

Infinitely generated symbolic Rees algebras

 over finite fieldsAkiyoshi Sannai and Hiromu Tanaka

Infinitely generated symbolic Rees algebras over finite fields

Akiyoshi Sannai and Hiromu Tanaka

For the polynomial ring over an arbitrary field with twelve variables, there exists a prime ideal whose symbolic Rees algebra is not finitely generated.

1. Introduction

Let A be a polynomial ring over a field k with finitely many variables. For a field L satisfying $k \subset L \subset$ $\operatorname{Frac}(A)$, Hilbert's fourteenth problem asks whether or not the ring $L \cap A$ is finitely generated over k. In 1958, Nagata [1960] found the first counterexample to this problem over arbitrary sufficiently large fields. For more examples we refer to [Roberts 1990; Kuroda 2005; Totaro 2008]. On the other hand, this problem is related to the following question raised by Cowsik [1984].

Question 1.1. Let A be a polynomial ring over a field with finitely many variables and let P be a prime ideal of A. Set $P^{(m)}:=P^{m} A_{P} \cap A$. Then is the symbolic Rees algebra $R_{S}(P):=\bigoplus_{m=0}^{\infty} P^{(m)}$ a finitely generated k-algebra?

Indeed, Roberts [1985] settled Question 1.1 negatively, using Nagata's counterexample mentioned above. Roberts's construction is valid only over sufficiently large fields of characteristic zero, although Nagata's example is independent of the characteristic of the base field. This is because Roberts's proof requires a theorem of Bertini type that fails in positive characteristic (see [Roberts 1985, line 7 on page 591]). On the other hand, it is known for experts that Roberts's method works, after suitable modifications, for the case where k is not algebraic over a finite field. Roughly speaking, counterexamples over such fields can be found after replacing the theorem of Bertini type and Nagata's counterexample used in [Roberts 1985] by [Diaz and Harbater 1991, Theorem 2.1] and the blowup of \mathbb{P}^{2} along general nine points, respectively. In this sense, Question 1.1 is still open if k is algebraic over a finite field.

The purpose of this paper is to give the negative answer to Question 1.1 over an arbitrary base field. More specifically, the main theorem is as follows.

Theorem 1.2 (see Theorem 3.7). Let k be a field. Let A be the polynomial ring over k with twelve variables. Then there exists a prime ideal \mathfrak{p} of A whose symbolic Rees algebra $\bigoplus_{m=0}^{\infty} \mathfrak{p}^{(m)}$ is not a noetherian ring.

[^0]Sketch of the proof. We overview some of the ideas used in the proof of Theorem 1.2. Let us treat the case where $k=\mathbb{F}_{p}$. Our method is based on a geometric description of symbolic Rees algebras that was pointed out by Cutkosky [1991] in a certain special case. We start with a projective smooth surface V over \mathbb{F}_{p}, constructed by Totaro, that has a nef divisor M which is not semiample. We embed V into the eleven-dimensional projective space $\mathbb{P}_{\mathbb{F}_{p}}^{11}$ (see Lemma 3.5). Thanks to a theorem of Bertini type over finite fields, we can find a smooth curve W on V that is linearly equivalent to $\left.s t H\right|_{V}-t M$ for a hyperplane divisor H of $\mathbb{P}_{\mathbb{F}_{p}}^{11}$ under the assumption that $t \gg s \gg 0$. Take a homogeneous prime ideal \mathfrak{p} on $A=\mathbb{F}_{p}\left[x_{0}, \ldots, x_{11}\right]$ that defines W. Let $f: X \rightarrow \mathbb{P}_{\mathbb{F}_{p}}^{11}$ be the blowup along W. Set $D:=f^{*} H$ and let E be the f-exceptional prime divisor on X. Then $\bigoplus_{m=0}^{\infty} \mathfrak{p}^{(m)}$ is not a noetherian ring if and only if the Cox ring of X is not a noetherian ring (see Proposition 2.14). In particular it suffices to find a nef divisor on X that is not semiample. By choosing s and t carefully, we can find such a divisor (see Proposition 3.3(3)). For more details, see Section 3.

Related topics. It is worth mentioning that, concerning Question 1.1, many authors have studied the case where P is the prime ideal of $k[x, y, z]$ that defines a space monomial curve $\left(t^{a}, t^{b}, t^{c}\right)$ in \mathbb{A}_{k}^{3}. For instance, Goto, Nishida and Watanabe [1994] proved that for some triples (a, b, c), the associated symbolic Rees algebras are not finitely generated if k is of characteristic zero. It is remarkable that this result is applied to study the compactified moduli space $\overline{\mathcal{M}}_{0, n}$ of pointed rational curves. More specifically, it turns out that $\bar{M}_{0, n}$ is not a Mori dream space if $n \geq 13$ and the base field is of characteristic zero [Castravet 2009; González and Karu 2016].

Since the case of characteristic zero has such an application, it is natural to consider also the case of positive characteristic. However the situation seems to be subtler. Indeed, if the base field is of positive characteristic, then it is known that the analogous rings of the examples given in [Goto et al. 1994] and [Roberts 1990] are shown to be finitely generated by [Cutkosky 1991; Goto et al. 1994] and [Kurano 1993; 1994], respectively. Then Goto and Watanabe made the following conjecture, which remains to be an open problem.

Conjecture 1.3. Let R be the polynomial ring over a field k with three valuables. Let P be the prime ideal that defines a space monomial curve $\left(t^{a}, t^{b}, t^{c}\right)$ in \mathbb{A}_{k}^{3}. If the characteristic of k is positive, then the symbolic Rees ring $R_{S}(P)=\bigoplus_{m=0}^{\infty} P^{(m)}$ is finitely generated.

It is known that Conjecture 1.3 is reduced to the case where $k=\overline{\mathbb{F}}_{p}$. On the other hand, Theorem 1.2 indicates that a symbolic Rees algebra is not necessarily finitely generated in a higher dimensional case, even if the base field is $\overline{\mathbb{F}}_{p}$. Thus if the Conjecture 1.3 holds true, then its proof depends on some facts that hold only in a lower dimensional situation.

2. Preliminaries

Notation. In this subsection, we summarize notation used in the paper.

We say that X is a variety over a field k (or a k-variety) if X is an integral scheme which is separated and of finite type over k. We say that X is a curve over k or a k-curve (resp. a surface over k or a k-surface) if X is a variety over k with $\operatorname{dim} X=1$ (resp. $\operatorname{dim} X=2$).

Given an invertible sheaf L on a proper scheme X over a field k, consider the natural homomorphism

$$
\begin{equation*}
H^{0}(X, L) \otimes_{k} 0_{X} \rightarrow L \tag{2.0.1}
\end{equation*}
$$

(1) We say that L is nef if $L \cdot C \geq 0$ for any k-curve C on X.
(2) For a k-linear subspace V of $H^{0}(X, L)$, the scheme-theoretic base locus $B(V)$ of V is the closed subscheme of X defined by the image of the composite homomorphism

$$
V \otimes_{k} L^{-1} \hookrightarrow H^{0}(X, L) \otimes_{k} L^{-1} \rightarrow \mathbb{O}_{X}
$$

where the latter one is induced by (2.0.1). For the linear system Λ corresponding to V, we set $B(\Lambda):=B(V)$.
(3) We say that L is globally generated if (2.0.1) is surjective, i.e., $B(|L|)=\varnothing$.
(4) We say that L is semiample if there exists a positive integer n such that $L^{\otimes n}$ is globally generated. For a \mathbb{Q}-Cartier \mathbb{Q}-divisor D on a normal proper variety X over a field, we say that D is nef (resp. semiample) if there exists a positive integer n such that $n D$ is a Cartier divisor and $0_{X}(n D)$ is nef (resp. semiample).

Cox rings. In this subsection, we recall the definition of Cox rings (Definition 2.2) and one of their basic properties (Lemma 2.4).
Definition 2.1. Let k be a field. Let X be a normal variety over k. For a subsemigroup Γ of the group $\operatorname{WDiv}(X)$ of Weil divisors, we set

$$
R(X, \Gamma):=\bigoplus_{D \in \Gamma} H^{0}\left(X, \mathcal{O}_{X}(D)\right)
$$

which is called the multisection ring of Γ.
Definition 2.2. Let k be a field. Let X be a proper normal variety over k whose divisor class $\operatorname{group} \mathrm{Cl}(X)$ is a finitely generated free abelian group. Fix a subgroup Γ of the group $\operatorname{WDiv}(X)$ of Weil divisors such that the induced group homomorphism $\Gamma \rightarrow \mathrm{Cl}(X)$ is bijective. We set

$$
\operatorname{Cox}(X):=R(X, \Gamma)=\bigoplus_{D \in \Gamma} H^{0}\left(X, \widehat{O}_{X}(D)\right)
$$

which is called the Cox ring of X.
Remark 2.3. If we take another subgroup Γ^{\prime} satisfying the same property as Γ, then it is known that $R(X, \Gamma)$ and $R\left(X, \Gamma^{\prime}\right)$ are isomorphic as k-algebras (see [Gongyo et al. 2015, Remark 2.17]).
Lemma 2.4. Let k be a field. Let X be a projective normal \mathbb{Q}-factorial variety over k whose divisor class group $\mathrm{Cl}(X)$ is a finitely generated free abelian group. Assume that
(a) X is geometrically integral over k,
(b) X is geometrically normal over k,
(c) $\operatorname{Cox}(X)$ is a noetherian ring, and
(d) $\mathbf{P i c}_{X}^{0}$ has dimension zero, where $\mathbf{P i c}_{X}^{0}$ denotes the identity component of the Picard scheme of X over k (see [Okawa 2016, Remark 2.4]).

Then, the following assertions hold:
(1) For any finitely generated subsemigroup Γ_{1} of $\operatorname{WDiv}(X)$, the multisection ring $R\left(X, \Gamma_{1}\right)$ of Γ_{1} is a finitely generated k-algebra.
(2) An arbitrary nef Cartier divisor L on X is semiample.

Proof. By (a) and (b), X is a variety in the sense of [Okawa 2016, the end of Section 1]. Then the conditions (c) and (d) enable us to apply [Okawa 2016, Theorem 2.19], hence X is a Mori dream space in the sense of [Okawa 2016, Definition 2.3]. Then (2) follow from [Okawa 2016, Definition 2.3(2)]. Let us prove (1). By standard arguments (see [Gongyo et al. 2015, discussion in Remark 2.17]), we may assume that Γ_{1} is a subgroup of Γ for some subgroup Γ of $\operatorname{WDiv}(X)$. Then the assertion (2) holds by [Okawa 2016, Lemma 2.20].

Symbolic Rees algebras. The purpose of this subsection is to prove Proposition 2.14, which gives a relation between symbolic Rees algebras of polynomial rings and Cox rings of blowups of projective spaces. The materials treated in this subsection might be well-known for experts, however we give the details of the proofs for the sake of completeness.

Notation 2.5. (i) Let k be a field and let $A:=k\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring equipped with the standard structure of a graded ring. Let M be the homogenous maximal ideal of A. We have $\mathbb{P}_{k}^{n}=\operatorname{Proj} A$.
(ii) Let W be an integral closed subscheme of \mathbb{P}_{k}^{n} and let $f: X \rightarrow \mathbb{P}_{k}^{n}$ be the blowup along W. For $D:=f^{*} \mathbb{O}_{k}^{n}(1)$ and the exceptional Cartier divisor E that is the inverse image of W, we set

$$
R(X ; D,-E):=\bigoplus_{d, e \in \mathbb{Z}_{\geq 0}} H^{0}(X, d D-e E)
$$

(iii) There exists a homogeneous prime ideal \mathfrak{p} of $A:=k\left[x_{0}, \ldots, x_{n}\right]$ that induces the ideal sheaf on \mathbb{P}_{k}^{n} corresponding to W. The symbolic Rees algebra of \mathfrak{p} is defined as $\bigoplus_{d=0}^{\infty} \mathfrak{p}^{(d)}$, where $\mathfrak{p}^{(d)}:=\mathfrak{p}^{d} A_{\mathfrak{p}} \cap A$.
(iv) Let \mathscr{I}_{W} be the ideal sheaf on \mathbb{P}_{k}^{n} corresponding to W.

Definition 2.6. We use Notation 2.5. For a homogenous ideal I of A, we define the saturation $I^{\text {sat }}$ of I by

$$
I^{\mathrm{sat}}:=\bigcup_{\nu=1}^{\infty}\left\{x \in A \mid M^{v} x \subset I\right\}
$$

Remark 2.7. We use the same notation as in Definition 2.6. By [Hartshorne 1977, Excercise 5.10 in Chapter II], $I^{\text {sat }}$ is a homogeneous ideal of A such that both I and $I^{\text {sat }}$ define the same closed subscheme on \mathbb{P}_{k}^{n} and the equation

$$
I^{\mathrm{sat}}=\bigoplus_{d=0}^{\infty} H^{0}\left(\mathbb{P}_{k}^{n}, \mathscr{I}(d)\right)
$$

holds, where \mathscr{I} is the ideal sheaf on \mathbb{P}_{k}^{n} associated with I.
Definition 2.8. Let R be a noetherian ring and let J be an ideal of R. We define \tilde{J}, called the Ratliff-Rush ideal associated with J, by

$$
\tilde{J}:=\bigcup_{n=0}^{\infty}\left(J^{n+1}: J^{n}\right)
$$

The ideal J is said to be Rattlif-Rush if $J=\tilde{J}$. It is well-known that \tilde{J} is a Ratliff-Rush ideal (see [Heinzer et al. 1992, Introduction]).
Lemma 2.9. We use Notation 2.5. Fix a positive integer e and let $\mathfrak{p}^{e}=\bigcap_{i=0}^{r} \mathfrak{q}_{i}$ be a minimal primary decomposition of \mathfrak{p}^{e} such that $\sqrt{\mathfrak{q}_{0}}=\mathfrak{p}$ (see [Atiyah and Macdonald 1969, Section 4]). Then the following hold:
(1) The equation $\mathfrak{p}^{(e)}=\mathfrak{q}_{0}$ holds.
(2) The equation $\left(\mathfrak{p}^{e}\right)^{\text {sat }}=\bigcap_{i \in L} \mathfrak{q}_{i}$ holds, where

$$
L:=\left\{i \in\{0, \ldots, r\} \mid \sqrt{\mathfrak{q}_{i}} \neq M\right\} .
$$

Proof. We show (1). Since \mathfrak{p} is a minimal prime ideal of \mathfrak{p}^{e}, it follows from [Atiyah and Macdonald 1969, Proposition 4.9] that $\mathfrak{p}^{e} A_{\mathfrak{p}}=\mathfrak{q}_{0} A_{\mathfrak{p}}$. In particular we get equations

$$
\mathfrak{p}^{(e)}=\mathfrak{p}^{e} A_{\mathfrak{p}} \cap A=\mathfrak{q}_{0} A_{\mathfrak{p}} \cap A=\mathfrak{q}_{0}
$$

where the last equation follows from the fact that \mathfrak{q}_{0} is a \mathfrak{p}-primary ideal. Thus (1) holds.
We show (2). First, let us prove $\left(\mathfrak{p}^{e}\right)^{\text {sat }} \subset \bigcap_{i \in L} \mathfrak{q}_{i}$. Take $x \in\left(\mathfrak{p}^{e}\right)^{\text {sat }}$ and $i \in L$. By definition of the saturation (\mathfrak{p}^{e}) ${ }^{\text {sat }}$ (see Definition 2.6), there is $v \in \mathbb{Z}_{>0}$ such that $M^{v} x \subset \mathfrak{p}^{e} \subset \mathfrak{q}_{i}$. As $\sqrt{\mathfrak{q}_{i}} \neq M$, there is $y \in M \backslash \sqrt{\mathfrak{q}_{i}}$. Hence $y^{\nu} x \in \mathfrak{q}_{i}$. Since \mathfrak{q}_{i} is a primary ideal, it holds that $x \in \mathfrak{q}_{i}$. Thus the inclusion $\left(\mathfrak{p}^{e}\right)^{\text {sat }} \subset \bigcap_{i \in L} \mathfrak{q}_{i}$ holds.

Second we prove the remaining inclusion: $\left(\mathfrak{p}^{e}\right)^{\text {sat }} \supset \bigcap_{i \in L} \mathfrak{q}_{i}$. If $L=\{0, \ldots, r\}$, then there is nothing to show. We may assume that $L \neq\{0, \ldots, r\}$. As the primary decomposition $\mathfrak{p}^{e}=\bigcap_{i=0}^{r} \mathfrak{q}_{i}$ is minimal, there exists a unique index $i_{1} \in\{1, \ldots, r\}$ such that $\sqrt{\mathfrak{q}_{i_{1}}}=M$ (see [Atiyah and Macdonald 1969, Lemma 4.3]). In particular, $L=\{0, \ldots, r\} \backslash\left\{i_{1}\right\}$. Since A is a noetherian ring, there exists a positive integer v such that $M^{v} \subset \mathfrak{q}_{i_{1}}$. It follows from definition of the saturation (\mathfrak{p}^{e}) ${ }^{\text {sat }}$ (see Definition 2.6) that $\bigcap_{i \in L} \mathfrak{q}_{i}=\bigcap_{i \in\{0, \ldots, r\}, i \neq i_{1}} \mathfrak{q}_{i} \subset\left(\mathfrak{p}^{e}\right)^{\text {sat }}$.
Lemma 2.10. Let R be a noetherian ring and let I be an ideal of R generated by a regular sequence a_{1}, \ldots, a_{μ} of R. Then the following hold:
(1) An (R / I)-algebra homomorphism

$$
(R / I)\left[X_{1}, \ldots, X_{\mu}\right] \rightarrow \bigoplus_{m=0}^{\infty} I^{m} / I^{m+1}, \quad X_{i} \mapsto a_{i} \bmod I^{2}
$$

is an isomorphism, where $I^{0}:=R$.
(2) If I is a prime ideal of R other than $\{0\}$, then I^{e} is a Ratliff-Rush ideal for any positive integer e (see Definition 2.8).
(3) If I is a prime ideal of R, then for any positive integer e, an arbitrary associated prime ideal of I^{e} is equal to I.

Proof. The assertion (1) holds by the fact that any regular sequence is quasiregular [Matsumura 1989, Theorem 16.2(i)]. The assertion (2) follows from (1) and [Heinzer et al. 1992, (1.2)].

We show (3). By (1), I^{m} / I^{m+1} is a free (R / I)-module for any $m \in \mathbb{Z}_{\geq 0}$. Consider an exact sequence

$$
0 \rightarrow I^{m} / I^{m+1} \rightarrow R / I^{m+1} \rightarrow R / I^{m} \rightarrow 0
$$

We deduce from induction on e that for any $e \in \mathbb{Z}_{\geq 1}$, an arbitrary associated prime of I^{e} is equal to I. Thus (3) holds.

Lemma 2.11. We use Notation 2.5. Assume that W is a local complete intersection scheme. Fix a positive integer e. Then the equation $f_{*} \mathcal{O}_{X}(-e E)=\mathscr{g}^{e}$ holds as subsheaves of $\mathbb{O}_{\mathbb{P}_{k}^{n}}$.

Proof. Fix a point $z \in \mathbb{P}_{k}^{n}$ and set $R:=\mathcal{O}_{\mathbb{P}_{k}^{n}, z}$. Given a positive integer e, let

$$
I:=\Gamma\left(\operatorname{Spec} R,\left.\mathscr{F}\right|_{\operatorname{Spec} R}\right), \quad R\left(I^{e}\right):=\bigoplus_{d=0}^{\infty} I^{e d}, \quad g_{e}: Y_{e}=\operatorname{Proj} R\left(I^{e}\right) \rightarrow \operatorname{Spec} R,
$$

where $I^{0}:=R$ and g_{e} is the blowup along I^{e}. We set $Y:=Y_{1}$ and $g:=g_{1}$. Let E_{e} be the effective Cartier divisor such that $\mathcal{O}_{Y_{e}}\left(-E_{e}\right):=I^{e} \mathbb{O}_{Y_{e}}$. In particular, $E=E_{1}$. Thanks to [Hartshorne 1977, Exercise 5.13 in Chpater II], we have that $\rho_{e}: Y \xrightarrow{\sim} Y_{e}$ and $\left(\rho_{e}\right)_{*}(e E)=E_{e}$. We get equations

$$
I^{e}=\widetilde{I}^{e}=H^{0}\left(Y_{e}, \mathscr{O}_{Y_{e}}\left(-E_{e}\right)\right)=H^{0}\left(Y, \mathscr{O}_{Y}(-e E)\right)
$$

where the first equation holds by Lemma 2.10(2), the second one follows from [Heinzer et al. 1992, Fact 2.1] and the third one is obtained by ρ_{e}. Hence we are done.

Lemma 2.12. We use Notation 2.5. Assume that W is locally complete intersection. Then $R(X ; D,-E)$ and $\bigoplus_{e=0}^{\infty} \mathfrak{p}^{(e)}$ are isomorphic as k-algebras.

Proof. Fix a nonnegative integer e. We show that $\bigoplus_{d=0}^{\infty} H^{0}(X, d D-e E)$ is isomorphic to $\mathfrak{p}^{(e)}$. By Lemma 2.11, we have $f_{*} \mathbb{O}_{X}(-e E) \simeq \mathscr{g}^{e}$. By the projection formula, we get

$$
f_{*} \mathbb{O}_{X}(d D-e E) \simeq \mathscr{I}^{e} \otimes_{\mathbb{P}_{\mathbb{P}_{k}^{n}}} \widehat{\mathbb{P}}_{k}^{n}(d)=\mathscr{\mathscr { F }}^{e}(d)
$$

Thanks to Remark 2.7, we obtain an isomorphism

$$
\left(\mathfrak{p}^{e}\right)^{\mathrm{sat}} \simeq \bigoplus_{d=0}^{\infty} H^{0}(X, d D-e E)
$$

Claim 2.13. Any associated prime ideal of \mathfrak{p}^{e} is equal to either \mathfrak{p} or M.
Proof of Claim 2.13. Assume that there exists an associated prime ideal \mathfrak{q} of \mathfrak{p}^{e} other than \mathfrak{p} or M. Let us derive a contradiction. Since $\mathfrak{q} \neq M=\left(x_{0}, \ldots, x_{n}\right)$, there is x_{ℓ} that is not contained in \mathfrak{q}. Then $\mathfrak{q} A_{x_{\ell}}$ is an associated prime ideal of $\mathfrak{p}^{e} A_{x_{\ell}}$. Take a maximal ideal \mathfrak{m} of $A_{x_{\ell}}$ containing $\mathfrak{q} A_{x_{\ell}}$. Then $\mathfrak{q} A_{\mathfrak{m}}$ is an associated prime ideal of $\mathfrak{p}^{e} A_{\mathfrak{m}}$ other than $\mathfrak{p} A_{\mathfrak{m}}$. Since W is a local complete intersection scheme, we have that $\mathfrak{p} A_{\mathfrak{m}}$ is a prime ideal generated by a regular sequence, which contradicts Lemma 2.10(3). This completes the proof of Claim 2.13.

For a minimal primary decomposition $\left(\mathfrak{p}^{e}\right)^{\text {sat }}=\bigcap_{i=0}^{r} \mathfrak{q}_{i}$ satisfying $\sqrt{\mathfrak{q}_{0}}=\mathfrak{p}$, we have that

$$
\mathfrak{p}^{(e)}=\mathfrak{q}_{0}=\left(\mathfrak{p}^{e}\right)^{\mathrm{sat}} \simeq \bigoplus_{d=0}^{\infty} H^{0}(X, d D-e E)
$$

where the first equation holds by Lemma 2.9(1) and the second equation follows from Lemma 2.9(2) and Claim 2.13. This completes the proof of Lemma 2.12

Proposition 2.14. We use Notation 2.5. Assume that W is smooth over k. Then the following are equivalent:
(1) $R(X ; D,-E)$ is a noetherian ring.
(2) $\bigoplus_{e=0}^{\infty} \mathfrak{p}^{(e)}$ is a noetherian ring.
(3) The Cox ring $\operatorname{Cox}(X)$ of X is a noetherian ring.

Proof. It follows from Lemma 2.12 that (1) is equivalent to (2). Since X is the blowup of \mathbb{P}_{k}^{n} along a smooth scheme W, the assumptions of Lemma 2.4 hold. Then, thanks to Lemma 2.4(1), we have that (3) implies (1). Thus it suffices to show that (1) implies (3). Since it holds that $H^{0}(X, d D-e E)=0$ for $d \in \mathbb{Z}_{<0}$ and $e \in \mathbb{Z}$, we get an isomorphism:

$$
\bigoplus_{d, e \in \mathbb{Z}, d \geq 0} H^{0}(X, d D-e E) \xrightarrow{\sim} \bigoplus_{d, e \in \mathbb{Z}} H^{0}(X, d D-e E)
$$

Thus we have a natural inclusion:

$$
R(X ; D,-E)=\bigoplus_{d, e \in \mathbb{Z}_{\geq 0}} H^{0}(X, d D-e E) \hookrightarrow \bigoplus_{d, e \in \mathbb{Z}, d \geq 0} H^{0}(X, d D-e E)
$$

The right-hand side is generated by $H^{0}(X, E)$ as an $R(X ; D,-E)$-algebra. Therefore, if $R(X ; D,-E)$ is a noetherian ring, then so is $\bigoplus_{d, e \in \mathbb{Z}} H^{0}(X, d D-e E)$. Hence, also $\operatorname{Cox}(X)$ is a noetherian ring. Thus (1) implies (3).

3. The main theorem

Construction in a general setting. The purpose of this subsection is to give a sufficient condition under which the blowup of a smooth subvariety in a projective space has a nef Cartier divisor that is not semiample (Notation 3.1, Proposition 3.3).

Notation 3.1. We use notation as follows:
(i) Let k be a field. We work over k unless otherwise specified (e.g., a projective scheme means a scheme that is projective over k).
(ii) Let V be a smooth projective variety. Set $d:=\operatorname{dim} V$.
(iii) Let M be a nef Cartier divisor on V which is not semiample.
(iv) Fix a closed immersion: $V \subset \mathbb{P}_{k}^{n}$. Let H be a very ample Cartier divisor such that $\mathbb{O}_{\mathbb{P}_{k}^{n}}(H) \simeq \mathbb{O}_{\mathbb{P}_{k}^{n}}(1)$. We set H_{V} to be the pullback of H to V.
(v) Assume that there exists a positive integer r satisfying the following property: if Λ denotes the linear system of $H^{0}\left(\mathbb{P}_{k}^{n}, \widehat{P}_{k}^{n}(r)\right)$ consisting of the effective divisors containing V, then the following conditions hold:
(v-1) The base locus of $|\Lambda|$ is set-theoretically equal to V, i.e., for any point $y \in \mathbb{P}_{k}^{n} \backslash V$, there exists a hypersurface S_{0} of \mathbb{P}_{k}^{n} of degree r such that $V \subset S_{0}$ and $y \notin S_{0}$.
(v-2) For any closed point $y \in V$, there exist an open neighborhood U of $y \in \mathbb{P}_{k}^{n}$ and hypersurfaces $S_{1}, \ldots, S_{n-\operatorname{dim} V}$ of \mathbb{P}_{k}^{n} of degree r such that V is contained in $S_{1} \cap \cdots \cap S_{n-\operatorname{dim} V}$ and that two subschemes $V \cap U$ and $S_{1} \cap \cdots \cap S_{n-\operatorname{dim} V} \cap U$ of \mathbb{P}_{k}^{n} are coincide.
(vi) Assume that there are a smooth prime divisor W on V and positive integers s and t satisfying the following properties:
(vi-1) $s t>r$.
(vi-2) $W \sim s t H_{V}-t M$.
(vii) Let $f: X \rightarrow \mathbb{P}_{k}^{n}$ be the blowup along W. We set $V^{\prime}:=f_{*}^{-1} V, E:=\operatorname{Ex}(f)$ and

$$
S^{\prime}:=r f^{*} H-E
$$

Note that E is a smooth prime divisor on X. Let $g: V^{\prime} \xrightarrow{\sim} V$ be the induced isomorphism.
(viii) Set

$$
L:=(s t-r) f^{*} H+S^{\prime}
$$

Lemma 3.2. Let k be a field and let $Y:=\mathbb{A}_{k}^{n}=\operatorname{Spec} k\left[y_{1}, \ldots, y_{n}\right]$ be the n-dimensional affine space. For $i \in\{1, \ldots, n\}$, set $T_{i}:=V\left(y_{i}\right)$ to be the coordinate hyperplane of $Y=\mathbb{A}_{k}^{n}$. Let q be a positive integer satisfying $q \leq n-1$. Set $V:=T_{1} \cap \cdots \cap T_{q}$ and $W:=T_{1} \cap \cdots \cap T_{q+1}$. Let $f: X \rightarrow Y$ be the blowup along W and let V^{\prime} and T_{i}^{\prime} be the proper transforms of V and T_{i}, respectively. Then an equation $V^{\prime}=T_{1}^{\prime} \cap \cdots \cap T_{q}^{\prime}$ holds.

Proof. Since blowups are commutative with flat base changes, we may assume that $q=n-1$. Thus W is the origin and V is a line passing through W. The inclusion $V^{\prime} \subset T_{1}^{\prime} \cap \cdots \cap T_{n-1}^{\prime}$ is clear, hence it suffices to prove that $T_{1}^{\prime} \cap \cdots \cap T_{n-1}^{\prime} \cap E$ is one point, where E denotes the f-exceptional prime divisor. To prove this, we may assume that k is algebraically closed. Then $T_{1}^{\prime} \cap \cdots \cap T_{n-1}^{\prime} \cap E$ is one point, since there is a canonical bijection between the set $E(k)$ of the closed points of E and the set of the lines on \mathbb{P}_{k}^{n} passing through W.

Proposition 3.3. We use Notation 3.1. Then the following hold:
(1) The base locus of the complete linear system $\left|S^{\prime}\right|$ is contained in V^{\prime}.
(2) $\left.L\right|_{V^{\prime}} \sim t g^{*} M$.
(3) L is a nef Cartier divisor which is not semiample.

Proof. We show (1). Take a closed point $x \in X \backslash V^{\prime}$. We set $y:=f(x)$. It suffices to show that the base locus $B\left(\left|S^{\prime}\right|\right)$ of $\left|S^{\prime}\right|$ does not contain x. We separately treat the following two cases: $y \notin V$ and $y \in V$.

Assume that $y \notin V$. By Notation 3.1(v-1), there exists a hypersurface S_{0} of \mathbb{P}_{k}^{n} of degree r such that $V \subset S_{0}$ and $y \notin S_{0}$. It holds that

$$
r f^{*} H \sim f^{*} S_{0}=S_{0}^{\prime}+a E
$$

where $a \in \mathbb{Z}_{>0}$ and S_{0}^{\prime} is the proper transform of S_{0}. In particular, we have that

$$
B\left(\left|S^{\prime}\right|\right) \subset \operatorname{Supp}\left(S_{0}^{\prime}+E\right)=f^{-1}\left(S_{0}\right)
$$

It follows from $y \notin S_{0}$ that $x \notin f^{-1}\left(S_{0}\right)$. Hence, $x \notin B\left(\left|S^{\prime}\right|\right)$. This completes the proof for the case where $y \notin V$.

Assume that $y \in V$. We have that $x \in E \backslash V^{\prime}$. By Notation 3.1(v-2), there exist an open neighborhood U of $y \in \mathbb{P}_{k}^{n}$ and hypersurfaces $S_{1}, \ldots, S_{n-\operatorname{dim} V}$ of \mathbb{P}_{k}^{n} of degree r such that V is contained in $S_{1} \cap$ $\cdots \cap S_{n-\operatorname{dim} V}$ and that two subschemes $V \cap U$ and $S_{1} \cap \cdots \cap S_{n-\operatorname{dim} V} \cap U$ of \mathbb{P}_{k}^{n} are the same. In particular, $S_{1}, \ldots, S_{n-\operatorname{dim} V}$ are smooth at y and form a part of a regular system of parameters of $\mathcal{O}_{\mathbb{P}_{k}^{n}, y}$ (see [Matsumura 1989, Theorem 17.4]). Therefore, thanks to Cohen's structure theorem, the situation is the same, up to taking the formal completions, as in the statement of Lemma 3.2. It follows from Lemma 3.2 and the faithfully flatness of completions (see [Matsumura 1989, Theorem 7.5(ii)]) that an equation

$$
V^{\prime} \cap f^{-1}(U)=S_{1}^{\prime} \cap \cdots \cap S_{n-\operatorname{dim} V}^{\prime} \cap f^{-1}(U)
$$

holds, where each S_{i}^{\prime} denotes the proper transform of S_{i}. In particular, it holds that $x \notin S_{i_{0}}^{\prime}$ for some $i_{0} \in\{1, \ldots, n-\operatorname{dim} V\}$. Since $S_{i_{0}}^{\prime}$ is smooth at a point y of W, we have that

$$
S^{\prime}=f^{*}(r H)-E \sim f^{*} S_{i_{0}}-E=S_{i_{0}}^{\prime}
$$

Thus, in any case, the base locus $B\left(\left|S^{\prime}\right|\right)$ does not contain x. Hence, (1) holds.

Assertion (2) holds by the following computation:

$$
\begin{aligned}
\left.L\right|_{V^{\prime}} & =\left.\left((s t-r) f^{*} H+S^{\prime}\right)\right|_{V^{\prime}} \\
& \sim g^{*}\left((s t-r) H_{V}+\left(\left.S\right|_{V}-W\right)\right) \\
& \sim g^{*}\left((s t-r) H_{V}+\left(r H_{V}-\left(s t H_{V}-t M\right)\right)\right) \\
& \sim t g^{*} M
\end{aligned}
$$

We show (3). Since $\left.L\right|_{V^{\prime}}$ is not semiample by (2) and Notation 3.1(iii), neither is L. Thus it suffices to show that $L=(s t-r) f^{*} H+S^{\prime}$ is nef. Take a curve Γ on X. If $\Gamma \not \subset V^{\prime}$, then we get $\left((s t-r) f^{*} H+S^{\prime}\right) \cdot \Gamma \geq 0$ by (1). If $\Gamma \subset V^{\prime}$, then (2) implies that $L \cdot \Gamma \geq 0$. In any case, we obtain $L \cdot \Gamma \geq 0$, and hence L is nef. Thus (3) holds.

Proof of the main theorem. In this subsection, we prove the main theorem of this paper (Theorem 3.7). Theorem 3.7 is a formal consequence of Theorem 3.6 and some results established before. The main part of Theorem 3.6 is to find schemes and divisors satisfying Notation 3.1. To this end, we start with the following lemma.

Lemma 3.4. Let k be a field. Let V be a smooth projective connected scheme over k such that $\operatorname{dim} V \geq 2$. Let W be an ample effective Cartier divisor. Then W is connected.

Proof. Set $k^{\prime}:=H^{0}\left(V, \mathbb{O}_{V}\right)$. Note that $k \subset k^{\prime}$ is a field extension of finite degree. We have natural morphisms:

$$
\alpha: V \xrightarrow{\alpha^{\prime}} \operatorname{Spec} k^{\prime} \xrightarrow{\beta} \operatorname{Spec} k .
$$

We obtain $\alpha_{*}^{\prime} \mathcal{O}_{V}=0_{\text {Spec } k^{\prime}}$.
Let us prove that $k \subset k^{\prime}$ is a separable extension. It suffices to prove that $A:=k^{\prime} \otimes_{k} \bar{k}$ is reduced for an algebraic closure \bar{k} of k. We have the induced morphism

$$
\alpha^{\prime \prime}=\alpha^{\prime} \times_{k} \bar{k}: V \times_{k} \bar{k} \rightarrow \operatorname{Spec}\left(k^{\prime} \otimes_{k} \bar{k}\right)=\operatorname{Spec} A
$$

Since $k \rightarrow \bar{k}$ is flat, we have that $\alpha_{*}^{\prime \prime} O_{V \times_{k} \bar{k}}=O_{\text {Spec } A}$. As $V \times_{k} \bar{k}$ is reduced, so is A. Therefore, $k \subset k^{\prime}$ is a separable extension.

We have that α is smooth and β is étale. Then it holds that also α^{\prime} is smooth by [Fu 2011, Proposition 2.4.1]. Therefore, the problem is reduced to the case where $k=H^{0}\left(V, О_{V}\right)$.

We are allowed to replace W by $n W$ for a positive integer n. Hence, by Serre duality and the ampleness of W, we may assume that $H^{1}\left(V, \mathscr{O}_{V}(-W)\right)=0$. Then we obtain a surjective k-linear map

$$
H^{0}\left(V, \mathscr{O}_{V}\right) \rightarrow H^{0}\left(W, \mathbb{O}_{W}\right)
$$

Since $\operatorname{dim}_{k} H^{0}\left(V, O_{V}\right)=1$, we get $\operatorname{dim}_{k} H^{0}\left(W, O_{W}\right)=1$. Therefore, W is connected.

Lemma 3.5. The following hold:
(1) Let n be an integer such that $n \geq 5$. If k is an algebraically closed field, then there exist a smooth projective surface V over k, a closed immersion $j: V \hookrightarrow \mathbb{P}_{k}^{n}$ over k, and a nef Cartier divisor M on V which is not semiample.
(2) Let n be an integer such that $n \geq 11$. If k is a field, then there exist a smooth projective surface V over k, a closed immersion $j: V \hookrightarrow \mathbb{P}_{k}^{n}$ over k, and a nef Cartier divisor M on V which is not semiample. Proof. We show (1). We may assume that $n=5$. The existence of j is automatic, since any smooth projective surface over k can be embedded in \mathbb{P}_{k}^{5}. If k is the algebraic closure of a finite field, then the assertion follows from [Totaro 2009, Theorem 6.1]. If k is not algebraic over any finite field, then V can be taken as the direct product of an elliptic curve E and a smooth projective curve. Indeed, there is a Cartier divisor N on E such that $\operatorname{deg} N=0$ and N is not torsion, i.e., $r N \nsim 0$ for any positive integer r. This implies that N is a nef Cartier divisor which is not semiample. Hence, its pullback M to V is again a nef Cartier divisor which is not semiample. This completes the proof of (1).

We show (2). We may assume that $n=11$. First we treat the case where k is a perfect field. By (1), we can find a field extension $k \subset k^{\prime}$ of finite degree, a connected k^{\prime}-scheme V of dimension two which is smooth and projective over k^{\prime}, a closed immersion $j^{\prime}: V \hookrightarrow \mathbb{P}_{k^{\prime}}^{5}$ over k^{\prime} and a nef Cartier divisor M on V which is not semiample. Automatically V is projective over k. Since k is perfect, V is also smooth over k. Thus it suffices to find a closed immersion $j: V \hookrightarrow \mathbb{P}_{k}^{11}$ over k. Since $k \subset k^{\prime}$ is a finite separable extension, it is a simple extension. Therefore, there is a closed immersion $i: \operatorname{Spec} k^{\prime} \hookrightarrow \mathbb{P}_{k}^{1}$ over k. We can find a required closed immersion j by using the Segre embedding:

$$
j: V \xrightarrow{j^{\prime}} \mathbb{P}_{k^{\prime}}^{5}=\mathbb{P}_{k}^{5} \times{ }_{k} k^{\prime} \xrightarrow{\text { id } \times i} \mathbb{P}_{k}^{5} \times_{k} \mathbb{P}_{k}^{1} \xrightarrow{\text { Segre }} \mathbb{P}_{k}^{11} .
$$

This completes the proof of the case where k is a perfect field.
Second we handle the general case. Let k_{0} be the prime field contained in k. Since k_{0} is perfect, there exist a smooth projective connected k_{0}-scheme V_{0} of dimension two, a closed immersion $j_{0}: V_{0} \hookrightarrow \mathbb{P}_{k_{0}}^{11}$ over k_{0}, and a nef Cartier divisor M_{0} on V_{0} which is not semiample. Then $V_{0} \times_{k_{0}} k$ is a scheme which is smooth and projective over k. Since any ring homomorphism between fields is faithfully flat, we can find a connected component V of $V_{0} \times_{k_{0}} k$ such that $M:=\left.\left(\alpha^{*} M_{0}\right)\right|_{V}$ is not semiample, where $\alpha: V_{0} \times_{k_{0}} k \rightarrow V_{0}$. Since M_{0} is nef, so is M (see [Tanaka 2018, Lemma 2.3]). Clearly, V is a smooth projective surface over k and there is a closed immersion $j: V \hookrightarrow \mathbb{P}_{k}^{11}$ over k. This completes the proof of (2).
Theorem 3.6. The following hold:
(1) Let n be an integer such that $n \geq 5$. If k is an algebraically closed field, then there exist a onedimensional connected closed subscheme W of \mathbb{P}_{k}^{n} which is smooth over k and a Cartier divisor L on the blowup X of \mathbb{P}_{k}^{n} along W such that L is nef but not semiample.
(2) Let n be an integer such that $n \geq 11$. If k is a field, then there exist a one-dimensional connected closed subscheme W of \mathbb{P}_{k}^{n} which is smooth over k and a Cartier divisor L on the blowup X of \mathbb{P}_{k}^{n} along W such that L is nef but not semiample.

Proof. We only show (2), as the proof of (1) is easier. Fix a field k. We will find schemes and divisors satisfying the properties of Notation 3.1. Thanks to Lemma 3.5, there exist a smooth projective connected k-scheme V of dimension two, a closed immersion $j: V \hookrightarrow \mathbb{P}_{k}^{n}$ over k, and a nef Cartier divisor M on V which is not semiample. Set $d:=2$. Then k, V, M, d, n satisfy properties (i)-(iv) of Notation 3.1.

Since $V=\operatorname{Proj} k\left[x_{0}, \ldots, x_{n}\right] /\left(h_{1}, \ldots, h_{a}\right)$, it holds that the linear system Λ appearing in Notation 3.1(v) satisfies the property ($\mathrm{v}-1$) of Notation 3.1 if $r \geq \max _{1 \leq q \leq a} \operatorname{deg} h_{q}$. As V is a locally completion intersection scheme, the quasicompactness of V also implies that property ($\mathrm{v}-2$) of Notation 3.1 holds for $r \gg 0$. Therefore, we can find $r \in \mathbb{Z}_{>0}$ satisfying property (v) of Notation 3.1.

We now show that there exist s, t, W satisfying property (vi) of Notation 3.1. If k is an infinite field, then the Bertini theorem enables us to find a positive integer s and a smooth effective divisor W on V such that $W \sim s H_{V}-M$. Note that W is connected (Lemma 3.4). Thus, $s, t:=1$ and W satisfy property (vi) of Notation 3.1. If k is a finite field, then it follows from [Poonen 2004, Theorem 1.1] that there are positive integers $t \gg s \gg 0$ and a smooth effective divisor W satisfying property (vi) of Notation 3.1. Again by Lemma 3.4, W is connected. In any case, we can find s, t, W satisfying property (vi) of Notation 3.1.

To summarize, we have found V, W, M, d, n, r, s, t over a field k satisfying properties (i)-(viii) of Notation 3.1. By construction, V is a smooth projective surface. In particular, W is a smooth projective curve in \mathbb{P}_{k}^{11}. Thanks to Proposition 3.3, the Cartier divisor

$$
L=(s t-r) f^{*} H+S^{\prime}
$$

on X, defined in (viii) of Notation 3.1, is nef but not semiample.
Theorem 3.7. The following hold:
(1) Let q be an integer such that $q \geq 6$. If k is an algebraically closed field, then there exists a homogeneous prime ideal \mathfrak{p} of the polynomial ring $k\left[x_{1}, \ldots, x_{q}\right]$ with q variables whose symbolic Rees algebra $\bigoplus_{m=0}^{\infty} \mathfrak{p}^{(m)}$ is not a noetherian ring.
(2) Let q be an integer such that $q \geq 12$. If k is a field, then there exists a homogeneous prime ideal \mathfrak{p} of the polynomial ring $k\left[x_{1}, \ldots, x_{q}\right]$ with q variables whose symbolic Rees algebra $\bigoplus_{m=0}^{\infty} \mathfrak{p}^{(m)}$ is not a noetherian ring.

Proof. The assertion follows from Lemma 2.4, Proposition 2.14 and Theorem 3.6.

Acknowledgements

The authors would like to thank Professors Kazuhiko Kurano and Shinnosuke Okawa for several useful comments and discussion. We are grateful to the referee for valuable comments. The first author would like to thank Professor Shigeru Mukai for his warm encouragement and stimulating discussions. The first author was partially supported by JSPS Grant-in-Aid (S) No 25220701 and JSPS Grant-in-Aid for Young Scientists (B) 16K17581. The second author was funded by EPSRC.

References

[Atiyah and Macdonald 1969] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969. MR Zbl
[Castravet 2009] A.-M. Castravet, "The Cox ring of $\bar{M}_{0,6}$ ", Trans. Amer. Math. Soc. 361:7 (2009), 3851-3878. MR Zbl
[Cowsik 1984] R. C. Cowsik, "Symbolic powers and number of defining equations", pp. 13-14 in Algebra and its applications (New Delhi, 1981), edited by H. L. Manocha and J. B. Srivastava, Lect. Notes Pure Appl. Math. 91, Dekker, New York, 1984. MR Zbl
[Cutkosky 1991] S. D. Cutkosky, "Symbolic algebras of monomial primes", J. Reine Angew. Math. 416 (1991), 71-89. MR Zbl
[Diaz and Harbater 1991] S. Diaz and D. Harbater, "Strong Bertini theorems", Trans. Amer. Math. Soc. 324:1 (1991), 73-86. MR Zbl
[Fu 2011] L. Fu, Etale cohomology theory, Nankai Tracts in Math. 13, World Sci., Hackensack, NJ, 2011. MR Zbl
[Gongyo et al. 2015] Y. Gongyo, S. Okawa, A. Sannai, and S. Takagi, "Characterization of varieties of Fano type via singularities of Cox rings", J. Algebraic Geom. 24:1 (2015), 159-182. MR Zbl
[González and Karu 2016] J. L. González and K. Karu, "Some non-finitely generated Cox rings", Compos. Math. 152:5 (2016), 984-996. MR Zbl
[Goto et al. 1994] S. Goto, K. Nishida, and K. Watanabe, "Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question", Proc. Amer. Math. Soc. 120:2 (1994), 383-392. MR Zbl
[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, 1977. MR Zbl
[Heinzer et al. 1992] W. Heinzer, D. Lantz, and K. Shah, "The Ratliff-Rush ideals in a Noetherian ring", Comm. Algebra 20:2 (1992), 591-622. MR Zbl
[Kurano 1993] K. Kurano, "Positive characteristic finite generation of symbolic Rees algebras and Roberts' counterexamples to the fourteenth problem of Hilbert", Tokyo J. Math. 16:2 (1993), 473-496. MR Zbl
[Kurano 1994] K. Kurano, "On finite generation of Rees rings defined by filtrations of ideals", J. Math. Kyoto Univ. 34:1 (1994), 73-86. MR Zbl
[Kuroda 2005] S. Kuroda, "A counterexample to the fourteenth problem of Hilbert in dimension three", Michigan Math. J. 53:1 (2005), 123-132. MR Zbl
[Matsumura 1989] H. Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Adv. Math. 8, Cambridge Univ. Press, 1989. MR Zbl
[Nagata 1960] M. Nagata, "On the fourteenth problem of Hilbert", pp. 459-462 in Proceedings of the Internatational Congress of Mathematics, VIII (Edinburgh, 1958), edited by J. A. Todd, Cambridge Univ. Press, 1960. MR Zbl
[Okawa 2016] S. Okawa, "On images of Mori dream spaces", Math. Ann. 364:3-4 (2016), 1315-1342. MR Zbl
[Poonen 2004] B. Poonen, "Bertini theorems over finite fields", Ann. of Math. (2) 160:3 (2004), 1099-1127. MR Zbl
[Roberts 1985] P. C. Roberts, "A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian", Proc. Amer. Math. Soc. 94:4 (1985), 589-592. MR Zbl
[Roberts 1990] P. Roberts, "An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem", J. Algebra 132:2 (1990), 461-473. MR Zbl
[Tanaka 2018] H. Tanaka, "Behavior of canonical divisors under purely inseparable base changes", J. Reine Angew. Math. 744 (2018), 237-264. MR Zbl
[Totaro 2008] B. Totaro, "Hilbert's 14th problem over finite fields and a conjecture on the cone of curves", Compos. Math. 144:5 (2008), 1176-1198. MR Zbl
[Totaro 2009] B. Totaro, "Moving codimension-one subvarieties over finite fields", Amer. J. Math. 131:6 (2009), 1815-1833. MR Zbl

Communicated by Keiichi Watanabe
Received 2018-02-15 Revised 2018-06-19 Accepted 2018-07-20
akiyoshi.sannai@riken.jp Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
tanaka@ms.u-tokyo.ac.jp Graduate School of Mathematical Sciences, The University of Tokyo, Japan

Algebra \& Number Theory

msp.org/ant

EDITORS

Managing Editor
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Richard E. Borcherds	University of California, Berkeley, USA	Martin Olsson	University of California, Berkeley, USA
Antoine Chambert-Loir	Université Paris-Diderot, France	Raman Parimala	Emory University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	University of California, Santa Cruz, USA	Michael Rapoport	Universität Bonn, Germany
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Joseph H. Silverman	Brown University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Christopher Skinner	Princeton University, USA
Wee Teck Gan	National University of Singapore	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Ben J. Green	University of Oxford, UK	Pham Huu Tiep	University of Arizona, USA
Joseph Gubeladze	San Francisco State University, USA	Ravi Vakil	Stanford University, USA
Roger Heath-Brown	Oxford University, UK	Michel van den Bergh	Hasselt University, Belgium
Craig Huneke	University of Virginia, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Marie-France Vignéras	Université Paris VII, France
János Kollár	Princeton University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Philippe Michel	École Polytechnique Fédérale de Lausanne	Melanie Matchett Wood	University of Wisconsin, Madison, USA
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA
Shigefumi Mori	RIMS, Kyoto University, Japan		

PRODUCTION

production@msp.org
Silvio Levy, Scientific Editor
See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2019 is US $\$ 385 /$ year for the electronic version, and $\$ 590 /$ year ($+\$ 60$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOw ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers

Algebra \& Number Theory

Volume 13 No. 82019
Moduli of stable maps in genus one and logarithmic geometry, II 1765
Dhruv Ranganathan, Keli Santos-Parker and Jonathan Wise
Multiplicity one for wildly ramified representations 1807
Daniel Le
Theta operators on unitary Shimura varieties 1829
Ehud de Shalit and Eyal Z. Goren
Infinitely generated symbolic Rees algebras over finite fields 1879
akiyoshi Sannai and Hiromu Tanaka
Manin's b-constant in families 1893
AKash Kumar Sengupta
Equidimensional adic eigenvarieties for groups with discrete series 1907
Daniel R. Gulotta
Cohomological and numerical dynamical degrees on abelian varieties 1941
Fei Hu
A comparison between pro- p Iwahori-Hecke modules and mod p representations 1959Noriyuki Abe

[^0]: MSC2010: 13 H 10.
 Keywords: symbolic Rees algebras, Mori dream spaces, Cowsik's question.

