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GENEALOGIES AND INCREASING PROPAGATION OF CHAOS
FOR FEYNMAN-KAC AND GENETIC MODELS

By P. Del Moral and L. Miclo

LSP-CNRS and Université Toulouse III

A path-valued interacting particle systems model for the genealogi-
cal structure of genetic algorithms is presented. We connect the historical
process and the distribution of the whole ancestral tree with a class of
Feynman-Kac formulae on path space. We also prove increasing and uni-
form versions of propagation of chaos for appropriate particle block size
and time horizon yielding what seems to be the first result of this type for
this class of particle systems.

1. Introduction. Over the last two decades them have been important
developments centering around the connections between genetic algorithms
and Feynman-Kac formulae. This subject has natural links to biology, evolu-
tionary computing, physics and advanced signal processing. The reader who
wishes to know more details about these connections and specific applications
is recommended to consult the survey paper [8] and references therein. In the
previously referenced paper we essentially discussed the asymptotic behavior
of the empirical measures associated to genetic-type particle systems as the
number of particles tends to infinity. The strong versions of propagation of
chaos presented here provide several measures of centrality and asymptotic
independence for the distribution of a block of particles up to a given time
horizon. These asymptotic results complement and strengthen those presented
in [8].
Another side topic of the present work concerns the modeling and the con-

vergence analysis of the historical process in population genetics. Aside from
inherent and mathematical interest one of the practical reasons for studying
the genealogical structure of a genetic algorithm stems from the fact that this
set up is precisely what we need to solve numerically the so-called non linear
filtering and smoothing problem.
This opening section is decomposed into three parts. We begin in Section

1.1 with the Feynman-Kac formulae and provide a brief description of the
corresponding genetic-type interacting particle system approximating model.
In Section 1.2 we describe in some details the main results of the paper. In
Section 1.3 we close with some comments on related works on the subject and
some open problems.
Here are some standard notations to be used in all the paper. Let � �E�

and �b�E� denote respectively the set of probability measures and bounded
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measurable functions on a given measurable space �E�� �. As usual �b�E� is
regarded as a Banach space with the supremum norm

∀f ∈ �b�E�� �f� = sup
x∈E

�f�x��

The relative entropy Ent�µ1�µ2� and the total variation distance �µ1 − µ2�tv
between probability measures µ1, µ2 ∈ � �E� are defined by

Ent�µ1�µ2� =
∫
log

dµ1
dµ2

dµ1

if µ1 	 µ2 and ∞ otherwise, and

�µ1 − µ2�tv = sup ��µ1�f� − µ2�f�� � f ∈ �b�E�� �f� ≤ 1��
For a distribution µ ∈ � �E� and α ≥ 1 we also write �.�α�µ the �α�µ�-norm

∀f ∈ �α�µ�� �f�α�µ =
(∫

�f�α dµ
) 1

α

�

We also recall that any Markov transitionK�x1� dx2� from a measurable space
�E1��1� into another measurable space �E2��2� generates two operators. One
acting on bounded �2-measurable functions f ∈ �b�E2� and taking values in
�b�E1�

∀�x1� f� ∈ �E1 ×�b�E2�� � �Kf��x1� =
∫
E2

K�x1� dx2�f�x2�

and the other one acting on measures µ1 ∈ � �E1� and taking values in � �E2�

∀�µ1�A� ∈ �� �E1� × �2� � �µ1K��A� =
∫
E1

µ1�dx1�K�x1�A��

Finally, if L�x2� dx3� is a Markov transition from �E2��2� into another mea-
surable space �E3��3� then we denote �KL��x1� dx3� the composite operator

�KL��x1� dx3� =
∫
E2

K�x1� dx2�L�x2� dx3��

1.1. Feynman-Kac formulae and genetic algorithms. Throughout the se-
quel ��En��n� � n ∈ �� denotes a collection of measurable spaces. We further
assume that X = �Xn � n ∈ �� is a time inhomogeneous Markov chain such
that at the nth instant of time the stateXn takes values in En and we denote
by Kn�xn−1� dxn� the Markov transition of X at time n ∈ �. Let there also be
given a collection of bounded �n-measurable and strictly positive functions gn

on En, n ∈ �.
We have shown in earlier papers that genetic algorithms arise naturally as

particle approximating models of distributions given by

∀n ∈ �� ∀f ∈ �b�En�� ηn�f� =
γn�f�
γn�1�
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where γn�f� is a Feynman-Kac formula given by

γn�f� = Ɛ�f�Xn�
n−1∏
p=0

gp�Xp��(1)

(see, e.g., [8] and references therein). To be more precise we recall that the
distributions �ηn � n ∈ �� are solution of a measure-valued dynamical system

∀n ∈ �� ηn+1 = �n+1�ηn�(2)

where the initial condition η0 ∈ � �E0� is the distribution of X0. For each
n ∈ � the one step mapping

�n+1 � � �En� −→ � �En+1�
associates to any η ∈ � �En� a probability measure �n+1�η� ∈ � �En+1� given
by

∀f ∈ �b�En+1�� �n+1�η��f� =
η�gn�Kn+1f��

η�gn�
�(3)

We recall that the N-interacting particle systems approximating model as-
sociated to an abstract measure valued dynamical process (2) is the Markov
chain �ξn � n ∈ �� taking values at each time n ∈ � in the product state
spaces �EN

n � n ∈ �� and defined by

��ξn+1 ∈ dxn+1�ξn = xn� =
N∏
p=1

�n+1 �m�xn�� �dxp
n+1�(4)

where for each n ≥ 0,m�xn� = 1
N

∑N
i=1 δxin is the empirical measure associated

to xn = �x1n� � � � � xN
n � ∈ EN

n and dxn = dx1n × · · · × dxN
n is an infintesimal

neighborhood of xn. The initial system of particles ξ0 = �ξ10� � � � � ξN0 � consists
in N independent random variables with common law η0. We refer to [4] for
a study of this abstract and general N-interacting particle systems model. In
our framework and in view of (3) we have that

�n+1 �m�xn�� =
N∑
i=1

gn�xi
n�∑N

j=1 gn�xj
n�
Kn+1�xi

n� .�

Thus, we see that the transition ξn → ξn+1 of the former Markov model splits
up into two separate mechanisms

ξn=�ξ1n� � � � � ξNn � ∈ EN
n

Selection−−−−−−−→
ξ̂n=�ξ̂1n� � � � � ξ̂Nn � ∈ EN

n

Mutation−−−−−−−→ ξn+1 ∈ EN
n+1

(5)

The selection transition consists in choosing randomlyN particles �ξ̂1n� � � � � ξ̂Nn �
with common law

N∑
i=1

gn�ξin�∑N
j=1 gn�ξjn�

δξin
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After selection each particle ξ̂in, 1 ≤ i ≤ N, evolves according to the transition
Kn+1. In other words ξ

i
n+1 is a random variable with law Kn+1�ξ̂in� .�.

Note that the larger gn�ξin� is the more likely particles ξ̂jn, 1 ≤ j ≤ N, are
inserted in site ξin. When a particle ξ̂

j
n chooses a site ξin we can interpret ξ

i
n

as being the “parent” of the individual ξ̂jn. In the same vein, recalling that ξin
has been sampled according to distribution Kn�ξ̂in−1� .�, the particle ξ̂in−1 can
also be regarded as the parent of ξin. In this way ξ̂in−1 is an ancestor of ξ̂

j
n.

Running back in time we can mentally trace in this way the whole genealogy
of any particle.
Unfortunately the previous particle model does not carry any information

about such ancestors. In this study we propose a particle Markovian model
which allows us to trace at each time the complete genealogy of each individ-
ual.
Incidently through a suitable state space augmentation the historical pro-

cess has exactly the same form as before. Therefore most of the asymptotic
results known for previous genetic algorithm will also be valid for this ge-
nealogical model.
The key idea is to consider path-valued particles so that to trace the ances-

tral information back in time. Intuitively the resulting selection transition will
consist in exchanging the whole ancestral information of the particles and the
mutation only consists in extending each path with an elementary mutation
transition.

1.2. Statement of the main results. This study is related to the one in [8]
where the asymptotic behavior of the empirical measures

ηN
n = 1

N

N∑
i=1

δξin ∈ � �En� and

ηN
�0�n� =

1
N

N∑
i=1

δ�ξi0�����ξin� ∈ � �E0 × · · · ×En�
(6)

as N tends to infinity is considered. Although we have permitted here time
dependent state spaces all results such as fluctuations and large deviations
principles presented in there can be used without further work to study the
convergence of the random empirical measures (6) to the deterministic ones

ηn ∈ � �En� and η�0�n�
def �= η0 ⊗ · · · ⊗ ηn ∈ � �E0 × · · · ×En�

In fact the time parameter n ∈ � can always be added to the state space as an
additional variable. As a parenthesis if we consider the sequence�n = �n�Xn�
on the state space E = ⋃

n��n� ×En� we do get a time homogeneous Markov
chain � with transition

	 ��p�x�� d�q�y�� = δp+1�dq�Kq�x�dy�
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Nevertheless various useful mixing type conditions on the time inhomoge-
neous transitions Kq introduced in [8] and required in the sequel are not
preserved by this state space augmentation. This is one of the reasons why
we have chosen to consider an abstract time homogeneous Markov chain X.
The other reason comes from the fact that the historical process model given
next is best introduced in terms of a path-valued genetic model. Here again
the time parameter can be added in the state space but we believe it is more
transparent to describe the genealogy of individuals at each time n ∈ � in
terms of ancestral paths from the origins up to time n.
We do not get into more details since a full discussion would be too great di-

gression here but we would like to mention that the only assumption needed in
the study of the convergence of the particle density profiles ηN

n is the following
condition on the fitness function �gn � n ≥ 0�:
�
 � ∀n ∈ �� sup

x�y∈En

∣∣log�gn�x�/gn�y��
∣∣ < ∞�

In contrast, the investigation of uniform convergence results with respect to
the time parameter for the N-approximating measures ηN

n and the asymp-
totic behavior of the empirical measures on path space ηN

�0�n� rely on several
strengthening of an additional mixing type condition on the mutation tran-
sitions �Kn � n ≥ 1�. To describe these different levels of assumptions it is
useful to introduce a sequence of conditions indexed by a parameter α ∈ �1�∞�,
namely

∀n ∈ ��∀x ∈ En� Kn+1�x� .� ∼ ηn+1 and

sup
x∈En

(
dKn+1�x� .�

dηn+1

)
∈ �α�ηn+1��

�	 �α

With �
�N�
�0�n� denoting the distribution of the path particles

∀1 ≤ i ≤ N� ξi�0�n� = �ξi0� � � � � ξin�

and �
�N�q�
�0�n� , 1 ≤ q ≤ N, its marginal on the first q-particles and �

�N�q�
n the

marginal of the latter at time n our main result will basically be stated as
follows.

Theorem 1.1. For any n ≥ 0 and 1 ≤ q ≤ N we have the following
implications�

�
 � �⇒ ���N�q�
n − η⊗q

n �tv ≤
exp �q c�n��

N
�(7)

�
 �and �	 �2�⇒Ent
(
�

�N�q�
�0�n�

∣∣∣η⊗q
�0�n�

)
≤ qc�n�

N
�(8)

�
 �and �	 �α�⇒
∥∥∥∥d��N�q�

n

dη
⊗q
n

− 1
∥∥∥∥
α�η

⊗q
n

≤ exp �q c�n��
N

×
∥∥∥∥sup

x

dKn�x� .�
dηn

∥∥∥∥
α�ηn

(9)

for some finite constant c�n� whose value only depends on the time parameter n.
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If �
 � and �	 �1 are both satisfied with

sup
n�x�y

∣∣∣∣log gn�x�
gn�y�

∣∣∣∣ < ∞ and sup
n�x�y

∣∣∣∣log dKn�x� .�
dηn

�y�
∣∣∣∣ < ∞(10)

then

Ent
(
�

�N�q�
�0�n�

∣∣∣η⊗q
�0�n�

)
≤ qnc

N
and sup

n≥0

∥∥∥∥∥d�
�N�q�
n

dη
⊗q
n

− 1
∥∥∥∥∥
∞�η

⊗q
n

≤ exp �q c�
N

(11)

for some finite constant c which does not depend on the time parameter n.

Remark 1.2. The entropy and �α-estimates are stronger than those in vari-
ation. In fact if we want to translate all these estimates in terms of the total
variation distance we use the inequalities

∀µ1 	 µ2� 2�µ1 − µ2�2tv ≤ Ent�µ1�µ2� ≤
∥∥∥∥dµ1dµ2

− 1
∥∥∥∥2
2�µ2

(cf. [2], Theorem 4.1 for the first inequality and in this paper Lemma 3.10, page
1196 for the �2 bound). Consequently, under �	 �2 we also have the estimates
for the total variation distance∥∥∥��N�q�

�0�n� − η
⊗q
�0�n�

∥∥∥
tv
≤

√
q

N
c′�n� and

∥∥∥��N�q�
n − η⊗q

n

∥∥∥
tv
≤ exp �q c

′�n��
N

for some finite constant c′�n� whose value only depends on the parameter n.
In addition, if the uniform bounds (10) hold we have∥∥∥��N�q�

�0�n� − η
⊗q
�0�n�

∥∥∥
tv
≤

√
qn

N
c′ and sup

n≥0

∥∥∥��N�q�
n − η⊗q

n

∥∥∥
tv
≤ exp �q c

′�
N

for some finite constant c′ which does not depend on the time parameter.

As a direct corollary of Theorem 1.1 we deduce strong versions of propa-
gation of chaos for appropriate increasing block size q�N� and time horizon
n�N�.

Corollary 1.2. Under �
 � and �	 �2 the following implication holds�

lim
N→∞

q�N�
N

= 0 �⇒ ∀n ≥ 0� lim
N→∞

Ent
(
�

�N�q�N��
�0�n�

∣∣∣∣η⊗q�N�
�0�n�

)
= 0�

In addition if �10� holds then

lim
N→∞

q�N�n�N�
N

= 0 �⇒ lim
N→∞

Ent
(
�

�N�q�N��
�0�n�N��

∣∣∣∣η⊗q�N�
�0�n�N��

)
= 0

and there exists some finite constant q0 < ∞ such that

∀N ≥ 1� q�N� = q0 logN �⇒ lim
N→∞

sup
n≥0

∥∥∥∥∥d�
�N�q�N��
n

dη
⊗q�N�
n

− 1
∥∥∥∥∥
∞�η

⊗q�N�
n

= 0�
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1.3. Notes and contents. This study has been influenced by papers of Ben
Arous and Zeitouni [1], Donnelly and Kurtz [12, 11], Graham and Méléard
[14] and Méléard [15].
To the best of our knowledge the idea to use genealogical paths to trace

the ancestral information of particles first appeared in Ethier and Griffiths
[13]. In this work the authors study the historical process with mutations but
no selection as a measure valued diffusion process. More recently Donnelly
and Kurtz study in [12, 11] genealogical processes with selections and recom-
binations in the context of Fleming-Viot processes. In this work the authors
consider a specific infinite population model with a particular labeling of the
individuals so that to identify the type of ancestors of populations. In contrast
to our situation the limiting Fleming-Viot model is a random processes. Al-
though our discrete generation particle models differ from the ones discussed
in [12, 11] such labeling techniques can probably be used in our setting. In
contrast, the strategy we have chosen here is to augment the state space so
that to represent the historical process as a genetic type interacting parti-
cle system in path space. We believe this construction is more transparent
than previously published genealogical models in genetic populations litera-
ture. It also gives novel and explicit connections between the distributions of
genealogical trees of genetic populations, path-valued genetic algorithms and
Feynman-Kac formulae.
In [14, 15] the authors present strong propagation of chaos for the total vari-

ation distance for the N-particle approximating model associated to a class
of generalized Boltzmann equations. Their approach is essentially based on
interacting graphs and precise coupling techniques. They show that the order
of convergence for the total variation distance between the law of the q-first
particles and the limiting distribution on a compact interval �0� t� is q2 c�t�/N.
Their result does not depend on the form of the mutation transition and it im-
plies a increasing propagation of chaos for the total variation distance for block
size q�N� = o�√N�. The relationships between spatially homogeneous Boltz-
mann equations and continuous time Feynman-Kac formulae are described in
some details in [8, 9]. In this connection the increasing propagation of chaos
for the relative entropy for block size q�N� = o�N� given in Corollary 1.2 can
be viewed as an improvement of earlier results. But in view of the work of
Graham and Méléard [14] and Méléard [15] we believe that the estimate in
total variation distance (7) is not sharp and it can probably be extended to
distributions in path space. In other words we make the plausible conjecture
that the r.h.s. upper bound in (7) can be replaced by q2 c�n�/N.
As we shall see in the further development of Section 3.2 the entropy esti-

mates on path space presented in Theorem 1.1 are based on the fact that the
distribution of particles can be regarded as a mean field Gibbs measure. In
the recent and seminal paper [1] Ben Arous and Zeitouni proved increasing
propagation of chaos for block size q�N� = o�N� for a large class of Gibbs
measures with polynomial interactions and bounded Gibbs potential function
([1] also contains a useful bibliography on this subject). As will be seen our
potential function does not satisfy these conditions and it does not fit into the
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framework of classical literature on the subject. In this work we present an
alternative approach. In contrast to [1] our strategy is not based on Laplace
asymptotics and Banach space embedding. We also extend the previous result
in three different ways. First we extend this result to a fairly general class of
N-particle approximating models associated to an abstract sequence of func-
tions ��n � n ≥ 1�. Second we present an increasing propagation of chaos for
a pair (block size/time horizon) q�N� × n�N� = o�N�. Finally we propose a
novel uniform increasing propagation of chaos, w.r.t. the time parameter for
the nth marginals ��N�q�

n .
This paper is divided in two parts devoted respectively to the modeling of

the historical process in terms of genetic algorithms in path space and the
study of strong versions of propagation of chaos.
In Section 2 we propose a particle model for the historical process associated

to a genetic algorithm. Section 2.1 introduces a path-valued interacting parti-
cle systems model. In Section 2.2 we show that the latter can be regarded as
the historical process associated to a genetic algorithm. The modeling impact
of this framework in the study of non linear filtering and smoothing problems
is performed in Section 2.3. In Section 2.3 we examine several examples of
fitness functions and mutation transitions which fit into our framework.
Section 3 is concerned with the proof of Theorem 1.1. This section is divided

in two parts. In Section 3.1 we study the asymptotic behavior as N tends to
infinity of the time marginals �P�N�q�

n � N ≥ 1�. In Section 3.2 we prove the
entropy estimates on path space. The approach taken in here is different from
the one we took in Section 3.1 and it can be read independently of the latter.
Furthermore we propose �α-conditions on theN-particle approximating model
underwhich an increasing propagation of chaos holds for a fairly general class
of functions ��n � n ≥ 0�. Incidently we shall see that these criteria also
appear to be useful in the study of weak convergence of the corresponding
empirical processes.

2. Path-valued interacting particle systems.

2.1. Description of the models. Let us suppose that X is a path-valued
Markov chain of the following type

∀n ∈ �� Xn = �X′
0� � � � �X

′
n� ∈ En = E′

0 × · · · ×E′
n(12)

whereX′ = �X′
n � n ≥ 0� is an auxiliary Markov chain taking values in an ad-

ditional collection of measurable spaces ��E′
n��

′
n� � n ≥ 0�. SinceX0 = X′

0 we
have that E0 = E′

0. We also notice that the Markov transitions �Kn � n ≥ 1�
of X and the Markov transitions �K′

n � n ≥ 1� of X′ are connected by the
formula

∀n ∈ �� Kn+1��x′
0� � � � � x

′
n�� d�y′

0� � � � � y
′
n+1��

= δ�x′
0�����x

′
n��d�y′

0� � � � � y
′
n��K′

n+1�y′
n� dy

′
n+1�

(13)
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We finally note that for this path-valued Markov chain the Feynman-Kac dis-
tributions (1) have the form

∀n ∈ �� ∀f ∈ �b�En��

γn�f� =


Ɛ

(
f�Xn�

n−1∏
m=0

gm�Xm�
)
�

Ɛ

(
f�X′

0� � � � �X
′
n�

n−1∏
m=0

gm�X′
0� � � � �X

′
m�

)
�

(14)

Using the framework of the preceding section we see that the N-genetic ap-
proximating model consists here in path-valued particles

∀n ∈ ��∀1 ≤ i ≤ N�

{
ξin = �ξ′i0�n� � � � � ξ′in�n� ∈ En = E′

0 × · · · ×E′
n�

ξ̂in = �ξ̂′i0�n� � � � � ξ̂′in�n� ∈ En = E′
0 × · · · ×E′

n�
(15)

The selection transition consists in choosing randomly N-path particles �ξ̂′i0�n�
� � � � ξ̂′in�n�, 1 ≤ i ≤ N, with common law

N∑
i=1

gn�ξ′i0�n� � � � � ξ′in�n�∑N
j=1 gn�ξ′j0�n� � � � � ξ′jn�n�

δ�ξ′i0�n�����ξ′in�n��

In view of (13) and during the mutation transition each end point ξ̂′in�n evolves
randomly according to the transition K′

n+1, that is

ξin+1 = ��ξ′i0�n+1� � � � � ξ′in�n+1�� ξ′in+1�n+1�
= ��ξ̂′i0�n� � � � � � � � ξ̂′in�n�� ξ′in+1�n+1� ∈ En+1 = En ×E′

n+1

where ξ′in+1�n+1 is a random variable with law K′
n+1�ξ̂′in�n� .�.

2.2. The historical process. To see the strength of the preceding modeling
it is instructive to note that each path-particle

ξin = �ξ′i0�n� � � � � ξ′in�n� and ξ̂in = �ξ̂′i0�n� � � � � ξ̂′in�n�
can be regarded as the genealogical branch of the end point particles ξ′in�n and
ξ̂′in�n. In this sense the former model can be regarded as a genealogical path-
valued genetic algorithm. If we use a graphical representation we easily see
that the set of all individuals and vertices defined formally by setting

∀n ∈ �� ∀1 ≤ i ≤ N� ξ′i0�n −→ ξ′i0�n −→ · · · −→ ξ′in−1�n −→ ξ′in�n

represents the complete genealogy of the population �ξ′in�n � 1 ≤ i ≤ N� at
time n ∈ �. At closer inspection we also notice that selection acts on the
whole ancestors but the mutation stage does not affect the ancestry levels but
each genealogical path is only extended with an elementary move according
to the transitions K′

n.
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Next we examine the situation in which the selection pressure only depends
on the end point particles. In this situation we will see that the resulting
marginal model formed by the projections of the path particles in E′

0×· · ·×E′
n

on the sets E′
n is again a selection/mutation genetic algorithm. Furthermore

the complete genealogy of this marginal model can be recovered in a natural
and simple way from the path-valued model.
Suppose the fitness function gn only depends on the nth component, that

is

∀n ∈ �� gn � En = E′
0 × · · · ×E′

n −→�0�∞�
xn = �x′

0� � � � � x
′
n� −→ gn�xn� = g′

n�x′
n�

for some bounded and strictly positive function g′
n on E′

n. In this situation we
see that the marginal model

ξ′n
def �= �ξ′1n�n� � � � � ξ′Nn�n� ∈ E′N

n

Selection−−−−−→ ξ̂′n

def �= �ξ̂′1n�n� � � � � ξ̂′Nn�n� ∈ E′N
n

Mutation−−−−−→ ξ′n+1 ∈ E′N
n+1

is again a selection/mutation genetic algorithm. It is clearly defined as in (5)
by replacing gn and Kn by g′

n and K′
n.

To clarify the presentation we slightly abuse the notation suppressing the
double notational dependence on the time parameter and we simply write ξ′in
and ξ̂′in instead of ξ

′i
n�n and ξ̂′in�n.

Using these simplified notations the selection/mutation transitions are de-
fined as follows. During the selection stage the N-particles ξ̂′n = �ξ̂′1n � � � � � ξ̂′Nn �
are chosen independently with the distribution

N∑
i=1

g′
n�ξ′in�∑N

j=1 g′
n�ξ′jn �

δξ′in

After selection, each particle ξ̂′in evolves randomly according to K
′
n+1, so that

for each 1 ≤ i ≤ N, ξ′in+1 denotes a random variable with law K′
n+1�ξ̂′in� .�.

As announced, the path valued selection/mutation genetic algorithm �ξn� ξ̂n;
n ≥ 0� gives precisely the time evolution of the genealogical structure of the
latter. More precisely the path-valued particles

∀1 ≤ i ≤ N� ξ̂in = �ξ̂′i0�n� � � � � ξ̂′in�n� ∈ En = E′
0 × · · · ×E′

n

represent the line of ancestors �ξ̂′i0�n� � � � � ξ̂′in−1�n� of the individual ξ̂′in . During
the mutation transition the branch of ancestors does not change and the “par-
ent” particle ξ̂′in�n evolves according to K

′
n+1.

From previous observations it is also easily seen that the Markov chain{
ξ′n� ξ̂

′
n � n ∈ �

}
(16)
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is theN-genetic approximating model associated to a measure valued dynam-
ical system

∀n ∈ �� η′
n+1 = �′

n+1�η′
n�

where η′
0 = η0 ∈ � �E′

0� = � �E0� and the one step mappings
∀n ∈ �� �′

n+1 � � �E′
n� −→ � �E′

n+1�
are defined as in (3) by replacing gn, Kn and En by g′

n, K
′
n and E

′
n. It is also

easily checked that the resulting distributions γ′
n and η

′
n are the nth marginal

of γn and ηn, that is

∀n ∈ ��∀f′ ∈ �b�E′
n�� η′

n�f′� = γ′
n�f′�
γ′
n�1�

(17)

with

γ′
n�f′� = Ɛ

(
f′�X′

n�
n−1∏
m=0

g′
m�X′

m�
)
�(18)

Condition �	 �1 is clearly never met for the mutation transitions �Kn � n ≥ 1�
defined in (13). However if the elementary transitions �K′

n� n ≥ 1� of the
marginal model satisfy for some α ∈ �1�∞� the mixing type condition

∀n ∈ ��∀x ∈ E′
n�K

′
n+1�x� .� ∼ η′

n+1 and

sup
x∈En

(
dK′

n+1�x� .�
dη′

n+1

)
∈ �α�η′

n+1���	 ′�α

then techniques presented in [8] apply to study uniform convergence results
and the asymptotic behavior of the empirical measures

η′N
n = 1

N

N∑
i=1

δξ′in ∈ � �E′
n� and η′N

�0�n� =
1
N

N∑
i=1

δ�ξ′i0 �����ξ′in � ∈ � �E′
0 × · · · ×E′

n�

as N → ∞ to the deterministic measures

η′
n ∈ � �E′

n� and η′
�0�n�

def �= η′
0 ⊗ · · · ⊗ η′

n ∈ � �E′
0 × · · · ×E′

n��
Moreover the conclusions of theorem 1.1 remains valid if we replace ξn, En,
Kn and �	 �α by ξ′n, E′

n, K
′
n and �	 ′�α.

Another remark is that most of the convergence results presented in [8] such
as fluctuations, Donsker and Glivenko-Cantelli Theorem but also exponential
rates and large deviations only rely on assumption �
 �. Recalling that the
historical process is nothing else than a particular example of genetic model
the latter results can be used without further work to study the asymptotic
behavior of the genealogical-path empirical measures

ηN
n = 1

N

N∑
i=1

δξin = 1
N

N∑
i=1

δ�ξ′i0�n�����ξ′in�n� ∈ � �En� = � �E′
0 × � � �×E′

n��



GENEALOGIES AND INCREASING PROPAGATION OF CHAOS 1177

Our last remark is that estimate (7) in Theorem 1.1 is again independent
on the form of the mutation transition. Thus it can be used to evaluate the
distance in total variation between η

⊗q
n and the distribution of the first q-

genealogical path-valued particles
{�ξ′i0�n� � � � � ξ′in�n� � 1 ≤ i ≤ q

}
.

2.3. Applications to non linear filtering. The Feynman-Kac formulae (14)
and (18) and their particle approximating models play a major role in the
theory of non linear filtering. In mathematical terms the non linear filtering
problem can be expressed as follows.
Let �X�Y� = ��Xn�Yn� � n ≥ 0� be a Markov chain taking values in

some product spaces ��En × Fn� � n ≥ 0�. Here ��Fn��n� � n ≥ 0� is an
auxiliary sequence of measurable spaces. Further we assume that the initial
distribution µ0 the Markov transitions �Gn � n ≥ 1� of �X�Y� have the form

µ0�d�x0� y0�� = gn�x0� y0�η0�dx0�γ0�dy0��(19)

Gn��xn−1� yn−1�� d�xn� yn�� = gn�xn� yn�Kn�xn−1� dxn�γn�dyn�(20)

where, for each n ∈ �, gn � En×Fn →�0�∞� is a strictly positive function and
γn ∈ � �Fn�.
The non linear filtering problem consists in computing the conditional dis-

tributions of the state signal X given the observations Y. To understand
the motivations behind this problem we can think the signal X as being the
Markovian model for the time evolution of a target in tracking problems or an
aircraft in radar signal processing. The observation process models the noisy
and partial information delivered by sensors as radars or sonars. Of course the
exact values of the signalX and the values of the various disturbance sources
are not known but it is reasonable to assume that we know their statistics.
This corresponds to the situation in which η0, gn andKn are explicitly known
(the interested reader is referred to [6] for a discussion of some practical prob-
lems in which we also need to approximate these three parameters).
In engineering and advanced signal processing literature an alternative

and more classical way to define the pair (signal/observation) Markov process
�X�Y� is as follows. The signal X = �Xn � n ∈ �� is a Markov chain with
transition probability kernels �Kn � n ≥ 1� and taking values at each time n
in some measurable space �En��n� and the observation process is defined by

∀n ∈ �� Yn = Hn�Xn�Vn��(21)

The sequence V = �Vn � n ∈ �� is independent of X and it represents
the noise sources. It consists of a collection of independent random variables
taking values in some auxiliary measurable spaces ��Sn��n� � n ∈ ��. For
each n ∈ �, the random variable Vn is distributed according to a probability
measure γn ∈ � �Sn�. The collection of measurable functions Hn � En ×Sn →
Fn is chosen so that

∀n ∈ �� ∀xn ∈ En� � �Hn�x�Vn� ∈ dy� = gn�xn� y�γn�dy��
In other words, the laws of the random variablesHn�x�Vn� and Vn are abso-
lutely continuous and gn�xn� .� is the corresponding density.



1178 P. DEL MORAL AND L. MICLO

If we fix the sequence of observationsY = y then a version of the conditional
distributions of the states of the signal given their noisy observations can be
expressed in terms of Feynman-Kac formulae of the same type as the ones
discussed above. More precisely, if we take

∀n ∈ �� ∀x ∈ En� gn�x� = gn�xn� yn�
in (1) we have for any f ∈ �b�En�,

ηn�f� = Ɛ�f�Xn��Y0 = y0� � � � �Yn−1 = yn−1��

η̂n�f� =
ηn�fgn�
ηn�gn�

= Ɛ�f�Xn��Y0 = y0� � � � �Yn = yn��

It is also interesting to examine the situation where X is given by (12).
Namely, suppose we have that

∀n ∈ �� Xn = �X′
0� � � � �X

′
n� ∈ En = E′

0 × · · · ×E′
n

where X′ = �X′
n � n ≥ 0� is Markov chain taking values in some measur-

able spaces ��E′
n��

′
n� � n ≥ 0� with initial distribution η0 and transitions

�K′
n � n ≥ 1�. In this situation the observation sequence (21) takes the form

∀n ∈ �� Yn = Hn��X′
0� � � � �X

′
n��Vn�

This means that the information delivered by sensors at each time n depends
on the whole path �X′

0� � � � �X
′
n� of the signalX′ back from the origin and up to

time n. Note that in this case the function gn��x′
0� � � � � x

′
n�� yn� depends on the

current observation Yn = yn and on the whole path-coordinates �x′
0� � � � � x

′
n�.

This type of sensor is in fact more general than those arising in practice. In
classical filtering problems the observation sequence is rather defined by

∀n ∈ �� Yn = H′
n�X′

n�Vn�
for some appropriate function H′

n � E′
n × Sn → Fn and the resulting func-

tion gn�x′
n� yn� only depends on the end point coordinate x′

n of the path
�x′
0� � � � � x

′
n�; that is,

gn��x′
0� � � � � x

′
n�� yn� = g′

n�x′
n� yn�

for some strictly positive function g′
n � E′

n →�0�∞�. We emphasize that in this
particular situation the pair process �X′�Y� = ��X′

n�Yn� � n ≥ 0� has the
same form as before. It is a Markov chain taking values in the measurable
spaces ��E′

n×Fn� � n ≥ 0�. The initial distribution and the Markov transitions
of �X′�Y� are defined as in (19) and (20) by replacing �gn�Kn� by �g′

n�K
′
n�.

From these observations one concludes that
η′
n�f′� =Ɛ�f′�X′

n��Y0 = y0� � � � �Yn−1 = yn−1��
ηn�f�=Ɛ�f�X′

0� � � � �X
′
n��Y0 = y0� � � � �Yn−1 = yn−1�

(22)

for any f′ ∈ �b�E′
n� and f ∈ �b�E′

0×· · ·×E′
n�. The historical process (15) asso-

ciated to theN-particle approximating model (16) of the limiting distributions
�η′

n � n ∈ �� is therefore an particle approximating model of distributions
�ηn � n ∈ ��.



GENEALOGIES AND INCREASING PROPAGATION OF CHAOS 1179

2.4. Examples. To illustrate and motivate our study we end this introduc-
tory section with some comments on assumptions �
 � and �	 �α. Assumption
�
 � clearly holds as soon as the fitness functions satisfy

∀n ≥ 0�∀x� x′ ∈ En�
1
an

≤ gn�x�
gn�x′� ≤ an(23)

for some collection of numbers an ∈ �1�∞�, n ≥ 0. In non linear filtering
settings the fitness function gn depends on the current observation Yn = yn

at time n, that is

∀n ∈ ��∀x ∈ En� gn�x� = gn�x�yn�
In terms of the densities gn condition (23) reads

∀n ≥ 0�∀x� x′ ∈ En�∀y ∈ Fn�
1

an�y�
≤ gn�x�y�

gn�x′� y� ≤ an�y�(24)

for some functions an � Fn → �1�∞� and with these notations an = an�yn�.

Example 2.1. As a typical example of nonlinear filtering problem assume
the observations take values in 
d and densities gn are given by

∀n ∈ �� gn�x�y� =
1

��2π�d�Rn��1/2
exp

(
−1
2
�y− hn�x��′ R−1

n �yn − hn�x��
)

For any n ∈ � hn � En → 
d is a bounded measurable functions and Rn is
a d× d symmetric positive matrix. This correspond to the situation where the
observation sequence is given by

∀n ∈ �� Yn = hn�Xn� +Vn

where �Vn�n≥1 is a sequence of 
d-valued and independent random variables
with Gaussian densities. After some easy manipulations one can check that
�24� holds with

log an�y� = oscα�hn����R−1
n ���β��y�β + �hn�β�

as soon as for some α�β ≥ 1 with 1
α
+ 1

β
= 1 we have

���R−1
n ���β = sup

{
��R−1

n z��β � z ∈ 
d� �z�β = 1
}
< ∞�

oscα�hn� = sup
x�x′∈En

�hn�x� − hn�x′��α < ∞ and �hn�β = sup
x∈En

�hn�x��β < ∞�

To connect assumptions �	 �α with some more easily verifiable properties on
the one step mappings Kn let us suppose that for each n ≥ 1 there exists a
reference probability measure λn ∈ � �En� such that Kn�x� .� ∼ λn for any
x ∈ En−1 and

∀y ∈ En� sup
x∈En−1

∣∣log ln�x�y�∣∣ ≤ bn�y� where ln�x�y� =
dKn�x� .�

dλn
�y�
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for some positive function bn � En → �0�∞�. A simple calculation shows that
for any choice of the reference probability measure λn ∈ � �En� and for any
α ≥ 1 we have∫

sup
x

(
dKn�x� .�

dηn

)α

dηn =
∫
sup
x

(
dKn�x� .�

dλn

)α (dηn

dλn

)1−α
dηn�(25)

Since

dηn

dλn
�y� = ηn−1�gn−1ln�.� y��

ηn−1�gn−1�
we find that ∣∣∣∣log dηn

dλn

∣∣∣∣ ≤ bn�

From (25) one concludes that∫
sup
x

(
dKn�x� .�

dηn

)α

dηn ≤
∫
e�2α−1� bndλn�

It is now easily checked that

∀n ≥ 1�
∫
e�2α−1�bn�y�λn�dy� �⇒ �	 �α�

sup
n≥0

an < ∞ and sup
n≥1

�bn� < ∞ �⇒ �10��

Example 2.2. Suppose that E = 
d and Kn is given by

Kn�x�dy� =
1

��2π�d�Qn��1/2
exp

(
−1
2
�y−Bn�x��′ Q−1

n �y−Bn�x��
)
dy

where Qn is a d × d symmetric nonnegative matrix and Bn � 
d → 
d is a
bounded function. Using previous observations it is not difficult to check that
�	 �α is satisfied for any α ≥ 1 with

λn�dy� =
1

��2π�d�Qn��1/2
exp

(
−1
2
y′ Q−1

n y

)
dy

and ∣∣∣∣log dKn�x� .�
dλn

�y�
∣∣∣∣ = ∣∣bn�x�′Q−1

n y
∣∣+ 1
2

∣∣bn�x�′ Q−1
n bn�x�

∣∣
≤ bn�y� = �Bn����Q−1

n ���1�y�1 +
d

2
�Bn�2���Q−1

n ���1
where

�Bn� = sup
1≤i≤d

sup
x

�Bi
n�x��� ���Q−1

n ���1 = sup
1≤j≤d

d∑
i=1

��Q−1
n �i�j�� �y�1 =

d∑
i=1

�yi��
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For d = 1 and Kn given by

Kn�x�dy� =
c�n�
2

e−c�n� �y−Bn�x��dy

for some c�n� > 0 conditions �	 �α also hold for α = ∞. Indeed, if we choose

λn�dy� =
c�n�
2

e−c�n� �y�dy

we clearly have∣∣∣∣log dKn�x� .�
dλn

�y�
∣∣∣∣ ≤ bn�y� with ∀y ∈ 
� bn�y� = c�n��Bn��

We also notice that in this situation supn≥1�c�n��Bn�� < ∞ ⇒ supn≥1��bn��.

3. Strong propagation of chaos. The object of this section is to prove
Theorem 1.1. As announced in the introductory Section 1.3 our analysis in-
volves two different techniques. Therefore we have chosen to decompose the
proof of the theorem in two independent sections.
In Section 3.1 we study the asymptotic behavior as N tends to infinity of

the time marginals �P�N�q�
n � N ≥ 1�. The approach taken here is partly based

on ideas presented in [8]. More precisely our strategy will be to extend the
analysis of the asymptotic behavior of the empirical measures ηN

n as N tends
to infinity to their q-tensor product measures �ηN

n �⊗q.
Section 3.2 discusses entropy estimates on path space. This investigation

relies on the fact that, under �	 �1, the distribution of the particles can be
viewed as a mean field Gibbs measure on path space with partition function
equals to 1. As we shall see in the further development of Section 3.2 this prop-
erty simplifies considerably the analysis since it allows us to relate without
further work the desired relative entropy with more tractable �2-norms.

3.1. Time marginal estimates. Throughout this section�+
b �E� denotes the

set of bounded and strictly positive functions g on a measurable space �E�� �
such that supx�y �g�x�/g�y�� < ∞.
LetN and q be two natural numbers such thatN�q ≥ 1. For anyN-vector

x = �x1� � � � � xN� ∈ EN, let m�x��q be the finite measure on Eq defined by

m�x��q = 1
Nq

∑
�i1�����iq�∈I�q�

δ�xi1 �����xiq �

where I�q� is the set of q-indices �i1� � � � � iq� ∈ �1� � � � �N�q such that ij �= ij′

for any 1 ≤ j �= j′ ≤ N.
The main object of the section is to prove the following result.
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Theorem 3.1. Under assumption �
 � we have ∀n∈��∀�f�g� ∈ ��b�Eq
n�×

�+
b �Eq

n���∀
√
N/2 ≥ q ≥ 1�

Ɛ
(∣∣5g�m�ξn��q��f� −5g�η⊗q

n ��f�∣∣2) 12 ≤ eqc�n�√
N

�f� sup
x�y

∣∣g�x�/g�y�∣∣2 �(26)

∣∣Ɛ (
5g�m�ξn��q��f�

)−5g�η⊗q
n ��f�∣∣ ≤ eqc�n�

N
�f� sup

x�y

∣∣g�x�/g�y�∣∣3(27)

where

∀�µ�f� ∈ �� �Eq
n� ×�b�Eq

n��� 5g�µ��f� = µ�gf�/µ�g��
In addition, if �	 �α holds for some α ∈ �1�∞� then we have the �α�η⊗q

n �-
estimate ∥∥∥∥d��N�q�

n

dη
⊗q
n

− 1
∥∥∥∥
α�η

⊗q
n

≤ exp �qc�n��
N

×
∥∥∥∥sup

x

dKn�x� .�
dηn

∥∥∥∥q
α�ηn

(28)

The constant c�n� only depends on the parameter n. If �
 � and �	 �1 are both
satisfied with �10� then the estimates �26�� �27� and �28� are true for some
constant c�n� = c which does not depend on the the time parameter.

Remark 3.2. (i) Observing that

Ɛ
(
f�ξ1n� � � � � ξqn�

)− η
⊗q
n �f�=

(
1− I�q�

Nq

)
Ɛ�f�ξ1n� � � � � ξqn��

+ Ɛ�m�ξn��q�f�� − η
⊗q
n �f�

(29)

and

1− �I�q��
Nq

≤1− N�N− 1� · · · �N− �q− 1��
Nq

≤1−
(
1− q− 1

N

)q−1
≤ �q− 1�2

N

(30)

we can easily deduce (7) from (27).
(ii) We can reduce the proof of (26) and (27) to the case where g = 1. Indeed,

suppose we have proved (26) and (27) for g = 1. Then using the decomposition
5g�m�ξn��q��f� −5g�η⊗q

n ��f�

= η
⊗q
n �g�

m�ξn��q�g�
m�ξn��q

(
g

η
⊗q
n �g�

(
f−5g�η⊗q

n ��f�))
and noticing that

η⊗q
n

(
g

η
⊗q
n �g�

(
f−5g�η⊗q

n ��f�)) = 0 and

∣∣∣∣∣ η
⊗q
n �g�

m�ξn��q�g�

∣∣∣∣∣ ≤ 2 supx�y

∣∣∣∣g�x�g�y�

∣∣∣∣
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(since Nq

�I�q�� ≤ 2 as soon as
√
N/2 ≥ q) one deduces (26) for any g ∈ �b�Eq

n�.
To treat (27) we use the alternative decomposition

5g�m�ξn��q��f� −5g�η⊗q
n ��f� = A1 +A2 +A3

with

A1 = m�ξn��q
(

gf

η
⊗q
n �g�

)
− η⊗q

n

(
gf

η
⊗q
n �g�

)
�

A2 = 5g�η⊗q
n ��f�

(
1− m�ξn��q�g�

η
⊗q
n �g�

)
�

A3 =
(
5g�m�ξn��q��f� −5g�η⊗q

n ��f�) (1− m�ξn��q�g�
η
⊗q
n �g�

)
�

Assuming that (27) has been proved for g = 1 and (26) is true for any g ∈
�+

b �Eq
n� one can check that

�Ɛ�A1�� + �Ɛ�A2�� ≤ 2
eqc�n�

N
�f� sup

x�y

∣∣g�x�/g�y�∣∣
and

�Ɛ�A3�� ≤ Ɛ
((
5g�m�ξn��q��f� −5g�η⊗q

n ��f�)2)1/2 Ɛ
(
1− m�ξn��q�g�

η
⊗q
n �g�

)21/2

≤ eqc�n�

N
�f� sup

x�y

∣∣g�x�/g�y�∣∣3 �
This clearly implies (27). From previous observations it suffices to check (26)
and (27) for g = 1.
The proof of Theorem 3.1 is ultimately based on the observation that the

sequence of q-tensor product measures �η⊗q
n � n ∈ �� is solution of a measure

valued dynamical system of the same form as in (2), namely

∀n ∈ �� η
⊗q
n+1 = �

�q�
n+1�η⊗q

n �

where �
�q�
n+1 � � �Eq

n� −→ � �Eq
n+1� are given by ∀n ∈ ��∀η ∈ � �Eq

n��∀f ∈
�b�Eq

n+1��

�
�q�
n+1�η��f� =

η
(
g

�q�
n �K�q�

n+1f�
)

η
(
g

�q�
n

) �

with for any �x1� � � � � xq� ∈ E
q
n and �y1� � � � � yq� ∈ E

q
n+1,

g
�q�
n �x1� � � � � xq� = g⊗q

n �x1� � � � � xq� = gn�x1� � � � gn�xq�(31)
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and

K
�q�
n+1��x1� � � � � xq�� d�y1� � � � � yq�� = Kn+1�x1� dy1� · · ·Kn+1�xq� dyq��(32)

This observation allows us to apply the arguments of [8] and conclude that
the non linear semigroup formed by the composite mappings

∀ 0 ≤ p ≤ n� �
�q�
n�p = �

�q�
n ◦��q�

n−1 ◦ · · · ◦��q�
p+1

(with convention ��q�
n�n = Id) again has the same form as the one step mappings

���q�
n � n ≥ 1�.

Lemma 3.3 [8]. For any 0 ≤ p ≤ n, η ∈ � �Eq
p� and f ∈ �b�Eq

n� we have
that

�
�q�
n�p�η��f� =

η�g�q�
n�p�K

�q�
n�pf��

η�g�q�
n�p�

�(33)

The fitness functions g
�q�
n�p � Eq

p →�0�∞� and the Markov transitions K
�q�
n�p �from

E
q
p into E

q
n� satisfy the backward formulae

∀ 1 ≤ p ≤ n� g
�q�
n�p−1 = g

�q�
p−1K

�q�
p �g�q�

n�p� and K
�q�
n�p−1 = S

�q�
n�pK

�q�
n�p(34)

with for any f ∈ �b�Eq
p�

S
�q�
n�p�f� =

K
�q�
p

(
g

�q�
n�pf

)
K

�q�
p

(
g

�q�
n�p

)
and conventions g

�q�
n�n = 1 and K

�q�
n�n = Id.

As in [8] we will now use the decomposition of errors ∀f ∈ �b�Eq
n��

m�ξn��q�f� − η
⊗q
n �f�

=
n∑

p=0

[
�

�q�
n�p�m�ξp��q��f� −�

�q�
n�p��

�q�
p �m�ξp−1��q���f�

](35)

with convention for p = 0, ��q�
0 �m�ξ−1��q� = η

⊗q
0 . Since

�
�q�
p �m�ξp−1�⊗q� = �p�m�ξp−1��⊗q�
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Formula (35) can also be written

m�ξn��q�f� − η⊗q
n �f� = J1�f� +J2�f�

with

J1�f� =
n∑

p=0

[
�

�q�
n�p�m�ξp��q��f� −�

�q�
n�p��p�m�ξp−1��⊗q��f�

]
and

J2�f� =
n−1∑
p=0

[
�

�q�
n�p�m�ξp�⊗q��f� −�

�q�
n�p�m�ξp��q���f�

]
�

The next lemma is instrumental for the proof of Theorem 3.1. Its proof follows
the proof of the theorem.

Lemma 3.4. Let �E�� � be a measurable space and let q�N ≥ 1. For any N-

vector x = �x1� � � � � xN� ∈ EN,
√
N/2 ≥ q ≥ 1 and �f�g� ∈ ��b�Eq�×�+

b �Eq��
we have

�m�x��q −m�x�⊗q�tv ≤
�q− 1�2

N
�(36)

∣∣5g�m�x��q��f� −5g�m�x�⊗q��f�∣∣
≤ 2�q− 1�2

N
sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣2 sup
x�y

∣∣f�x� − f�y�∣∣(37)

where ∀�µ�f� ∈ �� �Eq� ×�b�Eq���5g�µ��f� = µ�gf�/µ�g�� If X = �X1� � � � �

XN� are i.i.d. random variables with common law η ∈ � �E� then for any√
N/2 ≥ q ≥ 1,

Ɛ
((
5g�m�X��q��f� −5g�η⊗q��f�)2) 12
≤ qC√

N
sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣2 sup
x�y

∣∣f�x� − f�y�∣∣ �(38)

∣∣Ɛ (
5g�m�X��q��f�)−5g�η⊗q��f�∣∣
≤ q2C

N
sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣3 sup
x�y

∣∣f�x� − f�y�∣∣(39)

for some universal and finite constant C.
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Proof of Theorem 3.1. In view of Remark 3.2 it is enough to prove (26)
and (27) for g = 1. We start by proving (27). By (39) and (33) we easily see
that for any

√
N/2 ≥ q ≥ 1,

�Ɛ�J1�f��� ≤
n∑

p=0
Ɛ
(∣∣∣Ɛ (

�
�q�
n�p�m�ξp��q��f�

∣∣ξp−1 )−�
�q�
n�p��p�m�ξp−1��⊗q��f�

∣∣∣)

≤ q2C

N

n∑
p=0
sup
x�y

∣∣∣∣∣∣
g

�q�
n�p�x�

g
�q�
n�p�y�

∣∣∣∣∣∣
3

sup
x�y

∣∣∣K�q�
n�p�f��x� −K

�q�
n�p�f��y�

∣∣∣
≤ q2C

N
�f�

n∑
p=0
sup
x�y

∣∣∣∣∣∣
g

�q�
n�p�x�

g
�q�
n�p�y�

∣∣∣∣∣∣
3

sup
x�y

∥∥∥K�q�
n�p�x� .� −K

�q�
n�p�y� .�

∥∥∥
tv

for some universal constant C < ∞. In much the same way (37) yields

�J2�f�� ≤
2q2

N
�f�

n−1∑
p=0
sup
x�y

∣∣∣∣∣∣
g

�q�
n�p�x�

g
�q�
n�p�y�

∣∣∣∣∣∣
2

sup
x�y

∥∥∥K�q�
n�p�x� .� −K

�q�
n�p�y� .�

∥∥∥
tv
�

By the product definitions (31) and (32) of g�q�
n and K

�q�
n , a clear backward

inductive proof gives that

g
�q�
n�p�x1� � � � � xq� = g

�1�
n�p�x1� · · ·g

�1�
n�p�xq�

and

K
�q�
n�p��x1� � � � � xq�� d�y1� � � � � yq�� = K

�1�
n�p�x1� dy1� · · ·K

�1�
n�p�xq� dyq��

It is now clear that for any
√
N/2 ≥ q,∣∣Ɛ�m�ξn��q�f�� − η⊗q

n �f�∣∣
is bounded by

q3C′

N
�f�

n∑
p=0
sup
x�y

∣∣∣∣∣∣
g

�1�
n�p�x�

g
�1�
n�p�y�

∣∣∣∣∣∣
3q

sup
x�y

∥∥∥K�1�
n�p�x� .� −K

�1�
n�p�y� .�

∥∥∥
tv

for some universal and finite constant C′ and the proof of (27) is now straight-
forward.
The proof of (26) is a repeat of arguments used in the proof of (27). It is

therefore only sketched. We use again decomposition (35) to check that

Ɛ
(�m�ξn��q�f� − η⊗q

n �f��2) 12 ≤ J′
1�f� +J′

2�f�
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with

J′
1�f� =

n∑
p=0

Ɛ

([
�

�q�
n�p�m�ξp��q��f� −�

�q�
n�p��p�m�ξp−1��⊗q��f�

]2) 1
2

�

J′
2�f� =

n−1∑
p=0

Ɛ
[
���q�

n�p�m�ξp�⊗q��f� −�
�q�
n�p�m�ξp��q���f��

]
�

Then we use (37) and (38) to check that the sum J′
1�f�+J′

2�f� is bounded by

Cq2√
N

�f�
n∑

p=0
sup
x�y

∣∣∣∣∣∣
g

�1�
n�p�x�

g
�1�
n�p�y�

∣∣∣∣∣∣
2q

sup
x�y

∥∥∥K�1�
n�p�x� .� −K

�1�
n�p�y� .�

∥∥∥
tv

for some universal and finite constant C′.
In the case when �
 � and �	 �1 hold with

M�g� = sup
n�x�y

∣∣∣∣log gn�x�
gn�y�

∣∣∣∣ < ∞ and
M�K�
2

= sup
n�x�y

∣∣∣∣log dKn�x� .�
dηn

�y�
∣∣∣∣ < ∞

we can use the backward formula (34) to check that

∀�x�y� ∈ E2p�

∣∣∣∣∣∣
g

�1�
n�p�x�

g
�1�
n�p�y�

∣∣∣∣∣∣ =
∣∣∣∣gp�x�
gp�y�

∣∣∣∣
∣∣∣∣∣∣
Kp+1�g�1�

n�p+1�x��
Kp+1�g�1�

n�p+1�y��

∣∣∣∣∣∣ ≤ expM�g�K�

with

M�g�K� = M�g� +M�K��
Moreover, using the same line of arguments as [8], we also have

sup
x�y

∥∥∥K�1�
n�p�x� .� −K

�1�
n�p�y� .�

∥∥∥
tv
≤

n−p∏
k=1

(
1− α

(
S

�1�
n�p+k

))
where α�S� is the Dobrushin ergodic coefficient of a Markov transition S on
a measurable state space E defined as

α�S� = inf
m∑
i=1
min �S�x�Ai�� S�z�Ai��

where the infimum is taken over all x� z and all resolutions of the state space
into pairs of non-intersecting subsets �Ai � 1 ≤ i ≤ m� and m ≥ 1.
Since for any 0 ≤ p ≤ n, x ∈ Ep−1 and A ∈ �p,

S
�1�
n�p�x�A� =

Kp

(
g

�1�
n�p1A

)
�x�

Kp

(
g

�1�
n�p

)
�x�

≥ e−M�K�
ηp

(
g

�1�
n�p1A

)
ηp

(
g

�1�
n�p

)
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we have α�S�1�
n�p� ≥ e−M�K�. This implies that

sup
x�y

∥∥∥K�1�
n�p�x� .� −K

�1�
n�p�y� .�

∥∥∥
tv
≤

(
1− e−M�K�

)n−p
�

If we combine these two estimates we conclude that

Ɛ
(�m�ξn��q�f� − η⊗q

n �f��2) 12 ≤ q2C′
√
N

�f�exp �2qM�g�K��
1− exp−M�K�

and ∣∣Ɛ�m�ξn��q�f�� − η⊗q
n �f�∣∣ ≤ q3C′

N
�f�exp �3qM�g�K��

1− exp−M�K� �

According to Remark 3.2(i), this ends the proof of (26) and (27).
We now turn to the proof of (28). Under �	 �1 we use the representation

∀�y1� � � � � yq� ∈ E
q
n:

d�
�N�q�
n

dη
⊗q
n

�y1� � � � � yq� = Ɛ

(
d�n�m�ξn−1��⊗q

dη
⊗q
n

�y1� � � � � yq�
)

= Ɛ

(
d�

�q�
n �m�ξn−1�⊗q�
d�

�q�
n �η⊗q

n−1�
�y1� � � � � yq�

)
�

Again we observe that

d�
�q�
n �m�ξn−1�⊗q�
d�

�q�
n �η⊗q

n−1�
�y1� � � � � yq� =

m�ξn−1�⊗q�g�q�
n−1 k

�q�
n �.� �y1� � � � � yq���

m�ξn−1�⊗q�g�q�
n−1�

with

k
�q�
n ��x1� � � � � xq�� �y1� � � � � yq�� =

dK
�q�
n ��x1� � � � � xq�� .�

dη
⊗q
n

�y1� � � � � yq�

= dKn�x1� .�
dηn

�y1� · · ·
dKn�xq� .�

dηn

�yq�

= kn�x1� y1� · · ·kn�xq� yq��
Using (27) and (37) one gets after some tedious but easy calculations∣∣∣∣∣d�

�N�q�
n

dη
⊗q
n

�y1� � � � � yq� − 1
∣∣∣∣∣ ≤ eqc

′�n�

N
sup
x�y

∣∣∣∣gn−1�x�
gn−1�y�

∣∣∣∣3q q∏
p=1
sup
xp

kn�xp�yp�

for some constant c′�n� which has the boundness properties stated in the
theorem. This clearly implies that

∀α ∈ �1�∞��
∥∥∥∥∥d�

�N�q�
n

dη
⊗q
n

− 1
∥∥∥∥∥
α�η

⊗q
n

≤eqc
′�n�

N
sup
x�y

∣∣∣∣gn−1�x�
gn−1�y�

∣∣∣∣3q
∥∥∥∥sup

x
kn�x� .�

∥∥∥∥q
α�ηn

�

This ends the proofs of the theorem.
The proof of Lemma 3.4 is now complete. ✷
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Proof of Lemma 3.4. Since

�m�x�⊗q�f� −m�x��q�f�� ≤
(
1− �I�q��

Nq

)
�f�

the proof of (36) is a clear consequence of (30). To prove (37) we rewrite

5g�m�x��q��f� −5g�m�x�⊗q��f�
as (

m�x�⊗q�g�
m�x��q�g�

)
m�x��q

[
g

m�x�⊗q�g�
(
f−5g�m�x�⊗q��f�)] �

Using the fact that

Nq

�I�q�� ≤
(
1− q2

N

)−1
≤ 2�

for any
√
N/2 ≥ q one gets∣∣∣∣m�x�⊗q�g�

m�x��q�g�

∣∣∣∣ ≤ 2 sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣ �
Since

f�u� −5g�m�x�⊗q��f� =
∫
�f�u� − f�v�� g�v�

m�x�⊗q�g�m�x�⊗q�dv�

one easily concludes that∣∣5g�m�x��q��f� −5g�m�x�⊗q��f�∣∣
is bounded by

2 sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣2 sup
x�y

∣∣f�x� − f�y�∣∣ �m�x��q −m�x�⊗q�tv

and the proof of (37) is now a consequence of (36). The proof of (39) is a little
more involved. We start by noting that

η⊗q�f� − Ɛ�m�X��q�f�� =
(
1− �I�q��

Nq

)
η⊗q�f��

Using (36) the above decomposition yields∣∣Ɛ�m�X�⊗q�f�� − η⊗q�f�∣∣ ≤ 2�q− 1�2
N

�f��

Replacing q and f by �q+ q� and �f⊗ f� we arrive at∣∣∣Ɛ�[m�X�⊗q�f�]2� − [
η⊗q�f�]2∣∣∣ ≤ 8q2

N
�f�2�
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Combining the preceding two inequalities yields

Ɛ�[m�X�⊗q�f� − η⊗q�f�]2�
= Ɛ

([
m�X�⊗q�f�]2)− [

η⊗q�f�]2 + 2η⊗q�f� (η⊗q�f� − Ɛ�m�X�⊗q�f��)
≤ 12q

2

N
�f�2

and therefore

Ɛ�[m�X�⊗q�f� − η⊗q�f�]2� 12 ≤ 4q√
N

�f��

Ɛ�[m�X��q�f� − η⊗q�f�]2� 12 ≤ [
4q√
N

+ q2

N

]
�f� ≤ 8q√

N
�f��

(40)

as soon as
√
N ≥ √

2q�≥ q/4�. Now we use again the decomposition
5g�m�X��q��f� −5g�η⊗q��f�

=
(

η⊗q�g�
m�X��q�g�

)
m�X��q

[
g

η⊗q�g�
(
f−5g�η⊗q��f�)] �

As before we observe that∣∣∣∣ η⊗q�g�
m�X��q�g�

∣∣∣∣ ≤ 2 sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣
and

f�u� −5g�η⊗q��f� =
∫
�f�u� − f�v�� g�v�

η⊗q�g�η
⊗q�dv��

We conclude that for any
√
N/2 ≥ q,

Ɛ
(∣∣5g�m�X��q��f� −5g�η⊗q��f�∣∣2) 12

is bounded by

2 sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣Ɛ
(∣∣∣∣m�X��q

[
g

η⊗q�g�
(
f−5g�η⊗q��f�)]∣∣∣∣2

) 1
2

�

Since

η⊗q
[

g

η⊗q�g�
(
f−5g�η⊗q��f�)] = 0

it does follows from (40) that

Ɛ
(∣∣5g�m�X��q��f� −5g�η⊗q��f�∣∣2) 12 ≤ 16 q√

N
sup
x�y

∣∣∣∣g�x�g�y�

∣∣∣∣2 sup
x�y

∣∣f�x� − f�y�∣∣ �
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We end the proof of (39) by noting that

Ɛ
(
5g�m�X��q��f�)−5g�η⊗q��f�

= Ɛ

([
5g�m�X��q��f� −5g�η⊗q��f�] [1− m�X��q�g�

η⊗q�g�
])

and using Cauchy–Schwarz’s inequality. ✷

3.2. Entropy estimates on path space. The study of the asymptotic behav-
ior of distributions ���N�q�

�0�n� � n ≥ 0� as N → ∞ becomes more transparent if
we introduce a more abstract formulation.
In the further development we assume that �ξn � n ∈ �� is the N-inter-

acting particle systems approximating model associated to a given sequence
of functions ��n � n ∈ ��. We denote as usual �ηn � n ∈ �� the solution of the
corresponding limiting system.
We will use in our development the following condition:

�� � For any n ∈ � and η ∈ � �En� we have �n+1�η� ∼ ηn+1�

Note that when ��n � n ∈ �� are given by (3) condition �� � holds if, and
only if, for any n ∈ � and x ∈ En we have ��n+1�δx� =�Kn+1�x� .� ∼ ηn+1. This
condition is not satisfied when Kn is the transition (13) of the path-valued
Markov chain (12) but it is in many cases fulfilled when Kn represent the
signal transition in classical non linear filtering problems (see examples given
in Section 2.4).
Assumption �� � first appeared in [5]. In this work the authors prove large

deviations principles for the laws of the empirical measures on path space. A
crucial practical advantage of �� � is that the distributions of the particles in
path space can be regarded as a mean field Gibbs measure with unit partition
function. The approach taken here to obtain useful entropy estimates and
related increasing propagation of chaos is based on the similar ideas.
The following assumption on the N-interacting particle systems approxi-

mating model summarizes the only �α-estimates on the particle density pro-
files �m�ξn�; n ∈ �� needed in the sequel:

�� � There exists some α ≥ 1 and a collection of functions θα�n ∈ �α�ηn�,
n ≥ 1 such that

∀n ≥ 1�∀y ∈ En� Ɛ

(∣∣∣∣d�n�m�ξn−1��
d�n�ηn−1�

�y� − 1
∣∣∣∣α)

1
α

≤ θα�n�y�√
N

�

Conditions �� � and �� � also appear to be useful in studying the weak con-
vergence of the empirical processes associated to the N-particle approximat-
ing model. Although this subject is tangential to this paper we have chosen
to present the result. The results for the genetic algorithm (5) will then be
deduced directly from these results.
To state the main result of this section we need to introduce some additional

notations. If � is a collection of bounded measurable functions f, �f� ≤ 1, on
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a measurable space �E�� � and µ ∈ � �E� and ε > 0 we denoteN�ε�� ��2�µ��
the minimal number of �2�µ�-balls of radius ε needed to cover � . We also
denote by � �ε�� � and by I�� � the uniform covering numbers and entropy
integral given by

� �ε�� � = sup �N�ε�� ��2�µ��� µ ∈ � �E��
and

I�� � =
∫ 1
0

√
log� �ε�� �dε�

For any n ≥ 0 and for any collection �n of bounded measurable functions
f � En → 
, �f� ≤ 1, we denote by �m�ξn��f� � f ∈ �n� the �n-empirical
process associated to �n and the particle density profile m�ξn�. The Zolotarev
�n-semi-distance between m�ξn� and its limiting distribution ηn is defined by

�m�ξn� − ηn��n
= sup ��m�ξn��f� − ηn�f�� � f ∈ �n� �

Theorem 3.5. For each n ∈ �, let �n be a collection of bounded measurable
functions f � En → 
 such that �f� ≤ 1. If the functions ��n � n ∈ �� satisfy
conditions �� � and �� � for some number α ≥ 1 then there exists some universal
constant Aα < ∞ such that

∀n ∈ ��∀N ≥ 1� Ɛ
(
�m�ξn� − ηn�α�n

) 1
α ≤ Aα√

N

(
I��n� + �θα�n�α�ηn

)
(41)

In addition, if �� � holds for α = 2 then we have that

∀n ∈ ��∀1 ≤ q ≤ N� Ent
(
�

�N�q�
�0�n� �η⊗q

�0�n�
)
≤ 2q

N

n∑
p=1

�θ2�n�22�ηn
�(42)

The proof of (41) is very simple therefore we give it first. Using the decompo-
sition

m�ξn��f� − ηn�f�
= m�ξn��f� −�n�m�ξn−1���f� +�n�m�ξn−1���f� −�n�ηn−1��f�

= m�ξn��f� −�n�m�ξn−1���f� +
∫
f�y�

[
d�n�m�ξn−1��
d�n�ηn−1�

�y� − 1
]
ηn�dy�

we clearly have

�m�ξn� − ηn��n
≤ �m�ξn� −�n�m�ξn−1����n

+
∫ ∣∣∣∣d�n�m�ξn−1��

d�n�ηn−1�
�y� − 1

∣∣∣∣ηn�dy��
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Under our assumptions and using Marcinkiewicz–Zygmund’s inequality to em-
pirical processes (see [10] and Lemma 2.10 in [8]) we conclude that

Ɛ
(
�m�ξn� − ηn�α�n

) 1
α ≤ Bα√

N
I��n�

+
[∫

Ɛ

(∣∣∣∣d�n�m�ξn−1��
d�n�ηn−1�

�y� − 1
∣∣∣∣α)ηn�dy�

] 1
α

≤ Bα√
N

I��n� +
1√
N

[∫
θαα�ndηn

] 1
α

for some universal constant Bα which only depends on the parameter α. This
clearly ends the proof of (41).
The weak convergence of empirical processes for the genetic approximating

model (5) has been started in [7] and it is been further developed in [8]. In
[8] the authors proved �α-mean error estimates of the same type using dif-
ferent techniques without any assumptions on the mutation transitions. Here
we present an alternative and more simple proof based on the mixing and
�α-conditions �� �α. Next analysis emphasizes the new points in which this
approach differs from the one in [7, 8] with an eye toward precise uniform
bounds w.r.t. the time parameter.
A basic result giving �α-mean error bounds in terms of the fitness functions

�g�1�
n�p � 0 ≤ p ≤ n� and the Markov transitions �K�1�

n�p � 0 ≤ p ≤ n� introduced
in Lemma 3.3 is as follows.

Lemma 3.6 ([8], page 36). If the functions ��n � n ≥ 1� are given by (3)
and condition �
 � holds then we have ∀n ≥ 0�∀f ∈ �b�En��∀α ≥ 1�∀N ≥ 1�

Ɛ
(�ηN

n �f� − ηn�f��α
) 1
α ≤ Bα�n√

N
�f�

where

Bα�n = Bα�0

n∑
p=0
sup
x�x′

∣∣∣∣∣∣
g

�1�
n�p�x�

g
�1�
n�p�x′�

∣∣∣∣∣∣
2

sup
x�x′

∥∥∥K�1�
n�p�x� .� −K

�1�
n�p�x′� .�

∥∥∥
tv

and Bα�0 is a universal constant which only depends on the parameter α.

Remark 3.7. The assumptions based on the preceding lemma are remark-
ably weak since they do not depend on the form of the mutation transitions.
In the case where �
 � and �	 �1 are both satisfied with

M�g�= sup
n�x�y

∣∣∣∣log gn�x�
gn�y�

∣∣∣∣ < ∞ and

M�K�
2

= sup
n�x�y

∣∣∣∣log dKn�x� .�
dηn

�y�
∣∣∣∣ < ∞�

(43)



1194 P. DEL MORAL AND L. MICLO

we proceed as in the proof of Theorem 3.1 to check that for any α ≥ 1 the
sequence �Bα�n � n ∈ �� is uniformly bounded. More precisely in this situation
we have that

∀α ≥ 1� sup
n≥0

Bα�n ≤ Bα�0 ×
exp �2M�g�K��
1− exp−M�K� �

Using the decomposition

d�n+1�m�ξn��
d�n+1�ηn�

�y� − 1 = ηn�gn�
m�ξn��gn�

×m�ξn�
(

gn

ηn�gn�
�kn+1�.� y� − 1�

)
with

∀�x�y� ∈ �En ×En+1�� kn+1�x�y� =
dKn+1�x� .�

dηn+1
�y��

it is easily checked that∣∣∣∣d�n+1�m�ξn��
d�n+1�ηn�

�y� − 1
∣∣∣∣ ≤ sup

x�x′

∣∣∣∣ gn�x�
gn�x′�

∣∣∣∣ �m�ξn��fy
n� − ηn�fy

n��

with

∀�x�y� ∈ �En ×En+1�� fy
n�x� =

gn�x�
ηn�gn�

�kn+1�x�y� − 1� �

Using Lemma 3.6, condition �� � clearly holds for some α ≥ 1 and

θα�n�y� = Bα�n sup
x�x′

∣∣∣∣ gn�x�
gn�x′�

∣∣∣∣2 (1+ sup
x

kn+1�x�y�
)

(44)

as soon as �K�α is met. Arguing as before if �
 � and �	 �1 are both satisfied
with (43) one also concludes that

sup
n≥0

�θα�n�α�ηn
≤ Bα�0 ×

exp �4M�g�K��
1− exp−M�K� �

As a direct consequence of (41) and Lemma 3.6 we have:

Corollary 3.8. For each n ∈ �, let �n be a collection of bounded mea-
surable functions f � En → 
 such that �f� ≤ 1. Assume that the functions
��n � n ≥ 1� are given by �3� and conditions �
 � and �	 �α are both satisfied
for some α ≥ 1. Then there exists a universal constant cα such that

∀n ∈ ��∀N ≥ 1� Ɛ
(
�m�ξn� − ηn�α�n

) 1
α ≤ cα√

N
�I��n� + c′n�

where c′n is a finite constant which only depends on the time parameter pa-
rameter n and such that supn c

′
n < ∞ as soon as the uniform bounds �43� are

satisfied.
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As we said in the Introduction, the proof of the entropy estimates (42) on
path space relies on the fact that ��N�

�0�n� is a mean field Gibbs measure. To
describe the potential function we notice that under �� � we have for any
F ∈ �b�EN

0 × · · · ×EN
n �

Ɛ�F�ξ0� � � � � ξn��

=
∫
F�x0� � � � � xn��n�m�xn−1��⊗N�dxn� · · ·�1�m�x0��⊗N�dx1�η⊗N

0 �dx0�

=
∫
F�x0� � � � � xn� exp �H�N�

n �x0� � � � � xn��η⊗N
n �dxn� · · ·η⊗N

0 �dx0�

with

H
�N�
n �x0� � � � � xn� = N

n∑
p=1

∫
log

d�p�m�xp−1��
d�p�ηp−1�

dm�xp��

In other words, ��N�
�0�n� is absolutely continuous with respect to the tensor prod-

uct measure

η⊗N
�0�n� = η⊗N

0 ⊗ · · · ⊗ η⊗N
n ∈ � �EN

0 × · · · ×EN
n �

and

d�
�N�
�0�n�

dη⊗N
�0�n�

= expH�N�
n � η⊗N

�0�n� − a.e.

In addition if we consider the function

��0�n� � � �E0 × · · · ×En� −→ � �E0 × · · · ×En�
µ  → ��0�n��µ� = η0 ⊗�1�µ0� ⊗ · · ·�n�µn−1�

where µk, 0 ≤ k ≤ n, stands for the kth marginal of µ then it is easy to check
that H�N�

n can be rewritten as

H
�N�
n �x0� � � � � xn� = NHn

(
1
N

N∑
i=1

δ�xi0�����xin�

)

with the potential function Hn

∀µ ∈ � �E0 × � � �×En�� Hn�µ� =
∫
log

d��0�n��µ�
d��0�n��η�0�n��

dµ�

Before presenting the proof of (42), two elementary lemmas are stated and
proved. As noticed in [1] a natural tool for the analysis of a strong version
of the propagation of chaos for mean field interacting particle systems is the
following inequality due to Csiszar [3] (see also the proof of Theorem 2 in [1]).
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Lemma 3.9 ([3], (2.10), page 772). Let �E�� � be a measurable space and let
µ�N� be an exchangeable measure on the product space EN such that µ�N� 	
η⊗N for some η ∈ � �E�. If µ�N�q�, 1 ≤ q ≤ N, are the marginals of µ�N� on the
first q-coordinates then we have

Ent�µ�N�q��η⊗q� ≤ q

N

(
1+ �N/q�

�N/q�
)
Ent�µ�N��η⊗N�(45)

where �a� is the integer part of a ∈ 
 and �a� = a− �a�.

Proof. The proof of (45) is quite simple. From the variational definition
of the relative entropy

Ent�µ�η� = sup
f∈�b�E�

�µ�f� − logη�exp�f���

we already have Ent�µ�N��η⊗N� ≥ �µ�N��f�q�� − logη⊗N�expf�q��� with

f�q��x1� � � � � xN� =
�N/q�∑
p=1

ϕ�x�p−1�q+1� � � � � x�p−1�q+q�� ϕ ∈ �b�Eq��

Since µ�N��f�q�� = �N/q�µ�N�q��ϕ� and η⊗N�expf�q�� = �η⊗q�ϕ���N/q� taking
the supremum over ϕ ∈ �b�Eq� one concludes that

Ent
(
µ�N��η⊗N

)
≥ �N/q� Ent

(
µ�N�q��η⊗q

)
�

We end the proof by noting that

∀a ∈ �1�∞�� 1
�a� = 1

a

�a� + �a�
�a� = 1

a

(
1+ �a�

�a�
)(

≤ 2
a

)
✷

Lemma 3.10. If µ is absolutely continuous with respect to η and dµ
dη

∈ �2�η�
then we have

Ent�µ�η� ≤
∥∥∥∥dµdη − 1

∥∥∥∥2
2�η

�

Proof. Using the standard inequality, log u ≤ u−1, which is valid for any
u ≥ 0, we clearly have

Ent�µ�η� =
∫
log

dµ

dη
dµ ≤

∫ (
dµ

dη
− 1

)
dµ =

∫ (
dµ

dη
− 1

)
dµ

dηa
dη�

from which one concludes that

Ent�µ�η� ≤
∫ (

dµ

dη
− 1

)2
dη =

∥∥∥∥dµdη − 1
∥∥∥∥2
2�η

� ✷
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Lemma 3.9 highlights the relations between the relative entropy and the

mean value of the potential functionH
�N�
n . More precisely, according to Lemma

3.9 we have that

Ent
(
�

�N�q�
�0�n�

∣∣∣η⊗q
�0�n�

)
≤ 2 q

N
Ent

(
�

�N�
�0�n�

∣∣∣η⊗N
�0�n�

)
= 2 q

N
Ɛ�H�N�

n �ξ0� � � � � ξn���(46)

It can be seen from definitions of H�N�
n and ξ that

Ɛ�H�N�
n �ξ0� � � � � ξn�� = N

n∑
p=1

Ɛ
(
Ɛ
(
m�ξp��log �d�p�m�ξp−1��/dηp���ξp−1

))
= N

n∑
p=1

Ɛ��p�m�ξp−1���log �d�p�m�ξp−1��/dηp����

Therefore one gets

Ent
(
�

�N�
�0�n�

∣∣∣η⊗N
�0�n�

)
= N

n−1∑
p=0

Ɛ
(
Ent

(
�p+1�m�ξp��

∣∣�p+1�ηp�
))
�

Using Lemma 3.10, the end of the proof of Theorem 3.5 is now straightforward.
Indeed, under the assumptions of the theorem, Lemma 3.10 implies that

Ɛ
(
Ent

(
�p+1�m�ξp��

∣∣�p+1�ηp�
)) ≤ Ɛ

(∥∥1− d�p+1�m�ξp��/dηp+1
∥∥2
2�ηp+1

)
=

∫
Ɛ

(
�1− d�p+1�m�ξp��

d�p+1�ηp�
�y��2

)
ηp+1�dy�

≤ 1
N

∫
θ2p+1dηp+1 =

1
N

�θp+1�22�ηp+1 �

From this and taking into account (46) on concludes that

Ent
(
�

�N�q�
�0�n�

∣∣∣η⊗q
�0�n�

)
≤ 2q

N

n∑
p=1

�θp�22�ηp

and the proof of the theorem is complete. The earlier discussion given in Re-
mark 3.7 leads to the following immediate corollary of (42), Theorem 3.5.

Corollary 3.11. If ��n � n ≥ 1� are given by �3�, and conditions �
 � and
�	 �2 are both satisfied, then we have that

∀n ≥ 0� ∀1 ≤ q ≤ N� Ent���N�q�
�0�n� �η⊗q

�0�n�� ≤
qc�n�
N

(47)

In addition if the uniform bounds in �10� are satisfied then �42� holds with
some linear function of the time parameter, that is c�n� = cn for some c < ∞.

REFERENCES

[1] Ben Arous, G. and Zeitouni, O. I. (1999). Increasing propagation of chaos for mean field
models. Ann. Inst. H. Poincarè Probab. Statist. 35 85–102.
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