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SELF-ATTRACTIVE RANDOM POLYMERS

By Remco van der Hofstad1�2 and Achim Klenke2

Delft University of Technology and Universität Erlangen

We consider a repulsion–attraction model for a random polymer of
finite length in �d. Its law is that of a finite simple random walk path in
�d receiving a penalty e−2β for every self-intersection, and a reward eγ/d

for every pair of neighboring monomers. The nonnegative parameters β
and γ measure the strength of repellence and attraction, respectively.

We show that for γ > β the attraction dominates the repulsion; that
is, with high probability the polymer is contained in a finite box whose
size is independent of the length of the polymer. For γ < β the behavior is
different. We give a lower bound for the rate at which the polymer extends
in space. Indeed, we show that the probability for the polymer consisting
of n monomers to be contained in a cube of side length εn1/d tends to zero
as n tends to infinity.

In dimension d = 1 we can carry out a finer analysis. Our main result
is that for 0 < γ ≤ β− 1

2 log 2 the end-to-end distance of the polymer grows
linearly and a central limit theorem holds.

It remains open to determine the behavior for γ ∈ �β − 1
2 log 2� β�.

0. Introduction and main results.

0.1. Model and motivation. A polymer is a long chain of molecules (mono-
mers) with two characteristic phenomenological properties: an irregular shape
and a certain stiffness. The chemical motivation is that the monomers are lined
up and are connected by “bonds” of the same length. For example, carbon-based
polymers like polyethylene or polystyrene have a bond length of 1�54 · 10−10

meters. The stereometric angles of neighboring bonds, however, are subject to
randomness. Irregularity and stiffness are a result of entropy and repulsive
and attractive forces between the monomers (and possibly a medium).
In material sciences an important question is to determine the end-to-end

distance of the polymer and the average distance of monomers (“coil radius”
or “radius of gyration”). We address this question in the present paper for a
mathematical model of a random polymer.
In the simplest mathematical model for a random polymer it is assumed

that the monomers are located at sites S0� S1� � � � � Sn ∈ �d and that �Si −
Si−1� = 1, i = 1� � � � � n. S = �Si	ni=0 is assumed to be a random variable. Its
distribution is derived from that of a simple random walk (starting at S0 = 0),
denoted by P, by introducing interactions between monomers. More precisely,
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we define a Hamiltonian Hn that models repulsive and attractive forces. The
distribution of the polymer is obtained by taking the Boltzmann distribution
with respect to the simple random walk law.
For the model we consider in this paper we fix two parameters β� γ ≥ 0 and

define the Hamiltonian by

Hn�S	 = Hβ�γ
n �S	 = β

n∑
i� j=0

1��Si−Sj�=0� − γ

2d

n∑
i� j=0

1��Si−Sj�=1��(0.1)

For n ∈ � the new path law Q
β�γ
n is

dQ
β�γ
n

dP

(�Si	ni=0
)= 1

Z
β�γ
n

e−Hn�S	�(0.2)

where (with E denoting the expectation with respect to P) Zβ�γ
n is the nor-

malizing constant or partition function

Zβ�γ
n = E

(
e−Hn�S	)�(0.3)

The lawQ
β�γ
n is called the n-polymer measure with strength of repellence β and

strength of attraction γ. Qβ�γ
n gives a penalty e−2β to every pair of monomers

at the same site and a reward eγ/d for every pair of neighboring monomers.
The penalty models polarization of the monomers, or the so-called excluded
volume effect, which means that around each monomer there is a certain space
in which it is energetically unfavorable to have another monomer. This space
is called the excluded volume. For an explanation of the excluded volume
effect and other properties of polymers from a physicist’s point of view, see
Vanderzande (1998).
The reward models attractive forces between monomers that are of short

range, the so-called van der Waals forces. For an expository paper on math-
ematical polymer models, see den Hollander (1996). For a survey of one-
dimensional polymer models, see van der Hofstad and König (2001).
The above model has received a lot of attention in the case where γ = 0,

in which case it is called the Domb–Joyce model or the weakly self-avoiding
walk. This is the case of a good solvent. In real situations, this corresponds to
high temperatures. At lower temperatures the quality of the solvent dete-
riorates. Therefore, the excluded volume effect plays a less profound role,
and the attractive forces between the monomers become more important. The
temperature at which this phase transition occurs is called the θ-point. See
Vanderzande [(1998), Chapter 8].
It is a folklore conjecture that the following scaling for the end-to-end dis-

tance �Sn� holds for the weakly self-avoiding walk (γ = 0).

Conjecture 0.1. For every β ∈ �+,

EQ
β�0
n

[�Sn�2] ∼ Dn2νSA �n → ∞	�(0.4)



SELF-ATTRACTIVE RANDOM POLYMERS 1081

where D = D�β�d	 > 0 is some amplitude and νSA = νSA�d	 some critical
exponent. The latter is believed to be independent of β and to assume the
values

νSA =


1� d = 1,
3
4 � d = 2,

0�588 � � � � d = 3,
1
2 � d > 4.

(0.5)

For d = 4 it is believed that there are logarithmic corrections to the above
behavior; that is,

EQ
β�0
n

[�Sn�2] ∼ Dn�log n	1/4 �n → ∞	�(0.6)

See Madras and Slade [(1993), Section 2] or Vanderzande [(1998), Section 2]
for a heuristic argument due to Flory (1949) that produces the right exponents,
except in dimension 3, where the heuristic argument gives the slightly larger
value 3

5 . In Vanderzande [(1998), Sections 3 and 4] there are also other heuris-
tic explanations for the values of ν in dimensions 2 and 3.
For d > 4, two independent simple random walk paths typically intersect

only finitely often. Conjecture 0.1 states that in this case the interaction is
typically of short range and on a macroscopic scale the entropy is the decisive
quantity. Therefore, we observe ordinary diffusive behavior. Here dimension 4
is the critical dimension, where the behavior is thought to be Gaussian with
logarithmic corrections.
In lower dimensions the range of the interaction is larger and no Gaussian

limit is expected. Finally, in dimension d = 1 the end-to-end distance behaves
ballistically, that is, grows linearly in the number of monomers.
For d ≥ 5, the lace expansion was used to prove the above conjecture [see,

e.g., Brydges and Spencer (1985), Hara and Slade (1992a, b) or Madras and
Slade (1993)]. In dimension d = 1, Greven and den Hollander (1993) showed
the ballistic behavior of the polymer (law of large numbers). Later König (1996)
was able to show a central limit theorem which we cite here as a basic theorem.
Denote by � �0�1	 the standard normal distribution.

Theorem 0. For every β ∈ �+ there exist θ∗ = θ∗�β	 ∈ �0�1	, σ∗ = σ∗�β	 ∈
�0�∞	, such that

lim
n→∞Qβ�0

n

( �Sn� − θ∗n
σ∗√

n
∈ ·

)
= � �0�1	�(0.7)

It is reasonable to expect that β �→ θ∗�β	 is increasing. However this is still
an open problem. It is known that β �→ θ∗�β	 is analytic as a map from �0�1	
to �0�1	 [see Greven and den Hollander (1993)].
One main goal of this paper is to show a CLT for Qβ�γ

n when γ is smaller
than β (Theorem 3 below). Our strategy is to adapt the methods of Greven and



1082 R. van der HOFSTAD AND A. KLENKE

den Hollander (1993), König (1996), and van der Hofstad, den Hollander and
König (1997) to our model. The approach turns out to work for γ ≤ β− 1

2 log 2.
We expect the CLT to hold for all γ < β but we could not show it with this
method.
The fundamental theorem. The fundamental difference between γ < β and

γ > β is that the polymer localizes if γ > β while it does not if γ < β (Theo-
rem 1). For the behavior at γ = β we only have a conjecture (Conjecture 0.3).
In order to state our first theorem we have to fix some terminology.

Definition 0.2. The polymer is called localized, if for some L ∈ �,

lim
n→∞Qβ�γ

n �Si ∈ CL ∀ i ≤ n	 = 1�(0.8)

where CL = �−L� � � � �L�d.

The polymer is trapped in a finite box in the localized regime. In fact, we
will show that the probability to leave a certain large cube is exponentially
small as n → ∞.

Theorem 1 (Fundamental theorem). Fix d ≥ 1.

(i) If γ < β, then the polymer is not localized. Furthermore, for ε > 0 small
enough there exists a constant c > 0 such that for all n ∈ �,

Qβ�γ
n �Si ∈ C�εn1/d� ∀ i ≤ n	 ≤ e−cn�(0.9)

(ii) If γ > β, then the polymer is localized. Moreover, there exists a constant
c > 0 such that for L large enough and all n ∈ �,

Qβ�γ
n �∃ i ≤ n� Si /∈ CL	 ≤ e−cLn�(0.10)

Theorem 1 states that the transition from localization to nonlocalization
takes place exactly at γ = β. The key ingredients for the proof of Theorem 1
are that for γ > β we have

a �= lim
n→∞

1
n2

logZβ�γ
n > 0�(0.11)

while for γ < β,

− ∞ < lim sup
n→∞

1
n
logZβ�γ

n < 0�(0.12)

Indeed, for the behavior in (0.11) to occur, the Hamiltonian has to be of
order an2. This is only possible when the local times are of order n and is
a clear indication that the polymer localizes. In this case, we will see that
a = limn→∞ n−2 maxHn�S	, where the maximum is taken over all n-step sim-
ple random walk paths (see Section 1). If, on the other hand, we have that
γ < β, then the polymer pays a super-exponential price for large local times
(see Section 1.1). Hence, if the bounds in (0.12) hold, then none of the local
times are of order n, so that the polymer cannot localize.
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We can think of β − γ as the “effective parameter” of self-intersections.
If this effective parameter is negative, there is an overall reward for self-
intersections so that the polymer behaves like a self-attractive random walk
(β < 0, γ = 0), which localizes in all dimensions even when β = βn = − α

n
with

α > 0 large enough [see Bolthausen and Schmock (1997)]. (However, for α > 0
small enough, the behavior is diffusive in d = 2 [Brydges and Slade (1995)].
This shows that in d = 2 there is an interesting phase transition.)
If β− γ is positive, then the polymer does not want to localize in the sense

of Definition 0.2. However, it is unclear what the precise scaling behavior will
be in this case. We will go deeper into conjectures and comparisons to other
models in Section 0.2 below.
Shape theorem and the transition point. The next aim is to investigate

the two regimes γ > β and γ < β in more detail. We start with the regime of
localization (γ > β). How does the polymer localize? Does it reveal a particular
profile? More precisely, if we assign to each monomer a mass of 1

n
, does the

concentration of mass converge (weakly) to a random distribution and can we
characterize this distribution?
In order to formulate our result we need to introduce the local times for

simple random walk,

�n�x	 = #�0 ≤ i ≤ n� Si = x� (
n ∈ �0� x ∈ �d

)
�(0.13)

We want to show that up to translations, n−1�n converges to some function
fβ�γ, the “shape” or “profile” of the polymer. We are able to do so if d = 1. In
our Corollary 1.5 we can even determine the “shape” fβ�γ.

Theorem 2 (Shape theorem). Assume d = 1 and and γ > β. There exist
a finitely supported function fβ�γ� � → �0�∞	, �fβ�γ�1 = 1 and constants
c′�C′ > 0 such that for ξ large enough and all n ∈ �,

Qβ�γ
n

(
min
x∈�

�n−1�n − fβ�γ�x + ·	�1 > ξn−1/2
)

≤ C′e−c′n�(0.14)

Moreover, fβ�γ is the function that minimizes the Hamiltonian among all func-
tions that can occur as limits of rescaled local times n−1�n (n → ∞).

It is not too hard to show the existence of such a minimizer for any d ≥ 1
(see Lemma 1.3). However, uniqueness requires more work. We are only able
to show uniqueness in d = 1 where we can give an explicit formula in Corol-
lary 1.5. A similar statement as in (0.14) holds for d ≥ 2 if we replace the
minimum over x ∈ � by the minimum over the set � ∗ of functions that mini-
mize the Hamiltonian. Since we do not know whether � ∗ is generated by one
function (as in d = 1) or a finite number of functions or if it is more com-
plicated, it does not seem worthwhile to state this as a result. However, we
formulate the proof in Section 1.3 for �d, under the assumption that there are
finitely many maximizers.
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Another interesting question is what happens at the transition point γ = β.
We have the following conjecture.

Conjecture 0.3. If γ = β, then the scale of the polymer is given by

EQ
β�β
n

[�Sn�2] ∼ Dn2/�d+1	�log n	−1/�d+1	 �n → ∞	�(0.15)

The rigorous proof in d = 1 will be presented in a forthcoming paper [see
van der Hofstad, Klenke and König (2001)], in which the authors show that
the properly normalized range of the random walk (i.e., the number of distinct
sites visited by the walk) converges.
Central limit theorem. In dimension d = 1 there is a simple connection

between the local times of simple random walk and a critical Galton–Watson
branching process (Knight’s theorem). Since it was first used in this context
by Greven and den Hollander (1993) it has proved to be the most powerful
tool for the investigation of one-dimensional random walks with interactions.
Therefore, it is natural that we get the most precise result in d = 1. We are
able to show ballistic behavior, which meansQβ�γ

n ���Sn�/n−θ∗�β� γ	� > ε	 → 0,
n → ∞, for some θ∗�β� γ	 > 0 and all ε > 0. In addition we can show the
central limit theorem for the fluctuations of �Sn� around nθ∗�β� γ	. Clearly the
CLT is the stronger statement. Since our proof does not need the LLN as an
intermediate step but is a direct approach via large deviation techniques we
only state the CLT. Due to technical difficulties, we can only show this for γ
such that γ ≤ β − 1

2 log 2.

Theorem 3 (Central limit theorem). For every β� γ ∈ �0�∞	 such that γ ≤
β − 1

2 log 2, there exist θ
∗ = θ∗�β� γ	 ∈ �0�1�, and σ∗ = σ∗�β� γ	 ∈ �0�∞	 such

that

lim
n→∞Qβ�γ

n

( �Sn� − θ∗n
σ∗√

n
∈ ·

)
= � �0�1	�(0.16)

Theorem 3 shows that for γ ≤ β − 1
2 log 2, the polymer is in the same

universality class as the weakly self-avoiding walk for which γ = 0 (see Con-
jecture 0.1 and Theorem 1).
The quantity θ∗ is called the speed of the polymer, while σ∗ is called the

spread of the polymer. In Section 2 we give a characterization of these quanti-
ties in terms of a largest eigenvalue problem. It is reasonable to believe that
�β� γ	 �→ θ∗�β� γ	 is increasing in β and decreasing in γ and that θ∗�β� γ	 → 0
as γ ↑ β. However, we are only able to show analyticity for 0 < γ < β.
The gap of 1

2 log 2 is due to a technical difficulty that we could not over-
come here. We know from Theorem 1(i) that max0≤i≤n �Si� > εn with high
probability. This suggests that we would also have ballistic behavior here,
which presumably goes along with the central limit theorem behavior for all
0 < γ < β.
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0.2. Discussion and conjectures. The model considered in this paper is
related to the attractive (strictly) self-avoiding walk studied in Brak, Owczarek
and Prellberg (1993), obtained by taking the limit ofQβ�γ

n as β tends to infinity.
Evidently self-avoiding walk cannot intersect itself and thus cannot localize
in the sense of Definition 0.2. Brak, Owczarek and Prellberg (1993) conjecture
that there exists a γ∗�d	 ∈ �0�∞	 such that for γ < γ∗�d	 the attractive self-
avoiding walk behaves like ordinary self-avoiding walk while it is contained
in a ball of radius of a multiple of n1/d if γ > γ∗�d	. Note that for β = ∞ the
phase transition observed in this paper at γ = β does not occur. The tran-
sition point γ∗ is expected to take a nontrivial value. It is believed that for
0 < β < ∞, a similar picture holds. Indeed, it is conjectured that there is a
second critical curve β �→ γ∗�β�d	 such that for γ ∈ �0� γ∗�β�d		 the scale of
the polymer is nν, with ν = νSA as in Conjecture 0.1, while for γ ∈ �γ∗�β�d	� β	
the scale is n1/d. (Note that in dimension 1, ν = 1/d = 1, so there cannot be a
second phase transition.) In Theorem 1(i) we show that if ν exists, then ν ≥ 1

d
.

The value γ∗�β	 is called the θ-point. Thus, two phase transitions are
expected, one at γ = β and one at the θ-point. We mention that νθ = ν�γ∗�β	� β	
is expected to be 4

7 in d = 2 and 1
2 for d ≥ 3. See Vanderzande (1998) for all

these conjectures for the attractive self-avoiding walk (β = ∞, γ ∈ �0�∞	).
For the critical case γ = β there exist no conjectures in the literature, to our
best knowledge. We think that ν�β�β	 = 1

d+1 in all dimensions (recall Conjec-
ture 0.3), and that there are logarithmic corrections. However, the heuristic
argument for d > 1 is very weak. In Figure 1, we give a summary of the
expected critical exponents ν. A general proof of the existence of the critical
exponent ν does not exist, so all values are conjectured unless a rigorous proof
and identification exists.
For d ≥ 5, the lace expansion has been used to prove that weakly self-

avoiding walk can be rescaled to Brownianmotion, that is, weakly self-avoiding
walk is diffusive. However, the lace expansion technique depends sensitively
on the strict self-repellence property of that model. Even for γ � β the attrac-
tive random polymer is self-repellent only on a macroscopic scale. This is not
sufficient to use the lace expansion. Still we believe that the attractive weakly

Fig. 1. Sketch of the conjectured values for ν�γ�β	.
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self-avoiding walk behaves diffusively for d ≥ 5 and γ small enough. Possibly
the lace expansion can be adapted to handle the case where 0 ≤ γ � β � 1.
Oono (1975, 1976) investigates the above model for γ = 0 and β < 0. He

shows that the path jumps back and forth between two points with high prob-
ability. The above problem is easier than the one we consider for γ > β, since
one can explicitly compute the maximizer of the Hamiltonian, whereas in the
case where γ > β we cannot.

0.3. Outline. In Section 1 we prove the fundamental theorem (Theorem 1)
and the shape theorem (Theorem 2). The main step is to compute the exact
scaling of the partition function as n → ∞. This is done by solving a varia-
tional problem for the Hamiltonian. Furthermore, we give a heuristic argu-
ment that explains the formulas in the special case γ = 0.
In Section 2 we identify θ∗�β� γ	 and σ∗�β� γ	 in terms of derivatives of

the largest eigenvalue of an �2 × �2 matrix, acting as a compact operator on
�2��2	. Existence and analyticity of this eigenvalue (as a function of β and γ)
are proved by employing standard functional analytic methods.
In Section 3 and 4 we prove the central limit theorem (Theorem 3) using

a variation of a method introduced by van der Hofstad, den Hollander and
König (1997). We recall Knight’s theorem in Section 3. This is a Markov
chain description of the local times of one-dimensional simple random walk.
We use this description to write the moment enerating function of Sn under
Q

β�γ
n �·�Sn > 0	 as the expectation of an exponential functional of three Markov

chains. These Markov chains correspond to the local times in the intervals
�−∞�0	, �0� Sn� and �Sn�∞	.
In Section 4 we absorb the exponential functional e−H

β�γ
n �S	 into the transi-

tion kernels of the Markov chains and rewrite the moment generating function
as a correlation function involving three Markov processes. We show that, in
the limit as n → ∞, the correlation function factors into a product of three
parts. The part corresponding to �0� Sn� gives the CLT in Theorem 3, the parts
corresponding to �−∞�0	 and �Sn�∞	 result into constants that drop out in
the normalization. This proves the CLT (Theorem 3).

1. Proof of the fundamental and shape theorem. The proof of Theo-
rem 1(i) is fairly simple and is the content of the next short subsection. The
proof of localization for γ > β requires a firm grip on the asymptotics of the
partition function Z

β�γ
n . This is Proposition 1.1 in Section 1.2. The proof is

rather involved and includes solving a variational problem. At the end of that
subsection we prove Theorem 1(ii). The various steps in the study of the vari-
ational problem serve to prove the shape theorem in the final subsection.

1.1. No localization for γ < β. First we introduce some notation. We con-
sider the local time �n of a random walk path [see (0.13)] as an element of
l2��d	, the space of square-summable sequences with scalar product �·� ·�. We
first reformulate the Hamiltonian [recall (0.1)] in terms of the local times �n
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[see (0.13)],

Hn�S	 = β
∑
x∈�d

�2n�x	 − γ

2d

∑
x� e∈�d� �e�=1

�n�x	�n�x + e	�(1.1)

We see that the Hamiltonian H
β�γ
n is a quadratic functional on l2��d	 that is

given by a symmetric bilinear form, that is, by a matrix F = Fβ�γ indexed by
�d which is given by

F�x�y	 = Fβ�γ�x�y	 =


−β� x = y,

γ

2d
� �x − y� = 1�

0� else.

(1.2)

Thus Hn�Sn	 = −��n�F�n�. We will frequently use the inequality

��n�Fβ�γ�n� = −�β − γ	 ∑
x∈�d

�2n�x	 − γ

4d

∑
x� e∈�d� �e�=1

��n�x	 − �n�x + e		2

≤ −�β − γ	 ∑
x∈�d

�2n�x	(1.3)

= −�β − γ	��n� �n� = ��n�Fβ−γ�0�n��
Fix γ < β and L ∈ �. We give a lower bound for the energy of a path that

stays in CL at all times. To do so, let ��n�x		x∈�d be the local time of such a
path and use (1.3) to get the estimate

Hn�S	 ≥ �β − γ	��n� �n� ≥ �β − γ	n2�2L + 1	−d�

Combine this with the trivial estimate (using a straight path) Zβ�γ
n ≥ e−β×

�e−β+γ/d/2d	n to conclude that for some c > 0,

Q
β�γ
n �Sj ∈ CL∀j ≤ n	 ≤ e−�β−γ	n2�2L+1	−d

/Z
β�γ
n

≤ e−cn → 0� n → ∞�
(1.4)

Note that (1.4) still holds if L = Ln = εn1/d and ε > 0 small enough. This
proves (0.9).
In addition to (1.4) we will give bounds for the normalizing constant Zβ�γ

n

for γ < β. Use (1.3) to get

Zβ�γ
n = E

[
e��n�Fβ�γ�n�] ≤ E

[
e��n�Fβ−γ�0�n�] = Zβ−γ�0

n �(1.5)

Note thatZβ−γ�0
n is the normalizing constant for the weakly self-avoiding walk

with interaction parameter β − γ > 0. By submultiplicativity (i.e., Zβ−γ�0
n+m ≤

Z
β−γ�0
n Z

β−γ�0
m ), it is clear that

lim
n→∞

1
n
logZβ−γ�0

n = inf
n∈�

1
n
logZβ−γ�0

n ≤ 1
2
logZβ−γ�0

2 < 0�(1.6)

where we used that Zβ−γ�0
2 = �1 − 1

2d	 + 1
2de

−�β−γ	 < 1. This proves (0.12).
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1.2. Localization for γ > β. Fix γ > β. We will start by bounding the
normalizing constant Zβ�γ

n from above and below in Proposition 1.1.
First we need some notation. Define

Mn = Mn�β� γ	 = max
S=�Si	ni=0

��n�Fβ�γ�n�(1.7)

and note that (
1
2d

)n

eMn ≤ Zβ�γ
n ≤ eMn�(1.8)

The main ingredients for the proof of Theorem 1(ii) are good upper and
lower bounds for Mn. This is the content of the next proposition which will be
proved in the pages following. The proof of Theorem 1(ii) follows at the end of
this section.

Proposition 1.1. There exist constants a�C > 0 such that for all n ∈ �,

an2 − Cn ≤ Mn ≤ an2 + γ

d
n�(1.9)

The proof of (0.11) is a simple consequence of (1.9) and (1.8).
For the proof of (1.9) we scrutinize a variational problem for the Hamilto-

nian (Lemma 1.3). A major point is that due to periodicity of the random walk
not all functions are admissible as possible limits of the rescaled local times.
Rather than considering the local times directly, we reformulate the problem
in terms of the numbers of bond crossings. Here no restrictions apply (apart
from nonnegativity), at least in the limit n → ∞, as will follow from the proof.
In order to formulate the problem we have to introduce some notation.
For a random walk path �Si	ni=0, not necessarily starting in 0, define the

averaged local time

�̃n�x	 = 1
2

n−1∑
i=0

�1Si=x + 1Si+1=x	�(1.10)

Clearly, �̃n = �n − 1
21�S0� − 1

21�Sn�.
Furthermore, let

� = �g = �g1� � � � � gd	�gi� �d → �0�∞	 i = 1� � � � � d� �g� = 1��(1.11)

where

�g� =
d∑

i=1

∑
x∈�d

�gi�x	��(1.12)

Let ei be the ith unit vector in �d and define the linear map α by

�αg	�x	 = 1
2

d∑
i=1

[
gi�x − ei	 + gi�x	]

�(1.13)
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Here gi�x	 measures the number of crossings of the bond between x and x+ei,
in either direction and αg�x	 is the corresponding local time.
Finally, let � = α�� 	. It is clear that for every random walk path �Si	ni=0,

1
n
�̃n ∈ � �(1.14)

Now, define for L ∈ �,

�L = �g ∈ � � supp�g	 ⊂ �0� � � � �L − 1�d�(1.15)

and let �L = α��L	.

Lemma 1.2. For every f ∈ �L and every n ∈ � there exists a random walk
path �Si	ni=0 such that [recall (1.10)]

��̃n − nf�1 ≤ �2d + 2	Ld�(1.16)

Proof. Choose g ∈ �L with f = αg. Choose ḡ ∈ �L with ḡi�x	 ∈ 2
n
�0,

x ∈ �d, i ∈ �1� � � � � d� and �ḡi�x	 − gi�x	� ≤ 2/n. Hence �αḡ − f� ≤ 2dLd/n.
Then ḡ corresponds in an obvious way to a family of (at most) Ld random
walk paths starting and ending in the same position x and visiting only their
neighbors x + ei, i = 1� � � � � d [exactly n

2 ḡ
i�x	 times].

Now connect these paths by a random walk path that visits every point in
�0� � � � �L− 1�d exactly once. This gives a random walk path of length n+Ld.
Cutting off the last Ld steps gives the desired path S for which (1.16) holds. ✷

The previous lemma is the connection of (1.9) to the following variational
problem:

sup��f�Ff�� f ∈ � ��(1.17)

Lemma 1.3. The supremum in (1.17) is attained and there exists an L0 ∈ �
such that (up to translations) supp�f∗	 ⊂ �0� � � � �L0�d for any maximizer f∗ of
(1.17). Furthermore, a �= �f∗�Ff∗� > 0.

Proof. First we rewrite our problem in terms of functions in � . Define
the matrix G = α∗Fα, where α∗ is the adjoint of α. Hence we have to show
that for the variational problem

sup��g�Gg�� g ∈ ��(1.18)

the supremum is assumed, that there exists an L0 ∈ � such that any max-
imizer g∗ has (up to translations) its support in �0� � � � �L0�d, and that a =
�g∗�Gg∗� > 0.
Clearly the set �L is compact for every L ∈ � and �L → �, g �→ �g�Gg�

is continuous. Hence there exists a solution g∗
L ∈ �L of

�g∗
L�Gg∗

L� = sup��g�Gg�� g ∈ �L��(1.19)
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Denote by � ∗
L the set of such g∗

L and let aL = �g∗
L�Gg∗

L�. The sequence �aL	L∈�
is nondecreasing and a = limL→∞ aL. We have to show that there exists an
L0 ∈ � such that for any K ≥ L0 and g ∈ � ∗

K we have (up to translations)
g ∈ � ∗

L0
. In this case clearly a = aL0

.
Let ϕL = �L−d1�0�����L−1�d�0� � � � �0	 ∈ �L. Clearly, α�ϕL	�x	 = L−d if x ∈

�0� � � � �L− 2� × �0� � � � �L− 1�d−1 and = 1
2L

−d if x ∈ �−1�L− 1� × �0� � � � �L−
1�d−1. Hence for L ≥ 3γ

γ−β
,

aL ≥ �ϕL�GϕL� = �α�ϕL	�Fα�ϕL	�

≥ �γ − β	L−d − γ − β

2
L−�d+1	 − γL−�d+1	(1.20)

≥ �γ − β	L−d − 3
2
γL−�d+1	 ≥ γ − β

2Ld
�

Choosing L0 = # 4γ
γ−β

$ we get for L ≥ L0 that aL ≥ �γ−β	d+1

2�4γ	d > 0.

Let L ∈ � and fix g∗
L ∈ � ∗

L. For x�y ∈ �0� � � � �L − 1�d and i� j ∈ �1� � � � � d�
such that �g∗

L	i�x	 > 0 and for ε ∈ �0�1� define hε = �h1ε� � � � � hd
ε 	 by

hk
ε�z	 =


�g∗

L	j�y	 + ε� k = j, z = y,

�g∗
L	i�x	 − ε� k = i, z = x,

�g∗
L	k�z	� else.

(1.21)

Clearly hε ∈ �L for ε ∈ �0� �g∗
L	i� and h0 = g∗

L. Thus

0 ≥ d

dε
�hε�Ghε��ε=0 = 2

[�Gg∗
L	j�y	 − �Gg∗

L	i�x	]
�(1.22)

If also �g∗
L	j�y	 > 0, then the reverse inequality holds. Hence there exists

bL ∈ � such that

�Gg∗
L	i�x	 = bL� x ∈ supp�g∗

L	i� i = 1� � � � � d�(1.23)

It follows that aL = �g∗
L�Gg∗

L� = �g∗
L� bL1� = bL.G is a continuous operator on

l1��d × �1� � � � � d�	, �G� < ∞, with entries of absolute value not exceeding dγ.
Furthermore, G is translation invariant and symmetric and G��x� i	� �y�j		 =
0, �x − y� ≥ 3. Thus #��y�j	� G��x� i	� �y�j		 > 0� ≤ d5d. This implies

��Gg∗
L	i�1 ≤ γd25d�g∗

L�1 = γd25d�

Thus �supp�g∗
L	i� ≤ γd25d/aL. Using the estimate for aL we get

�supp�g∗
L	� ≤ d3

10

(
20γ
γ − β

)d+1
< ∞�(1.24)
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We must exclude the possibility that supp�g∗
L	 has large gaps. For y ∈ � and

i ∈ �1� � � � � d� define
Hi�−�y	 = �x ∈ �d� xi ≤ y��
Hi�+�y	 = �x ∈ �d� xi ≥ y�

(1.25)

and

Hi�y	 = Hi�−�y	 ∩ Hi�+�y	�
Assume that the support of g ∈ �L has a gap of three hyperplanes,

g�x	 = 0� x ∈ Hi�y − 1	 ∪ Hi�y	 ∪ Hi�y + 1	�
for some y ∈ �. Then define g+ and g− by g−�x	 = g�x	1Hi�−�y	�x	 and g+�x	 =
g�x	1Hi�+�y	�x	. Since G��x� j	� �x′� j′		 = 0 if �x − x′� ≥ 3 we get

�g�Gg� = �g− + g+�G�g− + g+	� = �g−�Gg−� + �g+�Gg+�
≤ ��g−�2 + �g+�2��g∗

L�Gg∗
L��

(1.26)

[Recall the norm �g� from (1.12).] If g− '= 0 and g+ '= 0 then �g�Gg� <
�g∗

L�Gg∗
L�. Hence we can rule out the possibility that g∗

L has gaps of more
than two hyperplanes in the support. This implies that (up to translations)

supp�g∗
L	 ⊂ �0� � � � �3�supp�g∗

L	��d ⊂ �0� � � � �L0�d�(1.27)

where L0 = #� 20γ
γ−β

	d+1d3$ is independent of L. Now, if L ≥ L0, then g∗
L ∈ � ∗

L0

which completes the proof. ✷

Proof of Proposition 1.1. Let a = �f∗�Ff∗� as in the proof of the pre-
vious lemma and let L0 be such that supp�f∗	 ⊂ �0� � � � �L0 − 1�d. The upper
bound of (1.9) is immediate from the fact that �̃n = �n − 1

21�S0� − 1
21�Sn� ∈ � ,

the fact that absolute values of the entries of Fβ�γ are bounded from above
by γ and that

∑
x∼Si

�̃n�x	 ≤ n for i = 0� n. Let C = �2d + 2	γLd
0 . Similarly,

the lower bound in (1.9) follows from Lemma 1.2, the fact that the entries of
the matrix F have absolute values not exceeding γ and that �̃n�x	 ≤ n for all
x ∈ �d. ✷

In dimension d = 1 we can show that the maximizers g∗ and f∗ are unique
and we determine their shapes. Unfortunately, we are not able to give the
exact maximizer but we can give a class of functions in which this maximizer
lies. This class is indexed by the size L of the support of these functions. We
have a conjecture for the size of the optimal L, but rigorously we can only use
the previous lemmas to get bounds on the optimal L that are rather poor.

Lemma 1.4. Assume d = 1. Let ω = arccos�β/γ	 and define for L ∈ � the
function gL with support in �0� � � � �L− 1� and �gL� = 1 for x ∈ �0� � � � �L− 1�
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by

gL�x	 =



b

[
α0 + α1

(
1 − 2

L − 1
x

)
�−1	x

+ cos
(
ω

(
x − L − 1

2

))]
� L even,

b

[
α0 + α1�−1	x + cos

(
ω

(
x − L − 1

2

))]
� L odd,

(1.28)

where b > 0 is a normalizing constant and

α0 =



1
2�L + 2	

(
�L + 1	 cos

(
ω
L + 3
2

)
+ �L + 3	 cos

(
ω
L + 1
2

))
� L even,

− cos
(
ω

2

)
cos

(
ω

2
�L + 2	

)
� L odd,

(1.29)

α1 =


1

L + 2
sin

(
ω

2

)
sin

(
ω

2
�L + 2	

)
� L even,

sin
(
ω

2

)
sin

(
ω

2
�L + 2	

)
� L odd.

(1.30)

Then g∗ = gL for some L ∈ �.

Proof. Refining the argument of (1.26) we see that in d = 1 the support
has no gaps at all, hence for any L there exists K ≤ L such that supp�g∗

L	 =
�0� � � � �K − 1�. If L > K then g∗

L = g∗
K = g∗.

We will next solve the equation

�GgL	�x	 = c for all x ∈ �0� � � � �L − 1��

for hL with supp�hL	 = �0� � � � �L − 1�. Clearly, �G1L	�x	 = γ − β for all
x ∈ �0� � � � �L − 1�, where we define 1L�x	 = 1�−2�����L+1��x	. Hence,

gL�x	 = b�1L�x	 + f�x	��

where �Gf	�x	 = 0 for all x ∈ �0� � � � �L − 1�, whereas f�−2	 = f�−1	 =
f�L	 = f�L + 1	 = −1. However, �Gf	�x	 = 0 for all x ∈ �0� � � � �L − 1� if and
only if

f ∈ {
x �→ (

ξ1�−1	x + ξ2x�−1	x + ξ3 cos�ωx	 + ξ4 sin�ωx	)
� ξ1� � � � � ξ4 ∈ �

}
�
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where the right-hand side is considered to be a set of functions on �−2� � � � �
L + 1�. Indeed, the above can easily be checked by using that

G�x�y	 =



γ

4
− β

2
� for x = y,

γ

4
− β

4
� for �x − y� = 1,

γ

8
� for �x − y� = 2,

0� else.

The solution for ξ1� � � � � ξ4 is given in the statement of the lemma. Next, b = bL
and c = cL are determined by

�gL� = 1 and c = b�γ − β	�
Consequently, we find the optimal L by maximizing cL over all L such that
gL�x	 > 0 for all x ∈ �0� � � � �L − 1�, and we see that g∗ = gL for this value
of L. ✷

Remark. Numerical computations suggest that the optimal choice is L =
� 2π
ω

� − 2 ∼ π
√
2

√�γ/γ − β	, γ − β ↓ 0. This is consistent with the corre-
sponding optimization problem in continuous space where the optimizer is
�1 − cos�ωx		1�0�2π/ω��x	. However, we have not been able to prove this. Note
that for the correct choice of L, automatically gL = g∗ ≥ 0. However, it need
not be that the maximal L with this property is the correct choice. This makes
it difficult to determine L analytically.
We give the following corollary of Lemma 1.4 that determines the shape of

the maximizer f∗ in dimension 1.

Corollary 1.5. Assume d = 1. The maximizer f∗ has the form fL ∈ �L

for some L ∈ �, where

fL�x	

=


b

[
α0+ α1

L−1
�−1	x+cos

(
ω

2

)
cos

(
ω

(
x−L−2

2

))]
� L even,

b

[
α0+cos

(
ω

2

)
cos

(
ω

(
x−L−2

2

))]
� L odd,

(1.31)

where b, α0 and α1 are defined as in Lemma 1.4.

With Proposition 1.1 at hand it is not difficult to prove localization of the
polymer. In fact, we can show immediately the stronger statement of (0.10).

Proof of Theorem 1(ii). We may assume for convenience that 1
3L ∈ �.

Recall that �̃n is the averaged local time of the path defined in (1.10).
For any x ∈ �d, let xi be the ith component, i = 1� � � � � d. Let �Si	ni=0 be a

random walk path from the event in (0.10). Without loss of generality we may
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assume that S1
i > L for some i ∈ �0� � � � � n�. For y ∈ �, define the hyperplane

[recall the notation of (1.25)]

H1�y	 = �x ∈ �d� x1 = y��(1.32)

Since
∑2L/3

y=L/3
∑

x∈H1�y	 �̃n�x	 ≤ n, there exists a y0 ∈ �L
3 + 1� � � � � 2L3 − 1� with

∑
x∈H1�y0−1	∪H1�y0	∪H1�y0+1	

�̃n�x	 ≤ 9n
L − 3

�(1.33)

The next step is to decompose the path into the pieces that are “left” ofH1�y0	
and “right” ofH1�y0	. Of course, a path may re-enter a half-space at a different
place than where it left it. Thus, rather than one path we get a collection of
paths in the left and right half-space.
Here are the precise definitions. Define the random times τ−

k and τ+
k , k ∈ �

inductively by τ−
1 = 0 and

τ+
k = inf�m ≥ τ−

k  S1
m > y0� − 1�

τ−
k+1 = inf�m ≥ τ+

k  S1
m < y0� − 1�

(1.34)

Consider now the families of random walk paths{(
S
k�−
i

)
i=0������τ+

k ∧n	−τ−
k
� k ∈ �� τ−

k < n
}
�{(

S
k�+
i

)
i=0������τ−

k+1∧n	−τ+
k
� k ∈ �� τ+

k < n
}
�

(1.35)

where S
k�−
i = Si+τ−

k
, and S

k�+
i = Si+τ+

k
. Define the associated averaged local

times �̃− and �̃+, so that �̃n = �̃− + �̃+. Note that �̃− and �̃+ are supported by
H1�−�y0	 and H1�+�y0	. Let m± = ��̃±�1, hence n = m− + m+. Furthermore,
clearly �̃±/m± ∈ � , so that by Lemma 1.4 we have

��̃±�F�̃±� ≤ a�m±�2�(1.36)

Furthermore, use (1.33) and assumeL ≥ 30 [which implies
∑

x∈H1�y0±1	 �̃±�x	 ≤
9n
L−3 ≤ 10n

L
] to get

��̃−�F�̃+� = ��̃+�F�̃−�
= γ

2d

∑
x∈H1�y0	

[
�̃−�x − e1	�̃+�x	 + �̃−�x	�̃+�x + e1	

]
≤ γ

2d

( ∑
x∈H1�y0−1	

�̃−�x	 ∑
x∈H1�y0	

�̃+�x	(1.37)

+ ∑
x∈H1�y0	

�̃−�x	 ∑
x∈H1�y0+1	

�̃+�x	
)

≤ 10γ
d

n

L
�m− ∧ m+��
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Note that by constructionm− ∧m+ ≥ L
3 and thusm

−m+ ≥ �m− ∧m+� · n2 ≥ nL
6 .

Hence,

��n�F�n� ≤ ��̃n�F�̃n� + γ

2d
n

= ��̃−�F�̃−� + ��̃+�F�̃+� + 2��̃−�F�̃+� + γ

2d
n

≤ a��m−	2 + �m+	2� + 20γn
dL

�m− ∧ m+� + γ

2d
n

= an2 − am−m+ − Cn +
(
C + γ

2d
− am−m+

2n

)
n(1.38)

+
(
40γ
dL

n

2
m− ∧ m+

m−m+ − a

2

)
m−m+

≤ an2 − am−m+ − Cn +
(
C + γ

2d
− La

12

)
n

+
(
40γ
dL

− a

2

)
m−m+�

Now for L ≥ a−1�12C + 80γ/d	 the last two terms on the r.h.s. of (1.38) are
negative. Letting c = a/12 we get

��n�F�n� ≤ an2 − Cn − 2cLn

= an2 − Cn − cLn − aL

12
n(1.39)

≤ Mn − cLn − aL

12
n�

Finally, assume in addition L ≥ a−112 log�2d	 and use the fact that Zβ�γ
n ≥

�2d	−neMn to conclude

Q
β�γ
n �∃ i ≤ n� Si /∈ CL	 ≤ (

Z
β�γ
n

)−1 exp�an2 − cLn − �aL/12	n	
≤ �2d	n exp�−cLn − �aL/12	n	 ≤ e−cLn� ✷

(1.40)

1.3. Proof of the shape theorem. With the estimates at hand about the par-
tition function and the maximizers from the previous subsection it is not too
hard to prove the shape theorem in the case where the number of maximizers
is finite. This proves the shape theorem for dimension d = 1 by Lemma 1.4.
For d ≥ 2 we do not have an analogue for Lemma 1.4 that proves uniqueness
of the maximizer.
Here is the quick argument that works whenever we have a finite number

of maximizers of the quadratic functional � → �, f �→ �f�Ff�. Let f∗ be a
maximizer of the quadratic functional f �→ �f�Ff� from � → �; f∗ has finite
support uniformly for all maximizers f∗. Let L and c be as in Theorem 1(ii).
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We may assume that L is large enough such that supp�f∗	 ⊂ CL for all maxi-
mizers f∗ for which the origin is in the support. By Theorem 1(ii) it suffices to
consider paths �Si	ni=0 which are contained in CL for some sufficiently large
but fixed L.
Define V = �f ∈ � � supp�f	 ⊂ CL�, V∗ = �f∗ f∗ maximizes �f�Ff�� ∩ V,

and V1 = �f ∈ V� �f�1 = 1�. Note that V∗ ⊂ V1 and that (with a from
Proposition 1.1)

a = sup
f∈V1

�f�Ff� = �f∗�Ff∗� for all f∗ ∈ V∗�

By definition we have �f�Ff� < a if f ∈ V1 \V∗. By assumption, V∗ is a finite
set and f �→ �f�Ff� is quadratic. Thus, there exists an open neighborhood N
of V∗ and a c′ > 0 such that for f ∈ N,

�f�Ff� − a ≤ −c′ min
f∗∈V∗

�f − f∗�21�(1.41)

On the other hand, V1 \ N is compact and hence

sup
f∈V1\N

�f�Ff� < a�

Thus (maybe by making c′ a little smaller), (1.41) holds for all f ∈ V1.
Recall C from Proposition 1.1, assume ξ > ��C + log�2d		/c′	1/2, and let

c′′ = min�cL� c′ξ2 − �C + log�2d			 > 0. Hence by Theorem 1(ii),

Qβ�γ
n

(
inf
f∗∈V∗

��n − nf∗�1 > ξn1/2
)

≤ e−cLn + Qβ�γ
n

(
inf
f∗∈V∗

��n − nf∗�1 > ξn1/2 supp��n	 ⊂ CL

)
≤ e−cLn + �2d	neCne−c′ξ2n

≤ 2e−c′′n� ✷

2. Speed and variance in dimension 1. In the rest of the paper we only
consider d = 1 and γ < β. As explained earlier, in this case we get the best
results due to the availability of a particularly powerful method. Before we
start with the details we give an outline of the method and some heuristics.
Greven and den Hollander (1993) identified the speed of a polymer in the

case γ = 0. A similar method was used in König (1996) to prove the central
limit theorem (Theorem 0) for γ = 0. We give a nonrigorous sketch of the
underlying ideas of their work in order to motivate this and the next three
sections.
Let us assume γ = 0 and that the end-to-end distance grows like θ∗n as

n → ∞, for some θ∗ ∈ �0�1�. We want to identify the speed θ∗ and the expo-
nential rate of the normalizing constant r∗ = r∗�β	. With equal probability
the polymer extends to the left or right of the origin. Without loss of general-
ity we assume that it extends to the right. Assume that n is very large and
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that Sn is precisely #θ∗n$. In the subsequent heuristic argument we neglect
all boundary effects coming from local times left of 0 and right of #θ∗n$. Hence
the local times ��n�x		#θ∗n$

x=0 form a stationary (non-Markov) sequence and we
should have 1/θ∗ = EQ

β�0
n

��n�x		. Let m�x	 be the number of up-crossings
from x to x + 1. Hence �n�x	 = m�x − 1	 + m�x	 − 1. Note that the stationary
sequence �m�x		0≤x≤#θ∗n$ isMarkov. In order to determine θ∗ we have to obtain

information on the stationary distribution of m under Qβ�0
n .

Knight’s theorem (see Section 3) relates the up-crossings of simple random
walk to a critical Galton–Watson branching process with geometric offspring
distribution and one immigrant per generation. This process has the transition
matrix

P�i� j	 =
(
i + j − 2
i − 1

)(
1
2

)i+j−1
�(2.1)

Our polymer is a random walk with interaction. There is a penalty of
e−β

∑
x �n�x	2 = ∏

x e
−β�m�x	+m�x+1	−1	2 . The normalizing constant Z

β�0
n = E×

�e−β
∑

x∈� �n�x	2	 behaves like e−r∗�n+1	 = e−r∗ ∑
x∈� �n�x	 = ∏

x e
−r∗�m�x	+m�x+1	−1	. We

want to identify r∗. Again neglecting boundary effects, we can write

er�n+1	Zβ�0
n ≈ ∑ ∏

x

Ar�β�m�x	�m�x + 1		�

where we sum over all sequences �m�x		 such that ∑#θ∗n$
x=0 �m�x	+m�x+1	−1	 =∑

x �n�x	 = n, and we define

Ar�β�i� j	 = er�i+j−1	−β�i+j−1	2P�i� j	� i� j ∈ � and r ∈ ��

Then we can write

er
∗�n+1	Zβ�0

n ≈ ∑ ∏
x

Ar∗�β�m�x	�m�x + 1		

= ∑ τr∗�m�0		
τr∗�m�#θ∗n$		

∏
x

Pβ�m�x	�m�x + 1		�
(2.2)

Here Pβ is defined by

Pβ�i� j	 = Ar∗� β�i� j	τr∗�j	
τr∗�i	 �

where r∗ ∈ � has to be chosen appropriately, and τr ∈ l2��	 is the unique pos-
itive and normalized eigenvector of Ar�β corresponding to the largest eigen-
value λ�r�β	. The ratio of τr∗ ’s in (2.2) is of order 1. If r∗ is the exponential
rate of Zβ�0

n , then er
∗�n+1	Zβ�0

n has exponential rate 0. This is the case if and
only if Pβ is a stochastic matrix. Therefore its largest eigenvalue λ�r∗� β	 =∑

j Pβ�i� j	 must equal 1. Thus we have to pick r∗ such that λ�r∗� β	 = 1. Fur-
thermore, it is easy to check that τ2r∗ is the invariant distribution of �m�x		
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under Pβ. Therefore,

1
θ∗ = Eτ2r∗ �m�x	 + m�x + 1	 − 1	 = ∑

i� j

�i + j − 1	τ2r∗�i	Pβ�i� j	

= d

dr

∑
i� j

τr�i	Ar�β�i� j	τr�j	
∣∣∣∣
r=r∗

(2.3)

= d

dr
λ�r�β	

∣∣∣∣
r=r∗

�

Computing the second derivatives yields an expression for the variance σ∗2.
The situation in the present paper is somewhat more involved. There are

interactions between monomers on neighboring sites. Hence, the m�x	-chain
under the transformed measure does not form a Markov process. This forces us
to consider a bivariate process of the type ��m�x	�m�x+1		x∈�. The analogue
of the matrix Ar�β becomes a matrix Ar�β� γ�i� j	, i� j ∈ �2.
The program for the rest of this paper is as follows. In this section we define

Ar�β� γ, we show analyticity of the largest eigenvalue λ�r�β� γ	 and define the
quantities r∗, θ∗ and σ∗. The methods employed are adapted from Greven and
den Hollander (1993) and Baillon, Clément, Greven and den Hollander (1994).
In Section 3 we quote Knight’s theorem, introduce the bivariate branching

chain � [in (3.4)], and formulate the connection of the end-to-end distance of
the polymer to exponential functionals of � (Lemma 3.1).
In Section 4 we construct for every r ∈ � a positive recurrent bivariate

chain with the equilibrium distribution corresponding to τ�R	
r�β� γτ

�L	
r�β� γ of Ar�β� γ

(Lemma 4.1). We write the Laplace transform of the end-to-end distance in
terms of this chain (Lemma 4.2 and 4.3). Recall that in the heuristics we
used that the sequence of local times was stationary (no boundary effects).
Lemma 4.3 would lead directly to the proof of the CLT if we really had sta-
tionarity. It is the content of Proposition 4.4 and 4.5 to show that the boundary
terms are negligible, hence showing the asymptotic stationarity of the local
times as n → ∞. In Proposition 4.4 we state pointwise convergence to the
equilibrium while Proposition 4.5 states summability of the boundary terms
needed for a dominated convergence argument. To prove the summability we
have to make the assumption γ ≤ β − 1

2 log 2. At the end of Section 4, dom-
inated convergence and the ideas leading to (2.3) are combined to a proof of
Theorem 3.

2.1. Defining speed and variance. Now we come to the technical details.
For i = �i1� i2	 ∈ �2 let

s�i	 = i1 + i2 − 1 and s∗�i	 = i1 + i2�(2.4)
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For r ∈ � and β� γ ∈ �+ we define the matrix Ar�β� γ by [recall (2.1)]

Ar�β� γ�i� j	 = e�r/2	�s�i	+s�j	�−�β/2	�s�i	2+s�j	2�+γs�i	s�j	

× 1�i2=j1�
√
P�i1� i2	P�j1� j2	 �i� j ∈ �2	�

(2.5)

Define λ�r�β� γ	 to be the unique largest eigenvalue of Ar�β� γ in l2��2	. The
analytic heart of this section are the following propositions. They are needed
to define r∗, θ∗ and σ∗.

Proposition 2.1 (Unique maximal eigenvector). Fix 0 ≤ γ < β. Then:

(i) The operator Ar�β� γ� l2��2	 → l2��2	 is compact and has nonnegative

matrix elements for all r ∈ �. Its square A2
r�β� γ has strictly positive matrix

entries.
(ii) For every r ∈ �, there exist unique left and right eigenvectors τ

�L	
r�β� γ,

τ
�R	
r�β� γ ∈ l2��2	 corresponding to λ�r�β� γ	 and normalized in l2��2	. Moreover,

τ
�L	
r�β� γ�i1� i2	 = τ

�R	
r�β� γ�i2� i1	 > 0 for all i1� i2 ∈ �. In particular,

pr�β� γ �=
〈
τ

�L	
r�β� γ� τ

�R	
r�β� γ

〉
> 0�(2.6)

We will need the following properties of the dependence of the maximal
eigenvalue on its parameters.

Proposition 2.2 (Analyticity of the maximal eigenvalue).

(i) The map �r�β� γ	 �→ λ�r�β� γ	 is analytic on ��r�β� γ	 ∈ � × �0�∞	2;
β > γ�.

(ii) The map r �→ λ�r�β� γ	 is strictly increasing and strictly log-convex,
λ�0� β� γ	 ≤ e−�β−γ	 and limr→∞ λ�r�β� γ	 = ∞.

(iii) The map r �→ pr�β� γ is continuous.

For fixed 0 ≤ γ < β let r∗ = r∗�β� γ	 be the unique solution of

λ�r∗� β� γ	 = 1�(2.7)

Now we are in the position to define θ∗ and σ∗.

Definition 2.3. We define the speed θ∗ = θ∗�β� γ	 and the spread σ∗ =
σ∗�β� γ	 of the random polymer by

θ∗ =
[
∂

∂r
λ�r�β� γ	

]−1

r=r∗
� σ∗2 = θ∗3

[
∂2

∂r2
λ�r�β� γ	 − 1

θ∗2

]
r=r∗

�(2.8)

2.2. Proof of Proposition 2�1. We will prove the different parts of Propo-
sition 2.1 one by one. For notational convenience we suppress the �β� γ	-
dependence in the notation where no ambiguities may occur, and write Ar =
Ar�β� γ, λr = λ�r�β� γ	, τ�L	

r = τ
�L	
r�β� γ and τ

�R	
r = τ

�R	
r�β� γ.
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Part (i). If 0 ≤ γ < β, or 0 ≤ γ ≤ β and r < 0, then Ar is a Hilbert–
Schmidt matrix. To see this, we estimate the Hilbert–Schmidt norm ��Ar��HS
as

��Ar��2HS = ∑
i� j∈�2

Ar�i� j	2

= ∑
i� j∈�2

er�s�i	+s�j	�−β�s�i	2+s�j	2�+2γs�i	s�j	

× 1�i2 = j1�P�i1� i2	P�j1� j2	
≤ ∑

i� j∈�2

er�s�i	+s�j	�−�β−γ	�s�i	2+s�j	2�−γ�s�i	−s�j		2P�i1� i2	P�j1� j2	

≤ ∑
i� j∈�2

er�s�i	+s�j	�−�β−γ	�s�i	2+s�j	2�P�i1� i2	P�j1� j2	

=
( ∑

i∈�2

ers�i	−�β−γ	s�i	2P�i1� i2	
)2

< ∞�

(2.9)

This implies that Ar� l2��2	 �→ l2��2	 is a compact operator [see, e.g., Yosida
(1980), Chapter X.2, Example 2].
The fact that A2

r�β� γ�i� j	 > 0 for all i� j ∈ �2 is easiest to see by writing
down the explicit formula for A2

r�β� γ�i� j	. This is left to the reader.

Part (ii). Since A = Ar�β� γ is compact on l2��2	, it has unique positive
left and right eigenvectors τ�L	 = τ

�L	
r�β� γ and τ�R	 = τ

�R	
r�β� γ corresponding to

λ = λ�r�β� γ	, normalized such that �τ�L	� τ�L	� = �τ�R	� τ�R	� = 1.
Define ī = �i2� i1	 for i ∈ �2. To see τ�L	�i	 = τ�R	�ī	, we note that the

transposed matrix A∗ fulfills the relation A∗�i� j	 = A�ī� j̄	 for all i� j ∈ �2.
Thus i �→ τ�R	�ī	 is the left eigenvector with eigenvalue λ. Since A2 is strictly
positive the same is true for the eigenvectors which proves the final claim in
Part (ii). ✷

2.3. Proof of Proposition 2.2.

Part (i). Let

A
�N	
r = �Ar�i� j	1�1�����N�4�i� j		i� j∈�2

be the restriction of A to l2��1� � � � �N�2	 and denote by λ
�N	
r its largest eigen-

value. Clearly �r�β� γ	 �→ λ�N	�r�β� γ	 is analytic for each N. Furthermore,

�λ�r�β� γ	 − λ�N	�r�β� γ	� ≤ ∥∥Ar�β� γ − A
�N	
r�β� γ

∥∥
HS�
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A calculation similar to (2.9) shows that the latter quantity converges to 0 as
N → ∞ uniformly in �r�β� γ	 on compact subsets of � × ��β� γ	, β > 0� γ >
β�. Hence, as a uniform limit of analytic functions �r�β� γ	 �→ λ�r�β� γ	 is
analytic.

Part (ii). By the Perron–Frobenius theorem, the largest eigenvalue is a
strictly increasing function of the entries of the (nonnegative) matrix. Hence
r �→ λr is strictly increasing. Furthermore, the largest eigenvalue of the matrix
�A�i� j	1���1�1	� �1�1		��i� j		ij is simply Ar��1�1	� �1�1		. Thus we get the follow-
ing inequality, which we need below:

λr > Ar��1�1	� �1�1		 = erA0��1�1	� �1�1		�(2.10)

For each i� j ∈ �2 the map r �→ Ar�i� j	 is log-linear. Moreover, λ�r�β� γ	 =
limN→∞�AN�i� j		1/N. Since log-convexity is preserved under positive combina-
tions and under taking pointwise limits [see Kingman (1961) and Kato (1982)],
r �→ λ�r�β� γ	 is log-convex in r.
We will show that it is strictly log-convex by contradiction. Assume that

r �→ log λr is not strictly convex. Since it is convex, analytic and increasing
there exist a� b ≥ 0 such that λr = aebr. For r < 0 we get (2.9) that

λr ≤ �Ar�HS
≤ erA0��1�1	� �1�1		 + ∑

i� s�i	≥2
ers�i	P�i1� i2	

= erA0��1�1	� �1�1		 + 1
2e

2r�1 − er	−1�

Letting r → −∞ yields b ≥ 1. Together with (2.10) this implies b = 1 and
a = A0��1�1	� �1�1		. However, this is a contradiction to (2.10). Thus we have
proved strict log-convexity of r �→ λr.
Recall that 0 ≤ γ < β. Then we use an estimate as in (2.9) and Cauchy–

Schwarz to get

λ0 ≤ sup
�x�=1

�x�A0x�

≤ sup
�x�=1

e−�β−γ	 ∑
i� j

x�i	1�i2 = j1�
√
P�i1� i2	P�j1� j2	x�j	

≤ sup
�x�=1

e−�β−γ	
(∑

i� j

x2�i	1�i2=j1�P�j1� j2	
)1/2

(2.11)

×
(∑

i� j

x2�j	1�i2=j1�P�i1� i2	
)1/2

= e−�β−γ	 < 1�

where the last equality follows from the facts that P is a doubly stochastic
matrix and that x is normalized.
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Finally, limr→∞ λr = ∞ since r �→ log λr is (strictly) increasing and convex.

Part (iii). This works quite similarly to Part (i). We omit the details. ✷

3. Branching process and local times. In this section we quote
Knight’s theorem, a representation of random walk local times in terms of
a branching process. We write the exponential in the definition of Qβ�γ

n [recall
(0.1) and (0.2)] in terms of this branching process (Lemma 3.1).

3.1. Knight’s theorem. This subsection provides an important tool for the
proof of Theorem 3, namely, a family of Markov chains that describes the local
times of simple random walk on � [recall (0.13)] at certain stopping times,
viewed as a process in the spatial parameter. The following material is based
upon the work of Knight (1963). It is the discrete space–time analogue of the
Ray–Knight theorem for local times of Brownian motion. The present form is
taken from van der Hofstad, den Hollander and König (1997), to which we
refer for some of the proofs.
Recall that �Si	ni=0 is a path of simple random walk in �. Fix s ∈ �0. Define

the successive times at which the walker makes steps s → s+1 and s+1 → s,
by putting T

↑
0� s = T

↓
0� s = 0 and for k ∈ �,

T
↑
k� s = inf

{
i > T

↑
k−1� s� Si−1 = s�Si = s + 1

}
�

T
↓
k� s = inf

{
i > T

↓
k−1� s� Si−1 = s + 1� Si = s

}
�

(3.1)

By discarding null sets we can assume that all these stopping times are finite
(one-dimensional simple random walk is recurrent!). Note that T↑

k� s < T
↓
k� s <

T
↑
k+1� s for s ∈ �0. Recall the definition of the stochastic � × � matrix P in

(2.1), and introduce a stochastic �0 × �0 matrix P; by putting

P;�i� j	 = 1��i	P�i� j + 1	 + 1��0�0	��i� j	 �i� j ∈ �0	�(3.2)

Let

�m�x		x∈�0
and �m;�x		x∈�0

(3.3)

be the Markov chains with transition kernels P and P;, respectively.
We introduce the bivariate chains

��x	 = �m�x	�m�x + 1		 and

�;�x	 = �m;�x	�m;�x + 1		� x ∈ �0�
(3.4)

Recall that s;�i	 = i1 + i2 and s�i	 = i1 + i2 − 1.
In terms of these Markov chains, we can describe the distribution of the

local times of simple random walk at the stopping times T
↑
k� s, respectively

T
↓
k� s as follows. (We write d= for equality in distribution.)
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Theorem 4 (Knight’s theorem). Fix k� s ∈ �. Let �m�x		x∈�0
start at

m�0	 = k. Let �m;
1�x		x∈�0

and �m;
2�x		x∈�0

be two independent copies of
�m;�x		x∈�0

starting at m;
1�0	 = m�0	, respectively, m;

2�0	 = m�s	. Assume
that m, m;

1 and m;
2 are independent given m�0	 and m�s	. Then

[(
�T↑

k� s
�s + 1 − x	)

x=1�����s�
(
�T↑

k� s
�s + x	)

x∈�0
�

(
�T↑

k� s
�1 − x	)

x∈�0

]
d= [�s���x − 1			x=1�����s� �s;��;

1�x − 1			x∈�0
� �s;��;

2�x − 1			x∈�0

]
�

(3.5)

Furthermore,

�T↓
k� s

�x	 =
{
�T↑

k� s
�x	 + 1�s��x	� if x ≤ s,

�T↑
k+1� s

�x	 − 1�s+1��x	� otherwise.
(3.6)

For the proof, see van der Hofstad, den Hollander and König (1997).
In the sequel �i and �;

k will denote the laws of the two Markov chains in
(3.3) starting in ��0	 = i ∈ �2 respectively m;�0	 = k ∈ �0. We write Ɛi and
Ɛ;k for expectation with respect to �i, respectively, �

;
k.

3.2. The distribution of the local times. The description of the local times
given in Knight’s theorem has the disadvantage that the local times are
observed at certain stopping times. For the description of the polymer we
need to go back to the fixed time n. One of the problems we consequently have
to deal with is the global restriction

∑
x∈� �n�x	 = n + 1.

Fix s, n ∈ �. In this subsection we derive a representation for the expression
E�e−Hn�Sn	1�Sn=s�	 in terms of the Markov chains introduced in the preceding
subsection. The idea is to sum over the number of steps 0 → 1, s → s + 1
(respectively, s + 1 → s), and over the amount of time the walker spends in
the three intervals −�0, �1� � � � � s� and �s + 1� s + 2� � � �� until time n.
Define the functionals

U�s	=
s−1∑
x=0

s���x		� U;=
∞∑
x=0

s;��;�x		�

V�s	=
s−1∑
x=0

s���x		2� V;=
∞∑
x=0

s;��;�x		2�

W�s	=
s−1∑
x=0

s���x		s���x+1		� W;=
∞∑
x=0

s;��;�x		s;��;�x+1		�

(3.7)

We will need the notation ī = �i2� i1	 for i ∈ �2. In terms of these new objects
we may write the following.
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Lemma 3.1. For all n, s ∈ �,

E
(
e−Hn�S	1�Sn=s+1� Sn−1=s�

)
= ∑

n1� n2∈�

∑
j1� j2∈�2

2∏
i=1

Ɛ;ji2

[
e−βV;+γW;+γs�ji	s;��;�0		1�ni��U;	]

×Ɛj1
[
e−βV�s	+γW�s	1�n−n1−n2+1��U�s		1�j2����s − 1		](3.8)

and

E
[
e−Hn�S	1�Sn=s�Sn−1=s+1�

]
= ∑

k1∈�\�1�� n1∈�0

∑
k2� n2∈�

2∏
i=1

Ɛ;ki

[
e−βV;+γW;−δi1�ni��U;	]

×Ɛk1−1
[
e−β�V�s	+δ3�+γ�W�s	+δ4�1�n−n1−n2+1��U�s		1�k2��m�s		]

�

(3.9)

with

δ1 =2βm;�1	 − γ�m;�1	 + m;�2		� δ2 = 0�

δ3 =2m�1	� δ4 = k1 + m�1	 − 1�
(3.10)

For the proof, see van der Hofstad, den Hollander and König (1997), proof
of Lemma 3.
In the proof of Theorem 3 we shall focus on the contribution coming from

the right-hand side of (3.8). It will be argued at the end of Section 4.4 that
(3.9) behaves in the same manner as (3.8) as n → ∞; that is, the small per-
turbations δ1� � � � � δ4 are harmless.
In Lemma 3.1 we have rewritten Q

β�γ
n in terms of exponential functionals

of the two Markov chains defined in (3.3). We can henceforth forget about
the underlying random walk. Note that in Lemma 3.1 we have products of
expectations.

4. Proof of the CLT. In this section we perform the main steps of the
proof of Theorem 3. Our approach is a variation of the method used in van der
Hofstad, den Hollander and König (1997). In Section 4.1 (Lemma 4.2) we refor-
mulate Lemma 3.1 in terms of the equilibrium distribution of a transformed
Markov chain. Then in Section 4.2 we give the final reformulation in terms
of a Markov renewal chain (Lemma 4.3). The representation in Lemma 4.3
allows to give in Section 4.3 the key propositions (Propositions 4.4 and 4.5)
that are the technical core of the argument. In Section 4.4 we complete the
proof of Theorem 3.

4.1. A transformed Markov chain. In this subsection we define a transfor-
mation of the Markov chain ���x		x∈�0

introduced in Section 3.1. The goal of
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this transformation is to absorb the random variable e−βV�s	+γW�s	 (see (3.7))
into the new transition probabilities.
Recall the definition of Ar�β� γ and r∗ from Section 2.1 [(2.5) and (2.7)] and

recall that we usually suppress the �β� γ	-dependence in the notation. Fix
r ∈ � and β� γ ∈ �+ such that γ < β. As was pointed out in Proposition 2.1,
the matrix Ar has a unique largest eigenvalue λr. Consequently, similarly as
an h-transform we can define a stochastic matrix Pr by

Pr�i� j	 = Ar�i� j	
λr

τ
�R	
r �j	
τ

�R	
r �i	

�i� j ∈ �2	�(4.1)

We shall write �r
k to denote the law of the Markov chain ���x		x∈�0

[recall
(3.4)], starting at k ∈ �2 and having Pr as its transition kernel. We write Ɛrk
for the corresponding expectation.

Lemma 4.1. ���x		x∈�0
is positive recurrent and ergodic with invariant

distribution [recall (2.6)] �p−1
r τ

�L	
r �i	τ�R	

r �i		i∈�2 .

Proof. Since A2
r is strictly positive [Proposition 2.1(i)], the same is true

for the eigenvector τ�R	
r and for P2

r. Hence Pr has a unique invariant measure.
However, it is immediate from (4.1) that p−1

r τ
�L	
r τ

�R	
r Pr = p−1

r τ
�L	
r τ

�R	
r ; hence

p−1
r τ

�L	
r τ

�R	
r is an invariant measure for Pr. Since it is a probability measure

by the definition of pr, ���x		x∈�0
is positive recurrent and ergodic. ✷

We write �r�Ɛr when the chain starts in its invariant distribution.
We will reformulate the right-hand side of (3.8) in terms of ���x		x∈�0

, since
this is the natural object for our analysis. First we need some more notation.
For r ∈ � and β� γ ∈ �+, define the functions w

�R	
r , w�L	

r � �2
0 × �0 → �+

0 by
[see (3.7)]

w
�R	
r �k� l	 = τ

�R	
r �k	−1

×Ɛ;k2

[
erU

;−βV;+γW;+�r/2	s�k	−�β/2	s�k	2+γs�k	�k2+m;�1		1�l��U;	]
× √

P�k1�k2	�
(4.2)

and w
�L	
r �k� l	 = w

�R	
r �k̄� l	. Furthermore, define

Tl = min�s� U�s	 ≥ l�(4.3)

to be the exceeding time of l and let for n ∈ �,

I�n	 = ⋃
s∈�0

�U�s	 = n� = �U�Tn	 = n��(4.4)

the event that U hits n exactly.
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Our aim is to obtain a convenient description of the Laplace transforms of
Q

β�γ
n � �Sn�−θ∗n

σ∗n1/2 ∈ ·	. A first step is the following lemma [recall pr from (2.6)].

Lemma 4.2. For µ ∈ � and n ∈ �,

e−2µ/σ∗√
ne�n+1	r∗

nE
[
e−Hn�S	eµSn/σ

∗√
n1�0≤Sn−1<Sn�

]
= pr∗

n

∑
n1� n2∈�

Ɛr
∗
n

[
w

�L	
r∗
n

���0	� n1	w�R	
r∗
n

���Tn−n1−n2+1 − 1	� n2	 (4.5)

I�n − n1 − n2 + 1	
]
�

where r∗
n = r∗

n�µ	 is given by

λr∗
n

= e−µ/σ∗√
n�(4.6)

Proof. Note that by definition of the transformed Markov chain in Sec-
tion 4.1 we can write for i� j ∈ �2 and N�s ∈ �,

λ1−s
r �r

i �U�s	 = N���s − 1	 = j�
√
P�i1� i2	

√
P�j1� j2	

= τ
�R	
r �j	
τ

�R	
r �i	

∑
k1�����ks−2∈�2

s�i	+s�k1	+···+s�ks−2	+s�j	=N

Ar�i�k1	 · · ·Ar�ks−2� j	(4.7)

×
√
P�i1� i2	

√
P�j1� j2	�

Letting k0 = i1, k1 = i2, ks−1 = j1, ks = j2 and

u�s	 =
s−1∑
l=0

�kl + kl+1 − 1	� v�s	 =
s−1∑
l=0

�kl + kl+1 − 1	2�

w�s	 =
s−2∑
l=0

�kl + kl+1 − 1	�kl+1 + kl+2 − 1	�

this equals

τ
�R	
r �j	
τ

�R	
r �i	

∑
k2�����ks−2∈�

u�s	=N

P�k0� k1	 · · ·P�ks−1� ks	er�u�s	−�s�i	+s�j		/2	

× e−β�v�s	−�s�i	2+s�j	2	/2	eγw�s	

= τ
�R	
r �j	
τ

�R	
r �i	

Ɛi
[
e−βV�s	+γW�s	 U�s	 = N� ��s − 1	 = j

]
× e−r�s�i	+s�j		/2eβ�s�i	2+s�j	2	/2erN�

(4.8)
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Hence, if we let N = n−n1 −n2 + 1 and r = r∗
n and use the representation in

(3.8), then we can rewrite the left-hand side of (4.5) as pr∗
n
times∑

n1� n2∈�

∑
i� j∈�2

∑
s∈�0

w
�L	
r∗
n

�i� n1	w�R	
r∗
n

�j� n2	τ�L	
r∗
n

�i	τ�R	
r∗
n

�i	

× �
r∗
n

i �U�s	 = n − n1 − n2 + 1���s − 1	 = j�
= ∑

n1� n2∈�

∑
i� j∈�2

w
�L	
r∗
n

�i� n1	w�R	
r∗
n

�j� n2	τ�L	
r∗
n

�i	τ�R	
r∗
n

�i	

× �
r∗
n

i ���Tn−n1−n2+1 − 1	 = j I�n − n1 − n2 + 1	��
This completes the proof. ✷

In the right-hand side of (4.5) appears a correlation function. In the sequel
we shall prove that the first and the last factor in this correlation function are
asymptotically independent as n → ∞.

4.2. Markov renewal chain. It turns out that a convenient way to show
that the correlations vanish is to replace the chain ��x	 by a related renewal
chain �D�l		l∈�0

. In this subsection we define �D�l		 and reformulate Lemma 3.1
in terms of �D�l		.
Define

X�l	 = U�Tl	 − l� Y�l	 = �m�Tl − 1	�m�Tl		�(4.10)

Then I�n	 = �X�n	 = 0�. The pair
D�l	 = �X�l	�Y�l		(4.11)

is a random element of the set

G = ��i� j	 ∈ �0 × �2� i ≤ s�j	 − 1��
For any j ∈ �2, under the law �r

j the process �D�l		l∈�0
is a Markov renewal

process with transition kernel Qr on G given by

Qr��i� j	� �i′� j′		 = 1�i=0� i′=s�j′	−1�Pr�j� j′	 + 1�i′=i−1� j′=j�(4.12)

and starting at D�0	 = �0� j	. It is easily checked that the probability distribu-
tion νr on G defined by

νr�i� j	 = θrp
−1
r τ

�L	
r �j	τ�R	

r �j	(4.13)

and

θr = λr
λ′
r
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is the associated invariant distribution on G. Indeed,

�νrQr	�i′� j′	 = θr
pr

( ∑
j∈�2

τ
�L	
r �j	τ�R	

r �j	Pr�j� j′	1�i′=s�j′	−1�

+ τ
�L	
r �j′	τ�R	

r �j′	1�i′≤s�j′	−2�

)
= θr

pr

τ
�L	
r �j′	τ�R	

r �j′	1�i′≤s�j′	−1� = νr�i′� j′	�

since τ
�L	
r τ

�R	
r is invariant for Pr. To see that νr is normed, note that

�νr� �= ∑
�i� j	∈G

νr�i� j	 = θr
pr

〈
τ

�L	
r �Sτ

�R	
r

〉
�(4.14)

where S is the diagonal matrix S�i� j	 = s�i	1�i=j�, i� j ∈ �2. Clearly Ar =
exp� r2S	A0 exp� r2S	. Hence ∂rAr = 1

2�SAr +ArS	. Moreover, we let A∗ be the
adjoint operator of A. Then〈

τ
�L	
r �Sτ

�R	
r

〉 = 1
λr

〈
A∗

rτ
�L	
r �Sτ

�R	
r

〉
= 1

λr

1
2

(〈
SA∗

rτ
�L	
r � τ

�R	
r

〉 + 〈
τ

�L	
r �ArSτ

�R	
r

〉)
(4.15)

= 1
λr

〈
τ

�L	
r �

1
2

�SAr + ArS	τ�R	
r

〉 = 1
λr

〈
τ

�L	
r � �∂rAr	τ�R	

r

〉
�

Thus we get �νr� = 1
λ′
r
∂r�p−1

r �τ�L	
r �Arτ

�R	
r �	 = 1.

We write �̃r and Ɛ̃r to denote probability and expectation w.r.t. the Markov
chain �D�l		l∈�0

starting in its invariant distribution νr.
Before we reformulate the right-hand side of (3.8) in terms of �D�l		l∈�0

we
need some more notation. Recall that for i ∈ �2 we defined ī = �i2� i1	.
For r ∈ � and β� γ ∈ �+, define the functions f

�R	
r and f

�L	
r � G × �0 → �+

by

f
�R	
r ��i� j	 l	 = w

�R	
r �j� l	1�i=0�� f

�L	
r ��i� j	 l	 = f

�R	
r ��i� j̄	 l	�(4.16)

where w
�L	
r and w

�R	
r are defined in (4.2).

We can now reformulate the left-hand side in Lemma 4.2 as follows.

Lemma 4.3. For µ ∈ � and n ∈ �,

e−2µ/σ∗√
ne�n+1	r∗

n E
[
e−Hn�Sn	eµSn/σ

∗√
n1�0≤Sn−1<Sn�

]
= pr∗

n

θr∗
n

∑
n1� n2∈�

Ɛ̃r
∗
n

[
f

�L	
r∗
n

�D�0	 n1	f�R	
r∗
n

�D�n − n1 − n2	 n2	
]
�

(4.17)

where r∗
n is given in (4.6).
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Proof. Using Lemma 4.2 we rewrite the left-hand side of (4.17) as

pr∗
n

∑
n1� n2∈�

Ɛr
∗
n

[
w

�L	
r∗
n

���0	� n1	w�R	
r∗
n

���Tn−n1−n2+1 − 1	� n2	 

I�n − n1 − n2 + 1	
]

= pr∗
n

∑
n1� n2∈�

Ɛr
∗
n

[
w

�L	
r∗
n

���0	� n1	 1�0��X�n − n1 − n2 + 1		

× w
�R	
r∗
n

�Y�n − n1 − n2 + 1	� n2	
]

= pr∗
n

∑
n1� n2∈�

Ɛr
∗
n

[
w

�L	
r∗
n

���0	� n1	f�R	
r∗
n

�D�n − n1 − n2 + 1	 n2	
]

= pr∗
n

∑
n1� n2∈�

Ɛr
∗
n

[
w

�L	
r∗
n

�Y�1	� n1	 f�R	
r∗
n

�D�n − n1 − n2 + 1	 n2	
]
�

Note that X�0	 = 0 if and only if X�1	 = s�Y�1		 − 1 and use the fact that
�r∗

n = �̃r∗
n�·�X�0	 = 0� = 1

θr∗
n

�̃r∗
n · 1X�0	=0 to rewrite this equation as

= pr∗
n

θr∗
n

∑
n1� n2∈�

Ɛ̃r
∗
n

[
w

�L	
r∗
n

�Y�1	� n1	1�0��X�0		f�R	
r∗
n

�D�n − n1 − n2 + 1	 n2	
]

= pr∗
n

θr∗
n

∑
n1� n2∈�

Ɛ̃r
∗
n

[
f

�L	
r∗
n

�D�1	 n1	f�R	
r∗
n

�D�n − n1 − n2 + 1	 n2	
]
�

Using the fact that D is stationary under Ɛ̃r
∗
n yields the claim. ✷

4.3. Convergence to the equilibrium. It is clear from the ergodicity of the
renewal chain that its distribution converges to its equilibrium νr for every
fixed r. However, in Lemma 4.3 we need convergence where r = r∗

n depends
on n and converges to r∗. We state pointwise convergence in Proposition 4.4
and uniform integrability in Proposition 4.5. This sets the stage for the proof
of Theorem 3.

Proposition 4.4. Fix �i�k	� �i′�k′	 ∈ G and n1 ∈ �. For any sequence
rn → r∗,

lim
n→∞�

rn
�i�k	�X�n − n1	 = i′�Y�n − n1	 = k′� = νr∗�i′�k′	�(4.18)

Proof. The statement is equivalent to �δ�i�k	Q
n−n1
rn − νr∗�TV → 0, n → ∞.

Note thatN �→ �δ�i�k	QN
rn

−νrn�TV is decreasing for all n ∈ � since νrnQrn
= νrn
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and Qrn
is a contraction. Thus for n ≥ n1 + N,

∥∥δ�i�k	Q
n−n1
rn

− νr∗
∥∥
TV ≤ ∥∥δ�i�k	Q

n−n1
rn

− νrn�TV + �νrn − νr∗
∥∥
TV

≤ ∥∥δ�i�k	Q
N
rn

− νrn�TV + �νrn − νr∗
∥∥
TV

≤ ∥∥δ�i�k	Q
N
r∗ − δ�i�k	Q

N
rn

∥∥
TV + ∥∥δ�i�k	Q

N
r∗ − νr∗

∥∥
TV

+2
∥∥νrn − νr∗

∥∥
TV�

(4.19)

By continuity of r �→ τr, r �→ λ′
r and r �→ λr, we getQrn

→ Qr∗ and νrn → νr∗ as
n → ∞, and hence the first and third term on the r.h.s. of the above equation
vanish, so that

lim sup
n→∞

∥∥δ�i�k	Q
n−n1
rn

− νr∗
∥∥
TV ≤ ∥∥δ�i�k	Q

N
r∗ − νr∗

∥∥
TV for all N ∈ ��(4.20)

However, by ergodicity of Q� �δ�i�k	Q
N
r∗ − νr∗� → 0, N → ∞. This completes

the proof. ✷

The next proposition states summability of the correlation function. This
will be needed to impose a dominated convergence argument in the proof of
Theorem 3. Note that it is only here that we have to assume γ ≤ β − 1

2 log 2.

Proposition 4.5. Assume that 0 ≤ γ ≤ β − 1
2 log 2. Then there exists an

n0 < ∞ such that

∑
k� j∈�2

∑
n1� n2∈�

sup
n≥n0

1
θr∗

n

νr∗
n
�0�k	Ɛr∗

n

�0�k	

×
[
f

�L	
r∗
n

�D�0	 n1	f�R	
r∗
n

�D�n − n1 − n2	 n2	1�j��Y�n − n1 − n2		
]
< ∞�

(4.21)

We divide the proof of this proposition into three lemmas. The statement
(4.21) will be immediate from Lemmas 4.6, 4.7 and 4.8.

Lemma 4.6. Assume that 0 ≤ γ ≤ β− 1
2 log 2. Then there exists an n0 < ∞

such that for n ≥ n0,

νr∗
n
�0�k	Ɛr∗

n

�0�k	
[
f

�L	
r∗
n

�D�0	 n1	f�R	
r∗
n

�D�n − n1 − n2	 n2	

× 1�j��Y�n − n1 − n2		
]

(4.22)

≤ θr∗
n
λr

√
τ

�L	
r∗
n

�k	τ�R	
r∗
n

�k	w�L	
r∗
n

�k� n1	
√
τ

�L	
r∗
n

�j	τ�R	
r∗
n

�j	w�R	
r∗
n

�j� n2	�
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Proof. The proof is easy. Write

νr∗
n
�0�k	Ɛr∗

n

�0�k	
[
f

�L	
r∗
n

�D�0	 n1	f�R	
r∗
n

�D�n − n1 − n2	 n2	

× 1�j��Y�n − n1 − n2		
]

= Ɛ̃r
∗
n

[
f

�L	
r∗
n

�D�0	 n1	1��0�k	��D�0		f�R	
r∗
n

�D�n − n1 − n2	 n2	

× 1��0� j	��D�n − n1 − n2		
]
�

(4.23)

and use Cauchy–Schwarz and the fact that νr∗
n
is the stationary measure. This

gives

νr∗
n
�0�k	Ɛr∗

n

�0�k	
[
f

�L	
r∗
n

�D�0	 n1	f�R	
r∗
n

�D�n − n1 − n2	 n2	
× 1�j��Y�n − n1 − n2		

]
≤ (

νr∗
n
�0�k	(

f
�L	
r∗
n

)2��0�k	 n1	
)1/2

× (
νr∗

n
�0� j	(

f
�R	
r∗
n

)2��0� j	 n2	)1/2
�

(4.24)

Finally, substitute f
�L	
r∗
n
� f

�R	
r∗
n
[recall (4.16) and (4.2)] and νr∗

n
[recall (4.13)]. ✷

Recall U; and V; from (3.7) and r∗
n from (4.6). The crucial quantity for

summability of w�R	
r∗
n
is

r̄ �= sup�r > 0� αr < ∞��(4.25)

where

αr �= Ɛ;1�e−�β−γ	V;+rU;��(4.26)

Lemma 4.7. If r̄ > r∗, then for sufficiently large n0 ∈ �,

∑
k∈�2
m∈�

sup
n≥n0

(
w

�R	
r∗
n

�k�m	
√
τ

�L	
r∗
n

�k	τ�R	
r∗
n

�k	
)
< ∞�

Proof. By convexity of the map r �→ λr we get that r∗
n < r∗ + �µ�/σ∗√

n.
In particular, there exists an r′ ∈ �r∗� r̄	 and an n0 ∈ � such that r∗

n < r′ for
all n ≥ n0.
Note that τ

�R	
r∗
n

�k	 ≥ 1
λr∗

n

Ar∗
n� β�γ

�k� k̄	τ�R	
r∗
n

�k̄	. Since Ar∗
n� β�γ

�k� k̄	 =
er

∗
ns�k	+�γ−β	s�k	2P�k1�k2	, and since r �→ λr is increasing we get√

τ
�L	
r∗
n

�k	τ�R	
r∗
n

�k	 ≤ τ
�R	
r∗
n

�k	λ1/2r′ e−�r∗
n/2	s�k	+��β−γ	/2	s�k	2

/√
P�k1�k2	�



1112 R. van der HOFSTAD AND A. KLENKE

Now, sum out overm and note that V;−W; = 1
2s

;��;�0		2+ 1
2

∑∞
x=0�s;��;�x+

1	−s;��;�x				2 ≥ 1
2s

;��;�0		2+ 1
2�s;��;�1	−s;��;�0				2 to bound the expo-

nential in the expectation in the definition of w�R	
r∗
n
to get

∑
k�m

sup
n≥n0

(
w

�R	
r∗
n

�k�m	
√
τ

�L	
r∗
n

�k	τ�R	
r∗
n

�k	
)

≤ ∑
k

vr′ �k	�(4.27)

where

vr�k	 = Ɛ;k2

[
e−�β−γ	V;+r′U;−�γ/2	�k1−m∗�1	+1	2]�(4.28)

We show that vr′ �k	 is in l1��2	. We first define cγ = 2
∑∞

j=0 e
− γ

2 j
2
to bound∑

k∈�2

vr′ �k	 ≤ cγ
∑
k∈�

Ɛ;k�e−�βV;+rU;	� =� cγ
∑
k∈�

zr′ �k	�

We next use that z satisfies for k ≥ 1,

zr′ �k	 = ∑
l∈�

P�k� l + 1	er′�k+l	−��β−γ	/2	�k+l	2zr′ �l	�

to see that it is sufficient to have zr′ �l	 ≤ αl for some α < ∞. This is what we
will prove now.
To this end let ��m;

i�x		x∈�0
 i ∈ �� be independent copies of �m;�x		x∈�0

starting with m;
i�0	 = 1, i ∈ �. Here we make use of the fact that m; has the

branching property, that is, is the sum of independent branching chains. More
precisely, if we fix k2 ∈ � and define

�m;�x		x∈�0
= (

m;
1�x	 + · · · + m;

k2
�x	)

x∈�0
�(4.29)

then �m;�x		x∈�0
is a Markov chain with transition matrix P; andm;�0	 = k2.

Define the functionalsU;
i andV

;
i as in (3.7), now for the chainm;

i , i ∈ �. Hence

U; = U;
1 + · · · + U;

k2
and V; ≥ V;

1 + · · · + V;
k2
�(4.30)

From (4.30) it is clear that

zr′ �k	 ≤ Ɛ;k�e−�β−γ	 ∑k
i=1V

;�i	+r′ ∑k
i=1U

;�i	� = αk
r′ �

However, by assumption, αr′ < ∞, which completes the proof. ✷

The final step in the proof of Proposition 4.5 is to show that γ ≤ β− 1
2 log 2

implies r̄ > r∗.

Lemma 4.8. If γ ≤ β − 1
2 log 2, then r̄ > r∗.

Proof. Define r′ = β − γ + log 2 > r∗. Then r′ ≤ 3�β − γ	, hence r′s;�i	 −
�β − γ	s;�i	2 ≤ 0 unless i = �1�0	 or i = �1�1	, where it assumes the values
r′ − �β − γ	 = log 2, respectively, 2r′ − 4�β − γ	 = 2 log 2 − 2�β − γ	 ≤ log 2.
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Let E = ��1�1	� �1�0	� �0�0	�. Thus

r′U; − �β − γ	V; ≤
∞∑
x=0

1E��;�x		�r′s;��;�x		 − �β − γ	s;�;�x	2	

≤ log 2�1 + #�x� �;�x	 = �1�1	�	�
(4.31)

Let �′ be the chain �; observed only when it is in E. This definition makes
sense sinceE is absorbing. Hence the right-hand side of �4�31	 equals log 2�1+
τ	, where τ = sup�x ∈ �� �′�x	 = �1�1	�. Note that we can compute the transi-
tion probabilities of �′: P��0�0	� �0�0		 = 1, P��1�0	� �0�0		 = 1, P��1�1	� �1�
1		 = 1/�4�1 − ρ		, P��1�1	� �1�0		 = 1/�2�1 − ρ		 and P��1�1	� �0�0		 =
�1 − 4ρ	/�4�1 − ρ		, where

ρ = P1�m;�1	 ≥ 2�m;�x	 = 1 for some x ≥ 2	 < 1
4
�

Hence 1+τ is geometrically distributed with parameter 1
4�1−ρ	 <

1
3 and we get

αr′ = Ɛ;1�er
′U;−�β−γ	V;� ≤ E�1�1	�21+τ�

= 2
1 − 1/�4�1 − ρ		
1 − 1/�2�1 − ρ		 = 3 − 4ρ

1 − 2ρ
< ∞� ✷

Remark. Numerical computations show that it is possible that αr∗ = ∞.
More precisely, we can show analytically that if β − γ ≤ 0�1 and r∗ ≥ 0�65,
then αr∗ = ∞. The numerics yield, for example, that r∗�8�7�91	 ≈ 0�685 > 0�65
and that hence this case in fact occurs. This means that with our estimates
we have wasted too much. However, we have not found a way how we can
substantially improve the bounds presented here.

4.4. Completion of the proof. We prove Theorem 3 by showing that there
is an L ∈ �+ such that for every µ ∈ �,

lim
n→∞ er

∗nE
[
e−Hn�Sn	eµ�Sn−θ∗n	/σ∗√

n1�Sn>0�
] = Leµ

2/2�(4.32)

Note that (4.32) implies that under the law Q
β�γ
n �·�Sn > 0	 the moment gen-

erating function of �Sn − θ∗n	/σ∗√
n converges pointwise to the one of the

standard normal distribution as n → ∞ (divide the left-hand side of (4.32)
by the same expression for µ = 0 and use (1.1)). Therefore (4.32) implies the
central limit theorem as stated in Theorem 3.
Now we show (4.32). Fix µ ∈ �. First we analyze the asymptotics of the

exponential on the right-hand side of (4.17). Recall that we abbreviate λr =
λ�r�β� γ	. We write s �→ λ−1�s	 for the inverse of r �→ λr for fixed β and γ,
and we write ∂s for the derivative with respect to s. Expand λ−1�s	 in a Taylor
series around s = 1. Abbreviate µn = µ/σ∗√

n. Then, from the definition of
r∗
n�µ	 in (4.6), we obtain the existence of some number ξn in between 1 and
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e−µn such that

r∗
n�µ	 = λ−1�e−µn	

= λ−1�1	 + �e−µn − 1	∂sλ−1�1	 + 1
2�e−µn − 1	2∂2sλ−1�s	�s=ξn

(4.33)

= r∗ + �e−µn − 1	θ∗ + 1
2�e−µn − 1	2∂2sλ−1�s	�s=ξn

�

Here the last equality follows from (2.7) and (2.8).
Next, we calculate

∂2sλ
−1�ξn	 = [

∂s�∂rλr�−1
r=λ−1�s	

]
s=ξn

= −
[

∂2rλr
�∂rλr	3

]
r=λ−1�ξn	

= −σ∗2 − θ∗ + o�1	�
(4.34)

Note that the θ∗ term cancels the second-order term of e−µn −1 in (4.33). Thus

r∗ − r∗
n�µ	 =µnθ

∗ + 1
2
µ2
nσ

∗2 + o�µ2
n	

= µθ∗

σ∗√
n

+ 1
2
µ2

n
+ o

(
1
n

)
�

(4.35)

Recall from Lemma 4.3 that

er
∗nE

[
e−Hn�Sn	eµ�Sn−θ∗n	/σ∗√

n1�0≤Sn−1<Sn�
]

= e�r∗−r∗
n	n−µ�θ∗/σ∗	√n

pr∗
n
e−r∗

ne2µ/σ
∗√

n

θr∗
n

(4.36)

× ∑
n1� n2∈�

Ɛ̃r
∗
n

[
f

�L	
r∗
n

�D�0	 n1	f�R	
r∗
n

�D�n − n1 − n2	 n2	
]
�

From (4.35) it is clear that the first term converges to eµ
2/2 as n → ∞. Further,

by continuity, the middle term converges to pr∗e−r∗
/θ∗ ∈ �0�∞	.

To finish the proof, use Lemmas 4.1 and 4.2, Propositions 4.4 and 4.5,
together with dominated convergence to get that the sum converges to( ∑

k∈�
Ɛ̃r

∗ [
f

�L	
r∗ �D�0	 k	

])( ∑
k∈�

Ɛ̃r
∗ [
f

�R	
r∗ �D�0	 k	

])
�

This yields (4.32) with the additional indicator on the event �0 ≤ Sn−1 < Sn� in
the l.h.s. The limit assertion with the indicator on �0 ≤ Sn < Sn−1� is similar.
The constant L in (4.32) is the sum of both limits. ✷
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