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We study the distribution of steady-state queue lengths in multiclass
queueing networks under a stable policy. We propose a general method-
ology based on Lyapunov functions for the performance analysis of infi-
nite state Markov chains and apply it specifically to Markovian multiclass
queueing networks. We establish a deeper connection between stability and
performance of such networks by showing that if there exist linear or piece-
wise linear Lyapunov functions that show stability, then these Lyapunov
functions can be used to establish geometric-type lower and upper bounds
on the tail probabilities, and thus bounds on the expectation of the queue
lengths. As an example of our results, for a reentrant line queueing network
with two processing stations operating under a work-conserving policy, we
show that E�L� = O� 1

�1−ρ∗�2 �, where L is the total number of customers

in the system, and ρ∗ is the maximal actual or virtual traffic intensity in
the network. In a Markovian setting, this extends a recent result by Dai
and Vande Vate, which states that a reentrant line queueing network with
two stations is globally stable if ρ∗ < 1. We also present several results on
the performance of multiclass queueing networks operating under general
Markovian and, in particular, priority policies. The results in this paper
are the first that establish explicit geometric-type upper and lower bounds
on tail probabilities of queue lengths for networks of such generality. Pre-
vious results provide numerical bounds and only on the expectation, not
the distribution, of queue lengths.

1. Introduction. Queueing networks are used to model manufacturing,
communication and computer systems, and much recent research has focused
on networks with multiple customer classes. In multiclass queueing networks,
the customers served at the same station have in general different service
requirements and follow different paths through the network. Such networks
are used to model, for example, wafer fabrication facilities, in which there is a
single stream of jobs arriving into a production floor. Jobs follow a determinis-
tic route and revisit the same station multiple times (see Figure 1). Multiclass
queueing networks of this type are called reentrant line queueing networks
(see [17, 9]).
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Fig. 1. Re-entrant line queueing network.

The focus of this paper is performance analysis of multiclass queueing net-
works. Specifically, we are interested in estimating the steady-state queue
lengths in the network, when interarrival and service times are exponentially
distributed, assuming a stable scheduling policy is used, which brings the
system to steady-state.

The performance of queueing networks is largely an open research area.
Some of the earlier and classical results include product form probability dis-
tributions for Jackson and BCMP-type networks (see [13]). It was realized,
however, that the presence of multiple classes does not allow, in general, for a
product form distribution even if the interarrival and service times have expo-
nential distributions and the first-in-first-out policy is used. Several papers
([4, 18, 19, 15]) have analyzed the performance of multiclass queueing net-
works using quadratic Lyapunov functions. A certain linear program is con-
structed, which provides numerical bounds on the achievable performance
region. The performance results obtained using quadratic Lyapunov functions
were later analyzed and extended in a simpler and more intuitive way, using
conservation laws ([3]).

The performance analysis of multiclass queueing networks is highly non-
trivial, since it is at least as hard as the stability problem for which no general
conditions are available. It is known that the natural load condition

ρσ < 1

for each station σ is necessary, but not sufficient, for stability; a variety of
counterexamples have been constructed in [23, 21, 5, 24, 7]. Sufficient condi-
tions for stability have been found using Lyapunov functions [9, 10]. Further-
more, fluid models were found to be a very useful tool for stability analysis.
Dai’s theorem [6] shows that the stability of a fluid model implies stability
of a corresponding stochastic model. A complete characterization of fluid net-
works with two stations which are stable under any work-conserving policy
(“globally stable”) was obtained by Bertsimas, Gamarnik and Tsitsiklis [2]
and subsequently by Dai and Vande Vate [8]. The second work used a very
intuitive notion of virtual stations to explain instability in networks with two
stations. Both works ([2] and [8]) prove that the existence of a piecewise linear
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Lyapunov function is both necessary and sufficient for global stability of fluid
networks with two stations.

1.1. Our results. The goal of this paper is to turn some of the stability
analysis tools into useful performance analysis tools. We will show how linear
and piecewise linear Lyapunov functions and virtual stations can be used to
obtain upper and lower bounds on the steady-state queue lengths. For many
examples considered in this paper, the upper bounds are finite if and only if the
network is stable. Our contributions are summarized as follows. We start in
Section 3 with an analysis of countably infinite Markov chains. We show that
if there exists a Lyapunov function proving the stability of the Markov chain,
then certain computable upper and lower bounds hold on the steady-state
queue length probability distribution as well as on its expectation. We then
apply this methodology, in Sections 4 and 5, to the performance analysis of
multiclass queueing networks with exponentially distributed interarrival and
service times. Specifically:

1. We show how linear and piecewise linear Lyapunov functions can be used
to obtain lower and upper bounds, respectively, on the steady-state queue
lengths. The lower bounds we obtain are explicit, while the upper bounds
are numerical and depend on the solutions of a certain linear program
which generates the Lyapunov function. Such linear programs were intro-
duced in [9] and [10] for the purposes of stability analysis.

2. We use the notion of a virtual station, introduced in [8]. This showed
that in networks with two stations, some priority policies lead to certain
groups V of customer classes, called virtual stations, which cannot be
served simultaneously. As a result, if the corresponding virtual traffic inten-
sity ρ�V� ≡∑

i∈V ρi is bigger than one, then the network is unstable. Here
ρi stands for the naturally defined load factor of class i. We prove a match-
ing performance result: for networks with two stations, if V is a virtual
station, with the corresponding virtual traffic intensity ρ�V�, and if prior-
ity is given to the classes in V over the classes not in V then

P
{
L ≥ 1

2
m

}
≥
(

ρ�V�
2− ρ�V�

)m
	

E�L� ≥ ρ�V�
4�1− ρ�V�� 	

where L is the total number of customers in the network. These lower
bounds are extended to networks with more than two stations.

3. It was also proved in [8] that queueing networks with two stations are
globally stable if the maximum of all actual and virtual traffic intensities,
denoted by ρ∗, is less than 1 for the original network and for a certain set
of subnetworks. Also if ρ∗ > 1, then the corresponding fluid network is not
globally stable. Whether this holds true for stochastic Markovian networks
is not known.
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We show that ρ∗ is a fundamental performance parameter. For reentrant
line networks with two stations, we show that if ρ∗ < 1, then the following
upper bound holds under any work-conserving policy:

E�L� ≤ C

�1− ρ∗�2 	

where C is some constant, expressed explicitly in terms of the parameters
of the network. An important implication of this result is that the perfor-
mance region (the set of vectors of expected queue lengths obtained under
different work-conserving scheduling policies) is bounded if and only if the
corresponding fluid network is globally stable.

Our results show a deeper connection between stability and performance
of multiclass queueing networks. Also the results in this paper are the first
ones that use linear and piecewise linear Lyapunov functions for performance
analysis. Previous methods for performance analysis have used quadratic
Lyapunov functions, which have certain limitations. In particular, an exam-
ple of a globally stable queueing network with two stations was constructed
in [10] for which the quadratic Lyapunov function method leads to an infinite
(inconclusive) upper bound, yet a piecewise linear Lyapunov function gives a
finite upper bound. The methods developed here, on the other hand, match the
sharpest known stability condition ρ∗ < 1. The second limitation of quadratic
Lyapunov functions is that the bounds constructed are in most cases only
numerical and hold only for the expectations of queue lengths. In contrast,
we provide bounds on the distribution of steady-state queue lengths, proving
exponential decay of the tail probabilities.

2. Queueing model and assumptions.

2.1. Multiclass Markovian queueing network. We consider a network con-
sisting of J single server stations, which are denoted by σj	 j = 1	2	 � � � 	 J.
The network includes I types of customers, where customers of type i = 1,
2	 � � � 	 I arrive to the network from an exogenous source. The arrival pro-
cess corresponding to type i is assumed to be an independent Poisson process
with rate λi. Let � = �λ1	 � � � 	 λI� denote the vector of arrival rates and let
λmin = mini�λi
. Without loss of generality, we assume that λmin > 0. Simi-
larly, we define λmax = maxi�λi
. Customers of type i go through Ji stages,
each of which corresponds to a service completion on a particular station. We
denote these stations by σi	1	 σi	2	 � � � 	 σi	Ji . The processing time of a type i
customer at station σi	k	 k = 1	2	 � � � 	 Ji, is assumed to be exponentially dis-
tributed with rate µi	k and is independent from the processing times of all
other stages of this type, from the processing times of the other types and
from the interarrival times. We let � = �µi	k�1≤i≤I	1≤k≤Ji denote the vector of
service rates. Customers of type i receiving service at station σi	k are called
class �i	 k� customers. Let N = ∑I

i=1Ji be the total number of classes. For
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convenience, we will also identify every station σj with the set of classes asso-
ciated with this station. Let Ci	k = j if class �i	 k� customers are served at
station σj. For k ≥ Ji we let Ci	k = 0. Let C denote the corresponding I×Jmax
matrix, where Jmax = maxi Ji. The matrix C defines the topology of the net-
work. We assume that the buffers at each station have infinite capacity and
no customers renege from the queue before receiving service.

A queueing network of the form just described is called a Markovian mul-
ticlass queueing network with deterministic routing or a multitype queueing
network. Throughout the paper we consider only networks of this type. The
parameters �	�	C constitute the primary parameters of the network and we
denote the network by ��	�	C�.

For each class �i	 k�, we let ρi	k = λi/µi	 k be the nominal load of this
class. For each station σj	 j = 1	2	 � � � 	 J, we define the nominal load (traffic
intensity) as

ρσj ≡
∑

�i	 k�∈σj
ρi	k�(1)

The evolution of a queueing network is fully specified only when a schedul-
ing discipline and an initial state is given. The scheduling discipline (policy)
describes which customers (if any) are served at any moment at each sta-
tion. Within each class, the customers are served in first-in-first-out (FIFO)
fashion. Therefore, the service discipline only specifies which customer type is
served at any given moment. We will assume throughout the paper that the
scheduling policies implemented are Markovian, namely, scheduling decisions
are purely a function of the system state, which in our case is the vector of
all queue lengths. We also allow preemption. For example, preemptive prior-
ity policies are Markovian. Many important policies are not Markovian, for
example FIFO or head-of-the-line-processor-sharing. We leave these policies
out from the discussion in this paper, although we believe that the results
hold for them as well. We will be considering mostly work-conserving policies:
each processing station is required to work on some customer, if there are any
present at this station.

Any preemptive policy w satisfying the Markovian assumption can be des-
cribed by a function w� ZN

+ → �0	1
N where for any q ∈ ZN
+ , the �i	 k�

component of the vectorw�q� is 1 if station σj which contains class �i	 k�works
on a customer of class �i	 k�, and is zero, otherwise. Of course, wi	k�q� = 1
only if qi	k > 0, and for each station σj,∑

�i	 k�∈σj
wi	k�q� ≤ 1�(2)

Given a multiclass queueing network ��	�	C� and some scheduling policy,
we let Q�t� = �Qi	k�t��1≤i≤I	1≤k≤Ji denote the vector of queue lengths at time
t. Our focus is on estimating the distribution of the random vector Q�t� in
steady-state. A necessary condition for the existence of a steady-state is the
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load condition

ρσj < 1(3)

for each j = 1	2	 � � � 	 J.

2.2. Embedded Markov chains and uniformization. Instead of analyzing
the continuous time processQ�t�, we will build a discrete time analogue, which
has the same steady-state behavior using the standard method of uniformiza-
tion (see [20]). We rescale the parameters, so that

∑
i λi +

∑
i	 k µi	 k = 1 and

consider a superposition of I +∑I
i=1Ji Poisson processes with rates λi	 µi	 k,

respectively. The arrivals of the first I Poisson processes correspond to external
arrivals into the network. The arrivals of the process with rate µi	k correspond
to service completions of class �i	 k� customers, if a server actually worked on
a class �i	 k� customer, or they correspond to “imaginary” service completions
of an “imaginary” customer, if the server was idle or worked on customers
from other classes. Let τs	 s = 1	2	 � � � be the sequence of event times for this
superposition of Poisson processes. Then, as a result of this construction and
the Markovian policy assumption, Q�τs� is a discrete time Markov chain with
the same steady-state distribution as Q�t� (assuming it exists).

We can specify the transitions of the Markov chainQ�τs� as follows. For each
class �i	 k� let ei	 k be an N-dimensional unit vector with the �i	 k� component
equal to 1 and all other components equal to zero. We adopt the convention
ei	0 = ei	Ji+1 = 0 for each i. The following proposition holds.

Proposition 1. Given a multiclass queueing network ��	�	C� rescaled so
that

∑
i λi+

∑
i	 k µi	 k = 1 and given a Markovian policy w, the transition prob-

abilities of the corresponding embedded Markov chain Q�τs�	 s = 0	1	2	 � � � are
given by

Q�τs+1�=


Q�τs�+ei	1	 with probability λi,
Q�τs�−ei	k+ei	k+1	 with probability µi	kwi	k�Q�τs��,
Q�τs�	 with probability

∑
i	k

µi	k�1−wi	kQ�τs��.
(4)

Proof. Note that the change Q�τs+1� − Q�τs� of the embedded Markov
chain corresponds to either an arrival of a type i customer, or to an “actual”
service completion of a class �i	 k� customer and transition to the next stage
k + 1. The first event has a probability λi and corresponds to a change ei	1.
The second event has probability µi	kwi	k�Q�τs�� and corresponds to a change
ei	 k+1 − ei	 k. ✷

Definition 1. A scheduling policy w is defined to be stable if the corre-
sponding embedded Markov chain Q�τs�	 s = 1	2	 � � � , admits a stationary
probability distribution π = π�w� satisfying∑

i	 k

E�Qi	k�τs�� <∞�(5)
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A queueing network is defined to be globally stable if every work-conserving
Markovian policy is stable.

If a stationary distribution π of Q�τs� exists, then by uniformization and
by aperiodicity of our continuous time Markov chain,

lim
t→∞

P�Q�t� = q
 = Pπ
{
Q�τs� = q

}
�(6)

Thus, for performance analysis purposes, we may concentrate on the embedded
chain Q�τs�.

Throughout the paper we use standard notations O�·�, ��·�, ��·� in the
following sense. If functions f�s�	 g�s� → ∞ when s → s0 for some s0 ∈
�−∞	+∞�, then g = O�f� �g = ��f�� means that for some fixed constant
c > 0, g�s� ≤ cf�s� �g�s� ≥ cf�s�� for sufficiently large s. If both g = O�f�,
f = O�g�, then we will write g = ��f�.

3. Infinite Markov chains and Lyapunov functions. In this section,
we develop a general technique for steady-state analysis of infinite Markov
chains with countably many states using Lyapunov functions.

Let X�t�	 t = 0	1	2	 � � � , be a discrete time, discrete state Markov chain
which takes values in some countable set � . The transitions occur at integer
times t = 0	1	2	 � � � . For any two vector x	x′ ∈ � , let p�x	x′� denote the
transition probabilities

p�x	x′� ≡ P
{
X�t+ 1� = x′�X�t� = x

}
�

If a stationary probability distribution π on the state space� exists, it satisfies∑
x∈�

π�x� = 1	

and for all x ∈ � ,

π�x� = ∑
x′∈�

π�x′�p�x′	x��(7)

The existence of a stationary distribution is usually established by construct-
ing a certain Lyapunov function. For a survey of Lyapunov methods for sta-
bility analysis of Markov chains, see [22]. We now introduce the definitions of
Lyapunov and lower Lyapunov functions. The goal is to use Lyapunov func-
tions for the performance analysis of Markov chains, assuming a priori that
the Markov chain is stable. The notion of a lower Lyapunov function is intro-
duced exclusively as a means of getting the lower bounds on the stationary
distribution of a Markov chain. In subsequent sections, we apply the results
here to the embedded Markov chain of a multiclass queueing network.

Definition 2. A nonnegative function

#� � → �+
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is said to be a Lyapunov function if there exist some γ > 0 and B ≥ 0, such
that for any t = 1	2	 � � � and any x ∈ � , with #�x� > B,

E
[
#�X�t+ 1���X�t� = x

] ≤ #�x� − γ�(8)

Also a nonnegative function

#� � → �+(9)

is said to be a lower Lyapunov function if there exists some γ > 0, such that
for any t = 1	2	 � � � and any x ∈ � , with #�x� > 0,

E
[
#�X�t+ 1���X�t� = x

] ≥ #�x� − γ�

Remarks. (i) We refer to the terms γ and B as drift and exception
parameters, respectively.

(ii) We could also introduce an exception parameter B for the lower
Lyapunov function, but it is not required for the examples in this paper.

We assume that the Markov chain X�t� is positive recurrent, and we denote
by π the corresponding stationary distribution. Namely, π�x� is the steady-
state probability Pπ�X�t� = x
 that the chain is in a certain state x ∈ � .
Also, we denote by Eπ�·� the expectation with respect to the probability distri-
bution π. For a given function #� � → �+, let

νmax ≡ sup
x	x′∈� � p�x	x′�>0

�#�x′� −#�x��(10)

and

νmin ≡ inf
x	x′∈� � p�x	x′�>0	#�x�<#�x′�

�#�x′� −#�x���(11)

Namely, νmax is the largest possible change of the function # during an arbi-
trary transition, and νmin is the smallest possible increase of the function #.
Also let

pmax = sup
x∈�

∑
x′∈� 	#�x�<#�x′�

p�x	x′�(12)

and

pmin = inf
x∈�

∑
x′∈� 	#�x�<#�x′�

p�x	x′��(13)

Namely, pmax and pmin are tight upper and lower bounds on the probabil-
ity that the value of # is increasing during an arbitrary transition. In this
paper, we will be interested in Lyapunov functions with finite νmax, and lower
Lyapunov functions with positive νmin and pmin. We need the following lemma,
the proof of which can be found in Appendix A.
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Lemma 1. Consider a Markov chain X�t� with stationary probability distri-
bution π, and suppose that # is a Lyapunov function with drift γ and exception
parameter B, such that Eπ�#�X�t�� is finite. Then, for any (possibly negative)
c ≥ B− νmax,

Pπ
{
c+ νmax < #�X�t��} ≤ pmaxνmax

pmaxνmax + γ
Pπ
{
c− νmax < #�X�t��}	(14)

where νmax and pmax are defined in (10) and (12), respectively. Also, if # is a
lower Lyapunov function with drift γ, such that Eπ�#�X�t��� is finite, then, for
any c ≥ 0,

Pπ
{
c ≤ #�X�t��} ≥ pminνmin

pminνmin + 2γ
Pπ

{
c− 1

2
νmin ≤ #�X�t��

}
	(15)

where νmin and pmin are defined in (11) and (13), respectively.

This lemma shows how one can obtain a simple recurrence relation on the
tail probabilities Pπ�c < #�X�t��
. We use this recurrence in the proof of the
following result.

Theorem 1. Consider a Markov chain X�t� with a stationary probability
distribution π such that Eπ�#�X�t��� <∞.

(i) If there exists a Lyapunov function # with drift γ > 0, and exception
parameter B ≥ 0, then for any m = 0	1	2	 � � � ,

Pπ
{
#�X�t�� > B+ 2νmaxm

} ≤ (
pmaxνmax

pmaxνmax + γ

)m+1

�(16)

As a result,

Eπ�#�X�t��� ≤ B+ 2pmax�νmax�2
γ

�(17)

(ii) If there exists a lower Lyapunov function # with drift γ > 0, then for
any m = 0	1	2	 � � � ,

Pπ
{
#�X�t�� ≥ �1/2�νminm

} ≥ ( �1/2�pminνmin

�1/2�pminνmin + γ

)m
�(18)

As a result,

Eπ�#�X�t��� ≥
pmin�νmin�2

4γ
�(19)

Remark. The bounds (16), (17) and (18), (19) are meaningful only if νmax <
∞ (the Lyapunov function has uniformly bounded jumps) and νmin	 pmin > 0,
respectively.
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Proof. In order to prove (16), we let c = B− νmax. By applying Lemma 1,
we obtain

Pπ�B < #�X�t��
 ≤ pmaxνmax

pmaxνmax + γ
Pπ
{
B− 2νmax < #�X�t��}

≤ pmaxνmax

pmaxνmax + γ
�

We continue similarly, using c = B + νmax	 c = B + 3νmax	 c = B + 5νmax	 � � � .
By applying again Lemma 1, we obtain the needed upper bound on the tail
distribution.

In order to prove (17), note that

Eπ�#�X�t��� ≤ B·Pπ�#�X�t��≤B
+
∞∑
m=0

�B+2νmax�m+1��

×Pπ
{
B+2νmaxm<#�X�t��≤B+2νmax�m+1�}

= B·Pπ�#�X�t��≤B


+B
∞∑
m=0

Pπ
{
B+2νmaxm<#�X�t��≤B+2νmax�m+1�}

+2νmax

∞∑
m=0

�m+1�Pπ
{
B+2νmaxm<#�X�t��≤B+2νmax�m+1�}�

However,

∞∑
m=0

�m+ 1�Pπ
{
B+ 2νmaxm < #�X�t�� ≤ B+ 2νmax�m+ 1�}

=
∞∑
m=0

Pπ
{
B+ 2νmaxm < #�X�t��}�

Applying the bounds from (16), we obtain

Eπ�#�X�t��� ≤ B+ 2νmax

∞∑
m=0

(
pmaxνmax

pmaxνmax + γ

)m+1

= B+ 2pmax�νmax�2
γ

�

To prove (18), let c = νmin/2	 c = νmin	 c = 3νmin/2	 � � � . Then, by applying
Lemma 1, we obtain

Pπ
{
#�X�t�� ≥ �1/2�νminm

} ≥ ( �1/2�pminνmin

�1/2�pminνmin + γ

)m
Pπ�#�X�t�� ≥ 0


=
( �1/2�pminνmin

�1/2�pminνmin + γ

)m
�
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In order to prove (19), we have

Eπ�#�X�t��� ≥ 1
2

∞∑
m=0

νminmPπ
{�1/2�νminm ≤ #�X�t�� < �1/2�νmin�m+ 1�}

= 1
2νmin

∞∑
m=1

Pπ
{�1/2�νminm ≤ #�X�t��}�

From (18) we obtain

Eπ�#�X�t��� ≥
1
2
νmin

∞∑
m=1

( �1/2�pmin νmin

�1/2�pmin νmin + γ

)m
= pmin�νmin�2

4γ
�

This completes the proof of the theorem. ✷

As mentioned above, the steady-state behavior of Markovian queueing net-
works is equivalent to the steady-state behavior of the embedded Markov
chain. Applying Theorem 1, we can analyze the performance of Markovian
queueing networks by constructing suitable Lyapunov functions. This is the
subject of the following sections.

4. Lower bounds on queue lengths using linear lower Lyapunov
functions. In this section, we use linear lower Lyapunov functions to find
closed form lower bounds on the distribution and expectation of steady-state
queue lengths, which hold when an arbitrary stable Markovian scheduling
policy is implemented.

Given a stable scheduling policy w, let π = π�w� denote the corresponding
stationary distribution (of the queueing network and its embedded Markov
chain). We will show that

Eπ

[∑
i	 k

Qi	k�t�
]
= �

(
J∑
j=1

1
1− ρσj

)
= �

(
1

1− ρ

)
	

where ρσj is the traffic intensity at station σj and ρ = max1≤j≤J�ρσj
. We will
also derive lower bounds on the distribution and expected queue lengths which
hold specifically when priority policies are implemented, by using the notion
of a virtual station. Finally, we will apply these results to some examples.

4.1. Closed form lower bounds for arbitrary work-conserving policies. Recall
that under any Markovian scheduling policy, the transitions of the uniformized
embedded Markov chain are given by Proposition 1. For each station σj, we
now construct a lower Lyapunov function. For any class �i	 k�, let

ρ
σj+
i	 k = ∑

k′ � �i	 k′�∈σj	 k′≥k
ρi	 k′ �(20)
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In words, ρ
σj+
i	 k is the sum of traffic intensities of classes of type i starting from

stage k onward which are processed on station σj. Let

#j�Q� =∑
i	 k

ρ
σj+
i	 k

λi
Qi	k�

Proposition 2. Let w be an arbitrary Markovian policy. Then, #j is a
lower Lyapunov function with drift γj = 1 − ρσj and pmin = ∑

i λi	 νmin ≥
ρσj/λmax.

Proof. Using Proposition 1, we have

E�#j�Q�τs+1���Q�τs�� = #j�Q�τs�� +
I∑
i=1

λi
ρ
σj+
i	1

λi

+ ∑
i	 k

µi	 kwi	k�Q�τs��
(
ρ
σj+
i	 k+1 − ρ

σj+
i	 k

)
/λi�

(21)

Note from (20) that

I∑
i=1

λi
ρ
σj+
i	1

λi
=

I∑
i=1

∑
k′ � �i	 k′�∈σj	k′≥1

ρi	k′ = ρσj�

Observe that for any station σj,∑
�i	 k�∈σj

µi	 kwi	k�Q�τs��
(
ρ
σj+
i	 k+1 − ρ

σj+
i	 k

)
/λi =

∑
�i	 k�∈σj

µi	 kwi	k�Q�τs��
(
−ρi	k
λi

)
= − ∑

�i	 k�∈σj
wi	k�Q�τs�� ≥ −1	

where the last inequality follows from the feasibility constraint (2) for the
policy w. Also note that ρ

σj+
i	 k+1 − ρ

σj+
i	 k = 0 when �i	 k� �∈ σj. Combining with

(21) we obtain

E
[
#j�Q�τs+1���Q�τs�

]−#j�Q�τs�� ≥ ρσj − 1�

This proves that #j is a lower Lyapunov function. We now bound the param-
eters νmin and pmin. From Proposition 1, if a transition of the Markov chain
Q�τs� corresponds to a service completion in the class �i	 k�, then the corre-
sponding change in the value of the Lyapunov function #j is

−ρσj+i	 k /λi + ρ
σj+
i	 k+1/λi	

which by definition is nonpositive. Therefore, the value of the Lyapunov func-
tion can increase only at the arrival times and, as a result, pmin =∑I

i=1 λi. At
an arrival of a type i customer, the value of the Lyapunov function increases
by ρσj/λi. Therefore νmin ≥ ρσj/λmax. ✷
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We now are ready to state the main result of this section.

Theorem 2. Consider a multiclass queueing network ��	�	C� operating
under an arbitrary stable Markovian policy. The following lower bounds hold
on the steady-state number of customers in the network: for each j = 1	2	 � � � 	 J,
and m = 0	1	2	 � � � ,

P

{∑
i	 k

ρ
σj+
i	 k

λi
Qi	k�t� ≥

ρσj
2λmax

m

}
≥
( ρσj
2− ρσj

)m
and

E

[∑
i	 k

ρ
σj+
i	 k

λi
Qi	k�t�

]
≥

ρ2
σj

4λmax�1− ρσj�
�

The result follows by applying Proposition 2 and Theorem 1.

Remarks. (i) The bounds hold whether we have rescaled the parameters
to
∑
i λi +

∑
i	 k µi	 k=1 or not, since ρσj , and the ratio λi/λmax are insensitive

to rescaling.
(ii) The bounds hold whether the policy used is work-conserving or not.

The bounds of Theorem 2 are simplified when the multiclass queueing net-
work has a reentrant line structure, namely, I = 1. In this case, all customers
follow the same route in the network. We denote by Qk�t� the queue length at
the kth stage in the network. The parameters ρi	k	 ρ

σj+
i	 k are denoted simply by

ρk and ρ
σj+
k . The lower bounds on the queue lengths are simplified as follows.

Corollary 1. Given a reentrant line-type queueing network ��	�	C�, ope-
rating under any stable Markovian policy, the following lower bounds hold
on the number of customers in the network in steady-state. For each j = 1,
2	 � � � 	 J, and m = 0	1	2	 � � � ,

P
{∑

k

ρ
σj+
k Qk�t� ≥

ρσj
2
m

}
≥
( ρσj
2− ρσj

)m
and

E
[∑
k

ρ
σj+
k Qk�t�

]
≥

ρ2
σj

4�1− ρσj�
�

4.2. Closed form lower bounds under a priority policy. In this section, we
derive lower bounds on the tail probabilities and the expected number of cus-
tomers in a multiclass queueing network operating under a priority policy wθ

that is described by a permutation θ of the set of classes ��i	 k�
1≤i≤I	1≤k≤Ji .
For two classes �i	 k�	 �i′	 k′� associated with the same station σj, we say
that class �i′	 k′� has a higher priority than class �i	 k� if θ�i′	 k′� < θ�i	 k�.
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A corresponding priority policy wθ can be described as follows: for each state
q ∈ ZN

+ 	wθ�q� is an N-dimensional binary vector whose components satisfy

wθ
i	k�q� = 1

if and only if qi	k > 0 and qi′	 k′ = 0, whenever �i′	 k′� ∈ σj, where j is such
that �i	 k� ∈ σj, and θ�i′	 k′� < θ�i	 k�. In other words, the policy wθ at each
transition epoch τs, selects within each station σj the highest priority class
with a positive number of customers and works on a customer from this class.
We thus assume that wθ is a preemptive resume priority policy. Clearly, pre-
emptive priority policies are Markovian.

The lower bounds to be derived in this section are based on the concept of a
virtual station and virtual traffic intensity introduced in [8], where the virtual
station concept is used for the stability analysis. We will show how virtual
stations characterize the performance of multiclass queueing networks. The
definitions below follow [8] very closely.

Definition 3. A collection of classes e = ��i	 k1�	 �i	 k1 + 1�	 � � � 	 �i	 k2�
,
corresponding to a type-i customer is defined to be an excursion if all these
classes are from some station σj, but classes �i	 k1 − 1� and �i	 k2 + 1� are not
from station σj. This includes the possibility k1 = 1 or k2 = Ji. The classes
�i	 k1�	 � � � 	 �i	 k2 − 1� are called the first classes of the excursion e and class
�i	 k2� is called the last class of the excursion e.

We denote the sequence of all excursions corresponding to type i by ei1,
ei2	 � � � 	 e

i
R.

Definition 4. Given a multiclass queueing network ��	�	C�, suppose
that a collection of stations * ⊂ �σ1	 σ2	 � � � 	 σJ
 with size �*� = K, and
nonempty collections of classes Vj ⊂ σj, j ∈ * are selected. The set of classes
V = ∪j∈*Vj is defined to be a K-virtual (or just a virtual) station if the
following conditions hold:

(i) No classes of the first excursion are in V� ei1 ∩ V = ∅, for each i =
1	2	 � � � 	 I.

(ii) If the last class of some excursion eil is in V, then all the classes of this
excursion are in V, and if a first class of the excursion eil is in V, then every
first class of eil is in V. Thus, a virtual station must have either none of the
classes, all of the classes, or all but the last class of each excursion.

(iii) If a class �i	 k� is the first class of an excursion eil with l �= 1 [that is
σ�i	 k− 1� �= σ�i	 k�], then class �i	 k� ∈ V if and only if �i	 k− 1� �∈ V.

For example, Classes 2, 3 and 5 in the reentrant line network in Figure 2,
constitute a 2-virtual station. The following result was proved in [1] and [14].

Proposition 3. Suppose that a set of classes V = ∪j∈*Vj forms a K-
virtual station for some * ⊂ �1	2	 � � � 	 J
 and that wθ is a stable priority policy
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Fig. 2. Classes 2, 3 and 5 constitute a virtual station in a reentrant line network.

which gives priority to classes in V over classes not in V. Namely, whenever
�i	 k� ∈ V and �i′	 k′� �∈ V	θ�i	 k� < θ�i′	 k′�. Then, the corresponding station-
ary distribution πθ satisfies

Pπθ

{ ∑
�i	 k�∈V

wθ
i	 k�Q�t�� ≤K− 1

}
= 1�

Namely, in steady-state, at most K − 1 of classes in V can receive service
simultaneously.

We see, in particular, that for networks with two stations, if V is a 2-virtual
station for a priority policy wθ, then, in steady-state, only one of the classes of
V can receive service at a time. Thus, V acts as a station sharing its resources
among its classes. This justifies the name virtual station.

Let V = ∪j∈*Vj be a K-virtual station in a multiclass queueing network
with deterministic routing. Similar to Section 4.1, we introduce

ρ�V� ≡ ∑
�i	 k�∈V

ρi	k	(22)

ρV+
i	 k ≡ ∑

�i	 k′�∈V	k′≥k
ρi	 k′	 1 ≤ i ≤ I	1 ≤ k ≤ Ji�(23)

Proposition 4. Suppose wθ is a stable priority policy in a multiclass
queueing network ��	�	C�. Suppose also that the set of classes V = ∪j∈*Vj

forms aK-virtual station, and wθ gives priority to classes in V over classes not
in V. Then, for the corresponding embedded Markov chain Q�τs� the function

#�Q� =∑
i	 k

ρV+
i	 k

λi
Qi	k
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is a lower Lyapunov function with drift K− 1−ρ�V�	 pmin =∑
i λi and νmin ≥

ρ�V�/λmax.

Proof. From Proposition 1 in Section 2, we have

E�#�Q�τs+1���Q�τs�� −#�Q�τs��

=
I∑
i=1

λi
ρV+
i	1

λi
+∑

i	 k

µi	 kw
θ
i	 k�Q�τs��

1
λi

(
ρV+
i	 k+1 − ρV+

i	 k

)
	

where we assume that ρV+
i	Ji+1 = 0. Note that

ρV+
i	 k+1 − ρV+

i	 k =
{−ρi	k	 if �i	 k� ∈ V,
0	 if �i	 k� �∈ V.

Therefore,

E�#�Q�τs+1���Q�τs�� −#�Q�τs�� =
∑
i

ρV+
i	1 − ∑

�i	 k�∈V
wθ
i	 k�Q�τs���

From Proposition 3 and from
∑
i ρ

V+
i	1 = ρ�V� we obtain that the drift is γ =

K − 1 − ρ�V�. We obtain the expressions for pmin and νmin as in the proof of
Proposition 2. ✷

A corollary of this result is the transience (instability) of a priority policy
wθ if for some virtual station V, we have ρ�V� > K−1. This instability result
was proven in [1] and [14] under more general assumptions, interarrival and
service times have a general (as opposed to exponential) distribution. We now
derive a matching performance result, when ρ�V� < K − 1. The following
theorem is the main result of this section.

Theorem 3. Suppose we are given amulticlass queueing network ��	�	C�,
and a set of classes V that forms aK-virtual station. If a stable priority policy
wθ gives priority to classes in V over the classes outside V, then the following
lower bounds hold on the steady-state distribution and expectation of the num-
ber of customers in the network. For each j = 1	2	 � � � 	 J, and m = 0	1	2	 � � � ,

P

{∑
i	 k

ρV+
i	 k

λi
Qi	k�t� ≥

ρ�V�
2λmax

m

}
≥
(

ρ�V�
2�K− 1� − ρ�V�

)m
and

E

[∑
i	 k

ρV+
i	 k

λi
Qi	k�t�

]
≥ ρ2�V�

4λmax�K− 1− ρ�V�� �

The proof is similar to the one of Theorem 2.
The lower bounds of Theorem 3 are also simplified when the network is

reentrant line-type.
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Fig. 3. Lu–Kumar network.

Corollary 2. Suppose that ��	�	C� is a reentrant line-type queueing net-
work and that a set of classesV is aK-virtual station. If a stable priority policy
wθ gives priority to classes inV over classes outsideV, then the following lower
bound holds on the number of customers in the network in steady-state. For
each m = 0	1	2	 � � � ,

P
{∑

k

ρV+
k Qk�t� ≥

ρ�V�
2

m

}
≥
(

ρ�V�
2�K− 1� − ρ�V�

)m
and

E
[∑
k

ρV+
k Qk�t�

]
≥ ρ2�V�

4�K− 1− ρ�V�� �

4.3. Examples. In this section, we demonstrate the usage of the techniques
developed in the previous sections on two specific networks.

The Lu–Kumar network. Consider the network in Figure 3. This reentrant
line network is described by the following parameters:

�′ = �λ	0	0	0�′	 �′ = �µ1	 µ2	 µ3	 µ4�′	
ρi = λ/µi	 i = 1	2	3	4	 ρσ1

= ρ1 + ρ4	 ρσ2
= ρ2 + ρ3�

We have ρσ1+
1 = ρ1 + ρ4 and ρσ1+

i = ρ4 for i = 2	3	4. Similarly, ρσ2+
i = ρ2 + ρ3

for i = 1	2	 ρσ2+
3 = ρ3 and ρσ2+

4 = 0.

Proposition 5. In the Lu–Kumar network of Figure 3, the following lower
bounds on a stationary probability distribution π hold, under any stable
scheduling policy:

Pπ

{
2
�ρ1 + ρ4�Q1�t� + ρ4Q2�t� + ρ4Q3�t� + ρ4Q4�t�

ρ1 + ρ4
≥m

}
≥
(

ρ1 + ρ4

2− ρ1 − ρ4

)m
	

Pπ

{
2
�ρ2 + ρ3�Q1�t� + �ρ2 + ρ3�Q2�t� + ρ3Q3�t�

ρ2 + ρ3
≥m

}
≥
(

ρ2 + ρ3

2− ρ3 − ρ2

)m
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for all m = 0	1	2	 � � � . Also

Eπ

[�ρ1 + ρ4�Q1�t� + ρ4Q2�t� + ρ4Q3�t� + ρ4Q4�t�
] ≥ 1

4
�ρ1 + ρ4�2

�1− ρ1 − ρ4�
	

Eπ

[�ρ2 + ρ3�Q1�t� + �ρ2 + ρ3�Q2�t� + ρ3Q3�t�
] ≥ 1

4
�ρ2 + ρ3�2

�1− ρ2 − ρ3�
�

If, in addition, the network operates under priority policy wθ with priority rule
θ�4� < θ�1�	 θ�2� < θ�3�, then

Pπθ

{
2
�ρ2 + ρ4�Q1�t� + �ρ2 + ρ4�Q2�t� + ρ4Q3�t� + ρ4Q4�t�

ρ2 + ρ4
≥m

}
≥
(

ρ2 + ρ4

2− ρ2 − ρ4

)m
	

for all m = 0	1	2	 � � � , and

Eπθ

[�ρ2 + ρ4�Q1�t� + �ρ2 + ρ4�Q2�t� + ρ4Q3�t� + ρ4Q4�t�
]

≥ 1
4

�ρ2 + ρ4�2
�1− ρ2 − ρ4�

�
(24)

The first part of the proposition is obtained by applying Corollary 1 to
stations σ1 and σ2, the second part is obtained by applying Corollary 2 to
the virtual station V = �2	4
.

A 3-station, 6-class reentrant line. Consider the reentrant line queueing
network with six classes and three stations described in Figure 1. This network
was considered in [7], where the authors introduce the priority rule θ with
θ�4� < θ�1�	 θ�2� < θ�5�	 θ�6� < θ�3�	 and show that the set V = �2	4	6

forms a 3-virtual station. Applying Corollary 2 we obtain the following result.

Proposition 6. Consider the network in Figure 1, under the priority rule
θ�4� < θ�1�	 θ�2� < θ�5�	 θ�6� < θ�3�. Suppose in addition that the policy is
stable. Then, for the corresponding stationary probability distribution πθ,

Pπθ

{
2
�ρ2 + ρ4 + ρ6�Q1�t� + �ρ2 + ρ4 + ρ6�Q2�t� + �ρ4 + ρ6�Q3�t�

ρ2 + ρ4 + ρ6

+2
�ρ4 + ρ6�Q4�t� + ρ6Q5�t� + ρ6Q6�t�

ρ2 + ρ4 + ρ6
≥m

}
≥
(

ρ2 + ρ4 + ρ6

4− ρ2 − ρ4 − ρ6

)m
	

for each m = 0	1	2	 � � � .
Also,

Eπθ

[�ρ2 + ρ4 + ρ6�Q1�t� + �ρ2 + ρ4 + ρ6�Q2�t� + �ρ4 + ρ6�Q3�t�

+ �ρ4 + ρ6�Q4�t� + ρ6Q5�t� + ρ6Q6�t�
] ≥ 1

4
�ρ2 + ρ4 + ρ6�2
2− ρ2 − ρ4 − ρ6

�
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Observe that the lower bound on the expected number of customers in the
network above has a singularity at ρ2 + ρ4 + ρ6 = 2. This describes a heavy-
traffic behavior not observed before in the literature.

5. Upper bounds on queue lengths using piecewise linear Lyapunov
functions. The main focus of this section is in deriving upper bounds on the
steady-state queue lengths in multiclass queueing networks by means of a
piecewise linear Lyapunov function. Given that a certain linear program has a
feasible solution, we construct a Lyapunov function for the embedded Markov
chain Q�τs� of the queueing network. In this way we obtain finite bounds on
the tail distribution and the expectation of the queue lengths in the network,
operating under any Markovian work-conserving policy.

5.1. Arbitrary work-conserving policies. Consider a multiclass Markovian
queueing network ��	�	C�. Down and Meyn [10] (concentrating only on reen-
trant line case I = 1) showed that if the following linear program has a feasi-
ble solution with strictly positive γ, then any work-conserving policy is stable
(global stability):

GLP�dm�� Lj
i	1λi+Lj

i	k+1µi	k−Lj
i	kµi	k+Vj ≤ −γ	 �i	k�∈σj	1≤j≤J	(25)

L
j
i	k+1µi	k−Lj

i	kµi	k ≤ Vj	 �i	k� �∈σj	(26)

1
J−1

∑
j′ �=j

L
j′

i	k ≥ L
j
i	k	 �i	k� /∈σj	(27)

L
j
i	k	Vj	 ≥ 0�(28)

Specifically, using the technique of [12], Down and Meyn [10] proved that if
GLP[dm] has a feasible solution with positive γ, then a random perturbation
of the following piecewise linear function:

#�x� ≡ max
1≤j≤J

�L′
jx
	(29)

where Lj = �Lj
i	k�, is a Lyapunov function with drift ≈ γ and some (unknown,

but finite) exception parameter B. For networks with two stations the linear
program GLP[dm] takes the following form (we denote it by LP[dm]):

L1
i	1λi +L1

i	 k+1µi	k −L1
i	 kµi	 k +V ≤ −γ	 �i	 k� ∈ σ1	(30)

L1
i	 k+1µi	k −L1

i	 kµi	 k ≤ V	 �i	 k� ∈ σ2	(31)

L2
i	1λi +L2

i	 k+1µi	k −L2
i	 kµi	 k +W ≤ −γ	 �i	 k� ∈ σ2	(32)

L2
i	 k+1µi	k −L2

i	µi	 k ≤W	 �i	 k� ∈ σ1	(33)

L1
i	 k ≥ L2

i	 k	 �i	 k� ∈ σ1	(34)

L1
i	 k ≤ L2

i	 k	 �i	 k� ∈ σ2	(35)

L	V	W	γ ≥ 0�(36)
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The piecewise linear function (29) is very “close” to being a Lyapunov func-
tion of the embedded Markov chain Q�τs�. It satisfies the drift condition (8)
for all x ∈ ZN

+ , except near the intersections of hyperplanes, namely, near the
sets �x ∈ ZN

+ � L′
ix = L′

jx	 i	 j = 1	2	 � � � 	 J	 i �= j
. The “smoothing” random
perturbation used by Down and Meyn solves this technical difficulty. We now
use the same smoothing operation as in [10] but, unlike [10], our derivation
is explicit and a closed form estimate of the exception parameter B will be
given. In fact, we reestablish the results obtained in [10]. Again we rescale
time so that

I∑
i=1

λi +
∑
i	 k

µi	 k = 1�

Let L1	L2	 � � � 	LJ	 γ be any feasible solution of GLP[dm] with γ > 0. Let

Lmax ≡ max
i	 k	 j

{
L
j
i	k

}
�

For all j = 1	2	 � � � 	 J, we let

Oj =
{
z = �z1	1	 z1	2	 � � � 	 zI	JI� ∈ �N

+ �

zi	 k ∈
[
L
j
i	k +

J− 1
2J

γ	L
j
i	 k +

1
2
γ

]
	 for �i	 k� ∈ σj	

zi	 k ∈
[
L
j
i	k	L

j
i	 k +

1
2J

γ

]
	 for �i	 k� �∈ σj

}
�

(37)

Consider the uniform probability density function pj�z� on the setOj. We will
denote by Zj a random variable with distribution pj�z� and denote by zj a
sample point from the set Oj.

For any �z1	 z2	 � � � 	 zJ� ∈ O1 × · · · ×OJ and any x ∈ ZN
+ let

#0�z1	 z2	 � � � 	 zJ	x� = max
1≤j≤J

�z′jx
(38)

and let

#s�x� = Eu

[
#0�Z1	Z2	 � � � 	ZJ	x�

]
=
∫
#0�z1	 z2	 � � � 	 zJ	x�p1�z1� · · ·pJ�zJ�dz1 dz2 · · · dzJ�(39)

We use a subscript u to emphasize the uniform distribution u. We next
show that the modified function #s is a Lyapunov function.

Proposition 7. Let L1	L2	 � � � 	LJ	 γ be any feasible solution of GLP[dm]
with γ > 0. Then for anyMarkovian work-conserving policyw	#s is a Lyapunov
function of the embedded Markov chain Q�τs� with drift equal to 1

4γ and excep-
tion parameter

B = 16NJ2�J− 1��Lmax + γ�3
γ2

�

Also νmax ≤ Lmax + �1/2�γ.
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For the proof, see Appendix B.
We now apply Theorem 1 to obtain the following result.

Theorem 4. Given a multiclass queueing network ��	�	C�, with param-
eters rescaled so that

∑I
i=1 λi +

∑
i	 k µi	 k = 1, suppose that the corresponding

linear program GLP[dm] has a feasible solution L1, L2	 � � � , LJ	 γ with posi-
tive γ. Then the following upper bound holds on the stationary distribution π
corresponding to any stable work-conserving Markovian policy w:

Pπ

{ L′
jQ�t� −B

2�Lmax + �1/2�γ� ≥m

}
≤
(
Lmax + �1/2�γ
Lmax + �3/4�γ

)m
	

for all m = 0	1	2	 � � � , and all j = 1	2	 � � � 	 J, where

Lmax = max
1≤j≤J	1≤i≤I	1≤k≤Ji

{
L
j
i	k

}
and

B = 16NJ2�J− 1��Lmax + γ�3
γ2

�

Also

Eπ�L′
jQ�t�� ≤ 16NJ2�J− 1��Lmax + γ�3

γ2
+ 8�Lmax + �1/2�γ�2

γ
	

for all j = 1	2	 � � � 	 J.

Proof. The bounds are a direct corollary of Proposition 7, Theorem 1,
equation (38) and the fact

#0�z1	 z2	 � � � 	 zJ	x� ≥ z′jx ≥ L′
jx	

for all zj ∈ Oj	j = 1	2	 � � � 	 J. We also use pmax ≤ 1. ✷

Remark. It is known (see [2, 8]) that a fluid network with two stations is
globally stable if and only if the linear program LP[dm] has a feasible solution
with positive γ. Therefore, for networks with two stations, the bounds are finite
if and only if the corresponding fluid network is globally stable.

5.2. Upper bounds for networks with two stations. In this section, we pro-
vide explicit performance bounds for queueing networks with two stations. We
will consider only reentrant line queueing networks. The reference to the type
i is thus omitted. The Poisson arrival rate is denoted by λ. An explicit and
tight characterization of global stability of fluid networks with two stations is
given in [8]. Specifically, it is proved that a fluid queueing network with two
stations is globally stable if and only if the maximal of all the real and virtual
traffic intensities ρ∗ (to be defined below) is smaller than 1. From this result
and Dai’s theorem [6] connecting fluid and stochastic stability, the condition
ρ∗ < 1 is also sufficient for global stability of the stochastic network (with arbi-
trary and not necessarily exponential service distribution). In this section, we
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derive a matching performance result: whenever ρ∗ < 1, we construct a finite
upper bound on the tail probabilities and the expectation of queue lengths in
the network. We show that ρ∗ is a fundamental performance parameter of the
network. In particular, we prove that under any work-conserving policy w, the
corresponding stationary distribution π satisfies

Eπ

[
N∑
i=1

Qi�t�
]
= O

(
1

�1− ρ∗�2
)
�

Following [8], we introduce the definitions of separating sets and recall the
definition of a 2-virtual station (Definition 4 with K = 2). In this section,
we will refer to a 2-virtual station as a virtual station as we only consider
networks with only two stations. Recall that a set of classes �k1	 � � � 	 k2
 is
defined to be an excursion if all of these classes belong to some station σj	 j =
1	2, but classes k1−1	 k2+1 are not from station σj. Let e1	 e2	 � � � 	 eR denote
the set of all excursions. We assume without loss of generality that e1 ⊂ σ1.
For each excursion er = �k1	 � � � 	 k2
, the class k2 is called the last class of
excursion er and is denoted by l�er�. The classes k1	 � � � 	 k2 − 1 are called the
first classes of the excursion er and are denoted by f�er�.

Definition 5. A set of excursions S is defined to be a separating set if
it contains no consecutive excursions. Namely, er ∈ S implies er−1	 er+1 /∈ S.
We have assumed that the first excursion e1 belongs to the first station; that
is, e1 ⊂ σ1. A separating set S is defined to be strictly separating if it does
not contain e1. Two separating sets consisting only of excursions in σ1 or of
excursions in σ2 are called trivial separating sets.

Each separating set of excursions induces a collection V�S� consisting of
the classes in excursions in S together with the first classes of excursions
(other than e1) whose immediate predecessor is not in S. Thus,

V�S� =
( ⋃
er∈S

er

)
∪
( ⋃
er /∈S

f�er+1�
)
�

If S is in addition strictly separating, we refer to V�S� as a virtual station.
It is not hard to see that if S is a strictly separating set then V�S� is a

virtual station as defined by Definition 4.
We now introduce some additional notations. Let S be a separating set and

let us choose an excursion er. Denote

ρ�V�S�	 σ1� ≡
∑

k∈σ1∩V�S�
ρk	

ρ�V�S�	 er	 σ1� ≡
∑

k∈σ1∩V�S�	 k>l�er�
ρk	

ρ�er	 σ1� ≡
∑

k∈σ1	 k<l�er�
ρk�

(40)
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Similarly, we introduce ρ�V�S�	 σ2�	 ρ�V�S�	 er	 σ2� and ρ�er	 σ2�.
Let ρ∗ denote the maximal actual or virtual traffic intensity:

ρ∗ ≡ max
{
max
S	 er

�ρ�V�S�	 er�
	 ρσ1
	 ρσ2

}
	(41)

where

ρ�V�S�	er�=ρ�V�S�	er	σ1��1−ρ�er	σ2��+ρ�V�S�	er	σ2�
×�1−ρ�er	σ1��+ρ�er	σ1�+ρ�er	σ2�−ρ�er	σ1�ρ�er	σ2��

(42)

Dai and Vande Vate [8] proved that if ρ∗ < 1, then a two-station queueing
network is stable under all work-conserving policies (globally stable). Also, if
there exists a virtual station V�S� such that ρ�V�S�� > 1 then there exists
an unstable priority policy.

Our goal in this section is to derive closed form upper bounds on the steady-
state number of customers in the network, in terms of the parameter ρ∗. An
outline of our approach is as follows. We consider a certain modification of
the linear program LP[dm] from Section 5.1. We use the results in [8] to
show that if ρ∗ < 1, then this modified linear program has a feasible solution
with positive γ and the result of Theorem 4 becomes applicable. In addition,
by analyzing the linear program we obtain explicit bounds on the solution
variables and specifically on the drift γ. The latter allows us to obtain the
explicit dependence of the drift on the maximal traffic intensity ρ∗.

We consider now the following linear program considered in [8] (Equations
(4.11)–(4.15), (5.1), (5.2) in [8]):

λ
∑
i∈σj

xi − µkxk + λε ≤ 0	 k ∈ σj	 j = 1	2	(43)

∑
i∈σ1	 i>l�e�

xi −
∑

i∈σ2	 i≥l�e�
xi ≤ 0 for any excursion e ⊂ σ2	(44)

∑
i∈σ2	 i>l�e�

xi −
∑

i∈σ1	 i≥l�e�
xi ≤ 0 for any excursion e ⊂ σ1	(45)

∑
k∈σ1

xk + ε = 1	(46)

∑
k∈σ2

xk + ε = β	(47)

x	 ε ≥ 0�(48)

We denote this linear program by LP[dv]. Note that β could be treated as
a variable in the linear program above. But instead, as in [8], we will treat it
as a parameter. Note also that constraints (43), (46), (47) and (48) of LP[dv]
imply

xk ≥ ρk	 k ∈ σ1	(49)

xk ≥ βρk	 k ∈ σ2�(50)
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We now show that if LP[dv] has a feasible solution with positive ε, then LP[dm]
also has a feasible solution with positive γ.

Proposition 8. Let x	 ε be a feasible solution to LP[dv]. Let also

L1
k = ∑

k′∈σ1	 k
′≥k
xk′	 L2

k = ∑
k′∈σ2	 k

′≥k
xk′	

Lj = (
L
j
1	 � � � 	L

j
N

)
	 j = 1	2	 γ = λε�

(51)

Then L1, L2, γ, V = 0, W = 0 is a feasible solution to LP[dm]. In particular, if

ε is positive then γ is also positive. This solution satisfies L
j
k ≥ L

j
k′ whenever

k′ ≥ k.

For the proof, see Appendix B.
The connection between the linear program LP[dv] and ρ∗ < 1 is established

in [8] by using network flow techniques. Specifically, Section 5 of [8] shows that
if there exists a β such that

1− ρ�V�S�	 σ1�
ρ�V�S�	 σ2�

> β >
ρ�V�S′�	 σ1�

1− ρ�V�S′�	 σ2�
(52)

for every nontrivial strictly separating set S′, and every nontrivial separating
set S, then there exists a feasible solution ε = ε�β� > 0 to the linear program
LP[dv] with

ε�β� ≡ min
{
1− ρσ1

	1− ρσ2
	 β�1− ρ�V�S′�	 σ2�� − ρ�V�S′�	 σ1�	

�1− ρ�V�S�	 σ1�� − βρ�V�S�	 σ2�
}(53)

(the minimum is over all strictly separating sets S′ and all separating sets S).
In the next lemma, which is a slight modification of the argument in Section

6 of [8], we establish the connection between the linear program LP[dv] and
the condition ρ∗ < 1.

Lemma 2. Suppose ρ∗ < 1. Then, there exists a β and a feasible solution
x	 ε of LP[dv] such that ε ≥ 1− ρ∗.

For the proof, see Appendix B.
We now have all the necessary tools to state and prove the main result of

this section.

Theorem 5. We consider a reentrant line queueing network with two sta-
tions σ1	 σ2, arrival rate λ and service rates µ1	 µ2	 � � � 	 µN. Class 1 is assumed
to belong to station σ1. If ρ

∗ < 1, then the following upper bounds hold on the
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steady-state number of customers in the network:

P

{
N∑
i=1

ρ
σ1+
i Qi�t� −B ≥m

1+ ρ∗ + 2ρ∗
∑N
i=1 ρ

−1
i

1+∑N
i=1 ρ

−1
i

}

≤
( 1

2 + 1
2ρ

∗ + ρ∗
∑N
i=1 ρ

−1
i

3
4 + 1

4ρ
∗ + ρ∗

∑N
i=1 ρ

−1
i

)m(54)

and

P

{
N∑
i=1

ρ
σ1+
l�e2�+1ρ

σ2+
i Qi�t� −B ≥m

1+ ρ∗ + 2ρ∗
∑N
i=1 ρ

−1
i

1+∑n
i=1 ρ

−1
i

}

≤
( 1

2 + 1
2ρ

∗ + ρ∗
∑N
i=1 ρ

−1
i

3
4 + 1

4ρ
∗ + ρ∗

∑N
i=1 ρ

−1
i

)m(55)

for all m = 0	1	2	 � � � , where

B = 64N�ρ∗∑N
i=1 ρ

−1
i �3

�1+∑N
i=1 ρ

−1
i ��1− ρ∗�2 �

Also

E

[
N∑
i=1

ρ
σ1+
i Qi�t�

]
≤ 64N�ρ∗∑N

i=1ρ
−1
i �3

�1+∑N
i=1ρ

−1
i ��1−ρ∗�2 +

2�1+ρ∗+2ρ∗
∑N
i=1ρ

−1
i �2

�1+∑N
i=1ρ

−1
i ��1−ρ∗�(56)

and

E

[
N∑
i=1

ρ
σ1+
l�e2�+1ρ

σ1+
i Qi�t�

]
≤ 64N�ρ∗∑N

i=1 ρ
−1
i �3

�1+∑N
i=1 ρ

−1
i ��1− ρ∗�2

+ 2�1+ ρ∗ + 2ρ∗
∑N
i=1 ρ

−1
i �2

�1+∑N
i=1 ρ

−1
i ��1− ρ∗� �

(57)

In particular,

E

[
N∑
i=1

Qi�t�
]
= O

(
1

�1− ρ∗�2
)
�(58)

Remarks. (i) The bounds are asymmetric with respect to the order of
the stations. If class 1 belongs to Station σ2, the corresponding bounds are
obtained trivially by exchanging σ1 and σ2.

(ii) The condition ρ∗ < 1 guarantees that

1
2 + 1

2ρ
∗ + ρ∗

∑N
i=1 ρ

−1
i

3
4 + 1

4ρ
∗ + ρ∗

∑N
i=1 ρ

−1
i

< 1�

As a result, the bounds of the theorem are nontrivial and, in particular, are
of the geometric type.
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For the proof of Theorem 5, see Appendix B.

6. Extensions and examples. We apply the results obtained in the pre-
vious section to several specific examples.

Feedforward networks. We start with a definition.

Definition 6. A multiclass queueing network ��	�	C� is defined to be
feedforward (acyclic) if �i	 k� ∈ σj1

	 �i	 k + 1� ∈ σj2
implies j1 ≤ j2. In words,

customers visit the stations in nondecreasing order.

The stability of feedforward networks under the usual load conditions
ρσj < 1 was proved in [6] and [11]. Since the stability conditions for feed-
forward networks are given explicitly as ρσj < 1, then it is natural to expect
that performance bounds can be constructed, which are finite whenever the
load condition ρσj < 1 holds. In the next theorem we will show that this is the
case.

Theorem 6. Consider a feedforwardmulticlass queueing network ��	�	C�
operating under an arbitrary work-conserving policy π. Let ρmin = mini	 k ρi	 k,

ρ∗ = maxj ρσj , and let ρ
σj+
i	 k be defined by (20). The following upper bounds

hold on the steady-state number of customers in the network:

P
{ �L′

jQ�t� −B

2�ρ∗ + �1/2�λ̄min�1− ρ∗�� ≥m

}
≤
(
ρ∗ + �1/2�λ̄min�1− ρ∗�
ρ∗ + �3/4�λ̄min�1− ρ∗�

)m
	

for all m = 0	1	2	 � � � , and all j = 1	2	 � � � 	 J, where

�Lj
i	k =

(
ρmin

�J− 1�ρ∗
)j−1

ρ
σj+
i	 k 	

�Lj = ��Lj
i	k�i	 k	

λ̄min =
(

ρmin

�J− 1�ρ∗
)J−1

λmin	

(59)

B = 16NJ2�J− 1��ρ∗ + λ̄min�1− ρ∗��3
λ̄2
min�1− ρ∗�2 �(60)

Also,

E��L′
jQ�t�� ≤ 16NJ2�J− 1��ρ∗ + λ̄min�1− ρ∗��3

λ̄2
min�1− ρ∗�2 + 8�ρ∗ + λ̄min�1− ρ∗��2

λ̄min�1− ρ∗� 	

for all j = 1	2	 � � � 	 J. In particular,

E

[
N∑
i=1

Qi�t�
]
= O

(
1

�1− ρ∗�2
)
�

For the proof, see Appendix B.
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Remark. The bound

E

[
N∑
i=1

Qi�t�
]
= O

(
1

�1− ρ∗�2
)
	

is an improvement on the bound

E

[
N∑
i=1

Qi�t�
]
= O

(
1

�1− ρ∗�J0

)
	

obtained in [15] using quadratic Lyapunov functions. Here J0 denotes the
number of stations with traffic intensity equal to ρ∗ (the number of bottleneck
stations). Note that it is possible to have J0 = J.

The Lu–Kumar network. Consider the network in Figure 3. The network
is described by the following parameters:

�′ = �λ	0	0	0�′	 �′ = �µ1	 µ2	 µ3	 µ4�′	
ρi = λ/µi	 i = 1	2	3	4	 ρσ1

= ρ1 + ρ4	 ρσ2
= ρ2 + ρ3�

We have ρσ1+
1 = ρ1 + ρ4 and ρσ1+

i = ρ4 for i = 2	3	4.
The set of excursions in this network is given as e1 = �1
	 e2 = �2	3
,

e3 = �4
. Then ρ
σ1+
l�e2�+1 = ρ4. The only two nontrivial separating sets in this

network consist of the single excursions e1 = �1
 and e3 = �4
. The separating
set e1 with its set of classes V��e1
� = �1
 has ρ�V�S�	 ek� = 0 for all k =
1	2	3. For the separating set e3, with its set of classes V��e3
� = �2	4
, we
have

ρ�V��e3
�	 e1� = ρ2 + ρ4	 ρ�V��e3
�	 e2� = ρ1 + ρ4�

However, the second term is equal to ρσ2
< 1. We conclude that

ρ∗ = max�ρ2 + ρ4	 ρσ1
	 ρσ2


�
Assume now, in addition, that ρ2 ≥ ρ3 and ρ4 ≥ ρ1. Then ρ∗ = ρ2+ρ4. Applying
now Theorem 5, we obtain the following result.

Proposition 9. In a Lu–Kumar network satisfying ρ2 ≥ ρ3	 ρ4 ≥ ρ1 and
ρ2 +ρ4 < 1, the following upper bounds hold for any work-conserving policy w
and the corresponding stationary probability distribution π:

Pπ

{
�ρ1 + ρ4�Q1�t� + ρ4Q2�t� + ρ4Q3�t� + ρ4Q4�t� −B

≥m
1+ ρ2 + ρ4 + 2�ρ2 + ρ4�

∑4
i=1 ρ

−1
i

1+∑4
i=1 ρ

−1
i

}

≤
( 1

2 + 1
2�ρ2 + ρ4� + �ρ2 + ρ4�

∑4
i=1 ρ

−1
i

3
4 + 1

4�ρ2 + ρ4� + �ρ2 + ρ4�
∑4
i=1 ρ

−1
i

)m
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and

Pπ

{
ρ4�ρ2 + ρ3�Q1�t� + ρ4�ρ2 + ρ3�Q2�t� + ρ4ρ3Q3�t� −B

≥m
1+ ρ2 + ρ4 + �ρ2 + ρ4�

∑4
i=1 ρ

−1
i

1+∑4
i=1 ρ

−1
i

}

≤
( 1

2 + 1
2�ρ2 + ρ4� + �ρ2 + ρ4�

∑4
i=1 ρ

−1
i

3
4 + 1

4�ρ2 + ρ4� + �ρ2 + ρ4�
∑4
i=1 ρ

−1
i

)m
	

for all m = 0	1	2	 � � � , where

B = 256�ρ2 + ρ4�3�
∑4
i=1 ρ

−1
i �3

�1+∑4
i=1 ρ

−1
i ��1− ρ2 − ρ4�2

�

Also,

Eπ

[�ρ1 + ρ4�Q1�t� + ρ4Q2�t� + ρ4Q3�t� + ρ4Q4�t�
]

≤ 256�ρ2 + ρ4�3�
∑4
i=1 ρ

−1
i �3

�1+∑4
i=1 ρ

−1
i ��1− ρ2 − ρ4�2

+ 2�1+ ρ2 + ρ4 + 2�ρ2 + ρ4�
∑4
i=1 ρ

−1
i �2

�1+∑4
i=1 ρ

−1
i ��1− ρ2 − ρ4�

and

Eπ

[
ρ4�ρ2 + ρ3�Q1�t� + ρ4�ρ2 + ρ3�Q2�t� + ρ4ρ3Q3�t�

]
≤ 256�ρ2 + ρ4�3�

∑4
i=1 ρ

−1
i �3

�1+∑4
i=1 ρ

−1
i ��1− ρ2 − ρ4�2

+ 2�1+ ρ2 + ρ4 + 2�ρ2 + ρ4�
∑4
i=1 ρ

−1
i �2

�1+∑4
i=1 ρ

−1
i ��1− ρ2 − ρ4�

�

Similar bounds can be obtained for the cases ρ1 > ρ4 or ρ3 > ρ2. Note that the
result above implies

Eπ

[
4∑
i=1

Qi�t�
]
= O

(
1

�1− ρ2 − ρ4�2
)
�

Contrast this with the lower bounds (24).

7. Conclusions. We have proposed a general methodology based on
Lyapunov functions for the performance analysis of infinite state Markov
chains and applied it specifically to multiclass queueing networks with expo-
nentially distributed interarrival and service times.

We have proved that whenever some piecewise linear Lyapunov function is a
witness for the global stability of the network, certain finite upper bounds can
be derived on the probability distribution and expectation of queue lengths.
Lower bounds are also constructed by means of linear lower Lyapunov func-
tions. Thus, for certain computable constants 0 < c1 < c2 < 1, we have con-
structed bounds of the form

cm1 ≤ P�L ≥m
 ≤ cm2 	
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with L the total number of customers in the network. These bounds hold
uniformly under any work conserving policy. The lower bounds are extended
to priority policies as well.

Since piecewise linear Lyapunov functions provide an exact test for stability
of fluid networks with two stations, our bounds for two-station networks are
finite if and only if the corresponding fluid network is globally stable. Whether
this remains true for the original stochastic network remains to be seen.

For reentrant line-type queueing networks with two processing stations, the
constants c1 and c2 can be expressed explicitly in terms of traffic intensities
(actual and virtual) of the network. Closed form bounds were also constructed
on the total expected number of customers in the network. In particular, we
have proved that

E�L� = O

(
1

�1− ρ∗�2
)
	

where ρ∗ is a maximal (actual or virtual) traffic intensity. It would be inter-
esting to strengthen this result, perhaps by removing the exponent 2.

The results obtained here are the first ones that establish exponential upper
and lower bounds on the distribution of queue lengths in networks of such
generality. Previous results on performance analysis of multiclass queueing
networks can in general achieve only numerical bounds and only on the expec-
tation of queue lengths.

APPENDIX A

Proof of Lemma 1. The key to our analysis is a modified Lyapunov func-
tion, defined by

#̂�x� = max�c	#�x�
(61)

for some c ∈ R+, and the corresponding equilibrium equation

Eπ

[
#̂�X�t��] = Eπ

[
#̂�X�t+ 1��]�(62)

We can rewrite (62) as

Eπ

[
#̂�X�t+ 1�� − #̂�X�t��] = 0�(63)

We first prove (14). Let us fix c as in the statement of the lemma, and
consider the function #̂�x� introduced in (61). Since Eπ�#�X�t��� is finite and
π is a stationary distribution, we can rewrite (63) as∑

x
π�x�(E�#̂�X�t+ 1�� � X�t� = x� − #̂�x�) = 0�(64)
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We decompose the left-hand side of the equation above into three parts and
obtain

0 = ∑
x� #�x�≤c−νmax

π�x�(E�#̂�X�t+ 1�� � X�t� = x� − #̂�x�)
+ ∑

x� c−νmax<#�x�≤c+νmax

π�x�(E�#̂�X�t+ 1�� � X�t� = x� − #̂�x�)
+ ∑

x� c+νmax<#�x�
π�x�(E�#̂�X�t+ 1�� � X�t� = x� − #̂�x�)�

(65)

As we will see below, the advantage of using the modified function #̂�x� =
max�c	#�x�
 is that it allows us to exclude the states x ∈ � with low values
of #�x� from the equilibrium equation (64), without affecting the states x with
high value of #�x�.

We now analyze each of the summands in (65) separately.

(i) To analyze the first summand in (65), observe that for any x	x′ with
#�x� ≤ c− νmax < c and p�x	x′� > 0, the definition of νmax implies that

#�x′� ≤ #�x� + νmax ≤ c− νmax + νmax = c�

Therefore, #̂�x� = #̂�x′� = c. We conclude that for all x with #�x� ≤ c− νmax,

E
[
#̂�X�t+ 1�� � X�t� = x

]− #̂�x� = c− c = 0�

(ii) We now analyze the third summand in (65). For any x	x′ with #�x� >
c+ νmax and p�x	x′� > 0, we again obtain from the definition of νmax that

#�x′� ≥ #�x� − νmax > c+ νmax − νmax = c�

Therefore, #̂�x� = #�x� and #̂�x′� = #�x′�. Also, by assumption, c+ νmax ≥ B.
We conclude that for all x with #�x� > c+ νmax,

E
[
#̂�X�t+ 1�� � X�t� = x

]− #̂�x� = E
[
#�X�t+ 1� � X�t� = x

]−#�x� ≤ −γ	
where the last inequality holds since #�x� > B and # is a Lyapunov function
with drift parameter γ.

(iii) Considering the four cases #̂�x� = #̂�x′� = c, or �#̂�x� = #�x�	 #̂�x′� =
c�, or �#̂�x� = c	 #̂�x′� = #�x′��, or �#̂�x� = #�x�	 #̂�x′� = #�x′��, we can
easily check that for any two states x	x′, there are only the following two
possibilities: either

0 ≤ #̂�x′� − #̂�x� ≤ #�x′� −#�x�
or

#�x′� −#�x� ≤ #̂�x′� − #̂�x� ≤ 0�
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Therefore, for any x, we have

E
[
#̂�X�t+ 1�� � X�t� = x =]− #̂�x�
= ∑

x′ � #̂�x′�>#̂�x�
p�x	x′��#̂�x′� − #̂�x�� + ∑

x′ � #̂�x′�≤#̂�x�
p�x	x′��#̂�x′� − #̂�x��

≤ ∑
x′ � #�x′�>#�x�

p�x	x′��#�x′� −#�x��

≤ ∑
x′ � #�x′�>#�x�

p�x	x′�νmax

≤ pmaxνmax�

We conclude that for all x ∈ � , and, in particular, for all x satisfying c −
νmax < #�x� ≤ c+ νmax, we have

E
[
#̂�X�t+ 1���X�t� = x

]− #̂�x� ≤ pmaxνmax�

We now incorporate the analysis of these three cases into (65), to obtain

0 ≤ 0+ ∑
x� c−νmax<#�x�≤c+νmax

π�x�pmaxνmax + �−γ� ∑
x� c+νmax<#�x�

π�x��

We then use the equality∑
x� c−νmax<#�x�≤c+νmax

π�x� = ∑
x� c−νmax<#�x�

π�x� − ∑
x� c+νmax<#�x�

π�x�

to replace the first sum of probabilities in the previous inequality, divide by
pmaxνmax + γ, and obtain (14). ✷

We now prove (15). Let us select an arbitrary c ≥ 0. We again consider the
function #̂�x� = max�c	#�x�
, and the equilibrium equation (63), which we
rewrite as

0 = ∑
x� #�x�<c−�1/2�νmin

π�x�(E�#̂�X�t+ 1�� � X�t� = x� − #̂�x�)
+ ∑

x� c−�1/2�νmin≤#�x�<c
π�x�(E�#̂�X�t+ 1���X�t� = x� − #̂�x�)

+ ∑
x� c≤#�x�

π�x�(E�#̂�X�t+ 1���X�t� = x� − #̂�x�)�
(66)

We now analyze each of the summands in the above identity.

(i) For any x with #�x� ≥ c, we have #̂�x� = #�x�. So,∑
x� #�x�≥c

π�x�(E�#̂�X�t+ 1�� � X�t� = x� − #̂�x�)
= ∑

x� #�x�≥c
π�x�(E�#̂�X�t+ 1�� � X�t� = x� −#�x�)
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≥ ∑
x� #�x�≥c

π�x�(E�#�X�t+ 1�� � X�t� = x� −#�x�)
≥ �−γ� ∑

x� #�x�≥c
π�x��

(ii) For any x with #�x� < c− �1/2�νmin, we have #̂�x� = c. So,∑
x� #�x�<c−�1/2�νmin

π�x�(E�#̂�X�t+ 1�� � X�t� = x� − #̂�x�)
= ∑

x� #�x�<c−�1/2�νmin

π�x�(E�#̂�X�t+ 1�� � X�t� = x� − c
) ≥ 0�

(iii) We next consider the case where x satisfies

c− �1/2�νmin ≤ #�x� < c�(67)

We have #̂�x� = c. If x′ is such that p�x	x′� > 0 and #�x′� > #�x�, then
#�x′� ≥ #�x� + νmin ≥ c+ �1/2�νmin. In particular, #̂�x′� = #�x′� and

#̂�x′� − #̂�x� ≥ c+ �1/2�νmin − c = �1/2�νmin�

If p�x	x′� > 0 and #�x′� ≤ #�x� < c, then #̂�x′� = c, and #̂�x′� − #̂�x� = 0.
We conclude that for any x satisfying (67), we have

E
[
#̂�X�t+ 1�� � X�t� = x

]− #̂�x�
= ∑

x′ � #�x′�>#�x�
p�x	x′�(#̂�x′� − #̂�x�)+ ∑

x′ � #�x′�≤#�x�
p�x	x′�(#̂�x′� − #̂�x�)

= ∑
x′ � #�x′�>#�x�

p�x	x′�(#̂�x′� − #̂�x�)
≥ pmin�1/2�νmin�

We incorporate our analysis of the three summands into (66), to obtain

0 ≥ ∑
x� c−�1/2�νmin≤#�x�<c

π�x��1/2�pminνmin + �−γ� ∑
x� c≤#�x�

π�x��

We also have ∑
x� c−�1/2�νmin≤#�x�<c

π�x� = ∑
x� c−�1/2�νmin≤#�x�

π�x� − ∑
x� c≤#�x�

π�x��

Using this and dividing the previous inequality by �1/2�pminνmin+γ, we obtain
(15). ✷
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APPENDIX B

Proof of Proposition 7. For any x ∈ ZN
+ we denote the vector

I∑
i=1

λiei	1 +
∑
i	 k

µi	 kwi	k�x��ei	 k+1 − ei	 k�

by 7�x	w�, where ei	 k is the i	 kth unit vector. Let us also denote

E
[
#s�Q�τs+1���Q�τs�=x

]−#s�x�

=
I∑
i=1

λi
(
#s�x+ei	1

)−#s�x��+
∑
i	k

µi	kwi	k�x�
(
#s�x+ei	k+1−ei	k�−#s�x�

)
	

by 7#s�x	w�. We need to show that the function #s satisfies

7#s�x	w� ≤ −�1/4�γ	(68)

for all x ∈ ZN
+ such that #s�x� ≥ B.

Lemma 3. Suppose a nonzero vector x ∈ ZN
+ satisfies

∑
�i	 k�∈σj0 xi	k = 0, for

some station σj0
Then,

Pu
{
#0�Z1	 � � � 	ZJ	x� = Z′

j0
x
} = 0�(69)

Proof. Since
∑

�i	 k�∈σj0 xi	k = 0, then for any zj0
∈ Oj0

, (37) yields

z′j0
x = ∑

�i	 k��∈σj0
z
j0
i	 kxi	 k ≤ ∑

�i	 k��∈σj0
L
j0
i	 kxi	 k +

1
2J

γ
∑

�i	 k��∈σj0
xi	k�(70)

We have from the third constraint of GLP[dm] that for all �i	 k� /∈ σj0
,

L
j0
i	 kxi	 k ≤ 1

J− 1

∑
j �=j0

L
j
i	kxi	 k�(71)

Now consider any �i	 k� �∈ σj0
. Note from (37), that for j such that �i	 k� �∈ σj

and for any zj ∈ Oj

L
j
i	 kxi	 k ≤ z

j
i	 kxi	 k	

where zji	 k denotes the i	 kth component of zj. Moreover, for j such that �i	 k� ∈
σj and for any zj ∈ Oj,

L
j
i	kxi	 k ≤ z

j
i	 kxi	 k −

J− 1
2J

γxi	k�
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Combining the two inequalities above we obtain that for every �i	 k� /∈ σj0
,

1
J− 1

∑
j �=j0

L
j
i	kxi	 k ≤ 1

J− 1

( ∑
j �=j0

z
j
i	 kxi	 k

)
− 1
J− 1

J− 1
2J

γxi	k

= 1
J− 1

∑
j �=j0

z
j
i	 kxi	 k −

1
2J

γxi	k�

(72)

Then from (70), (71) and (72), we obtain

z′j0
x ≤ 1

J− 1

∑
�i	 k��∈σj0

∑
j �=j0

z
j
i	 kxi	 k�

By assumption
∑

�i	 k�∈σj0 xi	k = 0, so

∑
�i	 k��∈σj0

∑
j �=j0

z
j
i	 kx = ∑

j �=j0

z′jx�

We conclude

z′j0
x ≤ 1

J− 1

∑
j �=j0

z′jx

for all zj ∈ Oj	j = 1	2	 � � � 	 J. But the event

#0�Z1	 � � � 	ZJ	x� = Z′
j0
x

implies

Z′
j0
x ≥ 1

J− 1

∑
j �=j0

Z′
jx�

Therefore, the event #0�Z1	 � � � 	ZJ	x� = Z′
j0
x implies

Z′
j0
x = 1

J− 1

∑
j �=j0

Z′
jx�

The probability of this event is zero. ✷

Lemma 4. If zj ∈ Oj and x ∈ �N
+ satisfies

∑
�i	 k�∈σj xi	 k > 0, then for any

Markovian nonidling policy w,

z′j7�x	w� ≤ − 1
2γ�
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Proof. We have

z′j7�x	w� = L′
j7�x	w� + �zj − Lj�′7�x	w�

= L′
j7�x	w� +

I∑
i=1

λi�zji	1 −L
j
i	1�

+ ∑
i	 k

µi	 kwi	k�x�
((
z
j
i	 k+1 −L

j
i	k+1� − �zji	 k −L

j
i	k

))
�

From GLP[dm], it can be shown that since
∑

�i	 k�∈σj xi	 k > 0, then L′
j7�x	w� ≤

−γ	 (for details see [10]). Also since L
j
i	k ≤ z

j
i	 k ≤ L

j
i	k + �1/2�γ and, by

assumption,

I∑
i=1

λi +
∑
i	 k

µi	 k = 1	

then

I∑
i=1

λi�zji	1 −L
j
i	1� +

∑
i	 k

µi	 kwi	k�x�
(�zji	 k+1 −L

j
i	k+1� − �zji	 k −L

j
i	k�

) ≤ �1/2�γ�

This completes the proof. ✷

We now return to the proof of Proposition 7. Recall our convention ei	0 =
ei	Ji+1 = 0. Fix x ∈ ZN

+ . Denote by Ej	 j = 1	2	 � � � 	 J the event

#0
(
Z1	 � � � 	ZJ	x + ei	 k+1 − ei	 k

) = Z′
j

(
x + ei	 k+1 − ei	 k�

for all i = 1	2	 � � � 	 I	 k = 0	1	 � � � 	 Ji	

and by E0 the remaining event that none of Ej occurs. Note that the probability
that two of the events Ej1

and Ej2
occurring simultaneously is equal to zero.

We rewrite the left-hand side of (68) as

7#s�x	w� = Eu

[
I∑
i=1

λi
(
#0�Z1	 � � � 	ZJ	x + ei	1� −#0�Z1	 � � � 	ZJ	x�

)
+ ∑

i	 k

µi	 kwi	k�x�
(
#0�Z1	 � � � 	ZJ	x + ei	 k+1 − ei	 k�

−#0�Z1	 � � � 	ZJ	x�
)]
	

(73)
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and condition on E1	E2	 � � � 	EJ and E0. We have

Eu

[
I∑
i=1

λi
(
#0�Z1	 � � � 	ZJ	x + ei	1

)−#0�Z1	 � � � 	ZJ	x�
)

+ ∑
i	 k

µi	 kwi	k�x�
(
#0�Z1	 � � � 	ZJ	x + ei	 k+1 − ei	 k�

−#0�Z1	 � � � 	ZJ	x�
)�Ej

]
Pu�Ej


= Eu

[
Z′
j7�x	w��Ej

]
Pu�Ej
�

(74)

From Lemma 3, if
∑
i∈σj xi = 0, then Pu�#0�Z1	 � � � 	ZJ	x� = Z′

jx
 = 0 and as
a result, Pu�Ej
 = 0. Otherwise, from Lemma 4,

Eu

[
Z′
j7�x	w��Ej

]
Pu�Ej
 ≤ �−1/2�γPu�Ej
�(75)

Combining (73), (74) and (75) we obtain

7#s�x	w� ≤ −�1/2�γ
J∑
j=1

Pu�Ej


+Eu

[
I∑
i=1

λi
(
#0�Z1	 � � � 	ZJ	x + ei	1� −#0�Z1	 � � � 	ZJ	x�

)
+ ∑

i	 k

µi	 kwi	k�x�
(
#0�Z1	 � � � 	ZJ	x + ei	 k+1 − ei	 k�

−#0�Z1	 � � � 	ZJ	x�
)�E0

]
Pu�E0
�

(76)

We now analyze the last term in the sum.

Lemma 5. For any i = 1	2	 � � � 	 I	 k = 0	1	2	 � � � 	 Ji+1, and x ∈ ZN
+ , there

holds∣∣#0
(
z1	 � � � 	 zJ	x + ei	 k+1 − ei	 k� −#0�z1	 � � � 	 zJ	x

)∣∣ ≤ Lmax + �1/2�γ�
In particular, νmax ≤ Lmax + �1/2�γ.

Proof. Let #0�z1	 � � � 	 zJ	x� = z′j1
x and #0�z1	 � � � 	 zJ	x+ei	 k+1 −ei	 k� =

z′j2
�x + ei	 k+1 − ei	 k�. Then

#0
(
z1	 � � � 	 zJ	x + ei	 k+1 − ei	 k

)−#0�z1	 � � � 	 zJ	x�
= z′j2

�x + ei	 k+1 − ei	 k� − z′j1
x

≤ z′j2
�x + ei	 k+1 − ei	 k� − z′j2

x ≤ z
j2
i	 k+1 ≤ Lmax + �1/2�γ�
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Similarly, we show that

#0
(
z1	 � � � 	 zJ	x + ei	 k+1 − ei	 k

)−#0�z1	 � � � 	 zJ	x� ≥ −�Lmax + �1/2�γ��
This completes the proof. ✷

Applying Lemma 5 to (76), and using
∑
i λi+

∑
i	 k µi	 kwi	k�x� ≤ 1, we obtain

7#s�x	w� ≤ −�1/2�γ
J∑
j=1

Pu�Ej
 + �Lmax + �1/2�γ�Pu�E0


= −�1/2�γ
J∑
j=0

Pu�Ej
 + �Lmax + γ�Pu�E0
(77)

= −�1/2�γ + �Lmax + γ�Pu�E0
�
To complete the proof of the proposition, we prove the following lemma.

Lemma 6. For any x satisfying #s�x� > B, there holds

Pu�E0
 ≤ �1/4� γ

Lmax + γ
�

Proof. We have

Pu�E0
 ≤ ∑
j1 �=j2

P�Ej1j2

	(78)

where Ej1	j2
denotes the event

#0�Z1	 � � � 	ZJ	x� = Z′
j1
x	#0�Z1	 � � � 	ZJ	x+ei	 k+1−ei	 k� = Z′

j2
�x+ei	 k+1−

ei	 k�, for some i	 k. Now fix j1	 j2 with j2 �= j1. Note that the event #0�Z1	 � � �,
ZJ	x� = Z′

j1
x	#0�Z1	 � � � 	ZJ	x+ ei	 k+1 − ei	 k� = Z′

j2
�x+ ei	 k+1 − ei	 k� implies

Z′
j2
x − Z′

j1
x ≤ 0

and

Z′
j2
x − Z′

j1
x = Z′

j2
�x + ei	 k+1 − ei	 k� − Z′

j1
x +Z

j2
i	 k −Z

j2
i	 k+1

≥ Z′
j1
�x + ei	 k+1 − ei	 k� − Z′

j1
x +Z

j2
i	 k −Z

j2
i	 k+1

= Z
j1
i	 k+1 −Z

j1
i	 k +Z

j2
i	 k −Z

j2
i	 k+1

≥ −2�Lmax + �1/2�γ��
Therefore the probability of the event Ej1	 j2

is bounded by the probability of
the event

−2�Lmax + �1/2�γ� ≤ Z′
j2
x − Z′

j1
x ≤ 0�

Fix any �i	 k� such that xi	k > 0. Since Zj1
i	 k is chosen uniformly from �Lj1

i	 k,

L
j1
i	 k + 1

2Jγ� or �Lj1
i	 k + J−1

2J γ	L
j1
i	 k + 1

2γ� [depending on whether �i	 k� ∈ σj1
or
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not] and both intervals have the same length γ
2J , then by conditioning on Zj2

and Zj1
i′	 k′	 �i′	 k′� �= �i	 k� we have

Pu
{−2�Lmax + �1/2�γ� ≤ Z′

j2
x − Z′

j1
x ≤ 0 � Zj2

	Z
j1
i′	 k′	 �i′	 k′� �= �i	 k�}

≤
2�Lmax+�1/2�γ�

xi	k
γ
2J

= 2J
2�Lmax + �1/2�γ�

xi	kγ
�

Unconditioning, we obtain

xi	kPu�Ej1j2

 ≤ 4J�Lmax + �1/2�γ�

γ
	

for all �i	 k� such that xi	k > 0. Note that this inequality holds trivially if
xi	k = 0. Then, for any j and zj ∈ Oj, there holds

z′jxPu�Ej1	 j2

 ≤∑

i	 k

z
j
i	 k

4J�Lmax + �1/2�γ�
γ

≤N�Lmax + �1/2�γ�4J�Lmax + �1/2�γ�
γ

= 4NJ�Lmax + �1/2�γ�2
γ

	

where in the second inequality we used zji	 k ≤ Lmax + �1/2�γ. Then

#s�x�Pu�Ej1	j2

 ≤ 4NJ�Lmax + �1/2�γ�2

γ
�

From (78), we obtain

Pu�E0
 ≤ J�J− 1�4NJ�Lmax + �1/2�γ�2
γ#s�x�

�

Thus, whenever

#s�x� >
16J2�J− 1�N�Lmax + �1/2�γ�2�Lmax + γ�

γ2
	

there holds

Pu�E0
 ≤ �1/4� γ

Lmax + γ
�

Note that

16J2�J− 1�N�Lmax + �1/2�γ�2�Lmax + γ�
γ2

≤ 16NJ2�J− 1��Lmax + γ�3
γ2

�

This completes the proof of the lemma. ✷
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Applying Lemma 6 to (77), we obtain

7#s�x	w� ≤ −�1/4�γ�
We have also obtained the bound on νmax in Lemma 5. This completes the
proof of Proposition 7. ✷

Proof of Proposition 8. Given a solution x	 γ to LP[dv], set V =W = 0.
We have by construction Lj

k−Lj
k+1 = xk if k ∈ σj, and Lj

k−Lj
k+1 = 0 if k /∈ σj.

In particular, Lj
k ≥ L

j
k+1, for all j	 k. Since V = W = 0 then the constraints

(31), (33) are satisfied.
Fix any k ∈ σ2, and let e ⊂ σ2 be the excursion containing k. Then trivially

l�e� ≥ k. It follows that

L2
k = ∑

k′∈σ2	 k
′≥k
xk′ ≥ ∑

k′∈σ2	 k
′≥l�e�

xk′ �

However,

L1
k = ∑

k′∈σ1	 k
′≥k
xk′	

which by constraint (44) is not bigger than
∑
k′∈σ2	 k

′≥l�e� xk′ . Combining, we
conclude L2

k ≥ L1
k, whenever k ∈ σ2. Similarly, we show that L2

k ≤ L1
k, when-

ever k ∈ σ1. This implies that constraints (34) and (35) are satisfied. Finally,
constraints (43) are equivalent to constraints (30) and (32) for γ = λε. Thus
Lj = �Lj

1	 � � � 	L
j
N�	 γ = λε is a feasible solution to LP[dm]. ✷

Proof of Lemma 2. Suppose ρ∗ < 1. Choose any nontrivial strictly sepa-
rating set S′ and any nontrivial separating set S. We choose an excursion er
by the following rules (rules (a) and (b), Section 6, [8]):

(i) Every earlier excursion el	 l < r served at station σ2 is in S′.
(ii) Every earlier excursion el	 l < r served at station σ1 is in S.

We have ρ�V�S′�	 er� ≤ ρ∗ by the definition of ρ∗. This inequality can be
rewritten, using (42), in the form

ρ�V�S′�	er	σ1�
1−ρ�er	σ1�

+ ρ�V�S′�	er	σ2�
1−ρ�er	σ2�

+ 1−ρ∗
�1−ρ�er	σ1���1−ρ�er	σ2��

≤1�(79)

By writing

1 = 1− ρ�er	 σ2�
1− ρ�er	 σ2�

	

we obtain from above

ρ�V�S′�	er	σ1�
1−ρ�er	σ1�

+ 1−ρ∗
�1−ρ�er	σ1���1−ρ�er	σ2��

≤ 1−ρ�V�S′�	er	σ2�−ρ�er	σ2�
1−ρ�er	σ2�
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or

ρ�V�S′�	er	σ1�
1−ρ�V�S′�	er	σ2�−ρ�er	σ2�

+ 1−ρ∗
�1−ρ�V�S′�	er	σ2�−ρ�er	σ2���1−ρ�er	σ2��

≤ 1−ρ�er	σ1�
1−ρ�er	σ2�

�

We now use rules 1 and 2 in the construction of er to show that

ρ�V�S′�	 er	 σ2� + ρ�er	 σ2� ≥ ρ�V�S′�	 σ2�
and

ρ�V�S′�	 er	 σ1� = ρ�V�S′�	 σ1��
In fact, suppose er ⊂ σ1. The inequality above then follows immediately from
(40). Also by rule 1 and since S′ is a separating set, none of the excursions
el	 l ≤ r that belong to σ1 can also belong to S′. Therefore,

ρ�V�S′�	 σ1� =
∑

k∈σ1∩V�S�	 k>l�er�
ρk = ρ�V�S′�	 er	 σ1��(80)

Suppose now er ⊂ σ2. Let us show that er does not belong to S′. In fact,
otherwise if r < R (where again R is the index of the last excursion) then
er+1 would be an excursion satisfying rules 1 and 2, and if r = R then S′

would be a trivial separating set. Both lead to contradiction. Therefore er does
not belong to S′. Then the last class l�er� does not belong to V�S� and the
inequality follows. Note again that by rule 1 and since S′ is a separating set,
none of the excursions el	 l < r that belong to σ1 can also belong to S′. The
equality then follows. We proved (80). Note also, 1− ρ�er	 σ2� ≤ 1. Therefore,

ρ�V�S′�	 σ1�
1− ρ�V�S′�	 σ2�

+ 1− ρ∗

1− ρ�V�S′�	 σ2�
≤ 1− ρ�er	 σ1�

1− ρ�er	 σ2�
�(81)

Writing (79) for the separating set S, we obtain

1− ρ�V�S�	 er	 σ1� − ρ�er	 σ1�
1− ρ�er	 σ1�

≥ 1− ρ∗

�1− ρ�er	 σ1���1− ρ�er	 σ2��
+ ρ�V�S�	 er	 σ2�

1− ρ�er	 σ2�
or

1− ρ�V�S�	 er	 σ1� − ρ�er	 σ1�
ρ�V�S�	 er	 σ2�

≥ 1− ρ∗

ρ�V�S�	 er	 σ2��1− ρ�er	 σ2��
+ 1− ρ�er	 σ1�

1− ρ�er	 σ2�
�

Again, with our choice of er,

ρ�V�S�	 er	 σ1� + ρ�er	 σ1� ≥ ρ�V�S�	 σ1�	
ρ�V�S�	 er	 σ2� = ρ�V�S�	 σ2��
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The proof is similar to the one for S′. Also, 1− ρ�er	 σ2� ≤ 1. Therefore,

1− ρ�V�S�	 σ1�
ρ�V�S�	 σ2�

≥ 1− ρ∗

ρ�V�S�	 σ2�
+ 1− ρ�er	 σ1�

1− ρ�er	 σ2�
�

By combining this inequality with (81), we obtain

1− ρ�V�S�	 σ1�
ρ�V�S�	 σ2�

− 1− ρ∗

ρ�V�S�	 σ2�
≥ ρ�V�S′�	 σ1�

1− ρ�V�S′�	 σ2�
+ 1− ρ∗

1− ρ�V�S′�	 σ2�
�(82)

Note that the left-hand side of this inequality depends only on the sepa-
rating set S, and the right-hand side depends only on the separating set S′.
Therefore, there exists some β which is in between these two quantities for
any S and S′. In particular, any such β satisfies (52). Also for any such β,
from the inequality above, we obtain

1− ρ∗ ≤ β�1− ρ�V�S′�	 σ2�� − ρ�V�S′�	 σ1�
and

1− ρ∗ ≤ �1− ρ�V�S�	 σ1�� − βρ�V�S�	 σ2��
By definition, 1− ρ∗ ≤ 1− ρσj	 j = 1	2. We have proved the existence of β for
which ε�β� > 1− ρ∗. This completes the proof of the lemma. ✷

Proof of Theorem 5. We assume without loss of generality that
λ+∑N

i=1 µi = 1. Combining Proposition 8 with Lemma 2, we conclude: if ρ∗ < 1,
then there exists a feasible solution of the form L	Q	 γ = λε to LP[dm] such
that ε ≥ 1−ρ∗. Since, by assumption, class 1 is from station σ1, then from the
constraint (34) of LP[dm], L1

1 ≥ L2
1. Using Proposition 8, we obtain for this

solution Lmax = max1≤k	 l≤N�L1
k	L

2
l 
 = L1

1. From constraint (46) of LP[dv],
L1

1 =∑
k∈σ1

xk = 1− ε. Since λ ≤ 1, then

Lmax + 1
2γ = 1− ε+ 1

2λε ≤ ρ∗ + 1
2λ�1− ρ∗�(83)

and

Lmax + γ = 1− ε+ λε ≤ ρ∗ + λ�1− ρ∗��
Therefore,

�Lmax + �1/2�γ�2
γ

≤ �ρ∗ + �1/2�λ�1− ρ∗��2
λ�1− ρ∗�(84)

and

�Lmax + γ�3
γ2

≤ �ρ∗ + λ�1− ρ∗��3
λ2�1− ρ∗�2 �(85)

We now show that

Lmax + �1/2�γ
Lmax + �3/4�γ ≤ ρ∗ + �1/2�λ�1− ρ∗�

ρ∗ + �3/4�λ�1− ρ∗� �(86)
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We have

1− Lmax + �1/2�γ
Lmax + �3/4�γ = �1/4�γ

Lmax + �3/4�γ �

Since γ = λε ≥ λ�1 − ρ∗�, and since Lmax + �3/4�γ = 1 − ε + �3/4�λε =
1− �1− �3/4�λ��ε ≤ 1− �1− �3/4�λ���1− ρ∗� = ρ∗ + 3

4λ�1− ρ∗�, then
�1/4�γ

Lmax + �3/4�γ ≥ �1/4�λ̄�1− ρ∗�
ρ∗ + �3/4�λ̄�1− ρ∗� �

Then (86) follows immediately. From (49) and (50) we obtain that

L1
i =

∑
k∈σ1	 k≥i

xi ≥
∑

k∈σ1	 k≥i
ρk = ρ

σ1+
i

and

L2
i ≥ βρ

σ2+
i �

Applying Theorem 4 to L1, we obtain

Pπ

{ ∑N
i=1 ρ

σ1+
i Qi�t� −B0

2�ρ∗ + �1/2�λ�1− ρ∗�� ≥m

}
≤
(
ρ∗ + �1/2�λ�1− ρ∗�
ρ∗ + �3/4�λ�1− ρ∗�

)m
	

where

B0 = 64N�ρ∗ + λ�1− ρ∗��3
λ2�1− ρ∗�2

and

Eπ

[ N∑
i=1

ρ
σ1+
i Qi�t�

]
≤ 64N�ρ∗ + λ�1− ρ∗��3

λ2�1− ρ∗�2 + 8�ρ∗ + 1
2λ�1− ρ∗��2

λ�1− ρ∗� �

Since we have assumed without loss of generality λ+∑N
i=1 µi = 1,

λ = 1

1+∑N
i=1 ρ

−1
i

�

Substituting, we obtain the bounds (54) and (56).
Applying Theorem 4 to L2, we obtain

Pπ

{ ∑N
i=1 βρ

σ2+
i Qi�t� −B0

2�ρ∗ + �1/2�λ�1− ρ∗�� ≥m

}
≤
(
ρ∗ + �1/2�λ�1− ρ∗�
ρ∗ + �3/4�λ�1− ρ∗�

)m
	

where again

B0 = 64N�ρ∗ + λ�1− ρ∗��3
λ2�1− ρ∗�2

and

Eπ

[
N∑
i=1

βρ
σ2+
i Qi�t�

]
≤ 64N�ρ∗ + λ�1− ρ∗��3

λ2�1− ρ∗�2 + 8�ρ∗ + 1
2λ�1− ρ∗��2

λ�1− ρ∗� �
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However, from (47), β >
∑
i∈σ2

xi. Recall that by assumption e1 ⊂ σ1 and
e2 ⊂ σ2. Therefore, from (44),∑

i∈σ2	 i≥l�e2�
xi ≥

∑
i∈σ1	 i>l�e2�

xi�

But then from (49), ∑
i∈σ1	 i>l�e2�

xi ≥
∑

i∈σ1	 i>l�e2�
ρi = ρ

σ1+
l�e2�+1�

As a result, β > ρ
σ1+
l�e2�+1. By substituting β, with ρσ1+

l�e2�+1 in the bounds above,
we obtain (55) and (57). This completes the proof of the theorem. ✷

Proof of Theorem 6. We start with the following lemma.

Lemma 7. �Lj	 γ̄ = λ�1 − ρ∗�	Vj = 0	1 ≤ j ≤ J is a feasible solution to
GLP[dm].

Proof. It is straightforward to check that for Lj
i	k = ρ

σj+
i	 k 	Vj = 0	 j =

1	2	 � � � 	 J, and γ = λmin�1 − ρ∗� the constraints (25) and (26) are satisfied.
Multiplying the constraints by(

ρmin

�J− 1�ρ∗
)j−1

we conclude that they are satisfied by �Lj
i	k and γ̄.

We now prove that the constraints (27) are satisfied. Select j and �i	 k� �∈ σj.
Let �i	 k� ∈ σj1

. If j1 > j, then from the Definition 6, ρ
σj+
i	 k = 0. Then �Lj

i	k = 0
and (27) is satisfied automatically due to the nonnegativity of the variables.
Suppose now j1 < j. We have, using ρmin ≤ ρ∗,

�Lj
i	k =

(
ρmin

�J− 1�ρ∗
)j−1

ρ
σj+
i	 k = 1

�J− 1�j−j1

(
ρmin

ρ∗

)j−j1
(

ρmin

�J− 1�ρ∗
)j1−1

ρ
σj+
i	 k

≤ 1
J− 1

ρmin

ρ∗

(
ρmin

�J− 1�ρ∗
)j1−1

ρ
σj+
i	 k �

However, ρmin ≤ ρ
σj1+
i	 k and ρ

σj+
i	 k ≤ ρ∗. It follows that

ρmin

ρ∗
ρ
σj+
i	 k ≤ ρ

σj1+
i	 k �

But (
ρmin

�J− 1�ρ∗
)j1−1

ρ
σj1+
i	 k = �Lj1

i	 k�
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Combining,

�Lj
i	k ≤ 1

J− 1
�Lj1
i	 k�

This shows that the constraint (27) is satisfied. ✷

To prove the theorem, we apply Theorem 4. Note that max��Lj
i	k
 ≤ ρ∗. The

result is then obtained immediately.
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