorem 6.2). We will discuss two concrete implementations of Chen’s theorem
in the case of reflecting Brownian motion in a triangle.
Let p�t	 x	 y� be the transition densities for reflecting Brownian motion in

D. We have

p�t	 x	 y� =
∞∑
n=1

ϕn�x�ϕn�y� exp�−µnt�	(3.1)

where µn is the nth eigenvalue for the Laplacian in D with Neumann bound-
ary conditions and ϕn is the corresponding eigenfunction. Recall that µ1 = 0
and ϕ1 is a constant function. It is a classical result (“Mercer’s theorem”) that

p�t	 x	 y� = c1 + ϕ2�x�ϕ2�y� exp�−µ2t� +R�t	 x	 y�	(3.2)

where R�t	 x	 y� converges to 0 faster than exp�−µ2t� as t→∞ uniformly in
x and y (see [3], Proposition 2.1, for a recent proof). To be more precise, the
function ϕ2 in (3.2) is an eigenfunction corresponding to µ2, but in the case of
eigenvalue multiplicity it may be a linear combination g�x	y� = ∑

ϕ ϕ�x�ϕ�y�
of several eigenfunctions in (3.1) corresponding to µ2, analogous to g in (1.1).
However, for the sake of simplicity, and because the generic case will not
exhibit such multiplicity, we consider only the case g�x	y� = ϕ2�x�ϕ2�y� in
the following. Suppose that one can prove that, for some µ ≥ 0 and x	y ∈ D,

Ɛ
(Xt −Yt X0 = x	Y0 = y

) ≤ c�x	y� exp�−µt�	 t ≥ 0�(3.3)

(We choose to consider Ɛ�Xt − Yt  X0 = x	Y0 = y� rather than ��τ >
t  X0 = x	Y0 = y� because typically ��τ < ∞  X0 = x	Y0 = y� = 0 for
synchronous couplings; see [16].) One would expect that µ is then a lower
bound for µ2. We examine this assertion in the next example and lemma.

Example 3.1. Consider the long rectangle D = �0	1� × �0	100� and let
x = �1/4	1�, y = �3/4	1�. For these x and y, and the synchronous coupling,
(3.3) will hold with µ = π. This follows from the fact that the line Kt will
always stay parallel to the horizontal axis and so we are effectively dealing
with a one-dimensional Neumann problem on the interval �0	1� for which π
is the second eigenvalue. The second eigenvalue for the Laplacian in D is the
same as for the interval �0	100�, that is, µ2 = π/100. Hence (3.3) may hold
for some µ > µ2 and some x	y ∈ D.

Lemma 3.2. If ϕ2�x� �= ϕ2�y� and (3.3) holds, then µ ≤ µ2.
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Proof. Consider x	y ∈ D such that ϕ2�x� > ϕ2�y�. Suppose that X0 = x
and Y0 = y. The function ϕ2 is not identically equal to 0, so∫

D
exp�c1z1 + c2z2�ϕ2�z1	 z2�dz1 dz2 > 0

for some c1	 c2 ∈ � \ �0�. Since D is bounded there exists c3 > 0 such that c−13
is a Lipschitz constant for exp�c1x1 + c2x

2�, and so

Ɛ�Xt −Yt� ≥ c3

[
Ɛ
[
exp�c1X1

t + c2X
2
t �
]− Ɛ

[
exp�c1Y1t + c2Y

2
t �
]]
�

Then, by (3.2),

Ɛ
(Xt −Yt X0 = x	Y0 = y

)
≥ c3

[
Ɛ exp�c1X1

t + c2X
2
t � − Ɛ exp�c1Y1t + c2Y

2
t �
]

= c3

∫
D
exp�c1z1 + c2z2�p�t	 x	 z�dz

− c3

∫
D
exp�c1z1 + c2z2�p�t	 y	 z�dz

= c3

∫
D
�ϕ2�x� − ϕ2�y��exp�c1z1 + c2z2�ϕ2�z�exp�−µ2t�dz

+R�t	 x	 y�
= c4�x	y�exp�−µ2t� +R�t	 x	 y�	

where c4�x	y� > 0. [Note that here R�t	 x	 y� is actually the integrated sum of
two terms of the form of R�t	 x	 y� in (3.2).] Since this estimate and inequality
(3.3) hold for arbitrarily large t, we see that µ ≤ µ2. ✷

In view of Example 3.1 and Lemma 3.2, we propose the following definition.

Definition 3.3. We will call a synchronous coupling �X	Y� of reflected
Brownian motions in D efficient if, for some x and y with ϕ2�x� �= ϕ2�y�, the
estimate (3.3) holds with µ = µ2.

Note that the above definition of efficiency is different from that given in
Section 2 for Markov processes with finite state space. We require in Definition
3.3 that (3.3) holds with µ = µ2 only for some x and y with ϕ2�x� �= ϕ2�y�,
not for all. This is as opposed to the obvious extension of Definition 2.2, which
would require µ = µ2 for all x, y with ϕ2�x� �= ϕ2�y�. The change of the
definition is dictated by technical considerations: the stronger condition seems
to be very hard to verify with the exception of some trivial examples.

Theorem 3.4. If a triangle D has an obtuse angle (i.e., strictly greater
than π/2), then the synchronous coupling for the reflected Brownian motion in
D is efficient.
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Proof. This follows the idea of Corollary 2.7(ii). Suppose that D is an
obtuse triangle. We will suppose without loss of generality that the longest
side of ∂D lies on the horizontal axis. By convention, the angle � L between a
straight line L and the horizontal axis will lie in �−π/2	 π/2�. Let the angles
formed by the sides I1	 I2 and I3 of the triangle with the horizontal axis be 0,
α ∈ �−π/2	0� and β ∈ �0	 π/2�.
A remark following [23], Corollary (6.31), may be applied to the operator

� + µ2. Since this operator has analytic coefficients, the eigenfunctions must
be analytic. In particular, an eigenfunction cannot be constant on a nonempty
open set unless it is identically equal to 0. Since ϕ2 is not constant, we can
find x	y ∈ D [with ϕ2�x� �= ϕ2�y�] such that the angle � K between the line
K passing through these points and the horizontal axis belongs to �α	β�.
Moreover, we choose the points x = �x1	 x2� and y = �y1	 y2� so that x1 < y1.
Let �X	Y� be a synchronous coupling of reflecting Brownian motions in D

which starts from �x	y�. Let Kt be the line passing through Xt and Yt. It
follows easily from the construction of the synchronous coupling at the begin-
ning of the section that � Kt will monotonically move toward α, as long as one
of the processes is reflecting on the side I2. Likewise, � Kt can monotonically
approach 0 or β, depending on the side where the reflection is taking place.
We conclude that � Kt will stay within �α	β� for all t. This part of the proof
uses the obtuse property of the triangle in a crucial way.
Since � Kt ∈ �α	β� ⊂ �−π/2	 π/2�, we have Xt−Yt ≤ k�Y1t −X1

t � for some
k <∞. By (3.2),

Ɛ
(Xt −Yt X0 = x	Y0 = y

)
≤ kƐ

(
Y1t X0 = x	Y0 = y

)− kƐ
(
X1

t X0 = x	Y0 = y
)

= k
(∫

D
p�t	 y	 z�z1 dz−

∫
D
p�t	 x	 z�z1 dz

)

= k
(∫

D

[
ϕ2�x� − ϕ2�y�

]
z1ϕ2�z�exp�−µ2t�dz

)
+R�t	 x	 y�

≤ c1�x	y�exp�−µ2t��
It follows that inequality (3.3) holds with µ = µ2, and so the coupling is
efficient. ✷

Remark. We will prove in Theorem 3.7 below that the mirror coupling is
not efficient for reflected Brownian motion in a triangle if all its angles are
acute (smaller than π/2) and distinct. One may ask if the same is true for
the synchronous coupling. We presently do not know the answer although we
guess that synchronous couplings are also inefficient for triangles with acute
angles. We will outline below an argument which shows that the synchronous
coupling has a property similar to the “transposition property” discussed in
Section 2, which is the basis for the proofs of inefficiency in Theorems 2.6(i)
and 3.7(ii). Then we will show why this property alone is not sufficient to
complete the proof of inefficiency.
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Assume that all angles of the triangle D are less than π/2. Let us consider
two possible scenarios for motions of the line Kt passing through Xt and Yt.
Suppose that X0−Y0 is small and both starting points are close to the center
of D. In the first scenario, the particles Xt and Yt move around each other
by the angle π during a time interval �t1	 t4�. This happens thus: one of the
processes first reflects on the side I1 so thatKt becomes parallel to this side at
time t1, then one reflects on I2 untilKt becomes parallel to I2 at time t2, then
one reflects on I3 until Kt becomes parallel to I3 at time t3 and, finally, one
reflects on I1 untilKt again becomes parallel to I1 at time t4. From elementary
geometry and the acuteness of all angles of D, it follows that X1

t1
−Y1t1 and

X1
t4
−Y1t4 have opposite signs. Let αj be the angle of D opposite to Ij. Then

trigonometry and the synchronized property of the coupling combine to show
that ∣∣Xt2

−Yt2

∣∣ = cosα3∣∣X1
t1
−Y1t1

∣∣�
By repeating this remark we see that∣∣Xt4

−Yt4

∣∣ = cosα2 cosα1 cosα3 Xt1
−Yt1

�
In the second scenario, the particles do not revolve around each other. The

processes instead reflect on I1 until Kt is parallel to I1 at time t5, then they
reflect on I2 and, finally, on I1, so that Kt is again parallel to I1 at time t6.
Then X1

t5
−Y1t5 and X

1
t6
−Y1t6 will have the same sign and∣∣Xt6
−Yt6

∣∣ = cosα3 cosα3 ∣∣Xt5
−Yt5

∣∣�
Now suppose that the angles αj are such that for some integers n and m

(n odd) we have

�cosα2 cosα1 cosα3�n = �cosα3�2m�
The family of triplets �α1	 α2	 α3� with this property is dense in the set of
all possible acute angles with α1 + α2 + α3 = π. To show this amounts to
considering angles for which the quantity

1
2

(
1+ cos�α1 − α2�

cosα3

)n/
�cosα3�2m−n

is equal to 1: the required density statement follows by noting that xn/y2n−m

is dense in �0	∞� for x	y ∈ �0	1� with x/y irrational.
If the process �X	Y� repeats n times the motions described in the first

scenario, then, for some t7,

Xt7
−Yt7

 = �cosα2 cosα1 cosα3�n Xt1
−Yt1

	
and X1

t7
− Y1t7 and X1

t1
− Y1t1 will have opposite sign (since n is odd). If the

second scenario is repeated m times, then, for some t8,

Xt8
−Yt8

 = �cosα3�2m Xt5
−Yt5

 = �cosα2 cosα1 cosα3�n Xt5
−Yt5
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and X1
t8
−Y1t8 and X

1
t5
−Y1t5 will have the same sign. Hence, under the two

scenarios, the moving particles may become parallel to I1 and at the same
distance from each other, but with their “order” reversed. Since the densities
for the processes �Xt	Yt� and �Yt	Xt� are both continuous, the corresponding
distributions must be mutually absolutely continuous on a part of the state
space. This is a version of the “transposition property” used in our proofs of
inefficiency.
Next we indicate why it is difficult to derive inefficiency of the synchronous

coupling directly from the “transposition property.” Suppose that the points
x and y belong to D, the line passing through them is parallel to I1 and
X0 = x	Y0 = y. Consider the event Au that neither process Xt or Yt touches
I2 or I3 before time u. Note that, given Au, we have Xu −Yu = X0 −Y0.
Hence

Ɛ
(Xu −Yu X0 = x	Y0 = y

) ≥ X0 −Y0�
(
Au X0 = x	Y0 = y

)
�

If the points x and y are very close to each other, the event Au is “almost
identical” to the eventA1u thatXt does not hit I2 or I3 before time u. For large
u, the probability ofA1u is well approximated by c�x	y�exp�−uµ∗�, where µ∗ is
the first eigenvalue for the Laplacian inD with Neumann boundary conditions
on I1 and Dirichlet conditions on I2 ∪ I3. Hence we have a heuristic estimate
��Au� ≈ ��A1u� ≈ c exp�−uµ∗�. It is conceivable that X0 −Y0��Au� is the
main contribution to Ɛ�Xu −Yu�, since the length of the vector Xt −Yt is
shortened exponentially fast over long intervals of time owing to reflection
of the processes Xt and Yt on ∂D. If this is the case, then we might have
Ɛ�Xu − Yu� ≈ c exp�−uµ∗� for large u. So now the question is whether µ∗

might be equal to the second Neumann eigenvalue µ2. This is rather doubtful
but at present we do not know how to prove that the two eigenvalues are
different. It should be noted that, for an arbitrary convex planar domain and
arbitrary division of the boundary into the “Neumann” and “Dirichlet” parts,
the first mixed eigenvalue can be smaller than, equal to or larger than the
second Neumann eigenvalue. Hence there is no general principle that would
show that µ∗ �= µ2.
For the remaining part of this section, we switch our attention to the “mir-

ror” coupling for reflected Brownian motion in planar domains. The mirror
coupling seems to be the most natural coupling for diffusions in �d and for
reflected Brownian motion in particular. One feels that the mirror coupling is
optimal from the point of view of efficiency but we do not have any rigorous
results to this effect. See [10], Theorem 5.3, for results on other versions of
optimality for couplings of diffusions.
Mirror couplings for reflected processes have been constructed in [29]. We

will present a new construction of mirror couplings which is particularly well
suited for the study of those of its properties which are important in this
paper. We will start with the discussion of the mirror coupling in very simple
domains and then (in Section 4) we will progress toward more complicated
domains.
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First, we discuss the mirror coupling for free Brownian motions in �2. Sup-
pose that x	y ∈ �2, x �= y, and that x and y are symmetric with respect to a
lineM. LetX be a Brownian motion starting from x and let τ be the first time
t with Xt ∈ M. Then we let Y be the mirror image of X with respect to M
for t ≤ τ, and we let Yt = Xt for t > τ. The process Y is a Brownian motion
starting from y and �X	Y� is called the mirror coupling for (nonreflecting)
Brownian motion.
We start the discussion of the mirror coupling for reflected Brownian mo-

tions with the simplest case, that of a half-plane D. Suppose x	y ∈ D and let
M be the line of symmetry for x and y. The case whenM is parallel to ∂D can
be easily handled using Skorokhod’s lemma ([28], Lemma 3.6.14), so we focus
on the case whenM intersects ∂D. By performing rotation and translation, if
necessary, we may suppose that D is the upper half-plane. Let h be the point
of intersection between the boundary ∂D and the line of symmetry M. We
write x = �rx	 θx� and y = �ry	 θy� in polar coordinates based on h. The points
x and y are at the same distance from h so rx = ry. Suppose without loss of
generality that θx < θy. We first generate a two-dimensional Bessel process
Rt starting from rx. Then we generate two coupled one-dimensional processes
on the “half-circle” as follows. Let W be a one-dimensional Brownian motion
starting from 0. We construct 7̃x as the reflected Brownian motion in �0	 π�
started at θx, solving the Skorokhod equation

7̃x
t = θx +Wt +L0�7̃x�t −Lπ�7̃x�t

where L0�7̃x�, Lπ�7̃x� are the local time “pushes” for 7̃x at 0 and π (the mini-
mal increasing processes required to keep 7̃x nonnegative and no greater than
π). We construct 7̂y similarly but using a mirror-reflected driving Brownian
motion:

7̂
y
t = θy −Wt +L0�7̂y�t −Lπ�7̂y�t �

These reflecting Brownian motions have to be time-changed in order to serve
as the angular parts of reflected Brownian motion in D: fortunately we can
use the same time change in each case, namely,

σ�t� =
∫ t

0
R−2

s ds�

We set

Xt =
(
Rt	 7̃

x
σ�t�

)
	 Yt =

(
Rt	 7̂

y
σ�t�

)
�

This is a generalization of the skew-product representation of planar Brownian
motion, as described in [27]. Both X and Y can be viewed as being obtained
from free Brownian motions using reflection in the boundary of D. Indeed
the processes Xt and Yt behave like free Brownian motions coupled by the
mirror coupling as long as they are both strictly inside D. The processes will
stay together after the first time they meet. The pair �Xt	Yt� will be called
the mirror coupling for reflected Brownian motions in a half-plane.
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The line of symmetry for Xt and Yt will be denoted Mt if Xt �= Yt. For
definiteness, we letMt be the horizontal line passing through Xt if Xt = Yt.
The most important property of the above coupling is that, by construction,

the distances ofXt and Yt from h remain equal to each other as time t varies.
This property manifests itself in more general domains in the following way.
First, suppose that D is an arbitrary half-plane and x and y belong to D. Let
Mt be the line of symmetry for Xt and Yt, constructed as above as a mirror
coupling of reflected Brownian motion begun at x, y, respectively. Suppose
that M0 intersects ∂D. Then, for every t, the distance from Xt to Mt ∩ ∂D is
the same as for Yt. Note that Mt may move, but only in a continuous way,
while the pointMt ∩ ∂D will never move. We will callMt the mirror and the
intersection point h ofMt and ∂D will be called the hinge. The absolute value
of the angle between the mirror and the normal vector to ∂D at h can only
decrease; thus, if Mt is parallel to ∂D, then it will stay parallel to ∂D until
the coupling time. In this case, Mt can move only away from ∂D and only in
a continuous fashion.
The mirror coupling of reflected Brownian motions in a convex polygonal

domain D can be described as follows. Suppose that Xt and Yt start from
x and y inside the domain D. As soon as one of the particles hits a side I
of ∂D, the processes will evolve according to the coupling described in the
previous paragraph. To be more precise, let K be the straight line containing
I, where I is the side of ∂D most recently hit by one of the particles. Since the
process which hits I does not “feel” the shape of D except for the direction of
I, it follows that Xt and Yt will remain at the same distance from the hinge
�ht� = Mt ∩ K, as long as the particles do not hit a side different from I.
The mirror Mt can move but the hinge ht will remain constant as long as
I remains the side of ∂D where the reflection takes place. The hinge ht will
jump when the reflection location moves from I to another side of ∂D. Since
D is convex, ht will always be on ∂D or outside D.

Remark. We remark in passing a point of methodological interest: this
representation was first discovered by accident as we explored the system of
mirror-coupled reflecting Brownian motions using computer algebra, specif-
ically the implementation Itovsn3 of stochastic calculus in the computer al-
gebra package REDUCE. For details (as implemented in the Mathematica
version of Itovsn3), see the Mathematica notebook Reflect in [30]. Of course,
with hindsight the properties mentioned above now appear obvious � � � .

Recall that p�t	 x	 y� denotes the transition densities for reflecting Brow-
nian motion in the triangle D and recall from (3.2) the following one-term
eigenfunction expansion for p�t	 x	 y�:

p�t	 x	 y� = c1 + ϕ2�x�ϕ2�y� exp�−µ2t� +R�t	 x	 y�	(3.4)

where R�t	 x	 y� converges to 0 faster than exp�−µ2t� as t→∞. The coupling
time is denoted by τ. Suppose that one can prove that, for some µ ≥ 0 and
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x	y ∈ D,

��τ > t X0 = x	Y0 = y� ≤ c�x	y� exp�−µt�	 t ≥ 0�(3.5)

It is reasonable to expect that µ is then a lower bound for µ2. However, Ex-
ample 3.1 applies to the mirror coupling as well, and we see that (3.5) may
hold for some µ > µ2 and some x	y ∈ D. The following lemma is entirely
analogous to Lemma 3.2.

Lemma 3.5. If ϕ2�x� �= ϕ2�y� and (3.5) holds, then µ ≤ µ2.

Proof. Consider x	y ∈ D such that ϕ2�x� �= ϕ2�y�. Let A = �v ∈ D� ϕ2�v�
> 0� and note that A must have positive measure. By (3.4),∫

A
p�t	 x	 z�dz−

∫
A
p�t	 y	 z�dz

=
∫
A

[
ϕ2�x� − ϕ2�y�

]
ϕ2�z�exp�−µ2t�dz +R�t	 x	 y�

= c1�x	y� exp�−µ2t� +R�t	 x	 y�	
where c1�x	y� �= 0. On the other hand,∣∣∣

∫
A
p�t	 x	 z�dz−

∫
A
p�t	 y	 z�dz

∣∣∣
= ∣∣�(Xt ∈ A X0 = x

)− �
(
Yt ∈ A  Y0 = y�∣∣

= ∣∣�(Xt ∈ A	 t < τ X0 = x
)− �

(
Yt ∈ A	 t < τ  Y0 = y

)∣∣
≤ �

(
t < τ X0 = x	Y0 = y

) ≤ c2�x	y�exp�−µt��
Since this inequality and (3.6) hold for arbitrarily large t, we see that µ ≤ µ2.

✷

Definition 3.6. A mirror coupling �X	Y� of reflected Brownian motions
in D is said to be efficient if the estimate (3.5) holds with µ = µ2 for some x
and y with ϕ2�x� �= ϕ2�y�.

Our main theorem for mirror coupling in triangles identifies the cases of
inefficiency and efficiency for this coupling in simple geometric terms.

Theorem 3.7.

(i) If a triangle D has an obtuse angle (which is to say, strictly greater
than π/2), then the mirror coupling for the reflected Brownian motion in D is
efficient.
(ii) If all angles of the triangle D are distinct from each other and acute

(which is to say, strictly less than π/2), then the mirror coupling for the reflected
Brownian motion in D is not efficient.
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Remark. (i) Note that in Theorem 3.7(ii) we assume that all angles of D
are distinct. This technical assumption is probably unnecessary, but would be
tedious to lift.
(ii) Example 2 and Theorem 3.7(ii) naturally lead to the following open

question: are there no efficient Markovian couplings for reflected Brownian
motion in generic acute triangles?

Proof of Theorem 3.7(i). Suppose that an obtuse triangle D is oriented
so that its longest side lies on the horizontal axis, its leftmost vertex is at the
origin and the triangle is contained in the first quadrant (see Figure 3). The
angle formed by any straight line K with the horizontal axis will be denoted
� K. Let the angles formed by the sides I2 and I1 of the triangle D with the
horizontal axis be α ∈ �−π/2	0� and β ∈ �0	 π/2� (see Figure 3).
Fix any two points x = �x1	 x2� ∈ D and y = �y1	 y2� ∈ D, such that x1 < y1

and � M ∈ � = �π/2+α	π/2+β�, whereM is the line of symmetry for x and
y. Consider a mirror coupling �Xt	Yt� withX0 = x,Y0 = y and recall thatMt

denotes the mirror, that is, the line of symmetry forXt and Yt. SinceM0 =M
we have � M0 ∈ � . We will argue that � Mt will not leave the interval � until
the coupling time. LetKj denote the straight line containing the side Ij of the
triangle. Suppose that, for some s, the angle � Ms is within this interval and
the hinge ht belongs to K3 for t ∈ �s	 u�. Then π/2− � Mt will be decreasing
on the interval �s	 u� and so � Mt ∈ � for all t ∈ �s	 u�. Next consider the case
when � Ms ∈ � and ht ∈K1 for t ∈ �s	 u�. Then �π/2+β�−Mt is decreasing
for t ∈ �s	 u� and so � Mt must stay in � for t ∈ �s	 u�. The final case, when
the hinge belongs toK2, may be treated in the same way. We have shown that
� Mt does not leave � before the coupling time.
By the obtuseness of the triangle D, the interval � lies strictly inside

�0	 π�, so there exists k > 0 such that Y1t −X1
t ≥ kYt −Xt for t < τ (and

so for all t). We will now analyze the distance between Xt and Yt. Up to
the coupling time, the process ρ = Y − X is a one-dimensional Brownian
motion with twice the standard variance as long as both X and Y are strictly
inside D. When one of the processes X or Y is reflecting on ∂D, then ρ gets
a “push” determined by the local time spent by X or Y on ∂D and by the
direction of M relative to the reflecting side of D. Since D is convex, the
direction of the push for ρ always points toward 0. This shows that, for any ρ,

I1 I2

I
3

αβ

Fig. 3.
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the hitting distribution of 0 for the process ρ starting from ρ0 is stochastically
majorized by the hitting distribution of 0 for the one-dimensional Brownian
motion with twice the standard variance and starting from ρ0. Hence we may
fix arbitrarily small p0 > 0 and find ρ̂ > 0 such that if ρt ≤ ρ̂ (but the positions
of Xt and Yt are otherwise arbitrary) then ��ρt+1 > 0� < p0. Choose p0 such
that �2p0�j < exp�−2µ2j) and find a corresponding ρ̂ > 0 with ρ̂ < x− y.
Recall from the proof of Theorem 3.4 that an eigenfunction must be analytic.

In particular, an eigenfunction cannot vanish on a nonempty open set unless it
is identically equal to 0. Fix any x ∈ D and find y ∈ D such that ϕ2�x� �= ϕ2�y�
and � M ∈ �π/2+α	π/2+β�, whereM is the line of symmetry for x and y. Such
a point y must exist because otherwise ϕ2 would be constant, and, therefore,
it would vanish, on a nonempty open set inside D, which is impossible.
Consider t such that

�
(
ρt > ρ̂  t < τ	X0 = x	Y0 = y

) ≥ p0�(3.6)

Recall that Y1t −X1
t ≥ kYt −Xt = kρt for t < τ. This and (3.6) show that

�
(
Y1t −X1

t > kρ̂  t < τ	Xt = x	Yt = y
) ≥ p0�(3.7)

Since Y1t ≥X1
t for all t, (3.7) implies that

Ɛ
(
Y1t  t < τ	X0 = x	Y0 = y

) ≥ Ɛ
(
X1

t  t < τ	X0 = x	Y0 = y
)+ p0kρ̂	

and therefore we have

Ɛ
(
Y1t X0 = x	Y0 = y

)− Ɛ
(
X1

t X0 = x	Y0 = y
)

≥ p0kρ̂��t < τ X0 = x	Y0 = y��
(3.8)

By (3.4),

Ɛ
[
Y1t X0 = x	Y0 = y

]− Ɛ
[
X1

t X0 = x	Y0 = y
]

=
∫
D
p�t	 y	 z�z1 dz−

∫
D
p�t	 x	 z�z1 dz

=
∫
D

[
ϕ2�x� − ϕ2�y�

]
z1ϕ2�z�exp�−µ2t�dz+R�t	 x	 y��

It follows from this and inequality (3.8) that

��t < τ X0 = x	Y0 = y� ≤ c�x	y�exp�−µ2t��(3.9)

Next we consider a t for which inequality (3.6) fails. Let s be the supremum
of times less than t for which (3.6) holds. Let j0 and j1 be the smallest and
largest integers in �s	 t�. If there are no such j0, j1, then

�
[
t ≤ τ X0 = x	Y0 = y

] ≤ �
[
s ≤ τ X0 = 0	Y0 = y

]
≤ c�x	y�exp�−µ2s� ≤ c′�x	y�exp�−µ2t��

On the other hand, if 9 is an integer in �j0	 j1 − 1�, then, by the definition
of s, (3.6) fails for 9. If there is no coupling by time 9 and ρ9 ≤ ρ̂, then the
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probability of no coupling by time 9 + 1 is less than p0. This and the failure
of inequality (3.6) at time 9 imply that

�
(
9+ 1 < τ X0 = x	Y0 = y

)
≤ (

p0 + ��ρ9 > ρ̂  9 < τ	X0 = x	Y0 = y�)
× �

[
9 < τ X0 = x	Y0 = 0

]
≤ 2p0 �

(
9 < τ X0 = x	Y0 = y

)
�

Thus, applying (3.9) to s,

�
(
t < τ X0 = x	Y0 = y

) ≤ �
(
j1 < τ X0 = x	Y0 = y

)
≤ �2p0�j1−j0 �

(
j0 < τ X0 = x	Y0 = y

)
≤ �2p0�t−s−2�

(
s < τ X0 = x	Y0 = y

)
≤ exp(−2µ2�t− s− 2�)c�x	y�exp�−µ2s�
≤ c1�x	y�exp�−µ2t��

We see that (3.9) extends to all t ≥ 0. Since we have chosen x and y with
ϕ2�x� �= ϕ2�y�, we conclude that the mirror coupling is efficient in obtuse
triangles. ✷

We defer the proof of Theorem 3.7(ii) until we have proved several sub-
sidiary lemmas.
Let � = ��x	y� ∈ D×D� x �= y�, � �ε� = ��x	y� ∈ D×D � x− y ≥ ε� and

�̂ �ε� = � \ � �ε�. In an abuse of notation, we use T�A� to denote the hitting
time of A for any process, including, for example, X and �X	Y�. Sometimes
the notation will record the process as well, as in TX�A�. We work under the
hypotheses of Theorem 3.7(ii); the domain is an acute-angled triangle all of
whose angles are different from each other.

Lemma 3.8. For sufficiently small a ∈ �0	diam�D�/10�, there exist s	 c1 >
0, �1 ⊂ � �a� and a (probability) measure ν on �1 with ν��1� > 0, such that,
for all �x	y� ∈ � �a� and for every subset A of �1, we have

�
(�Xs	Ys� ∈ A X0 = x	Y0 = y

)
> c1ν�A��

Proof. Most of the proof is concerned with a description of “all possible”
trajectories of �X	Y�, before the coupling time. Our description will be partly
given in terms of possible motions of the mirror processM and will be partly
qualitative in nature. We are interested in all trajectory-related events of pos-
itive probability, no matter how small that probability might be.
We will say that a positive measure ν1 is a component of a (probability)

measure ν2 if ν1�A� ≤ ν2�A� for all A.
Suppose that X0 = x	Y0 = y, x	y ∈ D, x �= y. Suppose further that BX

and BY are nonempty open subsets of D which are mirror images of each
other with respect to M0 and such that BX lies totally on the same side of
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M0 as X0. Then it is easy to see that the coupling process �X	Y� may reach
BX ×BY without touching the boundary of D, and moreover this can happen
in an arbitrarily short time. In particular, X	Y can come arbitrarily close to
any one of the points of intersection of the initial position M0 of the mirror
with ∂D, before the mirrorM has first moved.
Now fix one of the points inM0∩∂D. Call this point h and assume that h is

not a vertex of the triangleD. Let θM�t� be the angle betweenMt and the side
I1 containing h. We will argue that ifX0 and Y0 are close to h (if they are not,
they can move close to h, by our previous remarks), then the mirror can turn
around h in the direction toward the normal [i.e., θM�t� will monotonically
move toward π/2], and, for each t > 0, the angle between Mt and I1 is a
random variable which has a nontrivial atom at π/2 and a component with a
strictly positive continuous density on �θM�0�	 π/2� [or �π/2	 θM�0��]. We will
show that all this may happen before X and Y leave a small neighborhood of
h, and so the hinge, that is, the point of intersection of the mirrorM with ∂D
around which the mirror is turning, will remain fixed at h.
The next part of our argument will be quantitative in nature; note that we

actually prove more than is strictly needed in this lemma.
Suppose that X0 = x and Y0 = y, x − y = ρ and at least one of the

points x or y is at distance no more than ρ from I1. We moreover assume
that the distance from x to each one of the other sides of ∂D is greater than
10ρ, likewise for y. Consider a polar coordinate system �r	 θ� based on h as
origin, such that I1 lies on the line ��r	 θ�� either θ = 0 or θ = π�. Without
loss of generality, assume that the distance from x to I1 is not smaller than
that for y, that π/2 ≥ θy > 0, that θx > θy and that π − θx > θy, where
x = �rx	 θx� and y = �ry	 θy�. We will write Xt = �rX�t�	 θX�t�� and use the
corresponding polar coordinates forY. We argue geometrically, considering the
ray ��r	 θ�� θ = θM�t�� defining the mirror process M for X and Y. We will
consider two cases. The first case is when θx ≤ 3π/4. Let b1 > 1 be defined by

b21 = inf
β∈�0	3π/4�

sin�7β/12�
sin�β/2� �

We define a ray segment

Q1 =
{�r	 θ�� r ≥ max�rx/b1	 rx − ρ�	 θ = 7θx/6

}
and the rest of a four-sided curvilinear domain

Q2 =
{�r	 θ� � r ≥ rx/b1	 θ = 4θx/5

}
∪ {�r	 θ� � r = max�rx/b1	 rx − ρ� or r = rx + ρ

}
�

By scaling and the effect of the assumptions of case 1 on possible locations of
x, y (and the monotonic effect of reflection in the boundary), it follows that
there exists p1 > 0 such that

�
(
TX�Q1� < TX�Q2� X0 = x	Y0 = y

)
> p1�
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Elementary trigonometry can be used to show that θM�0� < 4θx/5, in view of
the assumptions that y is closer to I1 than x, and not farther from I1 than ρ,
and that x− y = ρ. We have

ρ

2rx
= x− y/2

rx
= sin

(
θx − θy

2

)
�

We also have θM�t� ≤ max�θM�0�	7θx/12� < 4θx/5 as long as θX�t� ≤ 7θx/6.
This gives control over the coupling time τ: the event �TX�Q1� < TX�Q2��
implies �TX�Q1� < τ�. The fact that θX�t� reaches the level 7θx/6 for the first
time when t = TX�Q1� implies that θY�TX�Q1�� ≤ θy. Using the fact that Y
is a reflection of Y modified by reflection in I1,

X�TX�Q1�� −Y�TX�Q1��/2
rX�TX�Q1��

= sin
(
θX�TX�Q1�� − θY�TX�Q1��

2

)

≥ sin
(
7θx
6

− θx + θy

2

)

= sin
(
θx
12

+ θx − θy

2

)

≥ sin
(
θx − θy

12
+ θx − θy

2

)

= sin
(
7�θx − θy�
12

)
�

Using the construction of Q1 and recalling the definition of b1,

∣∣X�TX�Q1�� −Y�TX�Q1��
∣∣ ≥ 2rX�TX�Q1�� sin

(
7�θx − θy�
12

)

≥ 2
(
rx
b1

)
sin

(
7�θx − θy�
12

)

≥ 2rxb1 sin
(
θx − θy

2

)

≥ 2rxb1
ρ

2rx
= b1ρ �

We conclude that, in case 1,

�
(
T
(
� �b1ρ�

)
< τ X0 = x	Y0 = y

)
> p1�

The second case is when θx ≥ 3π/4. Let
Q3 =

{�r	 θ� � ρ/4 < r < ρ	 θ = π
}
	

Q4 =
{�r	 θ� � θ = π/2

} ∪ {�r	 θ� � r = 3ρ}
∪ {�r	 θ� � θ = π	 r ≤ ρ/4 or r ≥ ρ

}
�
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It is easy to see that there exists p2 > 0 such that, for x and y satisfying the
assumptions of case 2,

�
(
TX�Q3� < TX�Q4� X0 = x	Y0 = y

)
> p2�

Note that �TX�Q3� < TX�Q4�� implies �TX�Q3� < τ�. If the former event
occurs, then the mirror for X and Y will be perpendicular to I1 after time
TX�Q3� at least as long as X and Y do not leave the ball of radius 7ρ
around h.
Using the strong Markov property and repeated application of properties

proved in cases 1 and 2, we see that the mirror may turn around h toward
the normal position while all the time X and Y may stay in a very small
neighborhood of h, without coupling.
Next we will prove that the distribution of θM�t� has a component with a

continuous density unless θM�0� = π/2. Recall our current assumptions that
X0 = x	Y0 = y, x	y ∈ D, x �= y. Suppose without loss of generality that x is
not closer to I1 than y. Let A be a closed disk in D, with nonempty interior,
not far from h, on the same side of the mirror as x and such that x /∈ A.
Assume without loss of generality that I1 lies on the horizontal axis, h =
�0	0� and θM�0� ∈ �0	 π/2�. Then apply the complex analytic transformation
z→ log z to X and to Y, viewing log as a mapping of the upper half-plane to
the strip where the imaginary part is between 0 and π. We can make a single
random time change simultaneously converting each of the processes log�X�
and log�Y� into reflected Brownian motions X̃ and Ỹ, respectively. The same
time change works for both processes since they are always the same distance
from h. For the same reason the processes X̃ and Ỹ have the same real parts
and they are related by a mirror coupling. Let X̃2 and Ỹ2 be the imaginary
parts of X̃ and Ỹ and let L̃ measure the local time spent by Ỹ on the real
axis. Then

Ỹ2t + X̃2
t

2
− Ỹ2s + X̃2

s

2
= L̃t − L̃s

2
�(3.10)

Let S̃ be the hitting time of log�A� by X̃. For a fixed t we have that L̃S̃ = L̃t,
with positive probability. For a fixed t we know that L̃t has a continuous
density, so it follows from (3.10) that �Ỹ2�S̃� + X̃2�S̃��/2 has a component
with a continuous density. If S is the hitting time of A by Xt, then θM�S� =
�Ỹ2�S̃�+X̃2�S̃��/2. This shows that the distribution of θM�S� has a component
with a continuous density. For a fixed s, the event �LS = Ls� has a positive
probability, so θM�s� has a component with a continuous density. Furthermore,
it is now not hard to see that the density is strictly positive on �θM�0�	 π/2�.
Our argument so far shows that the mirror can turn at either point of

intersection with ∂D toward the normal direction, and the angle where it
stops before switching the turning point (hinge) is a random variable with
an atom at π/2 and a component with a continuous positive density on the
interval between the starting angle and π/2. All this can happen with positive
probability before the coupling time, and, moreover, any turning with a finite
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sum of all turning angles can be done in an arbitrarily small time, with positive
probability.
We have explicitly and implicitly assumed in our arguments that X0 and

Y0 belong to D. We will briefly discuss what may happen when X0 or Y0
belong to ∂D, including, possibly, one of the vertices. We do not assume that
X0 and Y0 are necessarily close to the mirrorM0. Since X and Y spend zero
time on the boundary of D, then, with probability 1, there will be arbitrarily
small s > 0 with Xs ∈ D and Ys ∈ D. Once both processes X and Y are
strictly inside D, they can move in the way described earlier in the proof.
Next we will use the above results on the possible movements of the mirror

to construct a component of the distribution of �X1	Y1� for any starting points
x �= y for X and Y.
Let the sides of the triangle D be called I1	 I2 and I3. Let us denote the

vertices of the triangle as follows: �z1� = I1 ∩ I2, �z2� = I2 ∩ I3 and �z3� =
I3 ∩ I1. Let Fj = �B�zj	 ρ1� \ B�zj	 ρ1/2�� ∩ ∂D, where ρ1 > 0 is chosen so
that the Fj’s have the following property. For every z ∈ Fj, the line K passing
through z and perpendicular to ∂D at this point crosses only the sides of ∂D
which are adjacent to zj, and the points in K∩ ∂D are at least 2ρ1 units from
the other vertices. Such a ρ1 exists in view of the fact that all angles of D are
acute.
Suppose that M0 does not pass through any vertex and let h1t and h2t be

the points of intersection of Mt with ∂D. Note that the hinge ht, that is, the
point about which the mirror Mt is turning, is sometimes equal to h1t and
sometimes to h2t . We can and will choose h1t and h2t so that the functions
t→ h

j
t are continuous up to the time when one of the hinges jumps to the

third line segment. Suppose that h10 ∈ I1 and h
2
0 ∈ I2 and that both points are

close to z1; if they are not, the argument requires only minor modifications. It
is possible that h1t will not move until time t1 whenMt1

is perpendicular to ∂D
at h1t1 . Then h

1
t will start moving while h

2
t will remain fixed at the position h

2
t1

until time t2 whenMt2
is perpendicular to ∂D at h2t1 = h2t2 . The effect of these

motions is that h1t2 is at a greater distance from z1 than h
1
0. If the same type

of motions are repeated again, then h1t will move away from z1 by an even
greater distance. Since this process cannot be continued indefinitely, either h1t
or h2t must hit one of the vertices z2 or z3. Before this happens, either h

1
t or

h2t must reach F2 or F3. Suppose, for example, that h1t hits F3 first. Then it
follows from the definition of F3 that h2t may slide along I2 and reach F2 while
h1t remains fixed at a point of F3. Hence we may have h

1
t ∈ F3 and h2t ∈ F2

for some t, with positive probability.
Next we may suppose that h1t does not move until the mirror is perpendic-

ular to ∂D at this point. The other point, h2t , will then move to the side I3.
By repeating the process discussed in the previous paragraph, the points h1t
and h2t may move so that h

1
t ∈ F1 and h2t ∈ F2. At some future times we may

have, in succession, h1t ∈ F1 and h2t ∈ F3 and then h1t ∈ F2 and h2t ∈ F3.
We now discuss the case when M0 passes through a vertex. For example,

assume that h10 = z1. If the mirror is not perpendicular to the opposite side
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I3, then it can turn around the point h
2
0 and it will no longer pass through a

vertex. Suppose that the mirror is perpendicular to I3. We have assumed in
Theorem 3.7(ii) that all angles of D are different, so the angles formed byM0
with I1 and I2 are not equal. It follows that, when Xt or Yt reflect on I1 or
I2, the mirror will turn around h

1
0 = z1 and it will no longer be perpendicular

to I3.
Consider any point z ∈ F1 ∩ I1 and an orthonormal coordinate system

CS�z� in which I1 lies on the horizontal axis, z is the origin and D lies in the
upper half-plane. Then choose ρ3 > 0 such that for all z ∈ F1 ∩ I1 we have
[viewed in the CS�z� coordinate system] B̂�z� = B��3ρ3	3ρ3�	2ρ3� ⊂ D and
B��−3ρ3	3ρ3�	2ρ3� ⊂ D.
Let θ̂M�t� be the angle formed by Mt and the line containing I1; let ĥt

be the intersection point of Mt and I1, with the convention that ĥt = z1 if
Mt ∩I1 = ∅; and let X̂t be the position of Xt expressed in terms of the CS�ĥt�
coordinate system.
Our argument has shown that for any starting points x and y for X and Y

there is positive probability that at time t = 1 the mirror M1 passes through
F1 ∩ I1 and is perpendicular to I1, and X̂1 ∈ B̂�ĥ1�. Hence the event A1 =
�θ̂M�1� = π/2� has a positive probability. Moreover, given the event A1, ĥ1
has a strictly positive density on F1 ∩ I1. Given A1 and ĥ1, the density of X̂1

is strictly positive on B̂�ĥ1�.
We sketch a proof, using compactness, that there exist lower and upper

bounds for the densities of ĥ1 and X̂1, uniform in x	y ∈ � �a� for any fixed
small a > 0. Let ψx	y�v� be the density of ĥ1 restricted to F1 ∩ I1 (the proof
for the density of X̂1 is analogous and so it is omitted). Suppose that there
exist v0 ∈ F1 ∩ I1 and a sequence �xk	 yk� ∈ � �a� such that ψxk	yk�v0� → 0 as
k → ∞. By compactness, we may suppose that xk → x∞ and yk → y∞. Note
that we must have �x∞	 y∞� ∈ � �a�. Now, going back to our argument, it is not
hard to see that the infimum of ψx	y�v0� taken over �x	y� in a neighborhood
of �x∞	 y∞� must be strictly positive. The crucial observation here is that the
distance between x∞ and y∞ is strictly positive. This gives us the desired
contradiction.
We fix some small a > 0 and x0	 y0 ∈ � �a� and take ν to be the restriction of

the distribution of �X1	Y1� to the event A1∩�ĥ1 ∈ F1∩I1�, given �X0	Y0� =
�x0	 y0�. Chosen in this way, ν satisfies the condition in the lemma. ✷

Lemma 3.9.

(i) There exist a	 α	 c1 > 0 such that, for any ε ∈ �0	 a� and �x	y� ∈ � �ε�,
we have

�
[
T�� �a�� < τ X0 = x	Y0 = y

] ≥ c1ε
α�

(ii) There exists c2 <∞ such that, for all ε > 0 and �x	y� ∈ �̂ �ε�,
Ɛ
[
T��̂ c�ε�� X0 = x	Y0 = y

] ≤ c2ε
2�
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Proof. (i) Let ρ0 be so small that any disk of radius 100ρ0 can intersect
at most two sides of the triangle D. Let A�ρ� be the event that the process
�X	Y� will hit � �2ρ� before exiting � , and, moreover, this will happen before
X or Ymove more than 4ρ away from their starting points. For a fixed ρ ≤ ρ0,
let p = p�ρ� be the infimum of ��A�ρ�  X0 = x	Y0 = y�, evaluated over all
x and y with x− y = ρ. By the arguments presented in the proof of Lemma
3.8, we know that p�ρ� > 0. We will argue that p�ρ� = p�ρ1� for some ρ1 > 0
and all ρ < ρ1.
Consider a vertex z1 of the triangle D. Then

p1�ρ� = inf
x−y=ρ

x−z1≤10ρ
�
(
A�ρ� X0 = x	Y0 = y

)

depends only on the angle at the vertex z1, because neither process X nor
process Y can hit the side of D opposite to z1 before moving more than 4ρ
units away from its starting point. By scaling, we obtain p1�ρ� = p�ρ1� for
some ρ1 > 0 and all ρ < ρ1. The same argument applies to the neighborhoods
of the other two vertices and to the points of D more than 9ρ units away from
any vertex.
By repeatedly applying the strong Markov property at the hitting times of

� �2jρ�, we see that
�
(
T�� �a�� < τ X0 = x	Y0 = y

) ≥ c3p
k	

for �x	y� ∈ � �a/2k�. This can be easily rewritten as the estimate in part (i)
of the lemma.
(ii) Recall the process ρ = X−Y from the proof of Theorem 3.7(i). It is the

sum of Brownian motion (with variance twice the standard variance) and a
nonincreasing process. Let Tρ�0� be the hitting time of 0 for ρt. By comparing
ρ with the Brownian motion with diffusion rate 2, we obtain the following
estimate. There exists p > 0 such that, for all ε > 0 and �x	y� ∈ �̂ �ε�,

��Tρ�0� < ε2 Xt = x	Yt = y� > p	

which clearly implies

��T��̂ c�ε�� ≥ ε2 Xt = x	Yt = y� ≤ 1− p�

By the Markov property,

��T��̂ c�ε�� ≥ kε2 Xt = x	Yt = y� ≤ �1− p�k	
and so

Ɛ
(
T��̂ c�ε�� Xt = x	Yt = y

) ≤ ∑
k≥1

kε2�1− p�k = c2ε
2� ✷

The following lemma is almost the same as [4], Lemma 5.1. We reproduce
that result here as many details of the original proof have to be changed. The
intuitive meaning of the lemma is that if we conditionX andY on not coupling
before time s, then the processes are likely to move apart for a considerable
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distance at time s. Hence Lemma 3.10 below is a version of the parabolic
boundary Harnack principle for the process �X	Y�.
Recall the mirror coupling �X	Y�. It will be convenient to writeZ = �X	Y�

as the separate components of Z will play no role in Lemma 3.10. The state
space of Z isD×D. Recall that � = ��x	y� ∈ D×D � x �= y�, � �ε� = ��x	y� ∈
D×D � x− y ≥ ε� and �̂ �ε� = � \� �ε�.
In the following lemma, �z and Ɛz will denote the distribution of Z starting

from z and the corresponding expectation. Conditioning by a harmonic func-
tion h will be reflected in the notation by writing �z

h and Ɛzh. See [20] for the
discussion of conditioned Brownian motion and [44] for conditioning of general
Markov processes.
We will denote the space–time counterpart of Z by V. More precisely, if Z

has law �z, then the law of the space–time processV = �Vt = �Zt	 s−t�	 t ≥ 0�
will be denoted by �z	s. The distribution of a space–time process conditioned
by a parabolic function g will be denoted by Pz	s

g . By abuse of notation, T�A�
will denote the first hitting time of A for V as well as for Z.

Lemma 3.10. There exist ε	 c	 u > 0 such that, for all z ∈ � ,

�z
(
Zu ∈ � �ε�	 τ > u

) ≥ c�z�τ > u��

Proof. Fix some small ε0 > 0 such that M = � �ε0� contains a nonempty
open ball and let �1 = � \M. Let h�z� = �z�T�M� < τ� and Uk = �x ∈ D1 �
h�x� ∈ �2k−1	2k�� for integer k.
By Lemma 3.9(i), Uk ⊂ �̂ �c12k/α� for some c1	 α > 0. Then Lemma 3.9(ii)

shows that supz∈Uk
Ɛz�T�Uc

k�� ≤ c222k/α. It follows that

∞∑
k=0
sup
z∈U−k

Ɛz
(
T�Uc

−k�
)
<∞�

An argument of Chung [13] (see also [4]) shows that for suitable c3,

c3

∞∑
k=0
sup
z∈U−k

Ɛz
(
T�Uc

−k�
)

is an upper bound for Ɛzh�T�� c
1��. It follows that, for a suitable u > 0 and every

z ∈ � ,

�z
h

(
T�� c

1� < u/4
)
> 1/2�(3.11)

Recall the discussion of space–time processes before the statement of the
lemma. The function

�z	 t� !→ g�z	 t� = �z�τ > t�
is parabolic in � ×�0	∞� with boundary values 1 on � ×�0� and 0 otherwise.
Let g1 be a parabolic function in � × �0	∞� which has the same boundary

values as g except that g1�z	0� is changed from 1 to δ for z ∈ �1, where
δ ∈ �0	1� will be chosen later. Now we will estimate g1 on � × �u/2	 u�.
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It is easy to see that g1�z	 s� > c4 for all z ∈ M and s ∈ �u/4	 u�. We
obviously have h�y� ≤ 1 for all y. Let h�x	 s� = h�x�. For x ∈ �1 and s ≥ u/2,
we have, by (3.11),

g1�x	 s� ≥
∫
t∈�u/4	 u�
y∈∂�1

g1�y	 t��x	s
(
T�� c

1� ∈ dt	X
(
T�� c

1�
) ∈ dy

)

=
∫
t∈�u/4	 u�
y∈∂�1

h�x	 s�
h�y	 t�

h�y	 t�
h�x	 s�g1�y	 t��

x	 s

(
T�� c

1� ∈ dt	X
(
T�� c

1�
) ∈ dy

)

=
∫
t∈�u/4	u�
y∈∂�1

h�x	 s�
h�y	 t�g1�y	 t��

x	 s
h

(
T�� c

1� ∈ dt	X
(
T�� c

1�
) ∈ dy

)

≥
∫
t∈�u/4	 u�
y∈∂�1

h�x	 s�c4 �x	 s
h

(
T�� c

1� ∈ dt	X
(
T�� c

1�
) ∈ dy

)

= h�x	 s�c4 �x	 s
h

(
T�� c

1� ∈ �u/4	 s�)
≥ h�x	 s�c4/2 = c5h�x	 s� = c5h�x��

Let

Wk =
{�z	 s�� g1�z	 s� ∈ �2k	2k+1�	 s ∈ �u/2	 u�}	

W =
k1⋃

k=−∞
Wk	

where k1 < 0 will be chosen later. If 2−m < c5, then Wk ⊂ Uk+m × �u/2	 u�.
Using the estimate of Chung [13], we obtain, for small k1 and all z ∈ � ,

Ɛz	ug1
�T�Wc�� ≤ c6

k1∑
k=−∞

sup
�y	 s�∈Wk

Ɛy	s T�Wc
k�

≤ c6

k1∑
k=−∞

sup
�y	 s�∈Uk+m

Ɛy	s T�Uc
k+m� <∞�

Choose k1 so small that, for any z ∈ � ,

Ɛz	ug1
T�Wc� < u/8 �(3.12)

Let

Q = {�x	 s� � g1�x	 s� ≥ 2k1	 s ∈ �u/2	 u�} �
Since the g1-process cannot exit �×�0	∞� through ∂�×�0	∞�, (3.12) implies

Pz	u
g1

(
T�Q� > u/4

)
< 1/2�(3.13)

Now let δ = 2k1−1. Since 0 ≤ g1 ≤ 1, the process g1�Vt� is a martingale
under �z	 s and g1�z	 s� ≥ 2k1 for �z	 s� ∈ Q, we see that there is at least a
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2k1−1/2 chance that V under �z	 s will hit M × �0� before hitting any other
part of ∂�� × �0	∞��. Thus we have, for �z	 s� ∈ Q,

�z	 s
g1

[
Vs ∈M× �0�]

=
∫
M

(
g1�y	0�/g1�z	 s�

)
�z	 s

[
Vs ∈ dy	T

(
∂�� × �0	∞�) = s

]

≥
∫
M
�z	 s

[
Vs ∈ dy	T

(
∂�� × �0	∞�) = s

]

≥ 2k1−1/2�
This and (3.13) yield, by the strong Markov property, for all z ∈ � ,

�z	u
g1

�Vu ∈M× �0�� ≥ c7 > 0�

The ratio of g and g1 is bounded away from 0 and∞ on the accessible bound-
ary of � × �0	∞�, so

Pz	u
g �Vu ∈M× �0�� ≥ c8 > 0

for all z ∈ � . This is equivalent to the statement in the lemma. ✷

Proof of Theorem 3.7(ii). We start by constructing a coupling of cou-
plings. More precisely, we will construct processes �X	Y� and �X̃	 Ỹ� such
that each one of them is a mirror coupling of reflected Brownian motions in
D. Hence each of these processes is Markov. The two processes will also form a
coupling, but the combined process ��X	Y�	 �X̃	 Ỹ�� will not be Markov since
the coupling will fail to have the co-adapted property.
Let τ and τ̃ denote the coupling times for �X	Y� and �X̃	 Ỹ�, respectively.
Fix some a1	 c1	 u1 > 0 which satisfy Lemma 3.10 in place of ε	 c and u.

Find a2 ∈ �0	 a1�, c2 > 0, a set �1 ⊂ � �a2� and a measure ν supported by
�1 which satisfy Lemma 3.8. By Lemmas 3.8 and 3.10, for A ⊂ �1 and any
x	y ∈ D,

�
(�Xu1+1	Yu1+1� ∈ A X0 = x	Y0 = y

)

=
∫
�
�
(�X1	Y1� ∈ A X0 = x′	Y0 = y′)

× �
(�Xu1

	Yu1
� ∈ �dx′	 dy′� X0 = x	Y0 = y

)

≥
∫
�1

�
(�X1	Y1� ∈ A X0 = x′	Y0 = y′)

× �
(�Xu1

	Yu1
� ∈ �dx′	 dy′� X0 = x	Y0 = y

)

≥ c2

∫
�1
ν�A��

(�Xu1
	Yu1

� ∈ �dx′	 dy′� X0 = x	Y0 = y
)

≥ c1c2ν�A��
(
τ > u1 X0 = x	Y0 = y

)
≥ c1c2ν�A��

(
τ > u1 + 1 X0 = x	Y0 = y

)
�
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Let u2 = u1 + 1. The last formula implies that
�
(�Xu2

	Yu2
� ∈ A  τ > u2	X0 = x	Y0 = y

) ≥ ν1�A� = c1c2ν�A��(3.14)

Consider any x	y	 x̃ and ỹ in D. On a single probability space, we will con-
struct processes �Xt	Yt� and �X̃t	 Ỹt� starting from �x	y� and �x̃	 ỹ�, respec-
tively. In view of (3.14), we may construct random vectors 	 = �	1	 	2� and
	̃ = �	̃1	 	̃2� such that, for A ⊂ �4,

��	 ∈ A� = �
(�Xu2

	Yu2
� ∈ A X0 = x	Y0 = y

)
and

��	̃ ∈ A� = �
(�X̃u2

	 Ỹu2
� ∈ A  X̃0 = x̃	 Ỹ0 = ỹ

)"
moreover, for A ⊂ �1,

�
(
	 = 	̃ ∈ A  	1 �= 	2	 	̃1 �= 	̃2

) ≥ ν1�A��(3.15)

Now we set

�X0	Y0� = �x	y�	 �X̃0	 Ỹ0� = �x̃	 ỹ�	
�Xu2

	Yu2
� = 	 	

�X̃u2
	 Ỹu2

� = 	̃ �

Next we construct ��Xt	Yt�	 t ∈ �0	 u2�� and ��X̃t	 Ỹt�	 t ∈ �0	 u2�� by adding
bridges between the endpoints of the trajectories in such a way that each
of these processes is a mirror coupling of reflected Brownian motions in D.
Let Qx	y	x̃	ỹ

u2 denote the distribution of �
t = ��Xt	Yt�	 �X̃t	 Ỹt��	 t ∈ �0	 u2��.
We inductively define Qx	y	x̃	ỹ

�k+1�u2 for k = 1	2	3	 � � �, by the following “Markov-
like property” formula (the Markov property does not extend to other times
besides ku2):

Q
x	y	x̃	ỹ
�k+1�u2

({

t	 t ∈ �0	 ku2�

} ∈ A1	
{

t	 t ∈ �ku2	 �k+ 1�u2�

} ∈ A2
)

=
∫
Q

x	y	x̃	ỹ
ku2

(�
t	 t ∈ �0	 ku2�� ∈ A1	
ku2
∈ �dv	dz	dṽ	 dz̃�)(3.16)

×Qv	z	ṽ	z̃
u2

(�
t	 t ∈ �0	 u2�� ∈ A
ku2
2

)
	

for all A1 ⊂ C��0	 ku2�	�8�and A2 ⊂ C��ku2	 �k + 1�u2�	�8�. Here Aku2
2 is

the family of functions in A2, shifted to the left by ku2 units. Note that the
measure Qx	y	x̃	ỹ

�k+1�u2 is uniquely defined if we specify its value on cylinders of

the form A1 ×A2, as in (3.16). We define Q
x	y	x̃	ỹ
∞ , that is, the distribution of

���Xt	Yt�	 �X̃t	 Ỹt��	 t ∈ �0	∞�� using the measures Qx	y	x̃	ỹ
ku2

and consistency,
in the obvious way.
Let τ∗ = inf�t� �Xt	Yt� = �X̃t	 Ỹt��. It follows from (3.15) that

Qx	y	x̃	ỹ
∞

(
τ∗ > u2  τ > u2	 τ̃ > u2

) ≤ p1 = 1− ν1��1� < 1
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for all x	y	 x̃	 ỹ ∈ D. By the “Markov-like property” (3.16),

Qx	y	x̃	ỹ
∞

(
τ∗ > ku2  τ > ku2	 τ̃ > ku2

) ≤ pk
1 �

Hence, for some c3 > 0, all t ≥ u2 and all x	y	 x̃	 ỹ ∈ D,

Qx	y	x̃	ỹ
∞

(
τ∗ > t  τ > t	 τ̃ > t

) ≤ exp�−c3t��(3.17)

The rest of the proof is very similar to the end of the proof of Theorem 2.6(i).
Consider x	y ∈ D with ϕ2�x� �= ϕ2�y�. Recall (3.5);

�
(
τ > t X0 = x	Y0 = y

) ≤ c�x	y�exp�−µt�	 t ≥ 0	
for some µ > 0. In the following we will use the generic notation � for prob-
ability, but we will assume that the process ���Xt	Yt�	 �X̃t	 Ỹt��	 t ∈ �0	∞��
has the distribution Qx	y	y	x

∞ . Hence X0 = Ỹ0 = x and Y0 = X̃0 = y. Then we
can use (3.17) to show, for A ⊂ D and large t,∣∣∣
∫
A
p�t	 x	 z�dz−

∫
A
p�t	 y	 z�dz

∣∣∣
= ∣∣��Xt ∈ A X0 = x� − ��Yt ∈ A  Y0 = y�∣∣
= ∣∣��Xt ∈ A	 t < τ X0 = x	Y0 = y� − ��Yt ∈ A	 t < τ X0 = x	Y0 = y�∣∣
= ∣∣��Xt ∈ A  t < τ	X0 = x	Y0 = y���t < τ X0 = x	Y0 = y�

− ��Yt ∈ A  t < τ	X0 = x	Y0 = y���t < τ X0 = x	Y0 = y�∣∣
≤ ∣∣��Xt ∈ A  t < τ	X0 = x	Y0 = y� − ��Yt ∈ A  t < τ	X0 = x	Y0 = y�∣∣
× c�x	y�exp�−µt�

=
∣∣∣��Xt ∈ A  t < τ	X0 = x	Y0 = y� − ��X̃t ∈ A  t < τ̃	 X̃0 = y	 Ỹ0 = x�

∣∣∣
× c exp�−µt�

≤ ∣∣��Xt ∈ A	 t < τ∗  t < τ̃	 t < τ	X0 = x	Y0 = y�
− ��X̃t ∈ A	 t < τ∗  t < τ̃	 t < τ	 X̃0 = y	 Ỹ0 = x�∣∣c exp�−µt�

≤ ��t < τ∗  t < τ̃	 t < τ	X0 = x	 X̃0 = y�c exp�−µt�
≤ exp�−c3t�c exp�−µt��

This and (3.6) show that µ2 ≥ µ+c3 > µ. Thus the mirror coupling for reflected
Brownian motion in a triangle with distinct acute angles is not efficient. ✷

4. Some further examples. This section contains a selection of rather
informal examples, giving some indication of how far the results on mirror
couplings in triangles, presented in the previous section, can be generalized
to mirror couplings in other planar sets. The motivation for our efforts comes
from two different sources. First, mirror couplings have been used to estimate
the spectral gap for some diffusions [48] so it is a natural question how sharp
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D1

Fig. 4.

those estimates are. This we cannot say, but our examples may be a source of
inspiration for future research in this direction. Second, the mirror coupling
techniques developed for this project have already been applied [3, 5, 6] to
a problem on “hot spots.” Hence the techniques seem to have some interest
beyond the efficiency of Markovian couplings.
The reader might have noticed that the assumption that D is a triangle,

adopted in Section 3, does not play a major role in the arguments. The follow-
ing example makes this point explicit.

Example 4.1. Figure 4 shows a convex polygonal domainD1 whose bound-
ary is naturally divided into “upper” and “lower” parts. The angles between
line segments in the upper part of ∂D1 and those in the lower part are less
than π/2. The arguments presented in Section 3 carry over to this case and it
is easy to see that both synchronous and mirror couplings for reflected Brow-
nian motion in D1 are efficient.
On the other hand, Theorem 3.7(ii) can also be generalized to some other

domains besides triangles. The domain D2 illustrated in Figure 5 is an acute
triangle whose corners have been cut. The mirror coupling can be proved to
be inefficient in D2 just as in the case of a triangle with acute angles.

What about nonconvex domains? Convexity is used in Theorem 3.7(i) to
show that the distance between the processes X and Y is a Brownian motion
plus a process which always pushes X and Y toward each other. This is true
only in convex domains. However, it can be circumvented, at a price of obscure
conditions and tedious details.

Example 4.2. It is easy to check that the mirror will never turn more
than the angle π in some nonconvex domains, for example, in the domain D3
in Figure 6. The angles between any two line segments in ∂D3 are less than

D
2

Fig. 5.
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D3

Fig. 6.

π/2. We believe that the mirror coupling is efficient in D3, but the proof of
Theorem 3.7(i) does not completely apply in this case because of the lack of
convexity as indicated above. However, we believe that one can circumvent
the need for convexity for this kind of example, albeit with the need for more
involved arguments.

Our next example addresses the question of what happens if the domain
has smooth boundary, rather than polygonal boundary. The construction of a
mirror coupling in such a domain has to proceed along different lines than that
presented in Section 3, which works only for polygonal domains. However, the
construction does not present major problems; an example in a similar context
can be found in [29].

Example 4.3. The domain D4 in Figure 7 has a piecewise smooth bound-
ary. If we consider two tangent lines to ∂D4, one to the upper part of ∂D4 and
the other tangent to the lower part, then they form an angle less than π/2. In
a domain D4, the hinge will be the point of the intersection of the mirror and
the tangent line to ∂D4 at the point where one of the processes is reflecting
from the boundary. Hence the hinge will move not only by jumps but also in a
continuous fashion. The general qualitative behavior of the mirror movement
does not change in a fundamental way, however, from the polygonal domain
case. Hence the mirror cannot turn more than π in D4. This is all we have to
know to prove that the mirror coupling is efficient in D4.

It is also possible to make some progress if a symmetry is present:

Example 4.4. In [3] it is proved that the mirror cannot turn more than π
in a convex domain D5 if we assume, in addition, that:

1. D5 has a line of symmetry S which intersects ∂D5 at x and y,
2. x− z ∨ y− z < x− y for all z ∈ D5 \ �x	y� and
3. for all r > 0 the sets ∂B�x	 r� ∪D and ∂B�y	 r� ∪D are connected.

D4

Fig. 7.
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Just as in Example 4.2, we believe that the mirror coupling is efficient
in domains D5 satisfying these assumptions, but the proof given in Section 3
would have to be modified. In the present case, we cannot claim thatY1t−X1

t >
αY1t − X1

t  for some α > 0. This property holds if we impose some more
assumptions on the slope of ∂D5.

It should be noted that our methods cannot decide whether the mirror cou-
pling is efficient for reflected Brownian motion in the domains considered in
[3], Theorem 1.3 (A1). Those domains are assumed to have two perpendicular
axes of symmetry. The proof of that result is based on the behavior of the
mirror coupling for the reflected Brownian motion with absorption on one of
the axes of symmetry. Hence the technique does not directly apply to reflected
Brownian motion in the whole domain.
Finally, we will provide some details of the mirror coupling behavior in the

case when the domain D is a disk. This highly symmetric case makes the
analysis especially easy and complete.

Example 4.5. Recall from Example 4.3 that the hinge ht lies at the inter-
section of the mirror and the line tangent to the circle ∂D where one of the
processes X or Y is reflecting. A quick look at Figure 8 should convince the
reader that the mirror M must move toward the center of the disk (i.e., its
distance from the center can only decrease). Moreover, the points of intersec-
tion of the mirror with ∂D can only move upwards in Figure 8. These remarks
follow from the fact that the effect of reflection is the counterclockwise motion
of the mirror M around the (instantaneous) hinge position h. If the mirror
passes through the center at some time s, it will never change its position

a
1

b
1

a

bYt

X
t

M
t

h
t

Fig. 8.
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after time s, because, after that time, the processes X and Y will reflect at
the boundary of D at the same time, until their coupling time. Hence the
mirror can never intersect ∂D inside the (smaller) arc between a and b and
likewise not between a1 and b1 (the antipodal points to a and b). The pro-
cess Y cannot start reflecting on ∂D before the time when the mirror passes
through the center. Hence the mirror must hit the center of the disk before or
at the same time when Y hits the smaller arc between a1 and b1. Given these
properties of the mirror coupling in a disk, it is not hard to prove that it is
efficient.
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