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Daniele Faenzi

We show that any polarized K3 surface supports special Ulrich bundles of rank 2.

Given an n-dimensional closed subvariety X ⊂PN , a coherent sheaf F on X is Ulrich if H∗(F(−t))= 0
for 1≤ t ≤ n. We refer to [Coskun 2017; Beauville 2018] for an introduction. We mention that Ulrich
sheaves are related to Chow forms (this was their main motivation for the study in [Eisenbud et al. 2003]),
to determinantal representations and generalized Clifford algebras, to Boij–Söderberg theory [Schreyer
and Eisenbud 2010], to the minimal resolution conjecture, and to the representation type of varieties
[Faenzi and Pons-Llopis 2015].

Conjecturally, Ulrich sheaves exist for any X , see [Eisenbud et al. 2003]. They are known to exist for
several classes of varieties e.g., complete intersections, curves, Veronese, Segre, Grassmann varieties.
Low-rank Ulrich bundles on surfaces have been studied intensively, and Ulrich bundles of rank 2 (or
sometimes 1) are known in many cases. We refer to [Casnati 2017; Beauville 2018] for a survey and
further references. Let us only review some of the cases that are most relevant for us, namely among
surfaces with trivial canonical bundle.

In [Beauville 2016], Ulrich bundles of rank 2 are proved to exist on abelian surfaces. In [Aprodu
et al. 2017], it is proved that K3 surfaces support Ulrich bundles of rank 2, provided that some Noether–
Lefschetz open condition is satisfied. The case of quartic surfaces was previously analyzed in detail in
[Coskun et al. 2012]. The main techniques used so far are the Serre construction starting from points on
X and Lazarsfeld–Mukai bundles.

In this note, we show that any K3 surface supports an Ulrich bundle E of rank 2 with c1(E)=3H , for any
polarization H . So these bundles are special [Eisenbud et al. 2003]. We allow singular surfaces with trivial
canonical bundle. The main tool is an enhancement of Serre’s construction based on unobstructedness of
simple sheaves on a K 3 surface.

Let us state the result more precisely. We work over an algebraically closed field k. Let X be an
integral (i.e., reduced and irreducible) projective surface with ωX 'OX and H1(OX )= 0. We denote by
Xsm the smooth locus of X .

Fix a very ample divisor H on X . Under the closed embedding given by the complete linear series
|OX (H)| we may view X as a subvariety of some projective space Pg. A hyperplane section C of X
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is a projective Gorenstein curve of arithmetic genus g with ωC ' OC(H), where H also denotes the
restriction of H to C . We may choose C to be integral too.

A locally Cohen–Macaulay sheaf E on X is arithmetically Cohen–Macaulay (ACM) if H1(E(t H))= 0
for all t ∈ Z. A special class of ACM sheaves are Ulrich sheaves, which are characterized by the property
H∗(E(−t H))= 0 for t = 1, 2. Of course all these notions depend on the polarization H . We call simple
a sheaf whose only endomorphisms are homotheties.

Theorem 1. Let X and H be as above. Then there exists a simple Ulrich vector bundle of rank 2 on X
whose determinant is OX (3H).

The strategy to prove the theorem is the following. First we build an ACM vector bundle E of rank 2
by Serre’s construction applied to a projective coordinate system in X . Then we perform an elementary
modification of E along a single generic point p ∈ X , producing a simple nonreflexive sheaf having the
Chern character of an Ulrich bundle. Finally we flatly deform such sheaf and check that generically this
yields the desired Ulrich bundle.

Prior to all this, we start by observing that the trivial bundle is a (trivial) example of ACM line
bundle. Indeed, using that H1(OX )= 0 and that C is connected, one checks that H1(OX (−H))= 0. In
turn, this easily implies H1(OX (−t H)) = 0 for all t ≥ 2. Also, Serre duality and triviality of ωX give
H1(OX (t H))= 0 for all t ≥ 0. This way, we see that OX is an ACM line bundle on X . Combining this
with Max Noether’s theorem on the generation of the canonical ring of curves (see [Rosenlicht 1952]
for a version for Gorenstein curves) one obtains, working as in [Saint-Donat 1974, Theorem 6.1], that
X ⊂ Pg is an ACM surface of degree 2g− 2.

However this line bundle is never Ulrich, nor is any line bundle of the form OX (d H). So generically
(for instance when X has Picard number 1) the surface X will not support Ulrich line bundles. We thus
move to rank two and start by constructing a simple ACM bundle.

Lemma 2. Let Z ⊂ Xsm be a set of g+2 points in general linear position. Then there is a unique coherent
sheaf E of rank 2 fitting into a nonsplitting exact sequence:

0→OX → E→ IZ (H)→ 0. (1)

The sheaf E is locally free, simple and ACM. It satisfies

E ' E∗(H), h0(E)= 1, h1(E)= h2(E)= 0, ext1X (E, E)= 2g+ 4.

Proof. Taking cohomology of the exact sequence

0→ IZ (H)→OX (H)→OZ → 0, (2)

and using the fact that Z is in general linear position and hence contained in no hyperplane, we get
H0(IZ (H))= 0 and h1(IZ (H))= 1.

By Serre duality we get ext1X (IZ (H),OX )= h1(IZ (H))= 1 so, up to proportionality, there is a unique
nonsplitting extension of the desired form. Correspondingly, there exists a unique coherent sheaf E of
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rank two fitting into a nonsplitting exact sequence of the form (1). The sheaf E we obtain this way satisfies
h0(E)= 1 and H1(E)' Ext1X (E,OX )

∗
= 0 because applying HomX (−,OX ) to (1) we obtain a nonzero

map (and thus an isomorphism) H0(OX )→ Ext1X (IZ (H),OX ).
This map is the dual of the homomorphism H1(IZ (H))→ H2(OX ) obtained by taking global sections

in (1). So H1(E)= H2(E)= 0.
If X is smooth we deduce that E is locally free from the Cayley–Bacharach property, see for instance

[Huybrechts and Lehn 1997, Theorem 5.1.1]. Indeed, since Z is in general linear position (i.e., Z is
a projective frame in Pg), no hyperplane passes through any subset of g + 1 points of Z . Anyway
the statement follows in general by a minor modification of the argument appearing in [Faenzi and
Pons-Llopis 2015, Lemma 7.2]. Indeed by the local-to-global spectral sequence, using H1(OX (−H))= 0
and Hom X (IZ (H),OX )'OX (−H) we get the following exact sequence:

0→ Ext1X (IZ (H),OX )→ H0(Ext1
X (IZ (H),OX ))→ H2(X,OX (−H))→ 0.

In turn, using Ext1
X (IZ (H),OX )' ωZ 'OZ and H2(X,OX (−H))' H0(X,OX (H))∗, if we choose Z

to be a projective coordinate system of Pg, we rewrite this exact sequence as

0→ Ext1X (IZ (H),OX )→ H0(OZ )
M
−→H0(X,OX (H))∗→ 0,

where

M =

1 · · · 0 1
...
. . .

...
...

0 · · · 1 1

 .
So Ext1X (IZ (H),OX ) is generated by the vector (1, . . . , 1,−1)t and since this vector corresponds to an
extension in Ext1

X (IZ (H),OX ) which is nonzero at any point of Z we have that the sequence defining
E is locally nonsplit around each point of Z , which in turn implies that E is locally free at each such
point (and hence everywhere). From c1(E) = H , since E is locally free of rank 2, we get a canonical
isomorphism E ' E∗(H).

Let us prove that E is ACM. We already have h1(E) = 0 and thus by Serre duality h1(E(−H)) =
h1(E∗(H)) = h1(E) = 0. Also h0(E(−H)) = 0 and h2(E(−H)) = 1. Note that, choosing an integral
hyperplane section curve C that avoids Z , (1) becomes:

0→OC → E|C →OC(H)→ 0.

From Hk(E(−H))= 0 for k = 0, 1 we deduce h0(E|C)= 1 so the previous exact sequence does not split.
Then h0(E|C(−H))= 0. This easily implies H1(E(−2H))= 0 and actually H1(E(−t H))= 0 for all t ≥ 2.
Serre duality now gives H1(E(t H))= 0 for all t ≥ 1. In other words E is ACM.

It remains to check that E is simple. Applying HomX (E,−) to the exact sequence (2) we get that the
nonzero space HomX (E, IZ (H)) is contained in HomX (E,OX (H))'H0(E)' k, so homX (E, IZ (H))=1.
As Hom X (E,OZ ) is a skyscraper sheaf of rank 2 at Z we have extkX (E,OZ )= (2g+ 4)δ0,k . We deduce
ext1X (E, IZ (H))= 2g+ 4 and ext0X (E, IZ (H))= 0.
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Therefore, applying HomX (E,−) to the (1), since HomX (E,OX ) ' h2(E) = 0 we get that EndX (E)
is contained in HomX (E, IZ (H)) and is therefore 1-dimensional. This says that E is simple. By Serre
duality ext2X (E, E)= 1. We deduce ext1X (E, E)= ext1X (E, IZ (H))= 2g+ 4. �

Given a reduced subscheme Z ∈ Hilbg+2(Xsm) consisting of points in general linear position, there
is a unique rank-2 bundle associated with Z according to the previous lemma. We denote it by EZ . We
write Op for the skyscraper sheaf of a point p ∈ X .

Lemma 3. Assume η : EZ →Op is surjective. Then Eη = ker(η) is a simple sheaf with

c1(Eη)= H, c2(Eη)= g+ 3, ext1X (E
η, Eη)= 2g+ 8.

Proof. Recall that E = EZ is simple and observe that this implies HomX (E, Eη)= 0, as the composition
of any nonzero map E → Eη with Eη ↪→ E would provide a self-map of E which is not a multiple of
the identity. Also, since E is locally free we have homX (E,Op) = 2 and ExtkX (E,Op) = 0 for k > 0.
Therefore, using Lemma 2 and applying HomX (E,−) to the exact sequence:

0→ Eη→ E→Op→ 0. (3)

we obtain ext1X (E, E
η)= 2g+ 5 and ext2X (E, E

η)= 1.
Next, Serre duality gives extkX (Op, E)= 2δ2,k , while extkX (Op,Op) is the dimension of the k-th exterior

power of the normal bundle of p in X and thus takes value
(2

k

)
. Therefore, applying HomX (Op,−) to (3)

we find ext1X (Op, Eη)= 1 and ext2X (Op, Eη)= 3. Putting these computations together and applying

homX (Eη, Eη)= ext2X (E
η, Eη)= 1, ext1X (E

η, Eη)= 2g+ 8.

The computation of Chern classes is straightforward. �

Lemma 4. Let p ∈ Xsm \ Z. Then, for a generic map η : EZ →Op, the induced map on global sections
H0(η) : H0(EZ )→ H0(Op) is an isomorphism.

Proof. Put E = EZ . It suffices to check that there exists η such that the induced map H0(η) : k'H0(E)→
H0(Op)' k is an isomorphism, for this is an open condition. To do it, we apply HomX (IZ (H),−) to
the exact sequence:

0→ Ip→OX →Op→ 0.

This gives an exact sequence:

Ext1X (IZ (H), Ip)→ Ext1X (IZ (H),OX )→ Ext1X (IZ (H),Op).

Observe that Hom X (IZ (H),Op) ' Op and Ext1
X (IZ (H),Op) = 0 as these sheaves are computed

locally on X and, since p ∩ Z = ∅, we may choose an open cover of X consisting of subsets where
IZ is trivial or Op vanishes. Then the local-to-global spectral sequence gives Ext1X (IZ (H),Op)= 0 so
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the extension corresponding to (1) admits a lifting to Ip. In other words, we get the commutative exact
diagram:

0

��

0

��

0 // Ip

��

// Eη //

��

IZ (H) // 0

0 // OX //

��

E //

η

��

IZ (H) // 0

Op

��

Op

��

0 0

where η and Eη are defined by the diagram. For this choice of η we get, by the top row of the diagram,
H0(Eη)= 0, which implies that H0(η) is an isomorphism. �

By the previous lemma, we may choose EZ as in Lemma 2, a point p ∈ Xsm \ Z , some η : EZ �Op

and consider the sheaf Eη. The goal is to deform Eη(H) to an Ulrich bundle. We use the notation F∗s for
(Fs)

∗ (which is a priori not the same as (F∗)s).

Lemma 5. There exist a smooth connected variety S0 of dimension 2g+ 8 and a flat family of simple
sheaves F on X × S0 such that Fs(H) is an Ulrich bundle for s generic in S0 and Fs0 ' Eη for some
distinguished point s0 of S0.

Proof. We proved in Lemma 3 that Eη is simple. Since the nonlocally free locus of Eη is disjoint from the
singular locus of X , we may apply the arguments of [Mukai 1984, Theorem 0.1]. In particular [Altman
and Kleiman 1980] the moduli functor of simple sheaves on X is prorepresented by a moduli space
SplX which can be constructed in the étale topology and which is smooth of dimension 2g+ 8 at Eη

(this is essentially [Mukai 1984, Theorem 0.3]). Therefore there exists an open piece of SplX which is a
quasiprojective variety S equipped with a flat family F of simple sheaves on X , such that the induced
map S→ SplX is a local isomorphism around the point corresponding to Eη. We denote this point by s0,
so that Fs0 ' Eη.

We may assume that S is smooth and connected of dimension 2g+ 8. Since the reflexive hull E of Eη

is locally free and satisfies the assumption of [Artamkin 1990, Corollary 1.5], we get that Fs is locally
free for all s in an open dense subset S1 of S.

Now observe that H∗(Fs0)= 0 by Lemmas 2 and 4. Then, semicontinuity ensures that H∗(Fs)= 0 for
all s in an open dense subset S0 of S1. Therefore, the isomorphism F∗s ' Fs(−H) and Serre duality give
Hi (Fs(−H))'H2−i (F∗s (H))∗ 'H2−i (Fs)

∗
= 0. This says that Fs(H) is a special Ulrich bundle, for all

s ∈ S0. �
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For the reader’s benefit we also provide a proof of Lemma 5 independent of [Artamkin 1990]. The
point is to check that Fs is locally free for all s in an open dense subset of S. To do this, first recall again
that the nonlocally free locus of Eη is disjoint from the singular locus of X , so up to shrinking S we may
assume that this happens for Fs for all s ∈ S. Then F∗∗s is locally free for s ∈ S.

Next, we may find an integer t0 ≤−1 such that H0(F∗∗s (t0 H))=H1(F∗∗s (t0 H))= 0 for all s ∈ S. This
can be done for instance using Kollar’s theory of husks [2008], which gives a stratification (Si )i=1,...,r

of S such that F∗∗s defines a flat family of sheaves on X parametrized by Si . Using base change over
each Si one finds ti satisfying the required vanishing together with H0(F∗∗s (ti H)|C)= 0, for a fixed curve
C ∈ |OX (H)|. Then t0 can be taken to be the minimum among t1, . . . , tr .

Recall that H∗(Fs0)= 0 and observe that (3) gives:

h1(Fs0(t H))=
{

1 if t ≤−1,
0 if t ≥ 0.

By semicontinuity, we have that H∗(Fs)= 0, h1(Fs(t H))= 0 for all t ≥ 0 and h1(Fs(t H))≤ 1 for t ≤−1
for all s in an open dense subset of S. We still call S this subset.

Next, for all s ∈ S we consider the double dual sequence

0→ Fs→ F∗∗s → τ(Fs)→ 0, (4)

where the torsion sheaf τ(FP) is defined by the sequence. Put `s for the length of τ(Fs).
Since H0(F∗∗s (t0 H))=H1(F∗∗s (t0 H))= 0, from the previous exact sequence we get `s = h0(τ (Fs))=

h1(Fs(t0 H))≤ 1 (we neglect to indicate the twist on zero-dimensional sheaves).
Now we have two alternatives. Namely, either for s general enough in S one has `s = 0, i.e., τ(Fs)= 0;

or otherwise for all s ∈ S we get `s = 1, i.e., τ(Fs)'Ops , for some point ps ∈ X with ps0 = p.
In the first case, we have Fs ' F∗∗s and Fs is locally free. So we would like to rule out the second

alternative. By contradiction we assume that, for all s ∈ S, we have τ(Fs) ' Ops . This gives a map
γ : S→ X associating ps to s. This time F∗∗ is flat over S and (4) is the restriction to X × {s} of a
sequence on X × S:

0→ F→ F∗∗→ τ(F)→ 0,

with (Fs)
∗∗
' (F∗∗)s and where τ(F) is a line bundle supported on the graph of γ .

Also, again the previous exact sequence together with H∗(Fs)= 0 gives h0(F∗∗s )= 1 so that F∗∗s has a
unique nonzero global section up to a scalar. This section vanishes along a subscheme Zs ⊂ X and, up to
shrinking again S we may assume that Zs is zero-dimensional reduced and in general linear position,
because these are open conditions, so that F∗∗s ' EZs .

For each sheaf F∗∗s of this family, we denote by ηs : F∗∗s � Ops the induced surjection of F∗∗s onto
τ(Fs). We think of ηs as an element of P(H0(F∗∗s |ps ))' P1 (we adopt the convention of writing P(V )
for the projective space of hyperplanes of a vector space V ). Plainly, we have F∗∗s0

' Eη, τ(Fs0)' Op

and ηs0 is identified with η. Note that Fs = ker(ηs).
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We assert that the family F is parametrized by an open subset T of the set of triples:

{(W, q, ξ) |W ∈ Hilbg+2(X), q ∈ X, ξ ∈ P(H0(EW |q))}.

The subset T consists of triples (W, q, ξ) with W ⊂ Xsm reduced and in general linear position in X ,
q ∈ Xsm \W and ξ is surjective. Given such a triple, we get that the sheaf ker(ξ) is simple by Lemma 3.
Clearly this gives a flat deformation of Eη so, because S→ SplX is a local isomorphism at Eη, there is a
possibly smaller open subset T0 such that all the resulting sheaves ker(ξ) are of the form Fs , for some
s ∈ S. By construction any sheaf Fs should be of this form by taking q = ps , W = Zs and ξ = ηs .

But T0 is an open dense subset of a P1-bundle over an open subset of Hilbg+2(X)× X and thus has
dimension 1+ 2(g+ 2)+ 2= 2g+ 7. Therefore T0 cannot dominate S, as dim(S)= 2g+ 8. This says
that the second alternative does not take place, so we have proved that Fs(H) is an Ulrich bundle for
general s.

Recall the notation MX (v) for the moduli space of H -semistable sheaves F on X whose Mukai vector
v = (v0, v1, v2) satisfies v0 = rk(F), v1 = c1(F) and v2 = χ(F)− rk(F). From [Qin 1993, Lemma 2.1]
we obtain the following stronger version of Theorem 1.

Corollary 6. If X is smooth, MX (2, H,−2) is of dimension 2g+ 8 and a general point of it corresponds
to a sheaf E which is stable (with respect to all polarizations) and such that E(H) is a special Ulrich
bundle.

Again, we also offer a proof independent of [Qin 1993; Artamkin 1990]. Consider the family of Ulrich
sheaves F(H) with parameter space S0 constructed in the previous lemma. Recall that, for generic s ∈ S0,
the sheaf Fs(H) is Ulrich, hence semistable with Ulrich sheaves as Jordan–Hölder factors [Faenzi and
Pons-Llopis 2015, Lemma 7.1]. So we have to check that Fs is not strictly semistable. If it was, we
would have an exact sequence:

0→ L→ Fs→ L∗(H)→ 0, (5)

where L(H) is an Ulrich sheaf or rank 1 on X . Actually L(H) is an Ulrich line bundle since X is
smooth. Since L and L∗(H) are rigid in view of H1(OX )= 0, they do not depend on s, which justifies the
notation. Since L(H) is an Ulrich line bundle we have χ(L)= χ(L(−H))= 0 which gives L2

=−4 and
L H = g− 1, where L = c1(L). Similar constraints hold for H − L . In particular, L and H − L have the
same degree with respect to H , hence h0(OX (2L − H))≤ 1, with equality being attained if and only if
L ≡ H − L . Likewise, h2(OX (2L − H))= h0(OX (H − 2L))≤ 1. Now we observe the following bound:

ext1X (L
∗(H),L)= h1(OX (2L − H))

= h0(OX (2L − H))+ h2(OX (2L − H))−χ(OX (2L − H))

≤ 2−χ(OX (2L − H))

= g+ 7,
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the last equation being obtained by Riemann–Roch after plugging L2
=−4 and H L = g− 1. In view

of the rigidity of H − L and L , the family of sheaves appearing as an extension (5) is parametrized
by P(Ext1X (L

∗(H),L)) and hence has dimension at most g + 6. So this family cannot dominate the
(2g+ 8)-dimensional family S0, a contradiction.

It follows from Theorem 1 that X is strictly Ulrich wild in the sense of [Faenzi and Pons-Llopis 2015].
The next result refines this fact in terms of moduli spaces. It was proved when Pic(X) is generated by
H in [Aprodu et al. 2017, Theorem 2.7]. A modification of that argument allows to prove the result in
general.

Theorem 7. Let X be a K3 surface and H be a very ample line bundle on X. Then, for any positive
integer r , the moduli space MX (2r, r H,−2r) is of dimension 2(r2(g+ 3)+ 1). Given a general sheaf F
in this space, F(H) is a stable Ulrich bundle.

Proof. Given a coherent sheaf E or rank r > 0 on X we write P(E) ∈Q[t] for the Hilbert polynomial of E
and p(E) for its reduced version, namely P(E)=χ(E(t H)) and p(E)=P(E)/r . We put p0= (g−1)(t+1)t
so that, if E is an Ulrich sheaf, then p(E(−H)) = p0. Note that, if E1 and E2 are nonisomorphic stable
sheaves with p(E1)= p(E2), then ExtkX (Ei , E j )= 0 for k = 0, 2 and i 6= j .

The proof goes by induction on r , the case r = 1 being given by Corollary 6. For r ≥ 1, we select
a stable bundle E2 in MX (2r, r H,−2r) given by the induction hypothesis and a stable bundle E1 in
MX (2, H,−2), with Ei (H) Ulrich for i = 1, 2, taking care that E1 is not isomorphic to E2 for r = 1. This
is of course possible since dim(MX (2, H,−2)) > 0. This way we have:

ExtkX (Ei , E j )= 0, for k = 0, 2 and i 6= j, (6)

ext1X (Ei , E j )= 2r(g+ 3) for i 6= j. (7)

Note that, for any choice of ζ ∈ P(Ext1X (E2, E1)), the sheaf Eζ fitting as middle term of the associated
extension is a locally free semistable sheaf, with Eζ (H) (as extension of sheaves having these properties).
By direct computation, we see that it lies MX (2(r + 1), (r + 1)H,−2(r + 1)). Of course this sheaf is
not stable, as E1 is a subsheaf of Eζ with quotient E2 and the reduced Hilbert polynomial of all these
sheaves is p0. However, it follows by [Faenzi and Pons-Llopis 2015, Theorem A, ii)] that Eζ is simple,
as the representation of the associated Kronecker consists of a single nonzero map of one-dimensional
vector spaces, and as such it is simple. Alternatively one may apply [Pons-Llopis and Tonini 2009,
Proposition 5.3].

We record the defining sequence:

0→ E1→ Eζ → E2→ 0. (8)

In the same spirit as in Lemma 5, we take a deformation of Eζ in the space of simple sheaves, which is
unobstructed of dimension 2((r + 1)2(g+ 3)+ 1) at Eζ . We consider thus an integral quasiprojective
variety S as base of an S-flat family of simple sheaves Fs with Fs(H) Ulrich for all s and Fs0 ' Eζ
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for some s0 ∈ S, the base S being locally isomorphic to the moduli space of simple sheaves around the
point s0. We may assume that Fs is locally free for all s ∈ S.

Claim 8. There is an open dense subset S0 of S such that, for any stable sheaf K with rk(K) < 2(r + 1),
rk(K) 6= 2 and p(K)= p0, we have HomX (K,Fs)= 0, for all s ∈ S0.

Proof of the claim. Clearly it suffices to find such open subset for a fixed rank u of K and take the
intersection of the corresponding open subsets for all u < 2(r + 1), u 6= 2.

So let N be the moduli space of stable sheaves E on X with Hilbert polynomial P(E) = up0. Let U
be a quasiuniversal family over X ×N [Huybrechts and Lehn 1997, Proposition 4.6.2] and denote by σ
and π the projection maps X ×N→ N and X ×N→ X , respectively.

For y ∈ N let Uy be the corresponding sheaf over X . We observe that, applying HomX (Uy,−)

to (8), using the definition of N and ζ and the fact that the Ei ’s are stable with p(Ei ) = p(Uy) we get
HomX (Uy, Eζ )= 0. Indeed, the only case to check is for u = 2r when y corresponds to the sheaf E2, but
HomX (E2, Eζ )= 0, for otherwise by stability of E2 the exact sequence (8) would split, contradicting our
assumption on ζ .

Then, Serre duality gives, for all y ∈ N,

H2((Eζ )∗⊗Uy)' Ext2X (E
ζ ,Uy)= 0. (9)

Now consider X ×N× S, put τ for the projection N× S→ S and denote by σ , π , τ the projection
maps from X ×N× S onto X × S, N× S and X ×N, respectively. Let V = π∗(F∗)⊗ τ ∗(U). Since V is
flat over the integral base N× S and σ has relative dimension 2, base-change gives, for all (y, s) ∈N× S

R2σ ∗(V)(y,s) ' H2(F∗s ⊗Uy). (10)

Let W be the support of R2σ∗(V), i.e., the closed subset of points (y, s) ∈ N× S such that

R2σ∗(V)(y,s) 6= 0.

By (9) and (10), we have W ∩ N × {s0} = ∅, i.e., s0 does not lie in τ(W ). Then there is an open
neighborhood S0 ⊂ S of s0 which is disjoint from τ(W ). Again by (10), we get H2(F∗s ⊗Uy)= 0 for all
(y, s) ∈ N× S0, which proves the claim. �

Let us now conclude the proof of the theorem. In view of the claim, we have two alternatives for s
generic in S0: either Hom(K,Fs) = 0 for any stable sheaf K with rk(K) < 2(r + 1) and p(K) = p0 or
otherwise this happens for all such K except for rk(K)= 2 and there actually exists a stable K in N such
that Hom(K,Fs) 6= 0.

In the first alternative Fs is stable, so we assume that the second one takes place and look for a
contradiction. We go back to Claim 8 and carry out the same argument for u = 2, with y0 being the point
corresponding to E1. Observe that K must lie in MX (2, H,−2) as the proof of Claim 8 applies verbatim
on any other component of N.
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We note that W ∩N× {s0} = {(y0, s0)}, as clearly HomX (K, Eζ ) = 0 for all K in N \ {y0}. So W is
properly contained in N× S. Moreover, we easily have homX (E1, Eζ ) = 1. Recall by construction of
the quasiuniversal family that there is u0 such that rk(U) = 2u0 and that, for y ∈ N, the sheaf Uy is a
direct sum of u0 copies of the stable sheaf of rank 2 in MX (2, H,−2) corresponding to y. Therefore, the
sheaf R2σ ∗(V)(y,s) has rank at least u0 at any (y, s) ∈W , and rank precisely u0 at (y0, s0). So there is an
open dense subset W0 of W where R2σ ∗(V) is free of rank u0. For any (y, s) ∈W0, the stable sheaf K
corresponding to y satisfies homX (K,Fs)= 1; up to proportionality we have thus a unique nonzero map
ηy,s : K→ Fs . Stability easily implies that ηy,s is injective, so there is an exact sequence

0→ K→ Fs→ K′→ 0,

for a well-defined sheaf K′ = coker(ηy,s), for all (y, s) ∈W0.
For s = s0 the sheaf K′ is just E2 so, by openness of stability, up to shrinking W0 we may assume that

K′ is stable for all (y, s) ∈W0. Note that K′ lies in M(2r, r H,−2r).
Under our assumption, such sequence should exist for any s in an open neighborhood of s0. Then the

family of sheaves F should be dominated by the family of extensions of K by K′ as s varies around s0.
We see that the dimension of this family of extensions is

dim(MX (2, H,−2))+ dim(MX (2r, r H,−2r))+ dim(P Ext1X (K
′,K)),

which equals 2(r(r +1)+1)(g+3)+3, as it follows by formulas (6) and (7) applied to K and K′ instead
of E1 and E2. On the other hand, the dimension of S is 2((r + 1)2(g+ 3)+ 1). The difference of these
dimensions is 2r(g+ 3)− 1 and since this is always positive for r ≥ 1, g ≥ 3, we get that the family of
simple sheaves appearing as extensions cannot be dense in S0. This contradiction concludes the proof. �

The previous result is in some sense optimal as general K3 surfaces do not support Ulrich bundles of
odd rank [Aprodu et al. 2017, Corollary 2.2].

Remark. An argument similar to the one of Theorem 1 has been used to construct ACM and Ulrich bundles
on Fano threefolds of index 1. Indeed, it follows from the main result of [Brambilla and Faenzi 2011]
that any smooth Fano threefold of Picard number 1 and index 1, containing a line L with normal bundle
OL ⊕OL(−1) (such a threefold was called “ordinary” in that paper) admits an Ulrich bundle of rank 2.
Ulrich sheaves of rank 2 are precisely ACM sheaves E with c1(E(−H))= H and c2(E(−H))= (g+3)L ,
where L ⊂ X is a line. We do not know if the same result holds for nonordinary threefolds.

Remark. Theorem 1 implies for instance that any integral quartic surface supports an Ulrich bundle of
rank 2. If X is not integral, then X must the union of (possibly multiple) surfaces of degree ≥ 3. For
each component it is possible to find a rank-2 Ulrich bundle, we refer to [Faenzi and Pons-Llopis 2015,
Lemma 7.2] for the slightly delicate case of singular cubic surfaces. This yields existence of an Ulrich
sheaf of rank 2 on an arbitrary quartic surface.

However the resulting sheaf will fail to be locally free over the intersection of the components. Finding
locally free Ulrich sheaves of rank 2 seems more tricky when X is not irreducible and might be impossible
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when X is not reduced. To justify this let us mention that, for instance if X the union of two distinct
double planes, the rank of any locally free Ulrich sheaf on X must be a multiple of 4 by [Ballico et al.
2019, Proposition 4.14].
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