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Infinitely generated symbolic Rees algebras
over finite fields

Akiyoshi Sannai and Hiromu Tanaka

For the polynomial ring over an arbitrary field with twelve variables, there exists a prime ideal whose
symbolic Rees algebra is not finitely generated.

1. Introduction

Let A be a polynomial ring over a field k with finitely many variables. For a field L satisfying k ⊂ L ⊂
Frac(A), Hilbert’s fourteenth problem asks whether or not the ring L ∩ A is finitely generated over k.
In 1958, Nagata [1960] found the first counterexample to this problem over arbitrary sufficiently large
fields. For more examples we refer to [Roberts 1990; Kuroda 2005; Totaro 2008]. On the other hand, this
problem is related to the following question raised by Cowsik [1984].

Question 1.1. Let A be a polynomial ring over a field with finitely many variables and let P be a prime
ideal of A. Set P (m) := Pm AP ∩ A. Then is the symbolic Rees algebra RS(P) :=

⊕
∞

m=0 P (m) a finitely
generated k-algebra?

Indeed, Roberts [1985] settled Question 1.1 negatively, using Nagata’s counterexample mentioned
above. Roberts’s construction is valid only over sufficiently large fields of characteristic zero, although
Nagata’s example is independent of the characteristic of the base field. This is because Roberts’s proof
requires a theorem of Bertini type that fails in positive characteristic (see [Roberts 1985, line 7 on
page 591]). On the other hand, it is known for experts that Roberts’s method works, after suitable
modifications, for the case where k is not algebraic over a finite field. Roughly speaking, counterexamples
over such fields can be found after replacing the theorem of Bertini type and Nagata’s counterexample
used in [Roberts 1985] by [Diaz and Harbater 1991, Theorem 2.1] and the blowup of P2 along general
nine points, respectively. In this sense, Question 1.1 is still open if k is algebraic over a finite field.

The purpose of this paper is to give the negative answer to Question 1.1 over an arbitrary base field.
More specifically, the main theorem is as follows.

Theorem 1.2 (see Theorem 3.7). Let k be a field. Let A be the polynomial ring over k with twelve
variables. Then there exists a prime ideal p of A whose symbolic Rees algebra

⊕
∞

m=0 p
(m) is not a

noetherian ring.
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Sketch of the proof. We overview some of the ideas used in the proof of Theorem 1.2. Let us treat the
case where k = Fp. Our method is based on a geometric description of symbolic Rees algebras that was
pointed out by Cutkosky [1991] in a certain special case. We start with a projective smooth surface V
over Fp, constructed by Totaro, that has a nef divisor M which is not semiample. We embed V into
the eleven-dimensional projective space P11

Fp
(see Lemma 3.5). Thanks to a theorem of Bertini type

over finite fields, we can find a smooth curve W on V that is linearly equivalent to st H |V − t M for a
hyperplane divisor H of P11

Fp
under the assumption that t � s� 0. Take a homogeneous prime ideal p on

A = Fp[x0, . . . , x11] that defines W . Let f : X→ P11
Fp

be the blowup along W . Set D := f ∗H and let E
be the f -exceptional prime divisor on X . Then

⊕
∞

m=0 p
(m) is not a noetherian ring if and only if the Cox

ring of X is not a noetherian ring (see Proposition 2.14). In particular it suffices to find a nef divisor on X
that is not semiample. By choosing s and t carefully, we can find such a divisor (see Proposition 3.3(3)).
For more details, see Section 3.

Related topics. It is worth mentioning that, concerning Question 1.1, many authors have studied the case
where P is the prime ideal of k[x, y, z] that defines a space monomial curve (ta, tb, tc) in A3

k . For instance,
Goto, Nishida and Watanabe [1994] proved that for some triples (a, b, c), the associated symbolic Rees
algebras are not finitely generated if k is of characteristic zero. It is remarkable that this result is applied
to study the compactified moduli space M0,n of pointed rational curves. More specifically, it turns out
that M0,n is not a Mori dream space if n ≥ 13 and the base field is of characteristic zero [Castravet 2009;
González and Karu 2016].

Since the case of characteristic zero has such an application, it is natural to consider also the case of
positive characteristic. However the situation seems to be subtler. Indeed, if the base field is of positive
characteristic, then it is known that the analogous rings of the examples given in [Goto et al. 1994] and
[Roberts 1990] are shown to be finitely generated by [Cutkosky 1991; Goto et al. 1994] and [Kurano
1993; 1994], respectively. Then Goto and Watanabe made the following conjecture, which remains to be
an open problem.

Conjecture 1.3. Let R be the polynomial ring over a field k with three valuables. Let P be the prime
ideal that defines a space monomial curve (ta, tb, tc) in A3

k . If the characteristic of k is positive, then the
symbolic Rees ring RS(P)=

⊕
∞

m=0 P (m) is finitely generated.

It is known that Conjecture 1.3 is reduced to the case where k = Fp. On the other hand, Theorem 1.2
indicates that a symbolic Rees algebra is not necessarily finitely generated in a higher dimensional case,
even if the base field is Fp. Thus if the Conjecture 1.3 holds true, then its proof depends on some facts
that hold only in a lower dimensional situation.

2. Preliminaries

Notation. In this subsection, we summarize notation used in the paper.
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We say that X is a variety over a field k (or a k-variety) if X is an integral scheme which is separated
and of finite type over k. We say that X is a curve over k or a k-curve (resp. a surface over k or a
k-surface) if X is a variety over k with dim X = 1 (resp. dim X = 2).

Given an invertible sheaf L on a proper scheme X over a field k, consider the natural homomorphism

H 0(X, L)⊗k OX → L . (2.0.1)

(1) We say that L is nef if L ·C ≥ 0 for any k-curve C on X .

(2) For a k-linear subspace V of H 0(X, L), the scheme-theoretic base locus B(V ) of V is the closed
subscheme of X defined by the image of the composite homomorphism

V ⊗k L−1 ↪→ H 0(X, L)⊗k L−1
→ OX ,

where the latter one is induced by (2.0.1). For the linear system 3 corresponding to V , we set
B(3) := B(V ).

(3) We say that L is globally generated if (2.0.1) is surjective, i.e., B(|L|)=∅.

(4) We say that L is semiample if there exists a positive integer n such that L⊗n is globally generated.

For a Q-Cartier Q-divisor D on a normal proper variety X over a field, we say that D is nef (resp.
semiample) if there exists a positive integer n such that nD is a Cartier divisor and OX (nD) is nef (resp.
semiample).

Cox rings. In this subsection, we recall the definition of Cox rings (Definition 2.2) and one of their basic
properties (Lemma 2.4).

Definition 2.1. Let k be a field. Let X be a normal variety over k. For a subsemigroup 0 of the group
WDiv(X) of Weil divisors, we set

R(X, 0) :=
⊕
D∈0

H 0(X,OX (D)),

which is called the multisection ring of 0.

Definition 2.2. Let k be a field. Let X be a proper normal variety over k whose divisor class group Cl(X)
is a finitely generated free abelian group. Fix a subgroup 0 of the group WDiv(X) of Weil divisors such
that the induced group homomorphism 0→ Cl(X) is bijective. We set

Cox(X) := R(X, 0)=
⊕
D∈0

H 0(X,OX (D)),

which is called the Cox ring of X .

Remark 2.3. If we take another subgroup 0′ satisfying the same property as 0, then it is known that
R(X, 0) and R(X, 0′) are isomorphic as k-algebras (see [Gongyo et al. 2015, Remark 2.17]).

Lemma 2.4. Let k be a field. Let X be a projective normal Q-factorial variety over k whose divisor class
group Cl(X) is a finitely generated free abelian group. Assume that
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(a) X is geometrically integral over k,

(b) X is geometrically normal over k,

(c) Cox(X) is a noetherian ring, and

(d) Pic0
X has dimension zero, where Pic0

X denotes the identity component of the Picard scheme of X
over k (see [Okawa 2016, Remark 2.4]).

Then, the following assertions hold:

(1) For any finitely generated subsemigroup 01 of WDiv(X), the multisection ring R(X, 01) of 01 is a
finitely generated k-algebra.

(2) An arbitrary nef Cartier divisor L on X is semiample.

Proof. By (a) and (b), X is a variety in the sense of [Okawa 2016, the end of Section 1]. Then the
conditions (c) and (d) enable us to apply [Okawa 2016, Theorem 2.19], hence X is a Mori dream space in
the sense of [Okawa 2016, Definition 2.3]. Then (2) follow from [Okawa 2016, Definition 2.3(2)]. Let us
prove (1). By standard arguments (see [Gongyo et al. 2015, discussion in Remark 2.17]), we may assume
that 01 is a subgroup of 0 for some subgroup 0 of WDiv(X). Then the assertion (2) holds by [Okawa
2016, Lemma 2.20]. �

Symbolic Rees algebras. The purpose of this subsection is to prove Proposition 2.14, which gives a
relation between symbolic Rees algebras of polynomial rings and Cox rings of blowups of projective
spaces. The materials treated in this subsection might be well-known for experts, however we give the
details of the proofs for the sake of completeness.

Notation 2.5. (i) Let k be a field and let A := k[x0, . . . , xn] be the polynomial ring equipped with
the standard structure of a graded ring. Let M be the homogenous maximal ideal of A. We have
Pn

k = Proj A.

(ii) Let W be an integral closed subscheme of Pn
k and let f : X → Pn

k be the blowup along W . For
D := f ∗OPn

k
(1) and the exceptional Cartier divisor E that is the inverse image of W , we set

R(X; D,−E) :=
⊕

d,e∈Z≥0

H 0(X, d D− eE).

(iii) There exists a homogeneous prime ideal p of A := k[x0, . . . , xn] that induces the ideal sheaf on Pn
k

corresponding to W . The symbolic Rees algebra of p is defined as
⊕
∞

d=0 p
(d), where p(d) := pd Ap∩A.

(iv) Let IW be the ideal sheaf on Pn
k corresponding to W .

Definition 2.6. We use Notation 2.5. For a homogenous ideal I of A, we define the saturation I sat of I by

I sat
:=

∞⋃
ν=1

{x ∈ A | Mνx ⊂ I }.
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Remark 2.7. We use the same notation as in Definition 2.6. By [Hartshorne 1977, Excercise 5.10 in
Chapter II], I sat is a homogeneous ideal of A such that both I and I sat define the same closed subscheme
on Pn

k and the equation

I sat
=

∞⊕
d=0

H 0(Pn
k ,I(d))

holds, where I is the ideal sheaf on Pn
k associated with I .

Definition 2.8. Let R be a noetherian ring and let J be an ideal of R. We define J̃ , called the Ratliff–Rush
ideal associated with J , by

J̃ :=
∞⋃

n=0

(J n+1
: J n).

The ideal J is said to be Rattlif–Rush if J = J̃ . It is well-known that J̃ is a Ratliff–Rush ideal (see
[Heinzer et al. 1992, Introduction]).

Lemma 2.9. We use Notation 2.5. Fix a positive integer e and let pe
=

⋂r
i=0 qi be a minimal primary

decomposition of pe such that
√
q0 = p (see [Atiyah and Macdonald 1969, Section 4]). Then the following

hold:

(1) The equation p(e) = q0 holds.

(2) The equation (pe)sat
=

⋂
i∈L qi holds, where

L := {i ∈ {0, . . . , r} |
√
qi 6= M}.

Proof. We show (1). Since p is a minimal prime ideal of pe, it follows from [Atiyah and Macdonald 1969,
Proposition 4.9] that pe Ap = q0 Ap. In particular we get equations

p(e) = pe Ap ∩ A = q0 Ap ∩ A = q0,

where the last equation follows from the fact that q0 is a p-primary ideal. Thus (1) holds.
We show (2). First, let us prove (pe)sat

⊂
⋂

i∈L qi . Take x ∈ (pe)sat and i ∈ L . By definition of the
saturation (pe)sat (see Definition 2.6), there is ν ∈ Z>0 such that Mνx ⊂ pe

⊂ qi . As
√
qi 6= M , there

is y ∈ M \
√
qi . Hence yνx ∈ qi . Since qi is a primary ideal, it holds that x ∈ qi . Thus the inclusion

(pe)sat
⊂

⋂
i∈L qi holds.

Second we prove the remaining inclusion: (pe)sat
⊃

⋂
i∈L qi . If L = {0, . . . , r}, then there is nothing

to show. We may assume that L 6= {0, . . . , r}. As the primary decomposition pe
=

⋂r
i=0 qi is minimal,

there exists a unique index i1 ∈ {1, . . . , r} such that
√
qi1 = M (see [Atiyah and Macdonald 1969,

Lemma 4.3]). In particular, L = {0, . . . , r} \ {i1}. Since A is a noetherian ring, there exists a positive
integer ν such that Mν

⊂ qi1 . It follows from definition of the saturation (pe)sat (see Definition 2.6) that⋂
i∈L qi =

⋂
i∈{0,...,r},i 6=i1

qi ⊂ (p
e)sat. �

Lemma 2.10. Let R be a noetherian ring and let I be an ideal of R generated by a regular sequence
a1, . . . , aµ of R. Then the following hold:
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(1) An (R/I )-algebra homomorphism

(R/I )[X1, . . . , Xµ] →
∞⊕

m=0

I m/I m+1, X i 7→ ai mod I 2

is an isomorphism, where I 0
:= R.

(2) If I is a prime ideal of R other than {0}, then I e is a Ratliff–Rush ideal for any positive integer e (see
Definition 2.8).

(3) If I is a prime ideal of R, then for any positive integer e, an arbitrary associated prime ideal of I e is
equal to I .

Proof. The assertion (1) holds by the fact that any regular sequence is quasiregular [Matsumura 1989,
Theorem 16.2(i)]. The assertion (2) follows from (1) and [Heinzer et al. 1992, (1.2)].

We show (3). By (1), I m/I m+1 is a free (R/I )-module for any m ∈ Z≥0. Consider an exact sequence

0→ I m/I m+1
→ R/I m+1

→ R/I m
→ 0.

We deduce from induction on e that for any e ∈ Z≥1, an arbitrary associated prime of I e is equal to I .
Thus (3) holds. �

Lemma 2.11. We use Notation 2.5. Assume that W is a local complete intersection scheme. Fix a positive
integer e. Then the equation f∗OX (−eE)= Je holds as subsheaves of OPn

k
.

Proof. Fix a point z ∈ Pn
k and set R := OPn

k ,z . Given a positive integer e, let

I := 0(Spec R,J|Spec R), R(I e) :=

∞⊕
d=0

I ed , ge : Ye = Proj R(I e)→ Spec R,

where I 0
:= R and ge is the blowup along I e. We set Y := Y1 and g := g1. Let Ee be the effective Cartier

divisor such that OYe(−Ee) := I eOYe . In particular, E = E1. Thanks to [Hartshorne 1977, Exercise 5.13
in Chpater II], we have that ρe : Y −→∼ Ye and (ρe)∗(eE)= Ee. We get equations

I e
= Ĩ e = H 0(Ye,OYe(−Ee))= H 0(Y,OY (−eE)),

where the first equation holds by Lemma 2.10(2), the second one follows from [Heinzer et al. 1992,
Fact 2.1] and the third one is obtained by ρe. Hence we are done. �

Lemma 2.12. We use Notation 2.5. Assume that W is locally complete intersection. Then R(X; D,−E)
and

⊕
∞

e=0 p
(e) are isomorphic as k-algebras.

Proof. Fix a nonnegative integer e. We show that
⊕
∞

d=0 H 0(X, d D − eE) is isomorphic to p(e). By
Lemma 2.11, we have f∗OX (−eE)' Je. By the projection formula, we get

f∗OX (d D− eE)' Je
⊗OPn

k
OPn

k
(d)= Je(d).
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Thanks to Remark 2.7, we obtain an isomorphism

(pe)sat
'

∞⊕
d=0

H 0(X, d D− eE).

Claim 2.13. Any associated prime ideal of pe is equal to either p or M.

Proof of Claim 2.13. Assume that there exists an associated prime ideal q of pe other than p or M . Let
us derive a contradiction. Since q 6= M = (x0, . . . , xn), there is x` that is not contained in q. Then qAx`

is an associated prime ideal of pe Ax` . Take a maximal ideal m of Ax` containing qAx` . Then qAm is an
associated prime ideal of pe Am other than pAm. Since W is a local complete intersection scheme, we
have that pAm is a prime ideal generated by a regular sequence, which contradicts Lemma 2.10(3). This
completes the proof of Claim 2.13. �

For a minimal primary decomposition (pe)sat
=

⋂r
i=0 qi satisfying

√
q0 = p, we have that

p(e) = q0 = (p
e)sat
'

∞⊕
d=0

H 0(X, d D− eE),

where the first equation holds by Lemma 2.9(1) and the second equation follows from Lemma 2.9(2) and
Claim 2.13. This completes the proof of Lemma 2.12 �

Proposition 2.14. We use Notation 2.5. Assume that W is smooth over k. Then the following are
equivalent:

(1) R(X; D,−E) is a noetherian ring.

(2)
⊕
∞

e=0 p
(e) is a noetherian ring.

(3) The Cox ring Cox(X) of X is a noetherian ring.

Proof. It follows from Lemma 2.12 that (1) is equivalent to (2). Since X is the blowup of Pn
k along a

smooth scheme W , the assumptions of Lemma 2.4 hold. Then, thanks to Lemma 2.4(1), we have that (3)
implies (1). Thus it suffices to show that (1) implies (3). Since it holds that H 0(X, d D− eE) = 0 for
d ∈ Z<0 and e ∈ Z, we get an isomorphism:⊕

d,e∈Z,d≥0

H 0(X, d D− eE)−→∼
⊕

d,e∈Z

H 0(X, d D− eE).

Thus we have a natural inclusion:

R(X; D,−E)=
⊕

d,e∈Z≥0

H 0(X, d D− eE) ↪→
⊕

d,e∈Z,d≥0

H 0(X, d D− eE).

The right-hand side is generated by H 0(X, E) as an R(X; D,−E)-algebra. Therefore, if R(X; D,−E)
is a noetherian ring, then so is

⊕
d,e∈Z H 0(X, d D− eE). Hence, also Cox(X) is a noetherian ring. Thus

(1) implies (3). �
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3. The main theorem

Construction in a general setting. The purpose of this subsection is to give a sufficient condition under
which the blowup of a smooth subvariety in a projective space has a nef Cartier divisor that is not
semiample (Notation 3.1, Proposition 3.3).

Notation 3.1. We use notation as follows:

(i) Let k be a field. We work over k unless otherwise specified (e.g., a projective scheme means a
scheme that is projective over k).

(ii) Let V be a smooth projective variety. Set d := dim V .

(iii) Let M be a nef Cartier divisor on V which is not semiample.

(iv) Fix a closed immersion: V ⊂Pn
k . Let H be a very ample Cartier divisor such that OPn

k
(H)' OPn

k
(1).

We set HV to be the pullback of H to V .

(v) Assume that there exists a positive integer r satisfying the following property: if3 denotes the linear
system of H 0(Pn

k ,OPn
k
(r)) consisting of the effective divisors containing V , then the following

conditions hold:

(v-1) The base locus of |3| is set-theoretically equal to V , i.e., for any point y ∈ Pn
k \ V , there exists

a hypersurface S0 of Pn
k of degree r such that V ⊂ S0 and y 6∈ S0.

(v-2) For any closed point y ∈ V , there exist an open neighborhood U of y ∈ Pn
k and hypersurfaces

S1, . . . , Sn−dim V of Pn
k of degree r such that V is contained in S1∩ · · · ∩ Sn−dim V and that two

subschemes V ∩U and S1 ∩ · · · ∩ Sn−dim V ∩U of Pn
k are coincide.

(vi) Assume that there are a smooth prime divisor W on V and positive integers s and t satisfying the
following properties:

(vi-1) st > r .
(vi-2) W ∼ st HV − t M .

(vii) Let f : X→ Pn
k be the blowup along W . We set V ′ := f −1

∗
V , E := Ex( f ) and

S′ := r f ∗H − E .

Note that E is a smooth prime divisor on X . Let g : V ′ −→∼ V be the induced isomorphism.

(viii) Set

L := (st − r) f ∗H + S′.

Lemma 3.2. Let k be a field and let Y := An
k = Spec k[y1, . . . , yn] be the n-dimensional affine space.

For i ∈ {1, . . . , n}, set Ti := V (yi ) to be the coordinate hyperplane of Y = An
k . Let q be a positive

integer satisfying q ≤ n − 1. Set V := T1 ∩ · · · ∩ Tq and W := T1 ∩ · · · ∩ Tq+1. Let f : X → Y be the
blowup along W and let V ′ and T ′i be the proper transforms of V and Ti , respectively. Then an equation
V ′ = T ′1 ∩ · · · ∩ T ′q holds.
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Proof. Since blowups are commutative with flat base changes, we may assume that q = n− 1. Thus W
is the origin and V is a line passing through W . The inclusion V ′ ⊂ T ′1 ∩ · · · ∩ T ′n−1 is clear, hence it
suffices to prove that T ′1 ∩ · · · ∩ T ′n−1 ∩ E is one point, where E denotes the f -exceptional prime divisor.
To prove this, we may assume that k is algebraically closed. Then T ′1 ∩ · · · ∩ T ′n−1 ∩ E is one point, since
there is a canonical bijection between the set E(k) of the closed points of E and the set of the lines on
Pn

k passing through W . �

Proposition 3.3. We use Notation 3.1. Then the following hold:

(1) The base locus of the complete linear system |S′| is contained in V ′.

(2) L|V ′ ∼ tg∗M.

(3) L is a nef Cartier divisor which is not semiample.

Proof. We show (1). Take a closed point x ∈ X \ V ′. We set y := f (x). It suffices to show that the base
locus B(|S′|) of |S′| does not contain x . We separately treat the following two cases: y 6∈ V and y ∈ V .

Assume that y 6∈ V . By Notation 3.1(v-1), there exists a hypersurface S0 of Pn
k of degree r such that

V ⊂ S0 and y 6∈ S0. It holds that

r f ∗H ∼ f ∗S0 = S′0+ aE,

where a ∈ Z>0 and S′0 is the proper transform of S0. In particular, we have that

B(|S′|)⊂ Supp(S′0+ E)= f −1(S0).

It follows from y 6∈ S0 that x 6∈ f −1(S0). Hence, x 6∈ B(|S′|). This completes the proof for the case where
y 6∈ V .

Assume that y ∈ V . We have that x ∈ E \ V ′. By Notation 3.1(v-2), there exist an open neighborhood
U of y ∈ Pn

k and hypersurfaces S1, . . . , Sn−dim V of Pn
k of degree r such that V is contained in S1 ∩

· · · ∩ Sn−dim V and that two subschemes V ∩ U and S1 ∩ · · · ∩ Sn−dim V ∩ U of Pn
k are the same. In

particular, S1, . . . , Sn−dim V are smooth at y and form a part of a regular system of parameters of OPn
k ,y

(see [Matsumura 1989, Theorem 17.4]). Therefore, thanks to Cohen’s structure theorem, the situation
is the same, up to taking the formal completions, as in the statement of Lemma 3.2. It follows from
Lemma 3.2 and the faithfully flatness of completions (see [Matsumura 1989, Theorem 7.5(ii)]) that an
equation

V ′ ∩ f −1(U )= S′1 ∩ · · · ∩ S′n−dim V ∩ f −1(U )

holds, where each S′i denotes the proper transform of Si . In particular, it holds that x /∈ S′i0
for some

i0 ∈ {1, . . . , n− dim V }. Since S′i0
is smooth at a point y of W , we have that

S′ = f ∗(r H)− E ∼ f ∗Si0 − E = S′i0
.

Thus, in any case, the base locus B(|S′|) does not contain x . Hence, (1) holds.
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Assertion (2) holds by the following computation:

L|V ′ = ((st − r) f ∗H + S′)|V ′

∼ g∗((st − r)HV + (S|V −W ))

∼ g∗((st − r)HV + (r HV − (st HV − t M)))

∼ tg∗M.

We show (3). Since L|V ′ is not semiample by (2) and Notation 3.1(iii), neither is L . Thus it suffices to
show that L= (st−r) f ∗H+S′ is nef. Take a curve0 on X . If0 6⊂V ′, then we get ((st−r) f ∗H+S′)·0≥0
by (1). If 0 ⊂ V ′, then (2) implies that L ·0 ≥ 0. In any case, we obtain L ·0 ≥ 0, and hence L is nef.
Thus (3) holds. �

Proof of the main theorem. In this subsection, we prove the main theorem of this paper (Theorem 3.7).
Theorem 3.7 is a formal consequence of Theorem 3.6 and some results established before. The main part
of Theorem 3.6 is to find schemes and divisors satisfying Notation 3.1. To this end, we start with the
following lemma.

Lemma 3.4. Let k be a field. Let V be a smooth projective connected scheme over k such that dim V ≥ 2.
Let W be an ample effective Cartier divisor. Then W is connected.

Proof. Set k ′ := H 0(V,OV ). Note that k ⊂ k ′ is a field extension of finite degree. We have natural
morphisms:

α : V α′
−→ Spec k ′ β

−→ Spec k.

We obtain α′
∗
OV = OSpec k′ .

Let us prove that k ⊂ k ′ is a separable extension. It suffices to prove that A := k ′⊗k k is reduced for an
algebraic closure k of k. We have the induced morphism

α′′ = α′×k k : V ×k k→ Spec(k ′⊗k k)= Spec A.

Since k→ k is flat, we have that α′′
∗

OV×kk = OSpec A. As V ×k k is reduced, so is A. Therefore, k ⊂ k ′ is
a separable extension.

We have that α is smooth and β is étale. Then it holds that also α′ is smooth by [Fu 2011, Proposi-
tion 2.4.1]. Therefore, the problem is reduced to the case where k = H 0(V,OV ).

We are allowed to replace W by nW for a positive integer n. Hence, by Serre duality and the ampleness
of W , we may assume that H 1(V,OV (−W ))= 0. Then we obtain a surjective k-linear map

H 0(V,OV )→ H 0(W,OW ).

Since dimk H 0(V,OV )= 1, we get dimk H 0(W,OW )= 1. Therefore, W is connected. �
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Lemma 3.5. The following hold:

(1) Let n be an integer such that n ≥ 5. If k is an algebraically closed field, then there exist a smooth
projective surface V over k, a closed immersion j : V ↪→ Pn

k over k, and a nef Cartier divisor M on
V which is not semiample.

(2) Let n be an integer such that n≥ 11. If k is a field, then there exist a smooth projective surface V over
k, a closed immersion j : V ↪→ Pn

k over k, and a nef Cartier divisor M on V which is not semiample.

Proof. We show (1). We may assume that n = 5. The existence of j is automatic, since any smooth
projective surface over k can be embedded in P5

k . If k is the algebraic closure of a finite field, then the
assertion follows from [Totaro 2009, Theorem 6.1]. If k is not algebraic over any finite field, then V can
be taken as the direct product of an elliptic curve E and a smooth projective curve. Indeed, there is a
Cartier divisor N on E such that deg N = 0 and N is not torsion, i.e., r N � 0 for any positive integer r .
This implies that N is a nef Cartier divisor which is not semiample. Hence, its pullback M to V is again
a nef Cartier divisor which is not semiample. This completes the proof of (1).

We show (2). We may assume that n = 11. First we treat the case where k is a perfect field. By (1),
we can find a field extension k ⊂ k ′ of finite degree, a connected k ′-scheme V of dimension two which is
smooth and projective over k ′, a closed immersion j ′ : V ↪→ P5

k′ over k ′ and a nef Cartier divisor M on
V which is not semiample. Automatically V is projective over k. Since k is perfect, V is also smooth
over k. Thus it suffices to find a closed immersion j : V ↪→ P11

k over k. Since k ⊂ k ′ is a finite separable
extension, it is a simple extension. Therefore, there is a closed immersion i : Spec k ′ ↪→ P1

k over k. We
can find a required closed immersion j by using the Segre embedding:

j : V j ′
↪−→P5

k′ = P5
k ×k k ′ id×i

↪−−−→P5
k ×k P1

k
Segre

↪−−−→P11
k .

This completes the proof of the case where k is a perfect field.
Second we handle the general case. Let k0 be the prime field contained in k. Since k0 is perfect, there

exist a smooth projective connected k0-scheme V0 of dimension two, a closed immersion j0 : V0 ↪→ P11
k0

over k0, and a nef Cartier divisor M0 on V0 which is not semiample. Then V0×k0 k is a scheme which is
smooth and projective over k. Since any ring homomorphism between fields is faithfully flat, we can find a
connected component V of V0×k0 k such that M := (α∗M0)|V is not semiample, where α : V0×k0 k→ V0.
Since M0 is nef, so is M (see [Tanaka 2018, Lemma 2.3]). Clearly, V is a smooth projective surface over
k and there is a closed immersion j : V ↪→ P11

k over k. This completes the proof of (2). �

Theorem 3.6. The following hold:

(1) Let n be an integer such that n ≥ 5. If k is an algebraically closed field, then there exist a one-
dimensional connected closed subscheme W of Pn

k which is smooth over k and a Cartier divisor L
on the blowup X of Pn

k along W such that L is nef but not semiample.

(2) Let n be an integer such that n ≥ 11. If k is a field, then there exist a one-dimensional connected
closed subscheme W of Pn

k which is smooth over k and a Cartier divisor L on the blowup X of Pn
k

along W such that L is nef but not semiample.
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Proof. We only show (2), as the proof of (1) is easier. Fix a field k. We will find schemes and divisors
satisfying the properties of Notation 3.1. Thanks to Lemma 3.5, there exist a smooth projective connected
k-scheme V of dimension two, a closed immersion j : V ↪→ Pn

k over k, and a nef Cartier divisor M on V
which is not semiample. Set d := 2. Then k, V , M , d , n satisfy properties (i)–(iv) of Notation 3.1.

Since V =Proj k[x0, . . . , xn]/(h1, . . . , ha), it holds that the linear system3 appearing in Notation 3.1(v)
satisfies the property (v-1) of Notation 3.1 if r ≥ max1≤q≤a deg hq . As V is a locally completion
intersection scheme, the quasicompactness of V also implies that property (v-2) of Notation 3.1 holds
for r � 0. Therefore, we can find r ∈ Z>0 satisfying property (v) of Notation 3.1.

We now show that there exist s, t , W satisfying property (vi) of Notation 3.1. If k is an infinite field,
then the Bertini theorem enables us to find a positive integer s and a smooth effective divisor W on V such
that W ∼ s HV −M . Note that W is connected (Lemma 3.4). Thus, s, t := 1 and W satisfy property (vi) of
Notation 3.1. If k is a finite field, then it follows from [Poonen 2004, Theorem 1.1] that there are positive
integers t � s� 0 and a smooth effective divisor W satisfying property (vi) of Notation 3.1. Again by
Lemma 3.4, W is connected. In any case, we can find s, t , W satisfying property (vi) of Notation 3.1.

To summarize, we have found V , W , M , d, n, r , s, t over a field k satisfying properties (i)–(viii) of
Notation 3.1. By construction, V is a smooth projective surface. In particular, W is a smooth projective
curve in P11

k . Thanks to Proposition 3.3, the Cartier divisor

L = (st − r) f ∗H + S′

on X , defined in (viii) of Notation 3.1, is nef but not semiample. �

Theorem 3.7. The following hold:

(1) Let q be an integer such that q ≥ 6. If k is an algebraically closed field, then there exists a
homogeneous prime ideal p of the polynomial ring k[x1, . . . , xq ] with q variables whose symbolic
Rees algebra

⊕
∞

m=0 p
(m) is not a noetherian ring.

(2) Let q be an integer such that q ≥ 12. If k is a field, then there exists a homogeneous prime ideal p of
the polynomial ring k[x1, . . . , xq ] with q variables whose symbolic Rees algebra

⊕
∞

m=0 p
(m) is not a

noetherian ring.

Proof. The assertion follows from Lemma 2.4, Proposition 2.14 and Theorem 3.6. �
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