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A topical operator on R
d is one which is isotone and homogeneous. Let

{A(n) :n≥ 1} be a sequence of i.i.d. random topical operators such that the
projective radius of A(n) · · ·A(1) is almost surely bounded for large n. If
{x(n) :n ≥ 1} is a sequence of vectors given by x(n) = A(n) · · ·A(1)x0, for
some fixed initial condition x0, then the sequence {x(n)/n :n ≥ 1} satisfies
a weak large deviation principle. As corollaries of this result we obtain
large deviation principles for products of certain random aperiodic max-plus
and min-plus matrix operators and for products of certain random aperiodic
nonnegative matrix operators.

1. Topical operators. An operatorA: R
d → R

d is homogeneous if it satisfies
A(x + a1) = Ax + a1 for all x ∈ R

d and a ∈ R, where 1 is the vector in R
d

with all components equal to 1. An operator A is isotone if it satisfies Ax ≤ Ay
whenever x ≤ y (the order here and throughout this paper is the product order
on R

d ). An operator which is both homogeneous and isotone is called topical. This
terminology was introduced by Gunawardena and Keane (1995), who proposed the
class of topical operators as a setting for the study of certain properties of discrete
event systems. In this context, one considers recursive systems of equations of the
form

x(n)=A(n)x(n− 1), n= 1,2, . . . ,(1)

with the interpretation that x(n) ∈ R
d is a vector whose entries represent timing

data: xi(n) is the time of the nth event of some type i, where d is the number
of types of events which may occur. The operators A(n): R

d → R
d determine

the delays and synchronization constraints present between events. Homogeneity
of these operators reflects invariance of the system’s dynamics under a shift in
the origin of the time axis. Isotonicity of the A(n)’s implies that the system is
monotonic, in the sense that if some events were to be artificially delayed, then all
subsequent events would also be delayed, or at best they would occur no sooner
than originally. For more information on topical operators and their application
to discrete event systems, see Gunawardena and Keane (1995) and Gunawardena
(1996) and the references therein.
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Well-known examples of topical operators include the max-plus and min-plus
matrix operators, which are defined as follows: A: R

d → R
d is a max-plus matrix

operator if it takes the form

(Ax)i = max
j=1,...,d

Aij + xj , i = 1, . . . , d,

for every x ∈ R
d , where {Aij : i, j = 1, . . . , d} are elements of R ∪ {−∞}. (We

assume that each row of the matrix {Aij } has at least one entry different from
−∞, so that the image of R

d under A is contained in R
d .) A min-plus matrix

operator is one which takes the form

(Ax)i = min
j=1,...,d

Aij + xj , i = 1, . . . , d,

for each x ∈ R
d , where now {Aij : i, j = 1, . . . , d} are elements of R ∪ {+∞}

(again with the caveat that each row of {Aij } has at least one finite entry). Matrix
operators of these kinds arise in the theory of Markov decision processes and
timed event graphs. A general reference is the book by Baccelli, Cohen, Olsder
and Quadrat (1992). If we take a finite pointwise infimum of max-plus matrix
operators, or a finite pointwise supremum of min-plus matrix operators, we obtain
an operator which is again topical, known as a min-max operator. In the context of
discrete event systems, min-max operators were introduced and studied by Olsder
(1991) and Gunawardena (1994).

Another interesting class of topical operators can be constructed from the iso-
tone linear operators on the positive cone R

d+, in the following way [Gunawar-
dena (1996)]. Let exp: R

d → R
d+ be the componentwise exponential function and

log: R
d+ → R

d the componentwise logarithm: exp(x)i := exp(xi) and log(x)i :=
log(xi). If A: R

d+ → R
d+ is isotone and satisfies A(ax)= aAx for all x ∈ R

d and
a ∈ R+, then the operator Ã: R

d → R
d defined by Ãx := log(A exp(x)) is topical.

Note that A might be, for example, a nonnegative matrix operator with at least one
nonzero entry per row.

Our purpose in this paper is to study the large deviations of sequences
{x(n) :n ≥ 1} which satisfy recursions of the form (1), in the case when
{A(n) :n≥ 1} is a random sequence of i.i.d. topical operators. The approach we
will take requires an assumption that the A(n)’s satisfy a certain range condition,
which we now state.

Let t and b denote the top and bottom functions on R
d :

t[x] := max
i
xi, b[x] := min

i
xi.

Gunawardena and Keane (1995) showed that A: R
d → R

d is topical if and only if
it is nonexpansive in t:

t[Ax −Ay] ≤ t[x − y] ∀x, y,(2)
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and if and only if it is noncontractive in b:

b[Ax −Ay] ≥ b[x − y] ∀x, y.(3)

Together these inequalities imply that topical operators are nonexpansive in the
l∞-norm on R

d :

‖Ax −Ay‖ ≤ ‖x − y‖ ∀x, y,
where ‖x‖ = maxi |xi | = t[x] ∨ (−b[x]). In fact, Crandall and Tartar (1980)
showed that a homogeneous operator on R

d is isotone if and only if it is l∞
nonexpansive.

Inequalities (2) and (3) also imply that topical operators are nonexpansive in the
projective semi-norm ‖ · ‖P defined by

‖x‖P = t[x] − b[x].
We define the projective radius of a topical operator A to be the extended real
number

�[A] := sup
x∈Rd

‖Ax‖P.

Note that the projective radius of a translation operator, for example, is +∞. The
interest in projective radius is that, if A has finite projective radius, then there exist
a vector x ∈ R

d and a scalar c such that Ax = x + c1 [Baccelli and Mairesse
(1996)]. Such a vector is sometimes called a generalized fixed point of A. Finite
projective radius is not, however, a necessary condition for the existence of a
generalized fixed point. More details and references on the fixed-point properties
of various types of topical operators can be found in Baccelli, Cohen, Olsder and
Quadrat (1992) and Gaubert and Gunawardena (1998).

Turning to sequences of random operators, an important result is the following
ergodic theorem.

THEOREM [Baccelli and Mairesse (1996)]. Let {A(n) :n≥ 1} be a stationary
and ergodic sequence of random topical operators. If there is an integer N and a
real number C such that

�[A(N) · · ·A(1)] ≤ C,
with positive probability, then there exists γ ∈ R such that

lim
n→∞

1

n
A(n) · · ·A(1)x0 = γ 1

almost surely, for every x0 ∈ R
d .

In this paper we study deviations from the behavior described by this theorem,
but under the following stronger assumption.
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ASSUMPTION 1. (a) {A(n) :n ≥ 1} is a random sequence of i.i.d. topical
operators; (b) there exists an integer N and a real number C such that
�[A(N) · · ·A(1)] ≤ C almost surely.

Our main result is that if this assumption holds for the sequence {A(n)} and if
{x(n) :n≥ 1} is a sequence of vectors satisfying the recursive system (1) for some
fixed initial condition, then the sequence {x(n)/n :n ≥ 1} satisfies a weak large
deviation principle. The associated rate function is equal to +∞ away from the
line x = a1, a ∈ R, so that at this scale the system’s behavior is effectively one-
dimensional. This confinement is the consequence of part (b) of Assumption 1. We
also present some results to characterize the rate function, but explicit calculations
turn out to be difficult in all but trivial cases. It is well known that calculation of
the Liapounov exponent γ of the ergodic theorem is already a hard problem.

For the case of max-plus and min-plus matrix operators, our results extend
previous work by Baccelli and Konstantopoulos (1991), Glasserman and Yao
(1995) and Chang (1996).

To illustrate the significance of Assumption 1, we end this section with two
simple examples from queuing theory, the first of which satisfies this assumption
and the second of which violates it. Consider a closed cyclic queuing network
consisting of two servers and a fixed number of customers. Customers leaving
the first server immediately join the queue for the second and vice versa. At each
server customers are served in their order of arrival in a work-conserving manner.
For n ≥ 1 let σi(n) be the duration of the nth service at server i and let xi(n) be
the time at which this service is completed. If at time xi(n− 1) there is a customer
waiting in the queue for server i, then we will have

xi(n)= xi(n− 1)+ σi(n).
If there is no customer waiting in the queue, we will have

xi(n)= xj (n− 1)+ σi(n).
Hence x(n)=A(n)x(n−1), where A(n) is the max-plus matrix operator given by

A(n)≡
[
σ1(n) σ1(n)

σ2(n) σ2(n)

]
.

The projective radius of A(n) · · ·A(1) is

�[A(n) · · ·A(1)] =�[A(n)] = σ1(n)∨ σ2(n)− σ1(n)∧ σ2(n).

Thus, if {σ1(n) :n≥ 1} and {σ2(n) :n≥ 1} are sequences of bounded i.i.d. random
variables, Assumption 1 is satisfied. For extensions of this example to systems of
several cyclic queues with various blocking mechanisms operating between them,
see Mairesse (1997).

If σ1(n) and σ2(n) are not almost surely bounded, then Assumption 1 is violated,
even though the conditions of Theorem 1 continue to hold. Consider, however, the



RANDOM TOPICAL OPERATORS 321

example of the single server queue where new customers arrive from an external
source, are served in their order of arrival and then depart from the system. Let
x1(n) be the arrival time of the nth customer and let x2(n) be the time of his or her
departure from the queue. Denote by σ(n) the duration of service required by the
nth customer, and by τ (n) the elapsed time between the arrival of this customer
and his or her predecessor. Assuming that the server is nonidling, x1(n) and x2(n)

satisfy the equations

x1(n)= x1(n− 1)+ τ (n),
x2(n)= [x1(n− 1)+ τ (n)+ σ(n)] ∨ [x2(n− 1)+ σ(n)],

or x(n)=A(n)x(n− 1), where A(n) is the max-plus matrix operator

A(n)≡
[

τ (n) −∞
τ (n)+ σ(n) σ (n)

]
.

The projective radius of A(n) · · ·A(1) is now equal to +∞ for every n, so that
neither Assumption 1 nor the conditions of Theorem 1 are satisfied. [The ergodic
behavior of this system can, of course, be treated using methods other than those
of Theorem 1; see Baccelli, Cohen, Olsder and Quadrat (1992).]

2. Large deviations. Let {A(n) :n ≥ 1} be a sequence of random topical
operators on R

d . Given a fixed initial vector x0 ∈ R
d , we let {x(n;x0) :n ≥ 1}

be the sequence defined by

x(n;x0) :=A(n)A(n− 1) · · ·A(1)x0, n= 1,2, . . . .

It will be convenient to let A(l,m) stand for the product of the A(n)’s from
n= l + 1 up to n=m, where m> l ≥ 0:

A(l,m) :=A(m)A(m− 1) · · ·A(l + 1).

We shall also use x(l,m) to denote the vector A(l,m)x0.
With the assumption that x0 is a fixed, rather than random, initial condition,

the nonexpansive property of the A(n)’s ensures that the large deviations of the
sequence {x(n;x0)/n :n≥ 1} are in fact independent of x0. If y0 is another fixed
initial condition, then

‖x(n;x0)− x(n;y0)‖ = ‖A(0, n)x0 −A(0, n)y0‖ ≤ ‖x0 − y0‖,
implying that, for any ε > 0,

P
(‖x(n;x0)− x(n;y0)‖> nε)= 0

for n large enough. The sequences {x(n;x0)/n} and {x(n;y0)/n} are therefore
exponentially equivalent [Dembo and Zeitouni (1998), Chapter 4], so that one
satisfies a large deviation principle if and only if the other does, and with the same
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rate function. We set x0 equal to the zero vector 0 and suppress the dependence of
x(n;x0) on x0 henceforth.

Let Mn be the law of x(n)/n and let m and m be set functions defined on the
Borel subsets of R

d by

m[B] := lim sup
n→∞

1

n
log Mn[B],

m[B] := lim inf
n→∞

1

n
logMn[B].

The upper and lower deviation functions µ and µ associated with the sequence
{Mn :n≥ 1} are the maps from R

d into [−∞,0] given by

µ(x) := inf
G�x m[G],

µ(x) := inf
G�x m[G],

where the infima on the right-hand sides are taken over all open sets G containing
the point x. As both m and m are increasing set functions, these infima may in
fact be taken over any base of Borel neighborhoods of x. The properties of µ
and µ are discussed in the review of Lewis and Pfister (1995). They are upper
semicontinuous and for all open sets G satisfy

m[G] ≥ sup
x∈G

µ(x),

m[G] ≥ sup
x∈G

µ(x).

In addition, µ satisfies

m[K] ≤ sup
x∈K

µ(x)

for all compact sets K .
The sequence {Mn :n ≥ 1} satisfies a weak large deviation principle with rate

function l if and only if l is lower semicontinuous and the inequalities

m[K] ≤ − inf
x∈K l(x),

m[G] ≥ − inf
x∈Gl(x)

hold for all compact setsK and open setsG. A neccessary and sufficient condition
for the weak l.d.p. to hold with rate function l is that µ and µ should coincide
and be equal to −l throughout R

d [Lewis and Pfister (1995)]. The sequence
{Mn :n ≥ 1} satisfies a large deviation principle with rate function l if and only
if it satisfies a weak l.d.p. in which the upper bound for compact sets extends to all
closed subsets F of R

d :

m[F ] ≤ − inf
x∈F l(x).
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Lemma 1 below establishes that, if the A(n)’s are i.i.d., then µ(x) = µ(x) on
the line x = a1, a ∈ R. The argument is based on the following observation: if
A1,A2 are any pair of topical operators and a, b are any pair of real numbers, then

‖A1A2 · 0 − (a + b)1‖
≤ ‖A1A2 · 0 −A1 · a1‖ + ‖A1 · a1 − (a + b)1‖(4)

≤ ‖A2 · 0 − a1‖ + ‖A1 · 0 − b1‖.
Let Br(a1) denote the l∞-ball of radius r centered at a1. Since x(n + m) =
A(n,n+m)A(0, n) · 0, the inequality (4) implies that the sequence {Mn[Br(a1)]}
is supermultiplicative:

Mn+m[Br(a1)]
= P

(‖x(n+m)− (n+m)a1‖< (n+m)r)
≥ P

(‖x(n)− na1‖< nr, ‖x(n,n+m)−ma1‖<mr)
= Mn[Br(a1)]Mm[Br(a1)].

A variant of the standard subadditivity lemma [see Lanford (1973) and Lewis,
Pfister and Sullivan (1994)] may now be used to show that µ(a1) = µ(a1), and
also that the resulting function a �−→µ(a1)=µ(a1) is concave.

LEMMA 1. Under part (a) of Assumption 1, µ(a1)=µ(a1) for each a ∈ R.

PROOF. Fix a ∈ R and put n= ps+q , where s > 0, p > 0 and 0 ≤ q < s. We
have from (4) that

‖x(n)− na1‖ ≤ ‖x(ps,ps + q)− qa1‖ + ‖x(0,ps)− psa1‖,
and, continuing the expansion,

‖x(n)− na1‖ ≤ ‖x(ps,ps + q)− qa1‖ +
p∑
k=1

∥∥x((k − 1)s, ks
)− sa1

∥∥.(5)

Let zs(k) denote the contribution coming from the kth block of size s:

zs(k) := x((k − 1)s, ks
)
.

Then {zs(k) :k ≥ 1} is a sequence of i.i.d. random variables and the law of zs(1) is
Ms . It follows from (5) that, for each ε > 0,

P
(‖x(n)− na1‖< nr)

≥ P

(
‖x(ps,ps + q)− qa1‖< nε,

p∑
k=1

‖zs(k)− sa1‖<ps(r − ε)
)

≥ P
(‖x(q)− qa1‖< nε)[P(‖zs(1)− sa1‖< s(r − ε))]p,
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and therefore

1

n
log Mn[Br(a1)]

(6)

≥ 1

n
logP

(‖x(q)− qa1‖< nε)+ p
n

log Ms[Br−ε(a1)].

Now, since any finite collection of probability measures on R
d is tight, we can find

a compact set K ⊂ R
d such that x(q) falls in K with positive probability for each

q = 0, . . . , s − 1. Define

αs := min
0≤q<sP

(
x(q) ∈K).

Then αs > 0, and there exists M <∞ such that, for all n ≥ M and each q =
0, . . . , s − 1,

P
(‖x(q)− qa1‖< nε)≥ P

(
x(q) ∈K)≥ αs.

Returning to inequality (6), this yields

1

n
logMn[Br(a1)] ≥ 1

n
logαs + p

n
logMs[Br−ε(a1)]

≥ 1

n
logαs + 1

s
logMs[Br−ε(a1)],

with logαs >−∞. Taking first the lim inf in n and then the lim sup in s, we obtain

lim inf
n→∞

1

n
log Mn[Br(a1)] ≥ lim sup

s→∞
1

s
log Ms[Br−ε(a1)],

or m[Br(a1)] ≥ m[Br−ε(a1)]. The statement of the lemma follows on taking
infima over r > ε, giving

inf
r>ε
m[Br(a1)] ≥ µ(a1),

and then over ε > 0, to get µ(a1)≥ µ(a1). �

LEMMA 2. The map a �−→ µ(a1) = µ(a1) resulting from Lemma 1 is
concave.

PROOF. For a1, a2 ∈ R, we have from (4) that

‖x(2n)− n(a1 + a2)1‖ ≤ ‖x(n)− na11‖ + ‖x(n,2n)− na21‖,
which implies

M2n
[
Br
(
(a11 + a21)/2

)]≥ Mn[Br(a11)]Mn[Br(a21)].
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Therefore,

m
[
Br
(
(a11 + a21)/2

)]≥ lim inf
n→∞

1

2n
logM2n

[
Br
(
(a11 + a21)/2

)]

≥ 1

2
m[Br(a11)] + 1

2
m[Br(a21)],

and, taking infima over r > 0, we get

µ
(
(a11 + a21)/2

)≥ 1

2
µ(a11)+ 1

2
µ(a21).

This inequality may be extended to cover all convex combinations λa11+
(1− λ)a21, where λ is a dyadic rational in [0,1], by iterating the above argument.
The concavity of the map a �→µ(a1)=µ(a1) then follows from the fact that it is
upper semicontinuous. �

Lemma 1 is enough to establish a weak large deviation principle if both parts of
Assumption 1 are satisfied.

THEOREM 3. Let both parts of Assumption 1 hold. The sequence {Mn :n≥ 1}
satisfies a weak large deviation principle with a convex rate function l which is
equal to +∞ on the set {x :‖x‖P > 0}.

PROOF. For ε > 0 and n≥N ,

P
(‖x(n)‖P > nε

)= P
(‖A(n−N,n)x(n−N)‖P > nε

)
≤ P

(
�[A(n−N,n)]> nε)

= P
(
�[A(0,N)]> nε),

which is 0 for n sufficiently large. Therefore µ(x)= µ(x)=−∞ for each x with
‖x‖P > 0. Combining this with Lemma 1, we have µ = µ everywhere, and the
resulting rate function l =−µ=−µ is convex by Lemma 2. �

It is not difficult to construct examples which violate Assumption 1 and where
the l.d.p. cannot hold with a rate function of the form appearing in Theorem 3.
Consider again the cyclic queuing example of Section 1. Here each A(n) is a max-
plus matrix operator of the form

A(n)≡
[
σ1(n) σ1(n)

σ2(n) σ2(n)

]
.

Assume that {σ1(n) :n ≥ 1} and {σ2(n) :n ≥ 1} are sequences of i.i.d. exponen-
tially distributed random variables. Then

‖A(n)x‖P = σ1(n)∨ σ2(n)− σ1(n)∧ σ2(n)
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for any x, so that the projective radius of each A(n) is almost surely finite but not
almost surely bounded. We find that

P
(‖x(n)‖P > nε

)= P
(
σ1(n)∨ σ2(n)− σ1(n)∧ σ2(n) > nε

)
,

which does not vanish on an exponential scale as n→ ∞. Systems which do
not exhibit bounded projective radius need not, therefore, be confined to the line
x = a1, a ∈ R.

The next two lemmas are directed toward proving that the rate function l of
Theorem 3 is the convex dual of the scaled cumulant generating function λ of the
sequence {x(n)}. For θ ∈ R

d , let {Mθ
n} be the sequence of measures defined by

M
θ
n[B] :=

∫
B
en〈θ,x〉Mn[dx].

Theorem 3 implies that {Mθ
n :n≥ 1} satisfies a weak large deviation principle with

rate function lθ given by lθ (x)= l(x)− 〈θ, x〉. Let λn be the cumulant generating
function of x(n) (automatically proper, convex and l.s.c.):

λn(θ) := log M
θ
n[Rd ] = logEe〈θ,x(n)〉.

Lemma 4 shows that the limit λ(θ) := limn→∞ λn(θ)/n exists, and Lemma 5
shows that λ is the convex dual of l.

Lemma 4 also gives two expressions for λ which may be of use in approximat-
ing it. To state these, we define ψn: R

2 → R to be the map

ψn(φ1, φ2) := logE exp
(
φ1t[x(n)] + φ2b[x(n)]).

For θ ∈ R
d we let θ+ represent the sum of the positive components of θ and θ−

the sum of the negative components.

LEMMA 4. Under Assumption 1, λ(θ) exists for each θ ∈ R
d and is given by

λ(θ)= sup
n≥1

1

n
ψn(θ−, θ+) and λ(θ)= inf

n≥1

1

n
ψn(θ+, θ−).

PROOF. For n,m≥ 1,

x(n+m)=A(n,n+m)A(0, n)0
≤ A(n,n+m)(t[A(0, n)0]1)=A(n,n+m)0 + t[A(0, n)0]1,

and, similarly,

x(n+m)≥A(n,n+m)0 + b[A(0, n)0]1.
These yield the inequalities

t[x(n+m)] ≤ t[x(n,n+m)] + t[x(n)],(7)

b[x(n+m)] ≥ b[x(n,n+m)] + b[x(n)],(8)
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which together imply that the sequence {ψn(θ−, θ+) :n≥ 1} is superadditive:

ψn+m(θ−, θ+)≥ψn(θ−, θ+)+ψm(θ−, θ+)
for all n,m≥ 1. Now ψn is the cumulant generating function of the pair of random
variables (t[x(n)],b[x(n)]). As these random variables are real valued, ψn cannot
take the value −∞. It follows that the limit

lim
n→∞

1

n
ψn(θ−, θ+)= sup

n≥1

1

n
ψn(θ−, θ+)

exists for all θ .
Clearly, λn(θ) ≥ ψn(θ−, θ+) for all n. But for n ≥ N , x(n) satisfies t[x(n)] −

b[x(n)] ≤ C, so that t[x(n)] − xi(n) ≤ C and xi(n) − b[x(n)] ≤ C for each i.
Therefore

〈θ, x(n)〉 ≤ θ+b[x(n)] + θ+C + θ−t[x(n)] − θ−C,
implying that

λn(θ)≤ψn(θ−, θ+)+ ‖θ‖1C

and

lim
n→∞

1

n
λn(θ)= lim

n→∞
1

n
ψn(θ−, θ+).

To prove the second identity for λ, we first note that the argument just given
also establishes that

ψn(θ+, θ−)−ψn(θ−, θ+)≤ 2C‖θ1‖
for all n≥N . Therefore ψn(θ+, θ−)/n converges to λ(θ) as n→∞. Furthermore,
inequalities (7) and (8) imply that {ψn(θ+, θ−)} is a subadditive sequence: for all
n,m≥ 1,

ψn+m(θ+, θ−)≤ψn(θ+, θ−)+ψm(θ+, θ−);
hence

lim
n→∞

1

n
ψn(θ+, θ−)= inf

n≥1

1

n
ψn(θ+, θ−). �

Recall that the convex dual of l is the function l∗: R
d →[−∞,+∞] given by

l∗(θ) := sup
x∈Rd

{〈θ, x〉 − l(x)}.
LEMMA 5. Under Assumption 1, λ is the convex dual of l.
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PROOF. The sequence of measures {Mθ
n} satisfies a weak large deviation

principle with rate function l(x) − 〈θ, x〉. Since R
d is an open set, the large

deviation lower bound gives us

λ(θ)= lim inf
n→∞

1

n
log M

θ
n[Rd ] ≥ − inf

x

{
l(x)− 〈θ, x〉},

or λ(θ)≥ l∗(θ). To prove the opposite inequality, let zm(n) be the random variable
x((n− 1)m,nm) and let ym(n) denote the sum

ym(n) := 1

nm

n∑
k=1

zm(k).

For fixed m, the sequence {zm(k) :k ≥ 1} is i.i.d. Let L
(m)
n be the law of ym(n); by

Cramér’s theorem, the sequence {L(m)n , n≥ 1} satisfies a large deviation principle
with convex rate function lm equal to

lm(x)= sup
θ

{〈θ, x〉 − λm(θ/m)}.
Since both lm and λm are proper convex l.s.c. functions, we also have

λm(θ)= sup
x

{〈mθ,x〉 − lm(x)}.
Now for n,m≥N the two inequalities (7) and (8) imply that

‖x(n+m)− x(n,n+m)− x(n)‖ ≤ C.
Setting n= pm with m≥N and applying this result repeatedly, we have

‖x(n)− nym(p)‖ =
∥∥∥∥∥x(n)−

p∑
k=1

zm(k)

∥∥∥∥∥≤ pC.
Therefore

Mn[Br+C/m(x)] = P
(‖x(n)− nx‖< nr + pC)

≥ P
(‖nym(p)− nx‖< nr)

= L
(m)
p [Br(x)].

Taking logs, dividing by n and letting p→∞, this becomes

m[Br+C/m(x)] ≥ lim inf
p→∞

1

pm
log L

(m)
p [Br(x)],

and, taking infima over r > 0, we get

inf
r>C/m

m[Br(x)] ≥ − 1

m
lm(x).



RANDOM TOPICAL OPERATORS 329

Now fix r ′ = C′/m > C/m and let Br ′(x) be the closed l∞-ball of radius r ′
centered at x. Applying the large deviation upper bound for the setBr ′(x) produces

− inf
y∈Br′ (x)

l(y)≥m[Br ′(x)] ≥ − 1

m
lm(x).

Hence

sup
y∈Br′ (x)

{〈θ, y〉 − l(y)}≥ 〈θ, x〉 − 1

m
‖θ‖C′ − inf

y∈Br′ (x)
l(y)

≥ 〈θ, x〉 − 1

m

(‖θ‖C′ + lm(x)),
and, taking the supremum over x on both sides,

l∗(θ)≥ 1

m

(
λm(θ)− ‖θ‖C′).

The upper bound λ(θ)≤ l∗(θ) is now obtained by letting m→∞. �

If λ is finite in a neighborhood of the origin, then the sequence {Mn :n≥ 1} is
exponentially tight: there exists a sequence of compact sets {Kn :n≥ 1} such that

lim sup
n→∞

m[Rd \Kn] = −∞.
Under exponential tightness the weak l.d.p. for {Mn :n≥ 1} extends to a full l.d.p.
[see Lewis and Pfister (1995) or Dembo and Zeitouni (1998), Chapter 1].

THEOREM 6. Let Assumption 1 hold. The rate function l of Theorem 3 is the
convex dual of λ. If λ is finite in a neighborhood of the origin, then the sequence
{Mn} satisfies a large deviation principle with rate function l.

PROOF. Recall that λ exists by Lemma 4, and by Lemma 5 it is the convex
dual of l. Since l is a proper convex l.s.c. function, it follows that l = l∗∗ = λ∗. If λ
is finite in a neighborhood of the origin, then the sequence {Mn} is exponentially
tight and the l.d.p. follows. �

Note that since λ(θ) ≤ ψn(θ+, θ−)/n for all n one needs only that ψn(θ+, θ−)
be finite in a neighborhood of the origin, for any n, in order to establish the l.d.p.

3. Matrix operators. From the results of the last section, we may deduce the
l.d.p. for certain classes of the matrix operators introduced in Section 1.

LEMMA 7. A max-plus matrix operator has finite projective radius if and only
if each of its columns has all entries finite or all entries equal to −∞. Similarly, a
min-plus operator has finite projective radius if and only if each of its columns has
all entries finite or all entries equal to +∞.
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PROOF. Suppose that A is a max-plus matrix operator with all matrix entries
finite and let x be any vector in R

d . For a given value of i ∈ [1, d], let J (i) be the
value of j which maximizes Aij + xj . Then

t[Ax] = max
i,j
Aij + xj = max

i
AiJ (i) + xJ (i)

and

b[Ax] = min
k

max
l
Akl + xl ≥ min

k
AkJ (i)+ xJ (i).

Therefore

‖Ax‖P ≤ max
i

(
AiJ (i) − min

k
AkJ (i)

)≤ max
i,j
Aij − min

k,l
Akl.

This gives a finite upper bound on ‖Ax‖P, independent of x. Next, if one or more
columns of A are identically equal to −∞, then the projective radius of A is equal
to that of the matrix obtained by deleting these columns. If the remaining entries
are all finite, then so is �[A]. (Recall that we assume each row of A has at least
one finite entry, so that A cannot be identically equal to −∞.)

Now suppose that for some column j we have Aij finite and Akj =−∞. Then,
for any x,

‖Ax‖P ≥ (Ax)i − (Ax)k ≥Aij + xj − max
l  =j (Akl + xl),

and since xj can be made arbitrarily large it follows that �[A] = +∞.
The proof for min-plus matrices is similar. �

In particular, if A is an aperiodic matrix operator, then there exists N <∞
such that AN has all entries finite, and therefore finite projective radius. Turning
to random sequences of matrix operators, we say that {A(n) :n ≥ 1} has fixed
structure if, for each i, j , Aij (n) is equal to −∞ for all n with probability 1 or 0.

ASSUMPTION 2. The sequence {A(n) :n ≥ 1} is a random sequence of i.i.d.
aperiodic max-plus matrix operators, with fixed structure. In addition, the finite
components of A(1) take values in a bounded subset of R.

As in Section 2, Mn denotes the law of x(n)/n, where

x(n)=A(n) · · ·A(1)x0, n= 1,2, . . . ,

with x0 fixed.

THEOREM 8. Let Assumption 2 hold. Then the sequence {Mn} satisfies a large
deviation principle with convex rate function l equal to λ∗.
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PROOF. LetN <∞ be such that the matrix (A(1))N has all entries finite. Note
that, when taking the product of matrices A(1) and A(2), the positions of the finite
entries in A(2)A(1) depend only on which entries of A(1) and A(2) are finite (and
not on the values of these entries; this is similar to the situation with the zeros of
products of positive matrices under the standard algebra). Since each matrix A(k)
has its finite entries in the same positions (due to the fixed structure assumption),
it follows that A(0,N)= A(N) · · ·A(1) has all entries finite, and therefore finite
projective radius. Under the second part of Assumption 2, the entries of A(0,N)
actually take values in a bounded subset of R, implying that�[A(0,N)] is almost
surely bounded. It follows from Theorems 3 and 6 that the sequence {Mn} satisfies
a weak l.d.p. with rate function λ∗. Assumption 2 also implies that, for each n,
x(n) is a bounded random variable, so that the functions ψn of Lemma 4 are finite
throughout R

2. Therefore so is λ(θ) and the l.d.p. holds for {Mn}. �

The l.d.p. for a certain class of nonnegative matrix operators on the positive cone
R
d+ can be proved along similar lines. Recall that if A: R

d+ → R
d+ is a nonnegative

matrix operator having at least one nonzero entry per row, then Ã: R
d → R

d is the
topical operator defined by Ãx := log(A exp(x)).

LEMMA 9. Let A: R
d+ → R

d+ be a nonnegative matrix operator, with at least
one nonzero entry per row. Then Ã has finite projective radius if and only if each
column of A has all entries greater than 0 or all entries equal to 0.

PROOF. Assume thatA has no matrix entries equal to 0 and let x be any vector
in R

d . For a given value of i, let J (i) be the value of j which maximizes Aij exj .
Then

t[Ãx] = max
i

log
(∑
j

Aij e
xj

)
≤ max

i
log

(
dAiJ (i)e

xJ(i)
)

and

b[Ãx] = min
k

log
(∑
l

Akle
xl

)
≥ min

k
log

(
AkJ(i)e

xJ(i)
)
.

Therefore

‖Ãx‖P ≤ max
i

(
log(dAiJ (i))− min

k
logAkJ(i)

)
≤ logd + max

i,j
logAij − min

k,l
logAkl,

a finite upper bound which is independent of x. As in the max-plus matrix case,
one can now observe that if A has all entries of one column equal to 0, then the
projective radius of Ã is equal to that of the operator obtained by excluding this
column. This proves the “if” part of the lemma.
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On the other hand, if column j of A has a nonzero entry Aij and a zero entry
Akj , then, for any x ∈ R

d ,

‖Ãx‖P ≥ logAij + xj − log
(∑
l  =j
Aile

xl

)
.

Since xj can be made arbitrarily large, it follows that�[Ã] = +∞. �

The assumption analogous to Assumption 2 is therefore the following. A fixed
structure sequence of random nonnegative matrices {A(n)} will be one in which,
for each i, j , Aij (n) is 0 for all n with probability either 1 or 0.

ASSUMPTION 3. The sequence {A(n) :n ≥ 1} is a random sequence of i.i.d.
nonnegative aperiodic matrix operators, with fixed structure. In addition, the
nonzero entries of A(1) take values in a compact subset of the positive real line.

We continue to let x(n) denote the vector A(n) · · ·A(1)x0, for a fixed x0 ∈ R
d+,

but we now take Mn to be the law of (logx(n))/n.

THEOREM 10. Under Assumption 3, the sequence {Mn :n ≥ 1} satisfies a
large deviation principle with rate function l equal to λ∗, where λ: R

d → R is
given by

λ(θ)= lim
n→∞

1

n
log E

d∏
i=1

(
xi(n)

)θi .
PROOF. Letting x̃(n)= logx(n), we find that x̃(n) satisfies

x̃(n)= Ã(n) · · · Ã(1)x̃0.

The remainder of the proof parallels the proof of Theorem 8 and is omitted. �
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