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POLYNOMIAL CONVERGENCE RATES OF MARKOV CHAINS1

BY SØREN F. JARNER AND GARETH O. ROBERTS

Lancaster University

In this paper we consider Foster–Liapounov-type drift conditions for
Markov chains which imply polynomial rate convergence to stationarity in
appropriate V -norms. We also show how these results can be used to prove
central limit theorems for functions of the Markov chain. We consider two
examples concerning random walks on the half line and the independence
sampler.

1. Introduction. This paper considers the use of Foster–Liapounov-type drift
conditions to establish polynomial rates of convergence of the f -norm for a
general state space Markov chain in discrete time. Results of this type involving
geometric convergence rates are now well established; see, for example, Meyn and
Tweedie (1992) and Chapters 15, 16 of Meyn and Tweedie (1993). However, the
more subtle polynomial case is not nearly as well understood. The foundational
work of Tuominen and Tweedie (1994) studies general subgeometric rates using
a sequence of drift conditions. Our results build on this work, but because
we restrict ourselves to polynomial rates we are able to take a different and
more direct approach which ultimately leads to the derivation of the single drift
condition (1). This condition is the natural analogue of the drift condition for
geometric ergodicity and, as will be illustrated by examples, it is simple to apply
in practice.

Let X = (X0,X1, . . .) be a discrete-time Markov chain on a general state
space with transition kernel P . Assume X is ψ-irreducible, aperiodic and positive
recurrent. A main result of the paper is Theorem 3.6 which states that if there exists
a test function V ≥ 1, positive constants c and b, a petite set C and 0 ≤ α < 1 such
that

PV ≤ V − cV α + b1C,(1)

then the chain is positive recurrent and there is polynomial convergence of the
n-step transition kernel P n to the invariant distribution π in the sense that the
following statement holds

nβ−1‖P n(x, ·)− π‖Vβ → 0, n→ ∞,(2)
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for all 1 ≤ β ≤ 1/(1 − α), where Vβ = V 1−β(1−α) and the f -norm is defined
for a signed measure µ as ‖µ‖f = supg : |g|≤f |µ(g)|. This gives a precise
characterization of the rate with which the different powers of V converges in
terms of the exponent α: one order of convergence is gained for each 1 − α power
lost. In particular, there is convergence of order α/(1 − α) in the total variation
norm.

This result relies on a more general result, Theorem 3.2, in which we establish
conditions implying polynomial convergence when a set of drift conditions is
satisfied. This is related to the work of Fort and Moulines (2000). The connection
to the existence of moments of the hitting times of the Markov chain to the set C is
established in Theorem 3.4. In particular, it follows from that theorem that if there
exists a petite set C such that the mth moments of the return times to this set exist
and are bounded on C then there is convergence of order m− 1 in total variation
norm. Theorem 3.4 also shows that the convergence rate given by Theorem 3.2 is
optimal when applied to the hitting time solution.

Section 2 gives the necessary definitions and results from Tuominen and
Tweedie (1994). The main results are derived in Section 3, and Section 4
investigates implications for our work in terms of central limit theorems for
Markov chains. Examples are given in Section 5. We begin with an analysis of
the random walk on the half line, an example also considered in Tuominen and
Tweedie (1994). Our second example considers an important type of Markov chain
Monte Carlo algorithm known as the independence sampler.

2. Definitions and the Tuominen–Tweedie result. Let X = (X0,X1, . . .)

be a discrete-time Markov chain on a general state space (E,E), where E is a
countably generated σ -algebra. The Markov transition kernel for X is denoted
by P . Let P n, n ∈ N0, denote the n-step transition kernel for the Markov chain,
that is,

P n(x,A)= Px(Xn ∈A), x ∈E, A ∈ E ,(3)

where Px is the conditional distribution of the chain given X0 ≡ x. The
corresponding expectation operator will be denoted Ex . For any function f we
write Pf (x) for the function

∫
f (y)P (x, dy), and for any signed measure µ we

write µ(f ) for
∫
f (y)µ(dy).

We assume that P is ψ-irreducible and aperiodic [cf. Meyn and Tweedie
(1993)], where ψ is a maximal irreducibility measure, we let E+ = {A ∈
E | ψ(A) > 0}. A set A is called full if ψ(Ac) = 0 and absorbing if P (x,A)= 1
for all x ∈A.

We will need the notion of petite and regular sets, and the associated concepts
of sampling distributions and hitting times. For a distribution a = (an)n∈N let Ka
be the transition kernel given by

Ka(x,A)=
∞∑
n=1

anP
n(x,A), x ∈E, A ∈ E .
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This is the Markov transition kernel for the Markov chain X observed at time
points with intervals sampled according to a. A set C ∈ E is called petite if there
exists a sampling distribution a and a nontrivial measure ν such that

Ka(x, ·)≥ ν(·), x ∈C.(4)

Under our assumptions of ψ-irreducibility and aperiodicity, this is the same as the
set C being small [cf. Meyn and Tweedie (1993)]. A set C is called an atom if the
measures P (x, ·) are identical for all x in C.

For any setB ∈ E let τB = min{n≥ 1 |Xn ∈ B} denote the first time the Markov
chain returns to the set B . This is a stopping time with respect to the filtration
(Fn), where Fn = σ(X0, . . . ,Xn). A set A ∈ E is said to be (f, r)-regular where
f : E → [1,∞) and r: N0 → [1,∞) if, for every B ∈ E+,

sup
x∈A

Ex

[
τB−1∑
k=0

r(k)f (Xk)

]
<∞.(5)

A point x ∈E is called (f, r)-regular if the singleton A= {x} is (f, r)-regular.
In this paper we are interested in polynomial rate functions, that is, rate

functions of the form r(n) = (n+ 1)β for some β ≥ 0. These are contained in a
more general class $ of subgeometric rate functions considered in Tuominen and
Tweedie (1994). For this class Tuominen and Tweedie (1994) have the following
main result.

THEOREM 2.1. Suppose P is ψ-irreducible and aperiodic and let f : E →
[1,∞) and r ∈$ be given. The following conditions are equivalent:

(i) There exists a petite set C such that

sup
x∈C

Ex

[
τC−1∑
k=0

r(k)f (Xk)

]
<∞.(6)

(ii) There exist a sequence (Vn)n∈N0 of functions Vn: E → [0,∞], a petite
set C and constant b such that V0 is bounded on C, {V1 <∞} ⊂ {V0 <∞} and

PVn+1 ≤ Vn − r(n)f + br(n)1C, n ∈ N0.(7)

(iii) There exists an (f, r)-regular set A ∈ E+.

Any of these conditions imply that there exists a unique invariant distribution π
and that, for all (f, r)-regular points x,

r(n)‖P n(x, ·)− π‖f → 0, n→ ∞;(8)

the set of all (f, r)-regular points is full, absorbing and contains the set {V0 <∞}.
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Note that P is called (f, r)-regular if the conditions of Theorem 2.1 are satisfied
and every point is (f, r)-regular. In the remainder of this paper we consider only
polynomial rate functions and for these we derive simpler and easier verifiable
drift conditions than the system of drift conditions (7) needed for general rate
functions. Fort and Moulines (2000) also considered the case of polynomial rate
functions and they constructed a solution to (7) from a system of drift conditions
similar to the system we consider in Theorem 3.2. However, the system of drift
conditions we consider is more general and we use it to show the existence of
(f, r)-regular sets instead. This is a simpler and more direct approach of showing
(f, r)-regularity of the chain. The connection between solutions to the system of
drift conditions and moments of hitting times established in Theorem 3.4 and the
reduction to a single drift condition in Theorem 3.6 are also new.

3. Drift conditions and regularity. The most general result of this paper is
Theorem 3.2 which identifies regular sets from a set of drift conditions. It uses
the following lemma which is a straightforward generalization of Lemma 11.3.10
of Meyn and Tweedie (1993).

LEMMA 3.1. For any stopping time τ , any sampling distribution a, any
positive function w: N0 → [0,∞) and any positive function f : E → [0,∞),

Ex

[
τ−1∑
k=0

w(k)Ka(Xk,f )

]
=

∞∑
i=1

aiEx

[
τ−1∑
k=0

w(k)f (Xk+i )
]
.(9)

PROOF. Using the Markov property, Fubini’s theorem and the fact that
(k < τ) ∈ Fk , we get

Ex

[
τ−1∑
k=0

w(k)Ka(Xk,f )

]
=

∞∑
i=1

aiEx

[ ∞∑
k=0

w(k)P i(Xk,f )1(k<τ)

]

=
∞∑
i=1

∞∑
k=0

aiEx
[
w(k)E[f (Xk+i )|Fk]1(k<τ)]

=
∞∑
i=1

∞∑
k=0

aiEx
[
E[w(k)f (Xk+i )1(k<τ)|Fk]]

=
∞∑
i=1

∞∑
k=0

aiEx[w(k)f (Xk+i )1(k<τ)]

=
∞∑
i=1

aiEx

[
τ−1∑
k=0

w(k)f (Xk+i )
]
. �

Following the terminology of Meyn and Tweedie (1993), we will write that an
event A occurs P∗-a.s. if Px(A

c)= 0 for all x ∈E.
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THEOREM 3.2. Suppose P is ψ-irreducible and aperiodic. Assume there
exists a nonnegative function V0: E → [0,∞] finite for at least one x0 ∈ E.
Further, assume there exists an integer m such that, for each i = 1, . . . ,m, there
exist functions Vi : E → [1,∞), constants 0< ci , bi <∞ and petite sets Ci such
that

PVi−1 ≤ Vi−1 − ciVi + bi1Ci , i = 1, . . . ,m.(10)

Then, for each i = 1, . . . ,m and each B ∈ E+, there exists ci(B) <∞ such that

Ex

[
τB−1∑
k=0

(k + 1)i−1Vi(Xk)

]
≤ ci(B)

(
V0(x)+ 1

)
.(11)

Hence, any setA on which V0 is bounded is (Vi, (n+1)i−1)-regular, i = 1, . . . ,m.
Further, the set {V0 <∞} is absorbing and full, and

(n+ 1)i−1‖P n(x, ·)− π‖Vi → 0, n→ ∞,(12)

for all x ∈ {V0 <∞} and all i = 1, . . . ,m.

PROOF. We show (11) by induction in i. For i = 1 we have

PV0 ≤ V0 − c1V1 + b11C1,(13)

and in this case (11) follows from (i) of Theorem 14.2.3 of Meyn and Tweedie
(1993).

Now assume that (11) holds for i (<m) and show it for i + 1. The induction
hypothesis implies that, for any B ∈ E+,

Ex[τ iB] ≤ iEx

[
τB−1∑
k=0

(k + 1)i−1Vi(Xk)

]
≤ ici(B)

(
V0(x)+ 1

)
,(14)

where we have used that Vi ≥ 1 and the bound

τB−1∑
k=0

(k + 1)i−1 ≥
∫ τB

0
xi−1 dx = i−1τ iB.

From Propositions 5.5.5 and 5.5.6 of Meyn and Tweedie (1993), we can assume
without loss of generality that Ci+1 is ν-petite, where ν is equivalent to ψ , and
that the sampling distribution a has finite mean, ma =∑∞

j=1 jaj <∞. From the
definition of petiteness (4), we get the bound

1Ci+1(x)≤ ν(B)−1Ka(x,B), x ∈E, B ∈ E+.(15)
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Define Zk = kiVi(Xk). By using (10) for i + 1, we get

E[Zk+1|Fk] = (k + 1)iE
[
Vi(Xk+1)|Fk]

≤ (k + 1)i
(
Vi(Xk)− ci+1Vi+1(Xk)+ bi+11Ci+1(Xk)

)

= Zk +
i−1∑
j=0

(
i

j

)
kjVi(Xk)− (k + 1)ici+1Vi+1(Xk)

+ (k+ 1)ibi+11Ci+1(Xk)

≤ Zk − (k + 1)ici+1Vi+1(Xk)

+ c
(
ki−1Vi(Xk)+ (k+ 1)i1Ci+1(Xk)

)
, P∗-a.s.

for some constant c independent of k. Proposition 11.3.2 of Meyn and Tweedie
(1993) then gives that

Ex

[
τB−1∑
k=0

(k + 1)iVi+1(Xk)

]

≤ c̃Ex

[
τB−1∑
k=0

ki−1Vi(Xk)

]
+ c̃Ex

[
τB−1∑
k=0

(k + 1)i1Ci+1(Xk)

]

for any set B ∈ E+ and any state x, where c̃ = c/ci+1. The first expectation on the
right-hand side is bounded by ci(B)(V0(x)+ 1) by the induction hypothesis. For
the second expectation we get from (15) and Lemma 3.1, with w(k)= (k + 1)i ,

Ex

[
τB−1∑
k=0

(k + 1)i1Ci+1(Xk)

]
≤ 1

ν(B)
Ex

[
τB−1∑
k=0

(k + 1)iKa(Xk,B)

]

= 1

ν(B)

∞∑
j=1

ajEx

[
τB−1∑
k=0

(k + 1)i1B(Xk+j )
]

= 1

ν(B)

∞∑
j=1

ajEx

[τB−1+j∑
k=j

(k − j + 1)i1B(Xk)

]

= 1

ν(B)

∞∑
j=1

ajEx

[τB−1+j∑
k=τB∨j

(k − j + 1)i1B(Xk)

]

≤ 1

ν(B)

∞∑
j=1

ajjEx[τ iB ] = ma

ν(B)
Ex[τ iB].

And (11) now follows by applying the bound (14) to this expression.
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Equation (13) shows that the set {V0 <∞} is absorbing, and since V0(x0) <∞
the set is nonempty, and hence it is full by Proposition 4.2.3 of Meyn and Tweedie
(1993). Therefore, there exists a constant c such that {V0 ≤ c} ∈ E+, and this set is
(Vi, (n+ 1)i−1)-regular, i = 1, . . . ,m, from (11). Condition (iii) of Theorem 2.1
is then satisfied and (12) follows from (8) of Theorem 2.1, since every state
x ∈ {V0 <∞} is (Vi, (n+ 1)i−1)-regular, i = 1, . . . ,m. �

Note that since we allow an arbitrary constant in front of Vi it is enough to
assume that the test functions are all bounded away from 0. Also note that, opposed
to Theorem 2.1, V0 need not be bounded on C in Theorem 3.2. On the other hand,
we do not gain any generality by allowing the constants bi and the petite sets Ci
to depend on i; the same set of drift equations will be satisfied with the constant
b= max{b1, . . . , bm} and the setC =⋃m

i=1Ci , which is petite by Proposition 5.5.5
of Meyn and Tweedie (1993). However, the theorem is more convenient to use in
the following in the version stated here. It also stresses the fact that the different
constants and petite sets are unrelated; the drift equations are only tied together via
the test functions.

The drift conditions in (10) also have the following function space interpretation
which was provided by a helpful referee. Assume 1 ≤ V0 <∞ and π(V0) <∞.
Let Li = L

Vi∞ be the Banach space of functions on E which are bounded by a
constant times Vi , equipped with the norm ‖g‖i = sup |g(x)|/Vi(x). For a function
g let ḡ = g − π(g). The fundamental kernel Z = (I − P ++)−1, where + is the
kernel given by +(x, ·)≡ π(·), is a bounded linear operator from Li to Li−1, and
for each g ∈ Li the function ĝ =Zḡ solves the Poisson equation, ḡ = ĝ−P ĝ; see
Glynn and Meyn (1996). From Meyn and Tweedie [(1993), page 433], it follows
that Z has the representation Z =U1, where

Uα =
∞∑
n=0

αn(P −+)n = [
I − α(P −+)

]−1
.

Differentiating this expression with respect to α and evaluating at α = 1 give
U ′

1 =∑∞
n=1 n(P −+)n = Z(P −+)Z, which is a bounded linear operator from

Li to Li−2. In particular, we have for g ∈L2 that U ′
1g ∈ L0, or

∣∣∣∣∣
∞∑
n=1

n
(
P ng − π(g)

)∣∣∣∣∣≤ const V0.(16)

By continued differentiation it follows that any function g which is bounded by
a constant times Vi converges in the sense of (16) at a polynomial rate of order
i − 1. This is a conclusion similar to the (Vi, (n+ 1)i−1)-regularity established in
Theorem 3.2 but based on a different interpretation of the drift equations.
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3.1. Hitting time solutions to the drift conditions. The existence of solutions
to the set of drift equations (10) is closely related to the existence of moments of
the hitting times τB . From (11) with i = m it follows that Ex[τmB ] is finite when
V0(x) is finite. Theorem 3.4 gives the reverse implication. It states that if there
exists a (petite) set C such that Ex[τmC ] is bounded on C then there is a solution
to (10) with Vi(x) equivalent to Ex[τm−i

C ].
The following lemma which is interesting in its own right demonstrates how the

rate can be interchanged with the moment of τC .

LEMMA 3.3. For any set C and any nonnegative exponents m and n, there
exists a positive constant d such that, for all x,

dEx[τm+n+1
C ] ≤ Ex

[
τC−1∑
k=0

(k+ 1)mEXk [τnC]
]

≤ Ex[τm+n+1
C ].(17)

PROOF. By Fubini’s theorem and the Markov property,

Ex

[
τC−1∑
k=0

(k + 1)mEXk [τnC]
]

=
∞∑
k=0

Ex

[
1(k<τC)(k + 1)m

∞∑
h=1

hnPXk(τC = h)

]

=
∞∑
k=0

∞∑
h=1

Ex
[
1(k<τC)(k + 1)mhnE[1(Xk+1 /∈C,...,Xk+h−1 /∈C,Xk+h∈C)|Fk]

]

=
∞∑
k=0

∞∑
h=1

Ex
[
(k+ 1)mhnE[1(τC=k+h)|Fk]]

= Ex

[ ∞∑
k=0

∞∑
h=1

(k+ 1)mhn1(τC=k+h)
]

= Ex

[
τC−1∑
k=0

(k+ 1)m(τC − k)n

]
.

Applying Lemma A.1 to the integrand in the last expectation gives (17). �

For any two (substochastic) kernels R and S on (E,E), we define the composite
kernel RS by

(RS)(x,A)=
∫
R(x, dy)S(y,A), x ∈E, A ∈ E ,(18)

and for any set B ∈ E we define the n-step taboo probability by

BP
n(x,A)= Px(Xn ∈A, τB ≥ n), x ∈E, A ∈ E .(19)
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If we let IB denote the kernel given by IB(x,A) = 1A∩B(x), then the taboo
probability can be written as

BP
n(x,A)= [(P IBc)n−1P ](x,A).(20)

Instead of IE we write I for the kernel given by I (x,A) = 1A(x). For any set
B ∈ E we define the random variable σB = min{n ≥ 0 | Xn ∈ B}. This stopping
time is 0 if X0 ∈ B and equal to τB otherwise.

THEOREM 3.4. Suppose P is ψ-irreducible and aperiodic. Assume there
exist a petite set C and an integer m≥ 1 such that

sup
x∈C

Ex[τmC ]<∞.(21)

Then (10) is satisfied on the absorbing set {x : Ex[τmC ]<∞} with

Vi(x)= Ex

[
σC∑
k=0

EXk [τm−1−i
C ]

]
for i = 0, . . . ,m− 1 and Vm(x)≡ 1.(22)

Further, there exist positive constants di and Di such that

diEx[τm−i
C ] ≤ Vi(x)≤DiEx[τm−i

C ], i = 0, . . . ,m.(23)

PROOF. Define the two kernels UC and GC by

UC =
∞∑
k=0

(P ICc)
kP , GC = I + ICcUC.

Then, for any starting state x and any nonnegative function f ,

UC(x,f )=
∞∑
k=1

CP
k(x, f )=

∞∑
k=1

Ex[1(k≤τC)f (Xk)] = Ex

[
τC∑
k=1

f (Xk)

]
,

GC(x,f )= [I + ICcUC](x, f )= Ex

[
σC∑
k=0

f (Xk)

]
.

The two kernels satisfy the relationship

PGC = P + P ICcUC =UC =GC − I + ICUC.(24)

Let fi(x)= Ex[τm−1−i
C ] for i = 0, . . . ,m−1. Then Vi(x)=GC(x,fi) and we can

use (24) to get, for i = 1, . . . ,m,

PVi−1(x)= Vi−1(x)− fi−1(x)+ 1C(x)UC(x,fi−1)

= Vi−1(x)− Ex[τm−i
C ] + 1C(x)Ex

[
τC∑
k=1

EXk [τm−i
C ]

]
.
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By Lemma 3.3 and assumption (21),

sup
x∈C

Ex

[
τC∑
k=1

EXk [τm−i
C ]

]
≤ sup
x∈C

Ex

[
τC∑
k=1

EXk [τm−1
C ]

]
≤ 2 sup

x∈C
Ex[τmC ]<∞.

Thus there exists a constant b such that

PVi−1(x)≤ Vi−1(x)− Ex[τm−i
C ] + b1C(x), i = 1, . . . ,m.(25)

We next show the bound (23). For i =m it is trivially satisfied. For i < m we have

Vi(x)=GC(x,fi)=




Ex[τm−1−i
C ], for x ∈C,

Ex

[
τC∑
k=0

EXk [τm−1−i
C ]

]
, for x ∈Cc,

and (23) follows from Lemma 3.3, since Ex[τm−i
C ] is bounded on C for all i by

assumption.
From (25) and the upper bound of (23), we get

PVi−1(x)≤ Vi−1(x)− ciVi + b1C(x), i = 1, . . . ,m,(26)

which shows that (10) is satisfied on the set {x : Ex[τmC ] <∞}. Since V0(x) and
Ex[τmC ] are equivalent, this set is the same as {V0 <∞}, and from (26) with i = 1
it follows that this set is absorbing, and since it is nonempty it is also full. �

Using the solution (22), we get from Theorem 3.2 that

Ex

[
τC−1∑
k=0

(k + 1)i−1EXk [τm−i
C ]

]
≤REx[τmC ].(27)

From Lemma 3.3 it follows that (with another constant) the inequality also holds
the other way around. Thus Theorem 3.2 gives the correct rate of convergence
when the hitting time solution is used. This also shows the connection between the
degree of regularity of the chain and the existence of moments of hitting times:
when the hitting times have mth moments, there is convergence of order m− 1 in
the total variation norm.

Also note that condition (21) via Lemma 3.3 is equivalent to

sup
x∈C

Ex

[
τC−1∑
k=0

(k + 1)i−1EXk [τm−i
C ]

]
<∞,(28)

which is condition (i) of Theorem 2.1. This gives an alternative route to proving
(Vi, (n+ 1)i−1)-regularity.
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3.2. Reduction to a single drift condition. The set of drift equations in
Theorem 3.2 can be generated from a single drift equation by use of the following
lemma.

LEMMA 3.5. Suppose a function V : E → [1,∞), constants 0 < c, b <∞,
a set C and α < 1 jointly satisfy

PV ≤ V − cV α + b1C.(29)

Then, for every 0< η≤ 1, there exist constants 0< c1, b1 <∞ such that

PV η ≤ V η − c1V
α+η−1 + b11C.(30)

PROOF. By Jensen’s inequality we get from (29)

PV η(x)≤ (
PV (x)

)η ≤ (
V (x)− cV α(x)+ b1C(x)

)η
.(31)

Let f (x)= xη, x ≥ 0. Then f (0)= 0 and f ′(x)= ηxη−1, x > 0, which tends to 0
from above as x tends to ∞. Hence, for y ≥ 0 and z≥ 0,

(y + z)η = yη +
∫ y+z
y

f ′(x) dx ≤ yη +
∫ z

0
f ′(x) dx = yη + zη,(32)

and, for y > 0 and 0 ≤ z≤ y,

(y − z)η = yη −
∫ y

y−z
f ′(x) dx ≤ yη − zf ′(y)= yη − ηzyη−1.(33)

For x not in C it follows from (29) that 1 ≤ PV (x)≤ V (x)−cV α(x). This implies
that 0< cV α(x) < V (x) and we can use (33) to bound the right-hand side of (31)(

V (x)− cV α(x)
)η ≤ V η(x)− ηcV α+η−1(x).

For x in C we consider two situations. Either V (x)− cV α(x)≥ 0 in which case(
V (x)− cV α(x)+ b

)η ≤ (
V (x)− cV α(x)

)η + bη

≤ V η(x)− ηcV α+η−1(x)+ bη,

where the first inequality is (32) and the second inequality is (33). Otherwise,
V (x)− cV α(x) < 0 which implies V (x) < c1/1−α. Since also V (x) ≥ 1 we have
that in this case(

V (x)− cV α(x)+ b
)η ≤ bη and V α+η−1(x)≤ 1 ∨ c(α+η−1)/(1−α),

and thus there exists a positive constant b0 such that(
V (x)− cV α(x)+ b

)η ≤ bη + V η(x)− ηcV α+η−1(x)+ b0.

Combining the three bounds yields

PV η(x)≤ V η(x)− c1V
α+η−1(x)+ b11C(x),

with c1 = ηc and b1 = bη + b0. �
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Lemma 3.5 can be used either inductively or directly with the same result, in
the sense that if we apply Lemma 3.5 to

PV η1 ≤ V η1 − c1(V
η1)(α+η1−1)/η1 + b11C,

then we get

PV η1η2 ≤ V η1η2 − c2V
α+η1η2−1 + b21C,

which is the same as applying Lemma 3.5 with η= η1η2.

THEOREM 3.6. Suppose P is ψ-irreducible and aperiodic. Assume there
exist a function V : E → [1,∞), constants 0 < c, b < ∞, a petite set C and
0 ≤ α < 1 such that

PV ≤ V − cV α + b1C.(34)

Then P is (Vβ, rβ)-regular for each 1 ≤ β ≤ 1/(1 − α), where

Vβ(x)= V 1−β(1−α)(x), rβ(n)= (n+ 1)β−1.(35)

In particular, the following polynomial convergence statements hold for all x:

(n+ 1)β−1‖P n(x, ·)− π‖Vβ → 0, n→ ∞.(36)

PROOF. We will show that, for each 1 ≤ β ≤ 1/(1 − α) and each B ∈ E+,
there exists cβ(B) <∞ such that

Ex

[
τB−1∑
k=0

rβ(k)Vβ(Xk)

]
≤ cβ(B)

(
V (x)+ 1

)
.(37)

From this it follows that any set on which V is bounded is (Vβ, rβ)-regular, and
since V is everywhere finite (iii) of Theorem 2.1 is satisfied with a sufficiently
large level set {V ≤ α} and it follows that P is (Vβ, rβ)-regular and that (36) holds
for all x.

We will first show (37) for integer values of β . Let γ = 1 − α, m= �γ−1� and
Vi = V 1−iγ for i = 0, . . . ,m. Then V0 = V and Vi ≥ 1 for i = 1, . . . ,m− 1, since
1 − iγ > 0 for i < m.

From the proof of Theorem 3.2 it can be seen that it is enough to assume that
Vi ≥ 1 for i < m to reach the conclusion (11). The assumption Vi ≥ 1 is only used
to get the bound in (14) and this bound is only needed for i < m. Thus, if we can
show

PVi−1 ≤ Vi−1 − ciVi + bi1C, i = 1, . . . ,m,(38)

for some positive constants ci , bi , then we can conclude from Theorem 3.2 that

Ex

[
τB−1∑
k=0

(k + 1)i−1Vi(Xk)

]
≤ ci(B)

(
V (x)+ 1

)
, i = 1, . . . ,m.(39)
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But for i = 1 (38) is the same as (34), and for i = 2, . . . ,m (38) follows from
Lemma 3.5 with η= 1 − (i − 1)γ > 0.

For i < β < i + 1 we can use Lemma A.2 with a1 = i − 1, a2 = i, b1 =
1 − (i + 1)γ and b2 = 1 − iγ . Then c = 1/γ and since a = β − 1 and b= 1 − βγ

satisfy

a + bc= β − 1 + 1 − βγ

γ
= −1 + 1

γ
= i − 1 + 1 − iγ

γ
= a1 + b2c,

we can use (72) and (39) to get

Ex

[
τB−1∑
k=0

rβ(k)Vβ(Xk)

]

= Ex

[
τB−1∑
k=0

(k + 1)a
(
V (Xk)

)b]

≤ Ex

[
τB−1∑
k=0

(
(k + 1)a1

(
V (Xk)

)b2 ∨ (k + 1)a2
(
V (Xk)

)b1)]

≤ Ex

[
τB−1∑
k=0

(k + 1)a1
(
V (Xk)

)b2

]
+ Ex

[
τB−1∑
k=0

(k + 1)a2
(
V (Xk)

)b1

]

= Ex

[
τB−1∑
k=0

(k + 1)i−1Vi(Xk)

]
+ Ex

[
τB−1∑
k=0

(k + 1)iVi+1(Xk)

]

≤ (
ci(B)+ ci+1(B)

)(
V (x)+ 1

)
,

and we are finished. �

Theorem 3.6 demonstrates directly the trade-off between moments and conver-
gence rates in the polynomial case. The gap 1 − α is the power lost for each order
of convergence gained. If (34) holds for α = 1 we get the drift condition for geo-
metric ergodicity

PV ≤ λV + b1C,(40)

where λ < 1, V ≥ 1, b <∞ and C is a petite set, which implies a geometric rate
of convergence in (36), that is,

ρn‖P n(x, ·)− π‖V → 0, n→ ∞,(41)

for some ρ > 1; see Meyn and Tweedie (1992, 1993). Thus α = 1 represents a
qualitative change in the ergodic behavior of the chain.
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4. Central limit theorems. In this section we consider central limit theorems
for the ergodic average

Sn(g)= 1

n

n∑
i=1

g(Xi), n≥ 1,(42)

of a function g on the state space. The central limit theorem (CLT) is said to hold
if there exists 0< σ 2

g <∞ such that, for every starting state X0 = x,
√
n
(
Sn(g)− π(g)

) w→N(0, σ 2
g ), n→ ∞.(43)

When (43) is satisfied for a function g and σ 2
g > 0, we say that the CLT holds for g.

Chapter 17 of Meyn and Tweedie (1993) gives criteria for the CLT to hold in
the presence of a drift condition of the form

PV ≤ V − f + b1C.(44)

When C is a petite set, f ≥ 1 and V is nonnegative and finite, (44) implies that P
is positive Harris recurrent. For a function g ∈ L1(π) let ḡ = g − π(g).

THEOREM 4.1. Suppose P is ψ-irreducible and aperiodic. Assume there
exist a function V : E → [0,∞), a function f : E → [1,∞), a petite set C and
a constant b satisfying (44). Assume π(V 2) <∞. Then, for any function g with
|g| ≤ f , the constant

σ 2
g = lim

n→∞nEπ
[(
Sn(ḡ)

)2]= Eπ [ḡ2(X0)] + 2
∞∑
k=1

Eπ [ḡ(X0)ḡ(Xk)](45)

is well defined, nonnegative and finite. If σ 2
g > 0 the CLT holds for g.

PROOF. Lemma 17.5.2 and Theorem 17.5.3 of Meyn and Tweedie (1993). �

Under the same conditions the conclusion of Theorem 4.1 can be strengthened
to give weak convergence of the partial sum process of ḡ(Xk) to Brownian motion;
see Theorem 17.4.4 of Meyn and Tweedie (1993) and Theorem 4.1 of Glynn
and Meyn (1996). Theorem 4.1 directly translates to the situation where the drift
condition (34) is satisfied.

THEOREM 4.2. Suppose P is ψ-irreducible and aperiodic. Assume there
exist a function V : E → [1,∞), constants 0 < c, b < ∞, a petite set C and
0 ≤ α < 1 such that

PV ≤ V − cV α + b1C.(46)

Assume there exists 1 − α ≤ η ≤ 1 with π(V 2η) < ∞. Then, for any function g
with

|g| ≤ V α+η−1,(47)

the constant σ 2
g in (45) is well defined and finite. If σ 2

g > 0 the CLT holds for g.
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PROOF. Apply Theorem 4.1 with f = V α+η−1 to (30) of Lemma 3.5. �

In particular, we get a CLT for all bounded functions if π(V 2(1−α)) <∞. Since
π(V α) <∞ by (46) this gives a CLT for all bounded functions when α ≥ 2/3.

However, as pointed out to us by Eric Moulines, it is possible to improve this
since the assumption π(V 2) < ∞ of Theorem 4.1 is in fact too strong. For a
positive Harris chain satisfying (44), it is sufficient that π(Vf ) <∞ for the CLT
to hold for functions |g| ≤ f . The following results also cover the case where
α + η − 1 < 0, that is, when f = V α+η−1 is not bounded away from 0. For ease
of exposition we will only state the results in the case where an atom A exists.
A similar result holds in the general case via the split chain; see Nummelin (1984)
and Meyn and Tweedie (1993). We will write EA for the common expectation Ex
for x ∈A.

THEOREM 4.3. Suppose P is ψ-irreducible, aperiodic and positive Harris
recurrent. Assume there exists an atom A ∈ E+. If, for a function g,

EA

[(
τA∑
k=1

|ḡ(Xk)|
)2]

<∞,(48)

then

σ 2
g = π(A)EA

[(
τA∑
k=1

ḡ(Xk)

)2]
(49)

is well defined, nonnegative and finite, and if σ 2
g > 0 then the CLT holds for g.

PROOF. This is Theorem 17.2.2 of Meyn and Tweedie (1993) with weakened
conditions. They assumed that (48) holds for g, instead of ḡ, and also that
EAτ

2
A < ∞. However, by inspection of the proof, it can be seen that only (48)

and EAτA <∞ are needed, and the latter is automatically satisfied since EAτA =
π(A)−1 by Kac’s theorem.

When the state space is countable (and ψ is the counting measure), this is
Theorem I.16.1 of Chung (1679). �

Using this result, we can improve Theorem 4.2 in the case where an atom exists.

THEOREM 4.4. Suppose P is ψ-irreducible and aperiodic. Assume there
exist a function V : E → [1,∞), constants 0 < c, b < ∞, an atom A and
0 ≤ α < 1 such that

PV ≤ V − cV α + b1A.(50)
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Assume there exists 0 < η ≤ 1 with π(V α+2η−1) <∞ and π(1AV η) <∞. Then,
for any function g with

|ḡ| ≤ V α+η−1 + 1A,(51)

the constant σ 2
g in (49) is well defined and finite. If σ 2

g > 0 the CLT holds for g.

PROOF. Condition (50) implies that P is positive Harris recurrent and that
A ∈ E+. Applying Lemma 3.5 to (50) gives

PW ≤W − f + b11A,(52)

where W = V η and f = c1(V
α+η−1 + 1A) for some positive constant c1. By

assumption π(Wf ) < ∞ and we will show that this together with (52) implies
that

EA

[(
τA∑
k=1

f (Xk)

)2]
<∞,(53)

from which the conclusion follows via Theorem 4.3. To show (53), we define

f̂ (x)= Ex

[
σA∑
k=0

f (Xk)

]
.(54)

[This is the function GA(x,f ) in the notation used in the proof of Theorem 3.4.]
From the Comparison Theorem 14.2.2 of Meyn and Tweedie (1993) and (52), we
get

f̂ (x)= Ex

[
σA∑
k=0

f (Xk)

]
≤W(x)+ b1Ex

[
σA∑
k=0

1A(Xk)

]
=W(x)+ b1 ≤RW(x)

for some constant R since W ≥ 1. Since π(Wf ) <∞ this implies that π(f̂ f ) <
∞ and then also π(f 2) < ∞ since trivially f ≤ f̂ . By the representation of π
using the atom A, Theorem 10.0.1 of Meyn and Tweedie (1993), we then have

EA

[
τA∑
k=1

(
2f̂ (Xk)f (Xk)− f 2(Xk)

)]= π(A)−1π(2f̂ f − f 2) <∞.(55)

Now, inserting the definition of f̂ and using the Markov property give

EA

[
τA∑
k=1

(
2f̂ (Xk)f (Xk)− f 2(Xk)

)]

= EA

[
τA∑
k=1

(
2f (Xk)EXk

[
σA∑
j=0

f (Xj )

]
− f 2(Xk)

)]
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= EA

[
τA∑
k=1

(
2f (Xk)E

[
τA∑
j=k

f (Xj )|Fk
]

− f 2(Xk)

)]

= EA

[
τA∑
k=1

E

[
τA∑
j=k

2f (Xk)f (Xj )− f 2(Xk)|Fk
]]

= EA

[
τA∑
k=1

(
τA∑
j=k

2f (Xk)f (Xj )− f 2(Xk)

)]
= EA

[(
τA∑
k=1

f (Xk)

)2]
.

Hence (53) holds and we are finished. �

Since π(V α) <∞ by (50) the first condition, π(V α+2η−1) <∞, always holds
for η ≤ 1/2. For the same reason the second condition, π(1AV η) < ∞, always
holds for η ≤ α. [Of course, if V is bounded on A, then π(1AV η) <∞ for any η.]
Hence, for α > 0, it is always possible to use Theorem 4.4 with η = α ∧ 1/2. If
α ≥ 1/2, then α+ η− 1 ≥ 0 with this choice of η and, in particular, we get a CLT
for all bounded functions in this case. If α < 1/2, then α + η− 1 is negative with
this choice of η and Theorem 4.4 only gives us a CLT for functions g which are
bounded on A and with deviations from their mean bounded by V α+η−1 outside of
A. This is a rather narrow class of functions, which does not include the bounded
functions in general.

That α ≥ 1/2 implies the existence of CLTs for bounded functions also follows
from Theorem 4.3 since in this case EA[τ 2

A]<∞ by (50). More generally, we can
use Theorem 3.4 to derive CLTs in terms of finiteness of moments of return times.

THEOREM 4.5. Suppose P is ψ-irreducible, aperiodic and positive Harris
recurrent. Assume there exist an atom A and an integer m≥ 1 such that Ex[τmA ]<
∞ for all x and

EA[τ 2m
A ]<∞.(56)

Then, for any function g with |g| ≤ Ex[τm−1
A ], the constant σ 2

g in (49) is well

defined and finite. If σ 2
g > 0 the CLT holds for g.

PROOF. By Theorem 3.4 there exist functions W and f equivalent to Ex[τmA ]
and Ex[τm−1

A ], respectively, such that (52) holds, and the conclusion then follows
as in the proof of Theorem 4.4 if we can show that π(Wf ) <∞.

By two applications of Jensen’s inequality,

Ex[τm−1
A ]Ex[τmA ] ≤ Ex[τmA ](m−1)/mEx[τmA ] = Ex[τmA ](2m−1)/m ≤ Ex[τ 2m−1

A ],
and it is thus enough to show that π(Ex[τ 2m−1

A ]) < ∞. However, by assump-
tion (56), Lemma 3.3 and Theorem 10.4.9 of Meyn and Tweedie (1993), we have

∞> EA[τ 2m
A ] ≥ EA

[
τA−1∑
k=0

EXk [τ 2m−1
A ]

]
= π(A)−1π

(
Ex[τ 2m−1

A ]),
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and we are finished. �

5. Examples. In this section we illustrate the applicability of the drift
condition (34) by two examples.

EXAMPLE 5.1. We first consider Example 5.1 of Tuominen and Tweedie
(1994) to show that we get the same rate of convergence using the drift
condition (34) as they do using the system of drift conditions (7).

Let P be the Markov transition kernel for the random walk on [0,∞) given by

Xn+1 = (Xn +Wn+1)
+, n ∈ N0,(57)

where (Wn) is a sequence of i.i.d. real-valued random variables with common
law 9. If E[W ]< 0, then this chain is δ0-irreducible, aperiodic and positive and all
compact sets are petite.

PROPOSITION 5.1. Assume that E[W ] < 0 and that there exists an integer
m≥ 2 such that

E
[
(W+)m

]
<∞.(58)

Then there exist a finite interval C = [0, z0] and constants 0< c, b <∞ such that

PV ≤ V − cV α + b1C,(59)

where V (x)= (x + 1)m and α = (m− 1)/m.
Hence, P is (Vi, ri)-regular, where

Vi(x)= (x + 1)m−i , ri(n)= (n+ 1)i−1, i = 1, . . . ,m.(60)

PROOF. Take x0 > 0 so large that
∫
[−x0,∞) y9(dy) < 0.

For x > x0 we bound PV (x) by considering jumps smaller than −x0 and jumps
larger than −x0 separately,

PV (x)≤ V (x − x0)9
(
(−∞,−x0)

)+ ∫
[−x0,∞)

V (x + y)9(dy).(61)

First, we bound V (x − x0) in terms of V (x) and (V (x))α ,

V (x)− V (x − x0)=
∫ x

x−x0

m(y + 1)m−1 dy ≥ x0m(x − x0 + 1)m−1

= x0m

(
x − x0 + 1

x + 1

)m−1

(x + 1)m−1 ≥ c1(x + 1)m−1,

where c1 = x0m(1/(x0 + 1))m−1.
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To bound the second term in (61), we first note that, for x ≥ 0 and y ≥ 0,

(x + y + 1)m−2 ≤ (x + 1)m−2(y + 1)m−2,(62)

since

log(x + y + 1)− log(x + 1)=
∫ x+1+y
x+1

1

z
dz≤

∫ 1+y
1

1

z
dz= log(y + 1).

For y > 0 we then get

V (x + y)≤ V (x)+m(x + 1)m−1y + 1
2m(m− 1)(x + y + 1)m−2y2

≤ V (x)+m(x + 1)m−1y + 1
2m(m− 1)(x + 1)m−2(y + 1)m,

and for −x0 ≤ y ≤ 0 we get

V (x + y)≤ V (x)+m(x + 1)m−1y + 1
2m(m− 1)(x + 1)m−2x2

0 .

Inserting these bounds on V into (61) and using the assumption
∫
[0,∞)(y + 1)m

9(dy) <∞, we find, for x > x0,

PV (x)≤ V (x)− c2(x + 1)m−1 + c3(x + 1)m−2

for some constants 0< c2, c3 <∞. Hence, there exist a positive constant c and a
real number z0 ≥ x0 such that, for x > z0,

PV (x)≤ V (x)− c(x + 1)m−1.

Finally, since PV (x) and (x + 1)m−1 are bounded on C = [0, z0], there exists a
constant b such that (59) holds. The last assertion follows from Theorem 3.6. �

For comparison, we note that when E[esW ] <∞ for some s > 0 the chain is
geometrically ergodic and there is a solution to the drift equation (40) with test
function V (x)= etx for t < s; see Nummelin and Tuominen (1982) and Tweedie
(1983).

A more sophisticated queueing application is considered in Dai and Meyn
(1995) where polynomial rates of convergence of moments for multiclass queueing
networks are derived using the results of Tuominen and Tweedie (1994). These
results could also be derived by simpler means using the drift condition (34).

EXAMPLE 5.2. The second example is concerned with the MCMC algorithm
known as the independence sampler. This is an algorithm to obtain samples from
a target distribution π known only up to an unknown normalization constant; see
Tierney (1994).

The independence sampler is described as follows. Suppose that π is a
probability measure on E and suppose Q is another probability measure on E
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such that π is absolutely continuous with respect to Q with Radon–Nikodym
derivative

dπ

dQ
(x)= 1

q(x)
(63)

for x ∈ E. Suppose the chain is currently at x. A move is proposed to y drawn
from Q and accepted with probability

α(x, y)= q(x)

q(y)
∧ 1.(64)

If the proposed move is not accepted, the chain remains at x.
Clearly, this algorithm generates a Markov chain X on E, and it can easily be

verified that the chain is ψ-irreducible and has unique stationary measure π ; see,
for example, Roberts and Tweedie (2001). A complete spectral analysis of the n-
step transition probabilities of X is available [see Smith and Tierney (1996)], but
such an analysis is not illuminating when q is not bounded away from 0. This
corresponds to the case where the algorithm fails to be either uniformly or geo-
metrically ergodic. Here we examine this case using the results of previous sec-
tions.

It is now well known [cf. Mengersen and Tweedie (1996)] that if π and Q both
have densities denoted π and q , respectively, w.r.t. some common reference mea-
sure and if there exists β > 0 such that

q(x)

π(x)
≥ β(65)

for all x then the independence sampler is uniformly ergodic, and if (65) does not
hold π -almost surely then the independence sampler is not even geometrically er-
godic. However, using the results of this paper, it is possible to obtain polynomial
rate results when (65) is violated.

First consider the case where π is the uniform distribution on [0,1] and Q has
density q w.r.t. Lebesgue measure on [0,1]. The acceptance probability for accept-
ing a proposed move from state x to state y is given by (64).

For each x define the regions of acceptance and possible rejection by

A(x)= {y :q(y)≤ q(x)}, R(x)= {y :q(y) > q(x)}.
PROPOSITION 5.2. Assume π = U [0,1] and that Q has density q w.r.t.

Lebesgue measure on [0,1] of the form

q(x)= (r + 1)xr(66)

for some r > 0. Then, for each r < s < r + 1, the independence sampler P
satisfies

PV ≤ V − cV α + b1C,(67)

where V (x)= 1/xs , α = 1 − r/s and C is a petite set.
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PROOF. The acceptance and rejection regions are A(x) = [0, x] and R(x) =
(x,1], and all sets of the form [y,1] are petite sets.

PV (x)=
∫ x

0
V (y)q(y) dy +

∫ 1

x
V (y)α(x, y)q(y) dy

+ V (x)

∫ 1

x

(
1 − α(x, y)

)
q(y) dy

=
∫ x

0
(r + 1)yr−s dy +

∫ 1

x

1

ys
(r + 1)xr dy + 1

xs

∫ 1

x
(r + 1)(yr − xr) dy

= (r + 1)
[

1

r − s + 1
yr−s+1

]x
0

+ (r + 1)xr
[

1

−s + 1
y−s+1

]1

x

+ 1

xs
[yr+1]1

x − (r + 1)xr−s(1 − x)

= r + 1

r − s + 1
xr−s+1 + r + 1

−s + 1
xr − r + 1

−s + 1
xr−s+1 + 1

xs
− xr−s+1

− (r + 1)xr−s(1 − x)

= V (x)− (r + 1)V (x)1−r/s(1 − x)+ c1x
r−s+1 + c2x

r.

Now, since r − s + 1 and r are both positive, xr−s+1 and xr tend to 0 as x tends
to 0, while V (x)1−r/s = xr−s tends to ∞ as x tends to 0. Thus (67) is satisfied
with C = [x0,1] for x0 sufficiently small and some constants b and c. �

The choice of s leading to the best rate of convergence is r + 1 − ε which gives
α ≈ 1 − r/(r + 1). Hence, the independence sampler converges in total variation
at a polynomial rate of order 1/r .

This result extends to general independence samplers. First, we note that,
in the notation of Roberts and Rosenthal (2001), the chain q(X) is itself
Markov and is partially de-initializing for X. This implies that we could ap-
ply Corollary 10 of Roberts and Rosenthal (2001) to study total variation con-
vergence of X in terms of that of q(X). Now q(X) is itself an indepen-
dence sampler on R

+ with proposal q(Q) and target distribution q(π). In ad-
dition, a further monotone transformation converts this Markov chain to an
independence sampler on [0,1] with stationary distribution U [0,1], and we
could then apply Proposition 5.2. However, a more direct approach is possi-
ble. For simplicity, we assume that π and Q are equivalent which is no restric-
tion.

THEOREM 5.3. Assume π and Q are equivalent measures on E with Radon–
Nikodym derivative given by (63). If

π(Aε)=O(ε1/r) for ε→ 0(68)
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for some r > 0, where Aε = {x ∈ E :q(x) ≤ ε}, then for each r < s < r + 1 the
independence sampler P satisfies

PV ≤ V − cV α + b1C,(69)

where V (x)= (1/q(x))s/r , α = 1 − r/s and C is a petite set.

PROOF. Note that A(x)= Aq(x) and that all the sets Acε are petite. Let F de-
note the CDF of the distribution of q under π .

PV (x)=
∫
Aq(x)

V (y)q(y)π(dy)+
∫
Acq(x)

V (y)α(x, y)q(y)π(dy)

+ V (x)

∫
Acq(x)

(
1 − α(x, y)

)
q(y)π(dy)

=
∫
Aq(x)

q(y)1−s/rπ(dy)+
∫
Acq(x)

q(x)q(y)−s/rπ(dy)

+ V (x)

∫
Acq(x)

(
q(y)− q(x)

)
π(dy)

(70)
≤
∫
Aq(x)

q(y)1−s/rπ(dy)+
∫
Acq(x)

q(x)q(y)−s/rπ(dy)

− V (x)απ(Acq(x))+ V (x)

=
∫
[0,q(x)]

y1−s/rF (dy)+
∫
(q(x),∞)

q(x)y−s/rF (dy)

− V (x)απ(Acq(x))+ V (x),

where the inequality uses
∫
Acq(x)

q(y)π(dy) = Q(Acq(x)) ≤ 1. From the assump-

tion (68) there exist positive K and y0 such that

F(y)≤Ky1/r for y ≤ y0.

Since Ky1/r is the CDF for the measure with density K1y
1/r−1 w.r.t. Lebesgue

measure and since y1−s/r and y−s/r are decreasing functions, we get, for all
q(x)≤ y0, ∫

[0,q(x)]
y1−s/rF (dy)≤K1

∫
[0,q(x)]

y1−s/ry1/r−1 dy,∫
(q(x),∞)

q(x)y−s/rF (dy)≤K1

∫
(q(x),y0]

q(x)y−s/ry1/r−1 dy

+
∫
(y0,∞)

q(x)y−s/rF (dy).

From this it follows that the two integrals in (70) both tend to 0 as q(x) tends to 0.
Since V (x)α tends to ∞ and π(Acq(x)) tends to 1 as q(x) tends to 0, (69) is satisfied
with C =Acε for ε sufficiently small. �
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APPENDIX

This appendix contains two algebraic lemmas used in the proofs of Lemma 3.3
and Theorem 3.6, respectively.

LEMMA A.1. For any nonnegative exponents m and n, there exists a positive
constant d such that, for any integer T ≥ 1,

dT m+n+1 ≤
T−1∑
k=0

(k + 1)m(T − k)n ≤ T m+n+1.(71)

PROOF. We first prove the lower bound. For T divisible by 3 we can write

T−1∑
k=0

(k+ 1)m(T − k)n ≥
2(T/3)−1∑
k=T/3

(k + 1)m(T − k)n

≥ T

3

(
T

3
+ 1

)m(
T

3
+ 1

)n
≥ dT m+n+1,

with d = 3−(m+n+1). A minor modification of the argument holds for general T
and the left inequality in (71) follows.

The upper bound follows by observing that k+ 1 ≤ T and T − k ≤ T such that

T−1∑
k=0

(k+ 1)m(T − k)n ≤
T−1∑
k=0

T mT n = T m+n+1. �

LEMMA A.2. Suppose a1 < a2 and b1 < b2 and let c = (a2 − a1)/(b2 − b1).
Then, for any k > 0 and h > 0,

kahb ≤ ka1hb2 ∨ ka2hb1(72)

for all pairs a1 ≤ a ≤ a2 and b1 ≤ b≤ b2 satisfying a+ bc= a1 + b2c= a2 + b1c.

PROOF. Consider two cases. Either k ≤ h1/c, in which case

log(kahb)− log(ka1hb2)= log
(
ka(h1/c)bc

)− log
(
ka1(h1/c)b2c

)
= (a − a1) logk + (bc− b2c) logh1/c

≤ (a − a1 + bc− b2c) logh1/c = 0,

or k > h1/c, in which case

log(kahb)− log(ka2hb1)= log
(
ka(h1/c)bc

)− log
(
ka2(h1/c)b1c

)
= (a− a2) logk + (bc− b1c) logh1/c

≤ (a− a2 + bc− b1c) logk = 0. �
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