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We use McFadden’s integral equations for random RC filters to study
the average distribution of Dubins–Freedman processes. These distribu-
tions are also stationary probability measures of Markov chains on �0�1�,
defined by the iteration of steps to the left x → ux, and of steps to the
right x→ v+�1−v�x, where u and v are random from �0�1�. We establish
new algorithms to compute the stationary measure of these chains.

Turning to specific examples, we show that, if the distributions of u and
1− v are Beta�a�1�, or Beta�a�2�, or if u and 1− v are the exponential of
Gamma�a�2� distributed random variables, then the stationary measure
is a combination of various hypergeometric functions, which are often 3F2
functions. Our methods are based on a link that we establish between
these Markov chains and some RC filters. We also determine the stationary
distribution of RC filters in specific cases. These results generalize recent
examples of Diaconis and Freedman.

1. Introduction. In [3], Diaconis and Freedman investigate the proper-
ties of iterated random functions. As a motivating example, they study a case
of the following Markov chain on �0�1�. Let p ∈ �0�1� and µ and ν be two prob-
ability measures on �0�1�. Starting from x, the chain moves to the left with
probability p and to the right with probability q 	= 1−p. If the move is to the
left, the chain picks u from µ and goes to ux. If the move is to the right, the
chain picks v from ν and goes to v+�1−v�x. We call this process the �p�µ� ν�
DF chain. When µ = ν, Dubins and Freedman [4] introduced a version of the
DF chain where p may be random as well. From [4] (see also [3]), there exists
a unique stationary measure π, and π is the average distribution of a random
distribution function, which we do not describe here.
The arguments in Section 9 of [4] can be adapted to the case where µ and

ν may be different, yielding the following results: if µ and ν put no mass at 0
or 1, π has no atom, and π is purely singular or purely absolutely continuous;
if µ and ν have Ck+1 densities, π has a Ck density (Theorems 9.20, 9.25 and
Lemma 9.18 of [4]). As regards specific examples, if µ = ν is uniform, then
π = Beta�q�p� (Theorem 9.21 of [4]). Hence, if µ = ν is uniform and p = 1

2 , π
has the arcsine density. Also, if µ = ν, π is uniform if and only if µ = ν = δp
(Theorem 9.28 of [4]). Finally, from [3] if the DF chain is a Beta walk, that
is, if µ = ν = Beta�a� a� and p = 1

2 , then π is not a Beta distribution, except
when a = 1; that is, when µ = ν is uniform (see above). To our knowledge,
these are about the only cases where π is known.
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In this paper, we imbed DF chains in random RC filters, as defined by
McFadden [5] and Pawula and Rice [7, 8], for example. Various stationary
distributions related to RC filters are known to satisfy integro-differential
equations, and we show how to recover π from some of these distributions.
This yields two new algorithms to compute π explicitly. While the existence
and unicity of a stationary distribution for random compositions of functions
is a most studied problem (for DF chains, one has existence and unicity of
π), less frequent is the explicit determination of this distribution in specific
examples. However, see Chamayou and Letac [2] for explicit computations in
a similar setting.
Our new results about examples of DF chains include the following. We

determine the value of π if � �u� = Beta�a�1� and � �v� = Beta�1� b�, where
� �X� is the distribution ofX. If p = 1

2 and if u and 1−v are the exponential of
Gamma�λ�2� random variables, we show that the density of π is the integral
of various hypergeometric functions. We obtain explicit formulas when λ = 1

2 ,
λ = 1√

2
and λ = 1. In these special cases, the density of π, as a function of y ∈

�0�1�, is an affine combination of wn 3F2�w� functions, where w 	= 4y �1−y�,
and where 3F2 is an hypergeometric function of type �3�2�. Similar results
hold if p = 1

2 and � �u� = � �1 − v� = Beta�a�2�. We provide a new proof of
the fact, mentioned above and taken from [3], that the only case when p = 1

2 ,
� �u� = � �1− v� is Beta and π is Beta, is when u and v are uniform.
We also give explicit formulas for the stationary distributions of RC filters in

specific cases. Hypergeometric functions are ubiquitous in all these results, a
fact which has yet to be explained by structural reasons. Finally, we mention
that we plan to apply the methods of this paper to generalized DF chains
on �0�1�, where x moves to w + u �x − w�, and where �u�w� follows a given
distribution on �0�1�2. Thus, w is the random fixed point of the step. In usual
DF chains, � �w� is concentrated on �0�1. This model is related to Dirichlet
distributions, as explained for instance in Section 7 of [3].

Organization. Section 2 defines RC filters and proves that DF chains are
special cases of RC filters. In Section 3, we prove relations holding between
various stationary distributions associated naturally to RC filters, and does
the same thing for the distributions of DF chains. The part of Section 3 dealing
with RC filters follows the work of McFadden [5], but our proofs are self-
contained. Section 4 gives two algorithms to compute π, which draw on the
decomposition in Theorem B of Section 3.
Turning to specific examples, Section 5 studies (after, e.g., Pawula and Rice

[7] or [3]) exponentially distributed σ and τ, where u =	 e−σ and 1− v =	 e−τ.
Gauss’s hypergeometric differential equation appears. Even in this relatively
simple case, our Theorem C generalizes Theorem 9.21 of [4]. Section 7 deals
with Gamma�λ�2� distributed σ and τ, and is prepared by Section 6, which
reviews some technical tools. Section 8 states a result about RC filters with
Gamma�λ�2� distributed time intervals. Section 9 studies DF chains such that
� �u� = � �1− v� = Beta�a�2�. All these results generalize examples of [3].
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2. DF chains as cases of RC filters. In this section, we define RC filters
and we embed DF chains in RC filters.
RC filters are defined by independent sequences �Sn�n and �Tn�n of i.i.d.

positive random variables. The random telegraph wave �x�t��t≥0 takes values
in �0�1 as follows. First, x�t� = 0 on t ∈ �0� S1�, then x�t� = 1 during a time
interval of length T1, then x�t� = 0 during a time interval of length S2, and
so on. If x�t� is the input of an RC filter, the output y�t� solves

y′�t� + y�t� = x�t��(1)

where y′�·� is the derivative of y�·�. Finally, y�0� ∈ �0�1� is independent of
�x�t��t. Thus, y�t� ∈ �0�1� for every t, and the sample functions of �y�t��t≥0
are made of a succession of rising and decaying exponentials.

Remark 1. If the distributions of Sn or Tn put mass on 0, one can real-
ize the same system with different distributions having no atom at 0. Also,
beginning with the value x�0+� = 1 does not change the results.

Definition 2. Set un =	 e−σn and vn =	 1 − e−τn . Let � �X� denote the
distribution ofX. Introduce the functions which are sampled by the DF chain:

ϕu�x� 	= ux� ψv�x� 	= v+ �1− v�x�

Theorem A. For any parameters �p�µ� ν�, there exists distributions of S
and T such that the local extrema of the DF chain and the local extrema of
the RC filter follow the same distribution �π0� π1� = �P0�P1�, in the stationary
regime.

Furthermore, �π0� π1� is uniquely determined by equation (4) in Lemma 3
below. Starting from any distribution, the local extrema of the DF chain con-
verge in distribution to �π0� π1�. The same holds for the RC filter, when S and
T follow the adequate distributions.

Proof. Let R0 	= 0 and Rn 	= S1 +T1 + · · · +Sn +Tn. Since x�t� = 0 for
t ∈ �Rn−1�Rn−1 +Sn� and x�t� = 1 for t ∈ �Rn−1 +Sn�Rn�, one has

y�Rn−1 +Sn� = e−Sn y�Rn−1��
y�Rn� = e−Tn �y�Rn−1 +Sn� − 1� + 1�

(2)

Hence, the values of y�t� at the moments when the value of x�t� changes
are obtained by the alternated application of ϕe−Sn and ψ1−e−Tn . However, the
DF chain applies ϕ functions or ψ functions at random, while the RC filter
applies alternately ϕ functions and ψ functions. The following randomization
procedure deals with this difference.
From the semigroup property of the orbits of (1), or from a direct computa-

tion, the composition of ϕe−σ and ϕe−σ ′ is ϕe−�σ+σ ′ � , and the composition of ψ1−e−τ
and ψ1−e−τ′ is ψ1−e−�τ+τ′ � . The DF chain applies φ functions a random number
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of times, say M times, before switching to ψ functions for a random number
N of times, and so on. Then, � �M� is geometric of mean q−1; that is,

� �M� = ∑
k≥0

qpk−1 δk�(3)

and � �N� is geometric of mean p−1. Thus, if

� �S� = � �σ1 + · · · + σM� and � �T� = � �τ1 + · · · + τN��
the local extrema of the DF chain and of the RC filter follow the same dynam-
ics. Hence, Lemma 3 below implies the theorem. ✷

Lemma 3. The solution �P0�P1� of the system P0 = � �y0�, P1 = � �y1�,
� �y0� = � �ϕe−S�y1��� � �y1� = � �ψ1−e−T�y0���(4)

is unique, where S, T, y1 and y0 are independent.

Proof. Such recurrence relations yield explicit formulas for y0 and y1, as
well as for their moments (see Munford [6]). For instance, � �y0� = � �yn0+zn0�,
with

yn0 	=
n∑
k=1

e−Rk−1−Sk �1− e−Tk� and zn0 	= e−Rn−Sn+1 yn1 �

where all the random variables involved are independent, and where � �yn1� =
P1. Since Rk → ∞ as k→ ∞ and �yn1 � ≤ 1, the error term zn0 converges to 0 in
distribution. On the other hand, yn0 converges a.s., since E�yn0� is uniformly
bounded as soon as E�e−S−T� < 1. Hence, yn0 converges in distribution to

y∞
0 	= ∑

k≥1
e−Rk−1−Sk �1− e−Tk��

and any solution of the system of the lemma must satisfy P0 = � �y∞
0 �. The

same applies to P1. ✷

3. Stationary renewal theory.

3.1. RC filters. We use the following notations.

Definition 4. Let P− or P+ be the stationary distribution (or its density)
of y�t� conditioned by the fact that �x�t� = 0 or �x�t� = 1. Let P0 or P1 be
the stationary distribution (or its density) of the local minima or maxima of
y�·�. Let yi follow the distribution Pi for i ∈ �0�1�+�−.
Let f or g be the density of the distribution of σ or τ. Let F or G be the

density of the distribution of S or T. Let µ0 or µ1 be the mean of S or T.
Finally, for any density H on s ≥ 0 of finite mean µH, introduce

H∗�s� 	= µ−1
H

∫ +∞

s
H�s′�ds′�
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Hence, if H is the density of � �X�, H∗ is the density of � �X∗�, where

X∗ 	= X̂ ·Unif�
Here, � �Unif� is uniform on �0�1�, Unif is independent of X̂ and � �X̂� is
a size-biased version of � �X�. That is, � �X̂� satisfies, for any nonnegative
function A,

E�A�X̂�� = E�XA�X��/E�X��

The distributions of X̂ andX∗ appear naturally as stationary distributions in
renewal theory. We recall without proof the following fact (see, e.g., Section 10
of Chapter 2 in Thorisson [9]).

Proposition 5. Consider the homogeneous renewal process on t ≥ 0
defined by i.i.d. intervals of distribution � �X�, in the stationary regime, or
equivalently, around a large value of t.

Then, the length of the overlapping interval follows the distribution � �X̂�.
Furthermore, the location of t in this interval is uniform. Hence, the length of
the part of this interval which lies before t follows the distribution � �X∗�.

We now relate the various stationary distributions of the RC filter, in terms
of the densities Pi or in terms of the random variables yi.

Remark 6. Most of what follows appears in Pawula and Rice [7], which
draws on earlier work of McFadden [5]. The results of [7] hold for RC filters
on �−1�1�, and we translate them to the case of RC filters on �0�1�. In order to
give more tractable formulas, we sometimes change variables in the integrals.
Finally, we use the fact that some densities are zero outside of �0�1�, to simplify
the notations.

Assume that y�t� is in the stationary regime. Then, y�t� spends a fraction
µ0/�µ0 + µ1� of its time in the x�t� = 0 regime. Hence,

�µ0 + µ1�P = µ0P− + µ1P+�

For y ∈ �0�1�, one can compute the mean amounts of mass which cross the
level y during the time interval �t� t + dt�, upward and downward. Since the
upward and downward crossings occur at rates 1− y and y, respectively, the
conservation of the mass at stationarity reads

µ0 yP−�y� = µ1 �1− y�P+�y��
This in turn yields

µ0P−�y� = �µ0 + µ1� �1− y�P�y��
µ1P+�y� = �µ0 + µ1�yP�y��

(5)
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Definition 7. For any nonnegative H on �0�+∞� and Q on �0�1�, define

K−�H�Q��y� 	=
∫
Q�yes� es H�s�ds

and
K+�H�Q��y� 	=

∫
Q�1− �1− y� et� et H�t�dt�

If Q is the density of the distribution of the DF chain before a step to the left
and if the distribution of σ has density H, where u =	 e−σ , then K−�H�Q�
is the density of the distribution of the chain after this step. A similar inter-
pretation holds for K+�H�Q� with respect to a step to the right and to the
distribution of τ, where 1− v =	 e−τ. The definition above is equivalent to

K−�H�Q��y� 	=
∫ 1
y
Q�x�H

(
log

(
x

y

))
dx

y
�

and K+�H�Q��y� 	=
∫ y
0
Q�x�H

(
log

(
1− x
1− y

))
dx

1− y�

Proposition 8.

P0 =K−�F�P1�� P1 =K+�G�P0��(6)

and P− = K−�F∗�P1�� P+ = K+�G∗�P0��(7)

This follows from the identities in distribution

� �y0� = � �e−S y1�� � �y1� = � �1− e−T �1− y0���(8)

and � �y−� = � �e−S∗ y1�� � �y+� = � �1− e−T∗ �1− y0���(9)

where all the random variables are independent.

Proof. We establish the identities in distribution. The definition of the
RC filter shows that a version of (8) relates the distributions of successive
extrema. At stationarity, every minimum follows the distribution � �y0� and
every maximum follows the distribution � �y1�, hence (8) holds.
As concerns (9), conditioning, for instance, on �x�t� = 0 cancels the Tn

intervals. Hence, one considers the renewal process defined by �Sn�n. From
Proposition 5, the last change from x�·� = 1 to x�·� = 0 occurred at time
t∗ 	= t−S∗, hence y�t� = e−S∗ y�t∗� and y�t∗� is a local maximum, that is the
first part of (9). The proof of the second part is similar. ✷

Definition 9. For any densityH on �0�+∞�, let L�H� denote the Laplace
transform of H, and R�H� be the function or the measure such that

L�R�H���s� 	= sL�H��s�
1−L�H��s� �
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Proposition 10.

P0 = µ0K−�R�F��P−�� P1 = µ1K+�R�G��P+��(10)

Proof. Definition 9 amounts to asking that

F = µ0F∗ ∗R�F� and G = µ1G∗ ∗R�G��
Hence, (6) and (7) and the semigroup properties of the operators K with
respect to the convolution yield the proposition. ✷

Lemma 11. The densities P0 and P1 are related to P through

�µ0 + µ1�
d

dy
�y �1− y�P�y�� = P0�y� −P1�y��

Proof. Proposition 8 gives P− as an integral of P1. Write this result as

yP−�y� =
∫ 1
y
P1�x�F∗�log�x/y��dx�

Since F′
∗�s� = −µ−1

0 F�s� and F∗�0� = µ−1
0 , the differentiation yields

�yP−�y��′ = −P1�y�µ−1
0 + y−1 µ−1

0

∫ 1
y
P1�x�F�log�x/y��dx

= µ−1
0 �−P1�y� +P0�y���

where the last equality is a consequence of (6). Finally, (5) shows that yP−�y�
is a multiple of y �1− y�P�y�. ✷

When the RC filter is induced by a DF chain in the way of Section 2, one
can bypass the computation of F and G from f and g, thanks to the following.

Lemma 12. R�F� = qR�f� and R�G� = pR�g�.

Proof. Direct from L�F� = qL�f�/�1− pL�f�� and from the similar
expression of L�G�. ✷

Proposition 13. Let PR�y� 	= yP�y� and PL�y� 	= �1 − y�P�y�. Then,
if F and G are the randomizations of f and g,

d

dy
�y �1− y�P�y�� = qK−�R�f��PR� − pK+�R�g��PL��(11)

Proof. The proof follows from Lemma 11 and from the fact that P0 and
P1 are images of P− and P+ by operators K, that P− and P+ are multiples
of PL and PR, and that R�F� and R�G� are multiples of R�f� and R�g�. ✷
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3.2. DF chains. Assume that the DF chain is imbedded in the RC filter
�S�T�. We use the following notations.

Definition 14. Recall that π0 or π1 is the stationary distribution (or its
density) of the local minima or maxima of the DF chain. Let π− or π+ be the
distribution π conditioned by the fact that the last move was to the left or to
the right. Let Y or Yi follow the distribution π or πi for i ∈ �0�1�+�−.

Theorem B. π = pπ0 + qπ1 = pP0 + qP1.

Recall that P0 = π0 and P1 = π1. Hence, �P0�P1� solves
� �Y0� = � �e−S Y1�� � �Y1� = � �1− e−T �1−Y0���

This shows that Theorem B is a direct consequence of Proposition 15.

Proposition 15. (i) � �Y� = p� �Y−� + q� �Y+�.
(ii) � �Y0� = � �Y−� and � �Y1� = � �Y+�. ✷

Proof. Consider the alternating renewal process, defined by the integer
intervals of consecutive moves of the DF chain to the left, or of consecutive
moves to the right. This process may be encoded by a sequence �εn�n≥1 of
zeroes and ones, such that εn = 1 if the nth move is to the right, and εn = 0
else. Since the chances of a move to the left are p, the DF chain spends in the
long run a proportion p of its time making moves to the left. This implies (i).
As regards (ii), to condition, for instance, by a last move to the left is the

same as to cancel the times n such that εn = 1, that is, such that the nth move
is to the right. Hence, one considers an ordinary renewal process, defined
by the concatenation of the intervals of integer lengths which represented
consecutive moves to the left in the alternated renewal process defined above.
These lengths are i.i.d. and follow the distribution � �M� of (3). The ana-

logue of Proposition 5 for discrete time renewal processes is as follows: the
distribution of the overlapping interval is � �M̂�, and the past part M̃ of this
interval is uniform on �1�2� � � � � M̂. [Caution: � �M̃� is not � �M∗�.] Since
� �M� is geometric, one line of computation shows that

� �M̃� = � �M��
This implies that Y0 and Y− are the results of the same number of moves to
the left from a local maximum; that is the first part of (ii). The proof of the
second part is similar. ✷

We give a second proof of Theorem B, using the operators K defined in
Section 3.1.

Definition 16. Abbreviate K−�f� ·� and K+�g� ·� in k− and k+, and
K−�F� ·� and K+�G� ·� in K− and K+.
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The definition of the dynamics of the DF chain and the unicity result of [3]
imply that π is the unique distribution solution of

π = pk−�π� + qk+�π��(12)

Operator proof of Theorem B. Using the random variables M and N
of the randomization of Section 2, one gets

K−�Q� = E�kM− �Q��� K+�Q� = E�kN+ �Q���
where kni is the composition of n operators ki. Conditioned by �M ≥ 2, M
follows the distribution of 1+M. Furthermore,M = 1 with probability q. The
same applies to N with p instead of q, hence

K− = qk− + pk− ◦K− and K+ = pk+ + qk+ ◦K+�

This yields

pk−�P0� = P0 − qk−�P1� and qk+�P1� = P1 − pk+�P0��
We apply these relations to k�Q�, whereQ 	= pP0+qP1 and k 	= pk−+qk+.
The terms k−�P1� and k+�P0� cancel and there remains

k�Q� = pk−�Q� + qk+�Q� = pP0 + qP1 = Q�
a fact which proves that π = pP0 + qP1. ✷

4. Algorithms. Recall that the stationary measure π of a DF chain is the
only distribution solution of (12); that is,

π�y� = p
∫
π�yes� es f�s�ds+ q

∫
π�1− �1− y� et� et g�t�dt�

The two algorithms to compute π that we now propose may be viewed as
decompositions of this fixed point problem into two related parts. They sum-
marize our results so far.

Algorithm I (The direct way to π).

1. Starting from u =	 e−σ and v =	 1 − e−τ, compute the distribution F or G
of S 	= σ1 + · · · + σM or T 	= τ1 + · · · + τN, where M and N are geometric
of means q−1 and p−1.

2. Solve the system

P0 =K−�F�P1�� P1 =K+�G�P0��
3. Compute π = pP0 + qP1. ✷

From Lemma 3, Step 2 has a unique solution. Steps 1 and 3 are trivial.
Algorithm I bypasses the computation of P. However, it is sometimes simpler
to compute P, even if one is only interested in the value of π (see the examples
in the next sections). One then uses the following.
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Algorithm II (Computing π through P).

1. Compute R�f� and R�g�.
2. Compute P as a solution of (11), that is,

d

dy
�y �1− y�P�y�� = qK−�R�f��PR��y� − pK+�R�g��PL��y��

Recall that

K−�R�f��PR��y� =
∫ 1
y
R�f�

(
log

(
x

y

))
P�x� x

y
dx

and

K+�R�g��PL��y� =
∫ y
0
R�g�

(
log

(
1− x
1− y

))
P�x� 1− x

1− y dx�

3. Deduce P0 and P1 from P through

P0 = �µ0 + µ1�qK−�R�f��PR��(13)

P1 = �µ0 + µ1�pK+�R�g��PL��(14)

4. Recover π through π = pP0 + qP1, or skip Step 3 and write π as
π = �pq� �µ0 + µ1� �K−�R�f��PR� +K+�R�g��PL��� ✷

Algorithm II bypasses the computation ofF andG, but makes use ofR�f� and
R�g�. This suits best DF chains with distributions f and g such that R�f�
and R�g� are simple. We now apply these two algorithms to specific examples.

5. Exponential DF chains.

Theorem C. Assume that � �un� = Beta�a�1� and � �vn� = Beta�1� b�;
that is,

aua−1 du and b �1− v�b−1 dv�
Then, P0 = Beta�λ0� λ1+ 1�, P1 = Beta�λ0+ 1� λ1� and P = Beta�λ0� λ1�, with
λ0 	= qa and λ1 	= pb.

Furthermore, π is Beta if and only if π = P if and only if a = b. If this is
the case, π = P = Beta�qa�pa�. In the general case,

π�y� =
(
p

a
+ q

b

)
�a �1− y� + by�Beta�λ0� λ1��y��

Proof. Since � �σ� and � �τ� are exponential of parameters a and b, � �S�
and � �T� are exponential of parameters

λ0 	= qa and λ1 	= pb�
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Using the density of the exponential distribution, the differentiation of (6) and
(7) yields

yP′
0�y� + �1− λ0�P0�y� + λ0P1�y� = 0�(15)

�1− y�P′
1�y� − �1− λ1�P1�y� − λ1P0�y� = 0�(16)

In Lemma 11, µ0 = λ−10 and µ1 = λ−11 . This yields the result. ✷

Remark 17. The case a = b = 1 of Theorem C, that is, � �un� = � �vn�
uniform on �0�1�, is Theorem 9.21 of [4]. If, furthermore, p = 1

2 , π = Beta� 12 � 12�
has the arcsine density function, a fact noted in [3].

Remark 18. Plugging (16) into (15) and vice versa, one gets equations
which involve P1 alone and P0 alone:

y �1− y�P′′
1�y� + �1− λ0 + �λ2 − 2�y�P′

1�y� + λ2P1�y� = 0�(17)

y �1− y�P′′
0�y� + �2− λ0 + �λ2 − 2�y�P′

0�y� + λ2P0�y� = 0�(18)

where λ2 	= λ0 + λ1 − 1. Hence, P0 and P1 both solve Gauss’s hypergeometric
equations. By symmetry, one can check that P1 of the form

P1�y� =	 Q�y� λ0� λ1�

solves (17) if and only if P0�y� 	= Q�1 − y� λ1� λ0� solves (18). Hence, the
system (17) and (18) is really one equation and its “symmetric” version.
The general solutions of (17) and (18) are hypergeometric functions of type

2F1. Hence, the Beta functions of Theorem C should be viewed as special cases
of 2F1 functions.

6. Technical tools. We state notations and basic facts about hypergeo-
metric functions (see [1]), and we solve an integro-differential equation which
appears in various guises below.

6.1. Hypergeometric functions. For y ∈ �0�1�, W�y� 	= 4y �1 − y�. Thus,
W�y� ∈ �0�1� and

W′�y� = 4 �1− 2y�� �W′�2 = 16 �1−W�� W′′ = −8�

We sometimes write w for W�y�. For suitable a and b,

B�a� b� 	= 6�a�6�b�
6�a+ b� �

Gauss’s hypergeometric differential operator Ga�b� c is defined by

Ga�b� c�Q��w� 	= w�1−w�Q′′�w� + �c− �a+ b+ 1�w�Q′�w� − abQ�w��
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The hypergeometric function F�a� b� c�w� is defined by the following series,
which converges at least on the disc �w� < 1 (see 15.1.1 of [1]):

F�a� b� c�w� 	= ∑
n≥0

�a�n�b�n
�c�n

wn

n!

= 1+ ab

c
w+ a�a+ 1�b�b+ 1�

c�c+ 1�
w2

2!
+ · · · �

More generally, one defines F�a1� a2� � � � � b1� b2� � � � �w� by the series

F�a1� a2� � � � � b1� b2� � � � �w� 	=
∑
n≥0

�a1�n�a2�n · · ·
�b1�n�b2�n · · ·

wn

n!
�

The symbol pFq may be used instead of F to emphasize that p numbers ai
and q numbers bj appear. Recall that F�a� b� c� ·� solves

Ga�b� c�Q� = 0

on �0�1�, and that the following function is also a solution:

Q�w� 	= w1−cF�a− c+ 1� b− c+ 1�2− c�w��

As regards integrals of hypergeometric functions, if the real parts of r, s and
s+ c− a− b are positive,

∫ 1
0
wr−1�1−w�s−1F�a� b� c�w�dw = B�r� s�3F2�a� b� r� c� r+ s�1��(19)

A similar formula applies to the integral of any pFq.
We will use a trick due to Appell. The general solution of the third-order

differential equation

U′′′ + 3AU′′ + �2A2 +A′ + 4B�U′ + �4AB+ 2B′�U = 0�(20)

where A and B are arbitrary functions, is a linear combination of V2
1, V1V2

and V2
2 (see, e.g., Exercise 10, Chapter XIV of Whittaker and Watson [10]),

where V1 and V2 are two linearly independent solutions of the second-order
differential equation

V′′ +AV′ +BV = 0�(21)

Finally, when c = a+ b+ 1
2 , Clausen’s formula reads

2F1�a� b� c�w�2 = 3F2�2a�2b� a+ b� c�2c− 1�w��(22)
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6.2. A basic integration.

Proposition 19. (i) Assume that P solves

d

dy
�y�1− y�P�y�� = cy2λ−1

∫ 1
y
�1− x�x−2λP�x�dx

− c�1− y�2λ−1
∫ y
0
x�1− x�−2λP�x�dx�

(23)

for some given c and λ. Then, P is smooth and solves

y2�1− y�2P′′′ + αy�1− y��1− 2y�P′′

+ �β+ β′y�1− y��P′ + γ�1− 2y�P = 0�
(24)

for the following values of the parameters:

α 	= 5− 2λ�
β 	= c− 4λ+ 4�
β′ 	= −2c− 24+ 22λ− 4λ2�
γ 	= �2λ− 3��c+ 2− 2λ��

(ii) Assume that P =	 Q ◦W with W�y� 	= 4y�1−y� and that P solves (24).
Then, Q solves

w2�1−w�Q′′′ +w�α− α′w�Q′′ + �β+ β′′w�Q′ + γ′Q = 0�(25)

where α′, β′′ and γ′ are

α′ 	= α+ 3
2 � β′′ 	= 1

4β
′ − 1

2α� γ′ 	= 1
4γ�

(iii) Define Q by Q�w� 	= w−n
3F2�a1� a2� a3� b1� b2�w�� Then, Q solves (25)

if and only if n solves the indicial equation

n�n2 + �3− α�n+ β− α+ 2� = 0�(26)

and �ai�i and �bi�i solve, for every k,

3∏
i=1

�k+ n+ ai� = k�k− 1��k− 2� + α′k�k− 1� − β′′k− γ′

and

�k+ n+ 1�
2∏
i=1

�k+ n+ bi� = �k+ 1��k2 + �α− 1�k+ β��

(iv) Starting from (23), the indicial equation reads

n = 0 or n = 1− λ±
√
λ2 − c�
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and, introducing b3 	= 1, the parameters ai and bi satisfy

�n+ aii =
{
3
2 − λ�1− 1

2λ+ 1
2

√
λ2 − 2c�1− 1

2λ− 1
2

√
λ2 − 2c

}
�

�n+ bii =
{
1�2− λ+

√
λ2 − c�2− λ−

√
λ2 − c

}
�

Proof. Direct computations give (24). From it, one gets (25) through the
values of W′, W′′ and the chain rule. One gets part (iii), by equating first
the lowest degree terms of the expansions, which yields the indicial equation,
then the coefficients of wk−n, for k ≥ 0. Part (iv) follows from the values of
the parameters in (i) and (ii), and from the factorization of the polynomials
of (iii). ✷

7. Gamma DF chains. In this section, we assume that � �σ� = � �τ� =
Gamma�λ�2�, that is,

λ2te−λt dt�

and we call this distribution simply a Gamma distribution. We show that π,
P, P0 and P1 are related to hypergeometric functions.

7.1. Equations for P, P0 and P1. Since µ0 = E�σ�/q = 2/�qλ�, µ1 =
2/�pλ� and

R�f��t� = R�g��t� = λ2e−2λt�
(13) and (14) read

P0�y� = �µ0 + µ1�qλ2y2λ−1
∫ 1
y
P�x��1− x�x−2λ dx�

P1�y� = �µ0 + µ1�pλ2 �1− y�2λ−1
∫ y
0
P�x�x�1− x�−2λ dx�

(27)

and (11) reads

d

dy
�y �1− y�P�y�� = qλ2y2λ−1

∫ 1
y
�1− x�x−2λP�x�dx

−pλ2�1− y�2λ−1
∫ y
0
x�1− x�−2λP�x�dx�

(28)

The value λ = 1
2 is special in (28) since the monomials before the integrals

vanish. Then, P solves a second-order differential equation, and we compute
completely the solution in the symmetric case p = 1

2 . For λ �= 1
2 , P solves a

third-order differential equation, and we only give the form of the solution.

Convention. For the rest of this section, and unless we mention the con-
trary, we assume that p = 1

2 .
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7.2. Computing P and π when λ = 1
2 .

Proposition 20. Assume that p = 1
2 and λ = 1

2 . Then P is a linear com-
bination of two wn2F1�w� functions, and π is an affine combination of two
wn 3F2�w� functions (see the explicit values of all the coefficients below).

One computes P and π in four steps: (1) P solves a differential equation;
(2) the general solution of this equation involves hypergeometric functions; (3)
normalizing conditions give the values of the constants in P; (4) P yields π.

Proof. When p = 1
2 , the symmetry of the problem yieldsP1�y� = P0�1−y�

and P�1− y� = P�y�. Since λ = 1
2 , (28) reduces to

8
d

dy
�y�1− y�P�y�� =

∫ 1
y

1− x
x

P�x�dx−
∫ y
0

x

1− x P�x�dx�(29)

This is (23) for c 	= 1
8 and λ = 1

2 . One could use Proposition 19. We prefer to
solve (29) directly, differentiating once, setting P =	 Q ◦W and applying the
chain rule. After tedious computations, one gets

w�1−w�Q′′�w� + �2− 5
2w�Q′�w� − 9

16Q�w� = − 1
8w

−1Q�w��
that is,

wG3/4�3/4�2�Q��w� = − 1
8Q�w��(30)

An Ansatz to deal with the right-hand member − 1
8Q of (30) is to look for

solutions, proportional to

Q�w� =	 w−nR�w��
whereR is a power series in w such thatR�0� = 1. Equating the lowest degree
terms of (30), one gets

n�n− 1� = − 1
8 �

that is, n = n± with

n− 	= 1
2�1− 1√

2
� = �146+� n+ 	= 1

2�1+ 1√
2
� = 1− n− = 0�854−�

If n = ni with i ∈ �−�+, (30) is equivalent to G�R� = 0 for the Gauss’s
operator G of parameters �ai� a′i� bi� such that

bi 	= 2− 2ni�
and such that ai + a′i = 3

2 − 2ni and aia′i = 7
16 − 1

2ni. Hence,

ai 	= 3
4 − ni =	 a′i�

which gives a− = 0�603+ and a+ = −0�207−. The general solution of (30) on
�0�1� is a linear combination Q = A+Q+ +A−Q−, with

Qi�w� 	= w−niFi�w� where Fi 	= F�ai� ai� bi� ·��
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Since n+ �= n− and Fi�0� = 1, the asymptotic behavior of Qi�w� near w = 0
proves that Q− and Q+ are linearly independent. ✷

The exact computation of P and π involves two technical results. We omit
the proof of Lemma 21.

Lemma 21. For any nonnegative B,∫ 1
0
P�y�B�w�y��dy = 1

2

∫ 1
0
Q�w�B�w��1−w�−1/2 dw�

Lemma 22. Assume that � �σ� = � �τ� and p = 1
2 . Then,

E�Y0� = 1
2E�e−σ��

Proof. E�Y0� is a rational fraction in E�e−S�, because
� �Y0� = � �e−Se−TY0 + e−S�1− e−T���

with independent S, T and Y0. Lemma 12 shows that E�e−S� is a rational
fraction in E�e−σ�. When p = 1

2 , one gets the lemma. ✷

Exact computation of P and π. One can deduce the values of A− and A+
from the fact that P is the density of a distribution [see (31) below] and from
the determination of E�Y0� [see (32) below]. Lemma 21 with B = 1 yields∫ 1

0
Q�w��1−w�−1/2 dw = 2�(31)

Since µ0 = µ1 = E�σ�/p = 2E�σ�, the first equation of (27) reads

P0�y� =
1
2
E�σ�

∫ 1
y
P�x�1− x

x
dx�

After the interversion of the order of integration, Lemma 22 and Lemma 21
with B�w� = w yield∫ 1

0
Q�w�w�1−w�−1/2 dw = 16E�e−σ�/E�σ��(32)

Since E�e−σ� = 1
9 and E�σ� = 4, (19) implies that �A−�A+� solves the follow-

ing linear system∑
i

B�1− ni� 12�F�ai� ai�1− ni� bi� 32 − ni�1�Ai = 2�

∑
i

B�2− ni� 12�F�ai� ai�2− ni� bi� 52 − ni�1�Ai = 4
9 �

where the sums are over i ∈ �−�+. Numerically, one finds
�A−�A+� = �−0�0172−�0�249+��
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The plot of P over �0�1� is arcsinelike but a little bit flatter in its middle part
than the plot of the arcsine density. The density P yields π through

π�y� = 1
2

∫ 1
y
P�x�1− x

x
dx+ 1

2

∫ y
0
P�x� x

1− x dx�

The plot of π is even more arcsinelike than the plot of P. One gets a more
explicit form of π by differentiation. Then,

π ′�y� = 2�2y− 1�W�y�−1P�y��
that is, π ′ involves a linear combination of 2F1 functions. Integrating π ′ term
by term as a series in w, one gets

π�y� = π
(
1
2

)
+ 1
2

∑
i

Ai

ni
�3F2�ai� ai�−ni� bi�1− ni�w�w−ni

− 3F2�ai� ai�−ni� bi�1− ni�1���
The fact that the integral of π should be 1 yields the value of π� 12�. One gets

π�y� = 1+ 1
2

∑
i

Ai

ni

[
3F2�ai� ai�−ni� bi�1− ni�w�w−ni

−1
2 3F2

(
ai� ai�−ni� bi�

3
2
− ni�1

)
B

(
1− ni�

1
2

)]
�

7.3. Computing P.

Theorem D. Assume that p = 1
2 and λ > 0. Then, if λ �= 2 ± √

2, P is a
linear combination of three wn 3F2�w� functions.

Proof. (28) is equivalent to (23) for c = 1
2λ

2. For generic values of λ (see
below for the exceptions), Proposition 19 gives three different values of n, that
are n0 	= 0, and

n± 	= 1− λ�1± 1/
√
2��

If n = n0,
a1 = a2 = 1− 1

2λ� a3 = 3
2 − λ and b1� b2 = 2− λ�1± 1/

√
2��

If n = n±, one gets

a1 = a2 = λ� 12 ± 1√
2
�� a3 = 1

2 ± λ 1√
2
� b1 = λ�1± 1√

2
� and b2 = 1± λ

√
2�

This defines three functions Qi solutions of (25) with i ∈ �0�+�−, where
Qi�w� 	= w−ni Fi�w��

and eachFi is an hypergeometric function of type 3F2. Finally,P�y� is a linear
combination of the functions Qi ◦W. The degenerate cases are n± = n0, that
is,

λ = 2±
√
2� ✷
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Remark 23. Theorem D is the first result in this paper based on Proposi-
tion 19, that is on (23), twice differentiated to get (25). Thus, solutions of (25)
appear, which are not solutions of (23).
For instance, we suspect that P is a linear combination of Q+ and Q−.

Besides, Theorem D probably still holds in the degenerate cases, thanks to a
continuity principle for P, as a function of λ. We do not pursue this idea here.

7.4. Computing P0 and P1. From (27), P0 and P1 are indefinite integrals
of P. These formulas are not very explicit and we now try to compute P0 and
P1 directly. The cases of complete success are only sporadic.

Proposition 24. Assume that p = 1
2 .

(i) P0 and P1 solve third-order differential equations.
(ii) If λ = 1

2 , P
′
0 is determined by a linear combination of two Whittaker’s

functions (see a more precise statement in the proof).
(iii) If λ = 1/

√
2,

P0 = Beta�λ− 1
2 � λ+ 3

2��
P = Beta�λ− 1

2 � λ− 1
2��

π = 1
2 Beta�λ− 1

2 � λ+ 3
2� + 1

2 Beta�λ+ 3
2 � λ− 1

2��

Remark 25. Part (iii) follows from McFadden’s results since the computa-
tion of a Laplace transform yields that, if � �σ� = Gamma� 1√

2
�2�,

� �e−S� = Beta
(
1
2
+ 1√

2
�2

)
�

and [5] shows that, if � �e−S� = � �e−T� = Beta�a� b−a�, then P0 = Beta�a� b�
and P1 = Beta�a� b�. If furthermore b = a+ 2, then P = Beta�a� a�.
Part (iii) follows also from the application of our algorithms, and we omit

its proof.

Proof of (i). From the computation of its Laplace transform, F is a linear
combination of two exponentials. Differentiating twice P0 = K−�F�P1�, one
gets

y2P′′
0�y� + �3− 2λ�yP′

0�y� + �1− 2λ+ 1
2λ

2�P0�y� = 1
2λ

2P1�y��(33)

Setting P2�y� 	= y2P′
0�y� + �1− 2λ�yP0�y�, and noticing that, by symmetry,

P1�y� = P0�1− y�, one gets the fact that
P′
2�y� = 1

2λ
2�P1�y� −P0�y��

assumes opposite values at y and 1 − y, hence that P2 assumes the same
value at y and 1− y. Considering that P2 is also

P2�y� = −�1− y�1+2λ d
dy

��1− y�1−2λP1�y���
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and using (33) as an expression of P1�y� in terms of P0�y� and its derivatives,
one gets after some cumbersome computations that P0 solves the following
third-order equation:

y2�1− y�2P′′′
0 + y�1− y�A�y�P′′

0 +B�y�P′
0 + �1− 2λ�C�y�P0 = 0�(34)

where A�y� and C�y� are polynomials in y of degree at most 1, and B�y� is a
polynomial in y of degree at most 2. More precisely,

A�y� = 5− 2λ− �6− 4λ�y�
B�y� = �5λ2 − 12λ+ 7�y2 − �7λ2 − 13λ+ 9 �y+ 1

2λ
2 − 4λ+ 4�

C�y� = 1
2λ

2 − �1− λ�2�1− y�� ✷

Proof of (ii) (The case λ = 1
2 ). The P0 term of (34) cancels out. Then,

A�y� = 4�1− y�� B�y� = 17
8 − 17

4 y+ 9
4y

2�

Setting Q�y� 	= �1− y�2P′
0�1− y�, one gets

y2Q′′�y� + � 14y2 − 1
4y+ 1

8�Q�y� = 0�(35)

We claim that this is a rewriting of Whittaker’s equation

U′′�z� + �− 1
4 + κz−1 + � 14 −m2�z−2�U�z� = 0�

For m �= 0, two independent solutions are the confluent hypergeometric solu-
tionsMκ�m andMκ�−m, also called Whittaker’s functions (see [1]), defined by

Mκ�m�z� 	= e−z/2 zm+1/2
1F1�m− κ+ 1/2�1+ 2m�z��

Assuming that U solves Whittaker’s equation, F�z� 	= U�iz� solves
F′′�z� + � 14 + iκz−1 + � 14 −m2�z−2�F�z� = 0�

This is equivalent to (35) when κ 	= i/4 and m 	= 1/�2√2�. Finally, two
independent solutions of (35) are Q+ and Q−, with

Q±�y� 	= Re�Mi/4�±m�iy���
and P′

0 is a linear combination of

Q+�1− y�/�1− y�2 and Q−�1− y�/�1− y�2� ✷

Remark 26. Despite the mysterious form of P0 above, recall that, from
Proposition 20, π is easy to write. One sees that, depending on the cases,
some of the distributions π or P or P0 may assume a tractable form, while
the others do not.
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7.5. Computing π directly. Last but not least, one can try to compute π
directly, starting from (12). For Gamma intervals, k− and k+ are defined by

k−�Q��y� = λ2yλ−1
∫ 1
y
Q�x� log

(
x

y

)
dx

xλ
�

k+�Q��y� = λ2�1− y�λ−1
∫ y
0
Q�x� log

(
1− x
1− y

)
dx

�1− x�λ �

Hence, π is the only density of a distribution such that

π�y� = pλ2yλ−1
∫ 1
y
π�x� log

(
x

y

)
dx

xλ

+ qλ2�1− y�λ−1
∫ y
0
π�x� log

(
1− x
1− y

)
dx

�1− x�λ �

Proposition 27. Assume that p = 1
2 and λ = 1. Then, π is a linear com-

bination of three wn 3F2�w� functions.

Proof. The prefactors yλ−1 and �1− y�λ−1 cancel out and π solves

π�y� = 1
2

∫ 1
y
π�x� log

(
x

y

)
dx

x
+ 1
2

∫ y
0
π�x� log

(
1− x
1− y

)
dx

1− x�

From here, we proceed as in the proof of Proposition 19. Differentiating yields

π ′�y� = −1
2
y−1

∫ 1
y
π�x� dx

x
+ 1
2
�1− y�−1

∫ y
0
π�x� dx

1− x�

Differentiating �1 − y�π ′�y� cancels the second integral term, leaving a mul-
tiple of the integral from y to 1. Therefore, differentiating a multiple of the
result yields an equation in π ′′′, π ′′, π ′ and π, with no integral term. One sets
π =	 ρ ◦W, getting

2w3�1−w�ρ′′′ +w2�4− 7w�ρ′′ −w�1+ 5
2w�ρ′ + �1+ 1

4w�ρ = 0�(36)

One looks for solutions ρ such that w−nρ�w� is a series. Three solutions arise:
for n = 1,

ρ1�w� 	= 3F2

(
1
2
�−1
2
�−1
2
�2+ 1√

2
�2− 1√

2
�w

)
w�

and, for n = ± 1√
2
,

ρ±�w� 	= 3F2�n− 1
2 � n+ 1

2 � n+ 1
2 �n�1+ 2n�w�wn�

Finally, π is a linear combination of ρi ◦W, for i ∈ �1�+�−. ✷
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8. Gamma RC filters. Pawula and Rice [7] (see also [8]) consider the
case

� �S� = � �T� = Gamma�λ�2��
This is different from the case � �σ� = � �τ� = Gamma�λ�2� studied in Sec-
tion 7. In fact, such S and T are never the randomizations of some σ and τ
in the sense of Section 2 (we omit the proof). In [7], (11) is solved when λ = 1

2 .
Then, P is proportional to

W�x�−1/2F�a� b� 12 �1−W�x���(37)

where a+ b = 1
2 and ab = 1

8 , that is,

a 	= 1
4�1− i�� b 	= 1

4�1+ i��(38)

When λ �= 1
2 , [7] does not solve (11), but provides intricate recurrence formulas

for the coefficients of the series expansion of P.
Since (11) is (23) for c 	= λ2, Proposition 19 yields solutions w−n

3F2�w� for
the exponents

n0 = 0 and n− = n+ = 1− λ�
Hence, the indicial equation is degenerate. We now solve the case λ = 1, when
the three exponents coı̈ncide.

Proposition 28. If λ = 1, P is a linear combination of F1 and F2, with

F1�y� 	= F2�y� +F2�1− y� and F2�y� 	= F�y�F�1− y��
where F 	= 2F1�a� b�1� ·�. Thus, F2 = 3F2�2a�2b� 12 �1�1� ·�.

Proof. From Proposition 19, P solves

y2�1− y�2P′′′ + 3�1− 2y�y�1− y�P′′

+�8y2 − 8y+ 1�P′ − �1− 2y�P = 0�
(39)

This is (20) of Appell’s trick in Section 6.1, with

A�y� 	= 1− 2y
y�1− y� and B�y� 	= −1

2y�1− y� �

Then, (21) becomes

y�1− y�V′′ + �1− 2y�V′ − 1
2V = 0�(40)

that is, Ga�b�1�V� = 0. Hence, one can choose

F�y� 	= F�a� b�1�y��
and one line of computation shows that F�1− y� is also solution of (40), and
is independent of F�y� (for instance, because F is convex and increasing).
Hence, using the symmetry of P, P�y� is a linear combination of

F�y�2 +F�1− y�2 and F�y�F�1− y�� ✷
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9. Partial results on Beta DF chains. McFadden [5] studies the case
where � �S� = � �T� =McFa�a� b� has density

e−at �1− e−t�b−a−1/B�a� b− a��
with b > a. Then, � �e−S� = Beta�a� b− a�. From [5],

P0 = Beta�a� b� and P1 = Beta�b� a��
and P involves incomplete Beta functions. This last result shows that P is a
linear combination involving 2F1 functions.
While the methods of [5] seem difficult to apply to DF chains, our methods

(integro-differential equations) seem difficult to apply to Beta distributions in
general. Hence, we consider cases where R�F�, defined in Section 3.1, has a
simple form. For example, if b = a + 1, R�F� = aδ0 (this is the case studied
in Section 5). If b = a+ 2,

R�F��t� = a�a+ 1�e−�2a+1�t(41)

and, if b = a+ 3,
R�F��t� = 2a�a+ 1��a+ 2�A−1e−3�a+1�t/2 sin�At/2��

with A 	= √
3a2 + 6a− 1. We focus on the case b = a+ 2.

Theorem E. Assume that � �u� = � �1−v� = Beta�a�2� and p = 1
2 . Then,

if a �= 3, P is a linear combination of three functions wn3F2�w�.

Proof. Since R�f� is given by (41) and R�F� = qR�f�, and since the
same applies to G and g with p instead of q, P solves

d

dy
�y�1− y�P�y�� = qa�a+ 1�y2a

∫ 1
y
�1− x�x−�2a+1�P�x�dx

−pa�a+ 1��1− y�2a
∫ y
0
x�1− x�−�2a+1�P�x�dx�

When p = 1
2 , this is (23), with c 	= 1

2 a �a+1� and λ 	= a+ 1
2 . Thus, c = 1

2 λ
2− 1

8 ,
and the solutions of the indicial equation of Proposition 19 are

n = 0� n = 1
2 − a± 1

2

√
2a2 + 2a+ 1�

When a �= 3, these numbers are all different, and P is a linear combination
of the three corresponding functions. ✷

Remark 29. The methods of our paper yield a proof of Theorem 6.1 of [3],
which we sketch below.

Theorem 6.1 of [3]. Assume that p = 1
2 , � �u� = � �v� = Beta�a� a� and

π = Beta�b� b�. Then, a = 1 and b = 1
2 , that is, � �u� = � �v� is uniform.
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Sketch of the proof. Assume that p, u, v and π are as prescribed above,
start from (12) and use along the way the fact that∫ 1

0
�1− x�a−1xb−1�1− yx�−c dx = B�a� b�2F1�b� c�a+ b�y��

Then, one gets that G�x� 	= xa F�x�+�1−x�a F�1−x� must be constant, with
F�x� 	= 2F1�2b− a� a�a+ b�x��

Now, use the fact that F solves Gauss’s hypergeometric differential equation
to write a second-order differential equation that G solves. Use xaF�x� =
xa +O�xa+1� when x→ 0 to compute the xa−1 term of this equation.
This term must be zero, that is, a�a − 2b� = 0. Since a > 0, a = 2b and

F = 1. Finally, the only case where xa + �1− x�a is constant is a = 1.
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