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This is the second part of our work on Zariski decomposition structures, where we compare two different
volume type functions for curve classes. The first function is the polar transform of the volume for divisor
classes. The second function captures the asymptotic geometry of curves analogously to the volume
function for divisors. We prove that the two functions coincide, generalizing Zariski’s classical result for
surfaces to all varieties. Our result confirms the log concavity conjecture of the first named author for
weighted mobility of curve classes in an unexpected way, via Legendre–Fenchel type transforms. During
the course of the proof, we obtain a refined structure theorem for the movable cone of curves.
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1. Introduction

Let X be a smooth complex projective variety of dimension n. The Riemann–Roch problem asks whether
one can determine the dimension of the space of sections of a holomorphic line bundle L on X . An
important subtlety of this problem is that the answer is not determined by purely topological data — line
bundles which share the same Chern class need not have isomorphic spaces of sections. In general,
the problem only has a satisfactory answer for sufficiently ample line bundles, which exhibit a close
relationship between geometry, cohomology, and intersection theory.

Over the past forty years, mathematicians have realized that one obtains a much richer theory by
studying the asymptotic behavior of the space of sections of mL as m increases. Indeed, by working
asymptotically, we can recover for general effective line bundles some of the same interplay between
sheaf cohomology and intersection theory which undergirds the theory of ample line bundles. This point
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of view leads to many important positivity invariants for line bundles and linear systems. Perhaps the
most important asymptotic invariant of a line bundle L is its volume,1 defined as

vol(L) := lim sup
m→∞

dim H 0(X,mL)
mn/n!

.

When X is a surface, the volume of L can be calculated using intersection theory. The key construction
is the Zariski decomposition [1962], which splits L into a “positive” part and a “rigid” part. In higher
dimensions as well, there is a close relationship between the asymptotic geometry of divisors and
intersection-theoretic positivity via volume-type functions.

Recently there has been interest in extending the theory of positivity to subvarieties of arbitrary
codimension (see e.g., [Debarre et al. 2011; Lehmann 2016; Fulger and Lehmann 2017a; 2017b]). By
analogy, one would like to study the asymptotic geometry of cycles and its relationship with numerical
measures of positivity. In this paper we develop such a theory for curves: we show that the asymptotic
enumerative geometry of curve classes is controlled by intersection-theoretic invariants.

Our comparison relies upon several natural volume-type functions for curve classes. The first function
involves the numerical positivity of a curve class.

Definition 1.1 [Xiao 2017, Definition 1.1]. Let X be a projective variety of dimension n and let α∈Eff1(X)
be a pseudoeffective curve class. Then the volume of α is defined to be

v̂ol(α)= inf
A big and nef divisor class

(
A ·α

vol(A)1/n

)n/n−1

.

When α is a curve class that is not pseudoeffective, we set v̂ol(α)= 0.

This is a polar transformation of the volume function on the ample cone of divisors. The definition is
inspired by the realization that the volume of a divisor has a similar intersection-theoretic description
against curves as in [Xiao 2017, Theorem 2.1]. It fits into a much broader picture relating positivity of
divisors and curves via cone duality; see [Lehmann and Xiao 2016].

The second function captures the asymptotic geometry of curves. Recall that general points impose
independent codimension 1 conditions on divisors in a linear series. Thus for a divisor L , one can interpret
dim P(H 0(X, L)) as a measurement of how many general points are contained in sections of L . Using
this interpretation, we define the mobility function for curves in an analogous way.

Definition 1.2 [Lehmann 2016, Definition 1.1]. Let X be a projective variety of dimension n and let
α ∈ N1(X) be a curve class with integer coefficients. The mobility of α is defined to be

mob(α) := lim sup
m→∞

max{b ∈ Z≥0 | any b general points are contained in an effective curve of class mα}
mn/(n−1)/n!

.

There is a closely related function known as the weighted mobility which counts singular points of the
curve with a “higher weight”. We first recall the definition of the weighted mobility count for a class

1For a nonbig line bundle, the higher asymptotic cohomological functions carry more significant information [Küronya 2006].
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α ∈ N1(X) with integer coefficients (see [Lehmann 2016, Definition 8.6]):

wmc(α)= sup
µ

max
{

b ∈ Z≥0

∣∣∣ there is an effective cycle of class µα through any b
points of X with multiplicity at least µ at each point

}
.

The supremum is shown to exist in [Lehmann 2016] — it is then clear that the supremum is achieved by
some positive integer µ. We define the weighted mobility to be

wmob(α)= lim sup
m→∞

wmc(mα)
mn/n−1 .

While the definition is slightly more complicated, the weighted mobility is easier to compute due to its
close relationship with Seshadri constants. Lehmann [2016] showed that both the mobility and weighted
mobility extend to continuous homogeneous functions on all of N1(X).

Main result. Our main theorem compares these functions. It continues a project begun in [Xiao 2017]
(see especially Conjecture 3.1 and Theorem 3.2 there).

Theorem 1.3 (see Theorem 6.1). Let X be a smooth projective variety of dimension n and let α ∈Eff1(X)
be a pseudoeffective curve class. Then:

(1) v̂ol(α)= wmob(α).

(2) v̂ol(α)≤mob(α)≤ n! v̂ol(α).

(3) Assume Conjecture 1.4 below. Then mob(α)= v̂ol(α).

This result is surprising: it suggests that the mobility count of any curve class is optimized by complete
intersection curves; see the end of Section 2 (page 1256). Just as for curves on algebraic surfaces, the key
to this result is the Zariski decomposition for curves on varieties of arbitrary dimension as constructed in
[Lehmann and Xiao 2016; Fulger and Lehmann 2017b]. Part (3) of the theorem relies on the following
conjectural description of the mobility of a complete intersection class:

Conjecture 1.4 [Lehmann 2016, Question 6.1]. Let X be a smooth projective variety of dimension n and
let A be an ample divisor on X. Then

mob(An−1)= An.

Example 1.5. Let α denote the class of a line on P3. The mobility count of α is determined by the
following enumerative question: what is the minimal degree of a curve through b general points of P3?
The answer is unknown, even in an asymptotic sense.

Perrin [1987] conjectured that the “optimal” curves
(
which maximize the number of points relative to

their degree to the 3
2

)
are complete intersections of two divisors of the same degree. Theorem 1.3 supports

a vast generalization of Perrin’s conjecture to all big curve classes on all smooth projective varieties.
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Strict log concavity of the volume function for divisors. An important ingredient in the proof of Theorem
1.3 is the study of the volume function for divisors from the perspective of convexity theory. Since such
results are of interest in their own right, we summarize the highlights below.

The first step is to analyze the strict log concavity of the volume function. It is well-known that the
volume function for divisor classes is log concave (see e.g., [Lazarsfeld 2004, Theorem 11.4.9; Boucksom
2002b]). We show that it is strictly log concave on the big and movable cone of divisors (but on no larger
cone), extending [Boucksom et al. 2009, Theorem D].

Theorem 1.6. Let X be a smooth projective variety of dimension n. For any two big divisor classes L1,
L2, the inequality

vol(L1+ L2)
1/n
≥ vol(L1)

1/n
+ vol(L2)

1/n

is an equality if and only if the (numerical) positive parts Pσ (L1), Pσ (L2) are proportional. Thus the
function L 7→ vol(L) is strictly log concave on the cone of big and movable divisors.

This result is proved in Section 3 (see Theorem 3.9). It shows that the volume function for divisors
fits into the abstract convexity framework developed in [Lehmann and Xiao 2016]. A posteriori, this
viewpoint motivates many of the well-known structure results for the volume function (such as the formula
for the derivative, the Khovanskii–Teissier inequalities, the σ -decomposition, etc.).

Refined structure of the movable cone. The most important consequence is a refined version of a theorem
of [Boucksom et al. 2013] describing the movable cone of curves. In [loc. cit.], it is proved that the
movable cone Mov1(X) is the closure of the cone generated by (n−1)-self positive products of big
divisors. We show that Mov1(X) is the closure of the set of (n−1)-self positive products of big divisors
on the interior of Mov1(X). (The definition of the positive product 〈−〉 is recalled in Section 2.)

Theorem 1.7. Let X be a smooth projective variety of dimension n. The (n−1)-st positive product 〈−n−1
〉

defines a continuous bijection from the interior of the big and movable cone of divisors to the interior of
Mov1(X).

In practice, Theorem 1.7 seems quite useful for working with the movable cone of curves. For example,
it has an immediate corollary:

Corollary 1.8. Let X be a projective variety of dimension n. Then the rays over classes of irreducible
curves which deform to dominate X are dense in Mov1(X).

Polar transform of the volume function for divisors. Equipped with these results, we return to our
discussion of positivity functions for curves.

First we review some facts about polar transforms. Let V be a real vector space of dimension n, and
let V ∗ be its dual space. Let Cvx(V ) be the space of lower semicontinuous convex functions on V . We
denote the paring of w∗ ∈ V ∗ and v ∈ V by w∗ · v. Recall that the classical Legendre–Fenchel transform

L : Cvx(V )→ Cvx(V ∗), L f (w∗)= supv∈V {w
∗
· v− f (v)}
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is an order-reversing involution which relates the differentiability of a convex function with the strict
convexity of its dual (see e.g., [Rockafellar 1970]).

When working with homogeneous functions on a cone, there is an analogue of the Legendre–Fenchel
transform which plays a similar theoretical role. It is the concave homogeneous version of the well-known
polar transform. Let C⊂ V be a proper closed convex cone of full dimension and let C∗ ⊂ V ∗ be its dual
cone. We let HConcs(C) denote the collection of functions f : C→ R, which are upper-semicontinuous,
homogeneous of weight s > 1, strictly positive in the interior of C and s-concave. The polar transform H
associates to a function f ∈ HConcs(C) the function H f ∈ HConcs/(s−1)(C

∗) defined as

H f (w∗) := inf
v∈C◦

(
w∗ · v

f (v)1/s

)s/(s−1)

.

By taking the logarithmic function of H f , we get

logH f (w∗)=
s

s− 1
inf
v∈C◦

(
log(w∗ · v)− 1

s log f (v)
)
.

Thus the polar transform H can be considered as a variant of Legendre–Fenchel transform with a “coupling
function” given by the logarithmic function. The papers [Xiao 2017; Lehmann and Xiao 2016] develop
the theory of H in parallel with the classical Legendre–Fenchel transform L and demonstrate how it has
fruitful applications in the positivity theory of curves.

In our geometric setting, polar duality yields two natural numerical positivity functions for curves.
One is the function v̂ol discussed above. If we instead take the polar transform of the volume on the
pseudoeffective cone, then we obtain a polar function on the dual cone Mov1(X).

Definition 1.9 [Xiao 2017, Definition 2.2]. Let X be a projective variety of dimension n. For any curve
class α ∈Mov1(X) define

M(α)= inf
L big divisor class

(
L ·α

vol(L)1/n

)n/(n−1)

.

When α is a curve class that is not movable, we set M(α)= 0.

While the positivity functions v̂ol, mob, wmob are conjecturally the same, M exhibits quite different
behavior. It is best understood as a way of making Theorem 1.7 explicit (see Lemma 3.11, Theorem 3.14
and Corollary 3.23).

Theorem 1.10. Let X be a smooth projective variety and let α be a curve class in Mov1(X). Then exactly
one of the following alternatives holds:

• α = 〈Ln−1
〉 for a big movable divisor class L.

• α ·M = 0 for a nonzero movable divisor class M.

In the first case, we have M(α)= vol(L) and L achieves the infimum of Definition 1.9. In the second case
we have M(α)= 0.

A curve class α of the first type lies on the boundary of Mov1(X) if and only if the corresponding big
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divisor L lies on the boundary of Mov1(X). Thus the homeomorphism between the interiors of Mov1(X)
and Mov1(X) given by Theorem 1.7 extends to a homeomorphism from all big movable divisor classes to
curve classes with M> 0.

Conceptually, the function M allows us to assign a movable divisor to a movable curve class by “taking
an (n−1)-th root”. For toric varieties, this coheres with a classical construction of Minkowski which
assigns a polytope to a positive Minkowski weight.

Theorem 1.3 relies upon the following comparison between the two polar transforms v̂ol and M (see
Section 5). Recall that the complete intersection cone CI1(X) is the closure of the set of curve classes of
the form An−1 for an ample divisor class A. The set CI1(X) is a closed cone but may fail to be convex
(see [Lehmann and Xiao 2016]).

Theorem 1.11. Let X be a smooth projective variety and let α be a big curve class in Mov1(X). Then
the following conditions are equivalent:

• α ∈ CI1(X).

• v̂ol(α)=M(α).

• v̂ol(α)= v̂ol(φ∗α) for every birational morphism φ : Y → X.

While not strictly necessary for our main result, we also show that M admits an enumerative interpre-
tation. We define mobmov and wmobmov for curve classes analogously to mob and wmob, except that we
only count contributions of families whose general member is a sum of irreducible movable curves (see
paragraph after Definition 6.7 for more details).

Theorem 1.12. Let X be a smooth projective variety of dimension n and let α ∈Mov1(X)◦. Then:

(1) M(α)= wmobmov(α).

(2) Assume Conjecture 1.4. Then M(α)=mobmov(α).

Outline of the proof. We briefly outline the proof of Theorem 1.3(3), the most difficult part. As mentioned
above, Zariski decompositions for positivity functions play an important role. Fix a function f ∈{v̂ol,mob}.
A Zariski decomposition for a big curve class α with respect to f is an expression

α = P + N

where N is pseudoeffective and P is a “positive part” satisfying f (P)= f (α).
The main distinction between the Zariski decompositions for mob and v̂ol is where the positive part

is required to lie. For v̂ol, the positive part Pv̂ol constructed in [Lehmann and Xiao 2016] lies in the
complete intersection cone CI1(X). For mob, the positive part Pmob constructed in [Fulger and Lehmann
2017b] lies in Mov1(X). In fact a stronger property is proved there: mob(Pmob)=mob(φ∗Pmob) for any
birational map φ. Using Conjecture 1.4 and a delicate comparison between mob and M, Theorem 1.11
allows us to conclude the stronger statement that Pmob ∈ CI1(X). Then the two positive parts should
coincide, and one can again apply Conjecture 1.4 to deduce the equality of the two functions.
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Examples.

Hyperkähler varieties. For hyperkähler varieties, positivity functions for curves admit interesting inter-
pretations in terms of the Beauville–Bogomolov form. Let q denote the Beauville–Bogomolov quadratic
form on N 1(X) normalized so that q(D)n/2 = Dn for ample D. The form induces an isomorphism
ψ : N 1(X)→ N1(X). Then [Lehmann and Xiao 2016, Section 7] shows that the bijection of Theorem 1.7
can be understood using ψ :

• If D is a big movable divisor, then vol(D)(n−2)/nψ(D)= 〈Dn−1
〉. In other words, the bijection of

Theorem 1.7 coincides with ψ up to a continuous rescaling factor. For a big movable divisor class D,

M(ψ(D))= vol(D)1/n−1.

• In particular, ψ also induces a bijection between the big and nef cone of divisors and the complete
intersection curve classes with positive v̂ol. For A big and nef we have

v̂ol(ψ(A))= vol(A)1/n−1.

In general, the volume of a curve class is given by a Zariski decomposition projecting into the complete
intersection cone. [Lehmann and Xiao 2016] furthermore shows how this decomposition is related via
q-duality to the σ -decomposition of divisors.

Mori dream spaces. If X is a Mori dream space, then the movable cone of divisors admits a chamber
structure defined via the ample cones on small Q-factorial modifications. This chamber structure behaves
compatibly with the σ -decomposition and the volume function for divisors.

For curves we obtain a complementary picture using the movable cone of curves. Note that Mov1(X)
is naturally preserved by small Q-factorial modifications. We then have a chamber decomposition of
Mov1(X) induced by the decomposition for divisors via the bijection of Theorem 1.7. A good way to
analyze the chambers is to compare the behavior of the two functions M and v̂ol restricted to Mov1(X).

• By Theorem 1.7, a curve class in the interior of Mov1(X) is the (n−1)-positive product of a big
divisor class L and M(α)= vol(L). Using the birational invariance of the volume for divisors, we
see that M is also invariant under small Q-factorial modifications.

• Using the Zariski decomposition of [Lehmann and Xiao 2016], the movable cone of curves admits a
“chamber structure” as a union of the complete intersection cones from small Q-factorial modifications.
However, v̂ol is not invariant under small Q-factorial modifications but changes to reflect the differing
structure of the pseudoeffective cone of curves.

Theorem 1.11 shows that v̂ol reaches its minimum value v̂ol(α)=M(α) precisely on the complete inter-
section cone of X , and then increases on the chambers corresponding to birational models of X . In this way
v̂ol and M are the right tools for understanding the birational geometry of curves on Mori dream spaces.
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Toric varieties. Suppose that X is a simplicial projective toric variety of dimension n defined by a fan 6.
A class α in the interior of the movable cone of curves corresponds to a positive Minkowski weight on the
rays of 6. A fundamental theorem of Minkowski attaches to such a weight a polytope Pα whose facet
normals are the rays of 6 and whose facet volumes are determined by the weights. In fact, Minkowski’s
construction exactly corresponds to the bijection of Theorem 1.7.

Lemma 1.13. If L denotes the big and movable divisor class corresponding to the polytope Pα then
〈Ln−1

〉 = α. Thus M(α)= n! vol(Pα).

When α happens to be in the complete intersection cone, this quantity also agrees with v̂ol(α). In
the toric setting, properties of M can be interpreted via the classical theory of convex bodies, using
constructions such as Blaschke addition and the Kneser–Süss inequality (see [Lehmann and Xiao 2017]
for more details).

Further applications. The refined structure of the movable cone is not only important to study positivity
functions for curves, but it should also have other applications. We briefly mention two areas for further
study (which will not be addressed in the body of the paper).

The first is the study of moduli of vector bundles. Recently, the papers [Greb et al. 2016b; 2016c;
2016d; 2019] discussed some obstructions to generalizing the theory of slope-stability from surfaces to
varieties of arbitrary dimension. Traditionally one uses stability conditions defined by H n−1 for an ample
divisor H , but the walls are no longer linear in H . As discussed in [Greb et al. 2016d] the situation is
improved by working in CI1(X). Since this cone is not convex, it seems that a thorough understanding of
Theorem 1.7 and of stability conditions constructed via movable curve classes (as in [Greb et al. 2016a])
will be helpful for filling out this picture. There are also some situations where one obtains a nice chamber
structure of Mov1(X) using stability conditions (see for example [Neumann 2010]), and it would be
interesting to see the geometric input provided by the corresponding decomposition of Mov1(X).

Another area is the geometry of curves on rationally connected varieties. The original proof of
boundedness of smooth Fano varieties by [Campana 1992; Kollár et al. 1992] relied on constructing
chains of rational curves and controlling the degree against an ample divisor. Such constructions also
have interesting interaction with the volume function of curves (see for example Proposition 6.2). By
considering the volume of connecting rational chains, one obtains a “birational” variant of boundedness
problems which is interesting for arbitrary rationally connected varieties. See [Lehmann and Xiao 2016]
for a more in-depth discussion.

Outline of the paper. In this paper we will work with projective varieties over C, but related results can
be also adjusted to arbitrary algebraically closed fields and compact Kähler manifolds. We give a general
framework for this extension in Section 2.

In Section 2 we briefly recall the general convexity and duality framework in [Lehmann and Xiao
2016], and explain how the proofs can be adjusted to arbitrary algebraically closed fields and compact
Kähler manifolds. In Section 3, we give a refined structure of the movable cone of curves and generalize
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several results on big and nef divisors to big and movable divisors. Section 4 discusses toric varieties,
showing some relationships with convex geometry. Section 5 compares the complete intersection and
movable cone of curves. In Section 6 we compare the (weighted) mobility functions and v̂ol,M, finishing
the proof of the main results.

2. Preliminaries

Positivity. In this section, we first fix some notations over a projective variety X :

• N 1(X): the real vector space of numerical classes of divisors.

• N1(X): the real vector space of numerical classes of curves.

• Eff1(X): the cone of pseudoeffective divisor classes.

• Nef1(X): the cone of nef divisor classes.

• Mov1(X): the cone of movable divisor classes.

• Eff1(X): the cone of pseudoeffective curve classes.

• Mov1(X): the cone of movable curve classes, equivalently by [Boucksom et al. 2013] the dual of
Eff1(X).

• CI1(X): the closure of the set of all curve classes of the form An−1 for an ample divisor A.

With only a few exceptions, capital letters A, B, D, L will denote R-Cartier divisor classes and Greek
letters α, β, γ will denote curve classes. For two curve classes α, β, we write α � β and α � β to denote
that α− β and β −α, respectively, belong to Eff1(X). We will do similarly for divisor classes, or two
elements of a cone C if the cone is understood.

We will use the notation 〈−〉 for the positive product as in [Boucksom 2002a; Boucksom et al. 2009;
2013]. Let us recall briefly recall its definition. Let X be a projective manifold (or compact Kähler
manifold) of dimension n, and let L1, . . . , Lr be big (1, 1) classes. Then

〈L1 · · · Lr 〉 := lim
m→∞

µm∗( Â1 · · · Âr ),

where µm : Xm→ X is a suitable sequence of Fujita approximations such that the limit class has the most
positivity (see [Boucksom et al. 2009; 2013] for more details). Note that µm satisfies µ∗m L i = Âi,m+ Ei,m

for some effective divisor class Ei,m and big nef class Âi,m such that Ân
i,m→ vol(L i ). We make a few

remarks on this construction for singular projective varieties. Suppose that X has dimension n. Then
Nn−1(X) denotes the vector space of R-classes of Weil divisors up to numerical equivalence as in [Fulton
1984, Chapter 19]. In this setting, the first and (n−1)-st positive product should be interpreted respectively
as maps Eff1(X)→ Nn−1(X) and Eff1(X)×n−1

→Mov1(X). We will also let Pσ (L) denote the positive
part in this sense — that is, pull back L to better and better Fujita approximations, take its positive part,
and push the numerical class forward to X as a numerical Weil divisor class. With these conventions, we
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still have the crucial result of [Boucksom et al. 2009; Lazarsfeld and Mustaţă 2009] that the derivative of
the volume is controlled by intersecting against the positive part.

We define the movable cone of divisors Mov1(X) to be the subset of Eff1(X) consisting of divisor
classes L such that Nσ (L)= 0 and Pσ (L)= L ∩ [X ] ∈ Nn−1(X). On any projective variety, by [Fulton
1984, Example 19.3.3] capping with X defines an injective linear map N 1(X)→ Nn−1(X). Thus if
D, L ∈Mov1(X) have the same positive part in Nn−1(X), then by the injectivity of the capping map we
must have D = L .

To extend our results (especially the results in Section 3) to arbitrary compact Kähler manifolds, we
need to deal with transcendental objects which are not given by divisors or curves. Let X be a compact
Kähler manifold of dimension n. By analogue with the projective situation, we need to deal with the
following spaces and positive cones:

• H 1,1
BC (X,R): the real Bott–Chern cohomology group of bidegree (1, 1).

• H n−1,n−1
BC (X,R): the real Bott–Chern cohomology group of bidegree (n− 1, n− 1).

• N (X): the cone of pseudoeffective (n− 1, n− 1)-classes.

• M(X): the cone of movable (n− 1, n− 1)-classes.

• K(X): the cone of nef (1, 1)-classes, equivalently the closure of the Kähler cone.

• E(X): the cone of pseudoeffective (1, 1)-classes.

Recall that we call a Bott–Chern class pseudoeffective if it contains a d-closed positive current, and call
an (n− 1, n− 1)-class movable if it is contained in the closure of the cone generated by the classes of
the form µ∗(ω̃1 ∧ · · · ∧ ω̃n−1) where µ : X̃→ X is a modification and ω̃1, . . . , ω̃n−1 are Kähler metrics
on X̃ . For the basic theory of positive currents, we refer the reader to [Demailly 2012].

Fields of characteristic p. Almost all the results in the paper will hold for smooth varieties over an
arbitrary algebraically closed field. The necessary technical generalizations are verified in the following
references:

• The existence of Fujita approximations over an arbitrary algebraically closed field is proved in
[Takagi 2007].

• The basic properties of the σ -decomposition in positive characteristic are considered in [Mustaţă
2013].

• The results of [Cutkosky 2015] lay the foundations of the theory of positive products and volumes
over an arbitrary field.

• [Fulger and Lehmann 2017b] describes how to extend [Boucksom et al. 2013] and most of the results
of [Boucksom et al. 2009] over an arbitrary algebraically closed field. In particular the description
of the derivative of the volume function in [Boucksom et al. 2009, Theorem A] holds for smooth
varieties in any characteristic.
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Compact Kähler manifolds. The following results enable us to extend our results in Section 3 and
Section 5 to arbitrary compact hyperkähler manifolds and projective manifolds.

• The theory of positive intersection products for pseudoeffective (1, 1)-classes has been developed by
[Boucksom 2002a; Boucksom et al. 2010; 2013].

• Divisorial Zariski decomposition for pseudoeffective (1, 1)-classes has been studied in [Boucksom
2004; Boucksom et al. 2013].

• By [Boucksom et al. 2013, Theorem 10.12] and [Nyström and Boucksom 2016], the transcendental
analogues of the results in [Boucksom et al. 2009; 2013] are true for compact hyperkähler manifolds
and projective manifolds. In particular, we have the cone duality E∗ =M and the description of the
derivative of the volume for pseudoeffective (1, 1)-classes.

Polar transforms. As explained in the introduction, our results use convex analysis, and in particular a
Legendre–Fenchel type transform for functions defined on a cone. We briefly recall some definitions and
results from [Lehmann and Xiao 2016] which will be used to study the function M.

Duality transforms. Let V be a finite-dimensional R-vector space of dimension n, and let V ∗ be its dual.
We denote the pairing of w∗ ∈ V ∗ and v ∈ V by w∗ · v. Let C ⊂ V be a proper closed convex cone of
full dimension and let C∗ ⊂ V ∗ denote the dual cone of C. We let HConcs(C) denote the collection of
functions f : C→ R satisfying:

• f is upper-semicontinuous and homogeneous of weight s > 1.

• f is strictly positive in the interior of C (and hence nonnegative on C).

• f is s-concave: for any v, x ∈ C we have f (v)1/s + f (x)1/s ≤ f (v+ x)1/s .

The polar transform H associates to a function f ∈ HConcs(C) the function H f : C∗→ R defined as

H f (w∗) := inf
v∈C◦

(
w∗ · v

f (v)1/s

)s/(s−1)

.

The definition is unchanged if we instead vary v over all elements of C where f is positive. It is not hard
to see that H2 f = f for any f ∈ HConcs(C).

It will be crucial to understand which points obtain the infimum in the definition of H f .

Definition 2.1. Let f ∈ HConcs(C). For any w∗ ∈ C∗, we define Gw∗ to be the set of all v ∈ C which
satisfy f (v) > 0 and which achieve the infimum in the definition of H f (w∗), so that

H f (w∗)=
(
w∗ · v

f (v)1/s

)s/(s−1)

.

Remark 2.2. The set Gw∗ is the analogue of super-gradients of concave functions. In particular, we know
the differential of H f at w∗ lies in Gw∗ if H f is differentiable.

We next identify the collection of points where f is controlled by H.
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Definition 2.3. Let f ∈ HConcs(C). We define C f to be the set of all v ∈ C such that v ∈ Gw∗ for some
w∗ ∈ C satisfying H f (w∗) > 0.

We say that f ∈ HConcs(C) is differentiable if it is C1 on C◦. In this case we define the function

D : C◦→ V ∗ by v 7→
d f (v)

s
.

We will need to understand the behavior of the derivative along the boundary.

Definition 2.4. We say that f ∈ HConcs(C) is +-differentiable if f is C1 on C◦ and the derivative on C◦

extends to a continuous function on all of C f .

Remark 2.5. For +-differentiable functions f , we define the function D : C f → V ∗ by extending
continuously from C◦.

Teissier proportionality and strict log concavity. In [Lehmann and Xiao 2016], we gave some conditions
which are equivalent to the strict log concavity.

Definition 2.6. Let f ∈ HConcs(C) be +-differentiable and let CT be a nonempty subcone of C f . We
say that f satisfies Teissier proportionality with respect to CT if for any v, x ∈ CT satisfying

D(v) · x = f (v)s−1/s f (x)1/s

we have that v and x are proportional.

Note that we do not assume that CT is convex — indeed, in examples it is important to avoid this
condition. However, since f is defined on the convex hull of CT , we can (somewhat abusively) discuss
the strict log concavity of f |CT :

Definition 2.7. Let C′⊂C be a (possibly nonconvex) subcone. We say that f is strictly log concave on C′ if

f (v)1/s + f (x)1/s < f (v+ x)1/s

holds whenever v, x ∈ C′ are not proportional. Note that this definition makes sense even when C′ is not
itself convex.

Theorem 2.8 [Lehmann and Xiao 2016, Theorem 4.12]. Let f ∈ HConcs(C) be +-differentiable. For
any nonempty subcone CT of C f , consider the following conditions:

(1) The restriction f |CT is strictly log concave (in the sense defined above).

(2) f satisfies Teissier proportionality with respect to CT .

(3) The restriction of D to CT is injective.

Then we have (1) =⇒ (2) =⇒ (3). If CT is convex, then we have (2) =⇒ (1). If CT is an open subcone, then
we have (3) =⇒ (1).
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Sublinear boundary conditions. Under certain conditions we can control the behavior of H f near the
boundary, and thus obtain the continuity.

Definition 2.9. Let f ∈ HConcs(C) and let α ∈ (0, 1). We say that f satisfies the sublinear boundary
condition of order α if for any nonzero v on the boundary of C and for any x in the interior of C, there
exists a constant C := C(v, x) > 0 such that f (v+ εx)1/s ≥ Cεα.

Note that the condition is always satisfied at v if f (v) > 0. Furthermore, the condition is satisfied
for any v, x with α = 1 by homogeneity and log-concavity, so the crucial question is whether we can
decrease α slightly.

Using this sublinear condition, we get the vanishing of H f along the boundary.

Proposition 2.10 [Lehmann and Xiao 2016, Proposition 4.21]. Let f ∈ HConcs(C) satisfy the sublinear
boundary condition of order α. Then H f vanishes along the boundary. As a consequence, H f extends to
a continuous function over V ∗ by setting H f = 0 outside C∗.

Remark 2.11. If f satisfies the sublinear condition, then C∗H f = C∗◦.

Formal Zariski decompositions. The Legendre–Fenchel transform relates the strict concavity of a func-
tion to the differentiability of its transform. The transform H will play the same role in our situation;
however, one needs to interpret the strict concavity slightly differently. We will encapsulate this property
using the notion of a Zariski decomposition.

Definition 2.12. Let f ∈ HConcs(C) and let U ⊂ C be a nonempty subcone. We say that f admits a
strong Zariski decomposition with respect to U if:

(1) For every v ∈ C f there are unique elements pv ∈U and nv ∈ C satisfying

v = pv + nv and f (v)= f (pv).

We call the expression v = pv + nv the Zariski decomposition of v, and call pv the positive part and
nv the negative part of v.

(2) For any v,w ∈ C f satisfying v+w ∈ C f we have

f (v)1/s + f (w)1/s ≤ f (v+w)1/s

with equality only if pv and pw are proportional.

In [Lehmann and Xiao 2016, Theorem 4.3], we proved the following theorem linking the existence of
Zariski decomposition structure with differentiability.

Theorem 2.13. Let f ∈ HConcs(C). Then we have the following results:

• If f is +-differentiable, then H f admits a strong Zariski decomposition with respect to the cone
D(C f )∪ {0}.

• If H f admits a strong Zariski decomposition with respect to a cone U , then f is differentiable.
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In the first situation, one can construct the positive part of w∗ by choosing any v ∈ Gw∗ with f (v) > 0
and choosing pw∗ to be the unique element of the ray spanned by D(v) with H f (pw∗)=H f (w∗).

Under some additional conditions, we can get the continuity of formal Zariski decompositions (see
[Lehmann and Xiao 2016, Theorem 4.6]). Note that for the divisorial Zariski decomposition the continuity
is already well known due to the concavity of taking positive parts (see e.g., [Boucksom et al. 2009;
Küronya and Maclean 2013; Nakayama 2004]).

Theorem 2.14. Let f ∈HConcs(C) be +-differentiable. Then the function taking an element w∗ ∈ C∗◦ to
its positive part pw∗ is continuous.

If furthermore Gv ∪ {0} is a unique ray for every v ∈ C f and H f is continuous on all of C∗H f , then the
Zariski decomposition is continuous on all of C∗H f .

Zariski decomposition for curves. In [Lehmann and Xiao 2016], as an application of the above formal
Zariski decomposition to the situation

C= Nef1(X), f = vol, C∗ = Eff1(X), H f = v̂ol,

we obtain the Zariski decomposition for curves. The following result is important in the proof of
Theorem 1.3.

Definition 2.15. Let X be a projective variety of dimension n and let α ∈ Eff1(X)◦ be a big curve class.
Then a Zariski decomposition for α is a decomposition

α = Bn−1
+ γ

where B is a big and nef R-Cartier divisor class, γ is pseudoeffective, and B · γ = 0. We call Bn−1 the
“positive part” and γ the “negative part” of the decomposition.

Theorem 2.16. Let X be a projective variety of dimension n and let α ∈ Eff1(X)◦ be a big curve class.
Then α admits a unique Zariski decomposition α = Bn−1

α + γ . Furthermore,

v̂ol(α)= v̂ol(Bn−1
α )= vol(Bα)

and Bα is the unique big and nef divisor class with this property satisfying Bn−1
α � α. The class Bα

depends continuously on α.

Remark 2.17. As explained in [Lehmann and Xiao 2016, Remark 5.1], the above result holds in the Kähler
setting — we have a similar decomposition for any interior point of the pseudoeffective (n−1, n−1)-
cone N .

3. Refined structure of the movable cone

In this section, we study the movable cone of curves and its relationship to the positive product of divisors.
A key tool in this study is the following function of [Xiao 2017, Definition 2.2]:
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Definition 3.1. Let X be a projective variety of dimension n. For any curve class α ∈Mov1(X) define

M(α)= inf
L big divisor class

(
L ·α

vol(L)1/n

)n/(n−1)

.

We say that a big class L computes M(α) if this infimum is achieved by L . When α is a curve class that
is not movable, we set M(α)= 0.

In other words, M is the function on Mov1(X) defined as the polar transform of the volume function
on Eff1(X). Dually, we can think of the volume function on divisors as the polar transform of M; this
viewpoint allows us to apply the general theory of convexity developed in [Lehmann and Xiao 2016] to vol.

In this section we first prove some new results concerning the volume function for divisors. We will
then return to the study of M below, where we show that it measures the volume of the “(n−1)−st root”
of α.

The volume function on big and movable divisors. We first extend several well-known results on big
and nef divisors to big and movable divisors. The key will be an extension of Teissier proportionality
theorem for big and nef divisors (see [Lehmann and Xiao 2016; Boucksom et al. 2009]) to big and
movable divisors.

Lemma 3.2. Let X be a projective variety of dimension n. Let L1 and L2 be big movable divisor classes.
Set s to be the largest real number such that L1− sL2 is pseudoeffective. Then

sn
≤

vol(L1)

vol(L2)

with equality if and only if L1 and L2 are proportional.

Proof. We first prove the case when X is smooth. Certainly we have vol(L1)≥ vol(sL2)= sn vol(L2). If
they are equal, then since sL2 is movable and L1−sL2 is pseudoeffective we get a Zariski decomposition of

L1 = sL2+ (L1− sL2)

in the sense of [Fulger and Lehmann 2017b]. By [Fulger and Lehmann 2017b, Proposition 5.3], this
decomposition coincides with the numerical version of the σ -decomposition of [Nakayama 2004] so that
Pσ (L1)= sL2. Since L1 is movable, we obtain equality L1 = sL2.

For arbitrary X , let φ : X ′→ X be a resolution. The inequality follows by pulling back L1 and L2 and
replacing them by their positive parts. Indeed using the numerical analogue of [Nakayama 2004, III.1.14
Proposition] we see that φ∗L1− s Pσ (φ∗L2) is pseudoeffective if and only if Pσ (φ∗L1)− s Pσ (φ∗L2) is
pseudoeffective, so that s can only go up under this operation. To characterize the equality, recall that if
L1 and L2 are movable and Pσ (φ∗L1)= s Pσ (φ∗L2) as elements of Nn−1(X), then L1 = sL2 as elements
of N 1(X) by the injectivity of the capping map. �

Next we prove the Diskant inequality for big and movable divisor classes, generalizing the version for
big and nef divisors in [Boucksom et al. 2009].
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Proposition 3.3. Let X be a smooth projective variety of dimension n. Let L1, L2 be big and movable
divisor classes. Set sL to be the largest real number such that L1− sL L2 is pseudoeffective. Then

(〈Ln−1
1 〉 · L2)

n/(n−1)
− vol(L1) vol(L2)

1/n−1
≥ ((〈Ln−1

1 〉 · L2)
1/n−1

− sL vol(L2)
1/n−1)n. (†)

Proof. Fix an ample divisor H on X .
For any ε > 0, by taking sufficiently good Fujita approximations we may find a birational map

φε : Yε→ X and ample divisor classes A1,ε and A2,ε such that

• φ∗ε L i − Ai,ε is pseudoeffective for i = 1, 2;

• vol(Ai,ε) > vol(L i )− ε for i = 1, 2;

• φε∗Ai,ε is in an ε-ball around L i for i = 1, 2.

Furthermore:

• By applying the argument of [Fulger and Lehmann 2017b, Theorem 6.22], we may ensure

φ∗ε (〈L
n−1
1 〉− εH n−1)� An−1

1,ε � φ
∗

ε (〈L
n−1
1 〉+ εH n−1).

• Set sε to be the largest real number such that A1,ε − sε A2,ε is pseudoeffective. Then we may ensure
that sε < sL + ε.

By the Khovanskii–Teissier inequality for nef divisor classes, we have

(An−1
1,ε · A2,ε)

n/(n−1)
≥ vol(A1,ε) vol(A2,ε)

1/n−1.

Note that 〈Ln−1
〉 · L2 is approximated by An−1

1,ε · A2,ε by the projection formula. Taking a limit as ε goes
to 0, we see that

〈Ln−1
1 〉 · L2 ≥ vol(L1)

n−1/n vol(L2)
1/n. (?)

On the other hand, the Diskant inequality for big and nef divisors in [Boucksom et al. 2009, Theorem F]
implies that

(An−1
1,ε · A2,ε)

n/(n−1)
− vol(A1,ε) vol(A2,ε)

1/n−1
≥ ((An−1

1,ε · A2,ε)
1/n−1

− sε vol(A2,ε)
1/n−1)n

≥ ((An−1
1,ε · A2,ε)

1/n−1
− (sL + ε) vol(A2,ε)

1/n−1)n.

Taking a limit as ε goes to 0 again, we see that

(〈Ln−1
1 〉 · L2)

n/(n−1)
− vol(L1) vol(L2)

1/n−1
≥ ((〈Ln−1

1 〉 · L2)
1/n−1

− sL vol(L2)
1/n−1)n.

This finishes the proof of the Diskant inequality for big and movable divisor classes. �

Remark 3.4. As shown in [Lehmann and Xiao 2017, Section 3] and implicitly proved in [Fulger and
Lehmann 2017b] (which in turn follows from a result of [Boucksom et al. 2009]), for two big movable
divisor classes L1, L2, we indeed have 〈Ln−1

1 〉 · L2 = 〈Ln−1
1 · L2〉.

As a corollary of Proposition 3.3, we get:
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Proposition 3.5. Let X be a projective variety of dimension n. Let L1, L2 be big and movable divisor
classes. Then

〈Ln−1
1 〉 · L2 ≥ vol(L1)

n−1/n vol(L2)
1/n

with equality if and only if L1 and L2 are proportional.

Proof. If X is smooth, then the result follows directly from Lemma 3.2, ? and †.
Now suppose X is singular. The inequality can be computed by passing to a resolution φ : X ′→ X

and replacing L1 and L2 by their positive parts, since the left-hand side can only decrease under this
operation. To characterize the equality, recall that if L1 and L2 are movable and Pσ (φ∗L1)= s Pσ (φ∗L2)

as elements of Nn−1(X), then L1 = sL2 as elements of N 1(X) by the injectivity of the capping map. �

Remark 3.6. In the analytic setting, applying Proposition 3.5 and the same method as [Lehmann and
Xiao 2016], it is not hard to generalize Proposition 3.5 to any number of big and movable divisor classes
provided we have sufficient regularity for degenerate Monge–Ampère equations in big classes:

• Let L1, . . . , Ln be n big divisor classes over a smooth complex projective variety X , then we have

〈L1 · · · Ln〉 ≥ vol(L1)
1/n
· · · vol(Ln)

1/n

where the equality is obtained if and only if Pσ (L1), . . . , Pσ (Ln) are proportional.

We only need to characterize the equality situation. To see this, we need the fact that the above positive
intersection 〈L1 · · · Ln〉 depends only on the positive parts Pσ (L i ), which follows from the analytic
construction of positive product [Boucksom 2002a, Proposition 3.2.10]. Then by the method in [Lehmann
and Xiao 2016] where we apply [Boucksom et al. 2010] or [Demailly et al. 2014, Theorem D], we reduce
it to the case of a pair of divisor classes, e.g., we get

〈Pσ (L1)
n−1
· Pσ (L2)〉 = vol(L1)

n−1/n vol(L2)
1/n.

By the definition of positive product we always have

〈Pσ (L1)
n−1
· Pσ (L2)〉 ≥ 〈Pσ (L1)

n−1
〉 · Pσ (L2)≥ vol(L1)

n−1/n vol(L2)
1/n,

this then implies the equality

〈Pσ (L1)
n−1
〉 · Pσ (L2)= vol(L1)

n−1/n vol(L2)
1/n.

By Proposition 3.5, we immediately obtain the desired result. See also [Lehmann and Xiao 2017,
Section 7] for an alternative approach.

Corollary 3.7. Let X be a smooth projective variety of dimension n. Let α ∈Mov1(X) be a big movable
curve class. All big divisor classes L satisfying α = 〈Ln−1

〉 have the same positive part Pσ (L).

Proof. Suppose L1 and L2 have the same positive product. We have vol(L1) = 〈Ln−1
2 〉 · L1 so that

vol(L1)≥ vol(L2). By symmetry we obtain the reverse inequality, hence equality everywhere, and we
conclude by Proposition 3.5 and the σ -decomposition for smooth varieties. �
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As a consequence of Proposition 3.5, we show the strict log concavity of the volume function vol on
the cone of big and movable divisors.

Proposition 3.8. Let X be a projective variety of dimension n. Then the volume function vol is strictly
log concave on the cone of big and movable divisor classes.

Proof. Since the big and movable cone is convex and since the derivative of vol is continuous, this follows
immediately from Proposition 3.5 and Theorem 2.8. �

As a consequence, we get:

Theorem 3.9. Let X be a projective variety of dimension n. Then for any two big divisor classes L1, L2,
the equality

vol(L1+ L2)
1/n
= vol(L1)

1/n
+ vol(L2)

1/n

holds if and only if the positive parts P(L1), P(L2) are proportional.

It is well known that vol(L1+ L2)
1/n
≥ vol(L1)

1/n
+ vol(L2)

1/n , thus the above result give a charac-
terization on the equality case.

Proof. First, we assume the equality holds. Note that vol(L i )= vol(P(L i )) for i = 1, 2, then we get

vol(L1+L2)
1/n
≥ vol(P(L1)+ P(L2))

1/n
≥ vol(P(L1))

1/n
+vol(P(L2))

1/n
= vol(L1)

1/n
+vol(L2)

1/n.

The equality assumption implies that vol(P(L1)+ P(L2))
1/n
= vol(P(L1))

1/n
+vol(P(L2))

1/n , then by
Proposition 3.8 the positive parts P(L1), P(L2) are proportional.

Next we assume that the positive parts P(L1), P(L2) are proportional. We claim that P(L1+ L2)=

P(L1)+ P(L2). With this claim, it is easy to see the equality for volumes holds. Next we prove the
claim. By the divisorial Zariski decomposition, we have two decompositions for L1+ L2:

L1+ L2 = P(L1+ L2)+ N (L1+ L2)= P(L1)+ P(L2)+ N (L1)+ N (L2).

Since P(L1), P(L2) are proportional, the orthogonality estimate in the divisorial Zariski decomposition
implies

〈(P(L1)+ P(L2))
n−1
〉 · (N (L1)+ N (L2))= 0.

Multiplying by 〈(P(L1)+ P(L2))
n−1
〉 in the two decompositions of L1+ L2, we get

〈(P(L1)+ P(L2))
n
〉 ≥ P(L1+ L2) · 〈(P(L1)+ P(L2))

n−1
〉.

By the Khovanski–Teissier inequality, this yields that vol(P(L1)+ P(L2))≥ vol(P(L1+ L2)). However,
we always have vol(P(L1+L2))≥ vol(P(L1)+P(L2)), thus the equality holds everywhere. In particular,
Proposition 3.5 implies that P(L1+ L2)= P(L1)+ P(L2), finishing the proof of our claim. �



Positivity functions for curves on algebraic varieties 1261

The function M. We now return to the study of the function M. We are in the situation:

C= Eff1(X), f = vol, C∗ =Mov1(X), H f =M.

Note that C∗ =Mov1(X) follows from the main result of [Boucksom et al. 2013].
As preparation for using the polar transform theory, we recall the analytic properties of the volume

function for divisors on smooth varieties. By [Boucksom et al. 2009] the volume function on the
pseudoeffective cone of divisors is differentiable on the big cone (with D(L)= 〈Ln−1

〉). In the notation
of Definition 2.3 the cone Eff1(X)vol coincides with the big cone, so that vol is +-differentiable. The
volume function is n-concave, and is strictly n-concave on the big and movable cone by Proposition 3.8.
Furthermore, it admits a strong Zariski decomposition with respect to the movable cone of divisors using
the σ -decomposition of [Nakayama 2004] and Proposition 3.8.

Remark 3.10. Note that if X is not smooth (or at least Q-factorial), then it is unclear whether vol admits
a Zariski decomposition structure with respect to the cone of movable divisors. For this reason, we will
focus on smooth varieties in this section. See Remark 3.24 for more details.

Our first task is to understand the behavior of M on the boundary of the movable cone of curves. Note
that vol does not satisfy a sublinear condition, so that M may not vanish on the boundary of Mov1(X).

Lemma 3.11. Let X be a smooth projective variety of dimension n and let α be a movable curve class.
Then M(α)= 0 if and only if α has vanishing intersection against a nonzero movable divisor class L.

Proof. We first show that if there exists some nonzero movable divisor class M such that α ·M = 0 then
M(α)= 0. Fix an ample divisor class A. Note that M+ εA is big and movable for any ε > 0. Thus there
exists some modification µε : Yε→ X and an ample divisor class Aε on Yε such that M + ε

2 A = µε∗Aε .
So we can write

M + εA = µε∗
(

Aε + ε
2µ
∗

ε A
)
,

which implies
vol(M + εA)= vol

(
µε∗

(
Aε + ε

2µ
∗

ε A
))

≥ vol
(

Aε + ε
2µ
∗

ε A
)

≥ n
(
ε
2µ
∗

ε A
)n−1
· Aε

≥ cεn−1 An−1
·M.

This estimate shows that the intersection number

ρε = α ·
M + εA

vol(M + εA)1/n .

tends to zero as ε tends to zero, and so M(α)= 0.
Conversely, suppose that M(α) = 0. From the definition of M(α), we can take a sequence of big

divisor classes Lk with vol(Lk)= 1 such that

lim
k→∞

(α · Lk)
n/(n−1)

=M(α).
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Moreover, let Pσ (Lk) be the positive part of Lk . Then we have vol(Pσ (Lk))= 1 and

α · Pσ (Lk)≤ α · Lk

since α is movable. Thus we can assume the sequence of big divisor classes Lk is movable in the
beginning.

Fix an ample divisor A of volume 1, and consider the classes Lk/(An−1
· Lk). These lie in a compact

slice of the movable cone, so they must have a nonzero movable accumulation point L , which without
loss of generality we may assume is a limit.

Choose a modification µε : Yε→ X and an ample divisor class Aε,k on Y such that

Aε,k ≤ µ∗εLk, vol(Aε,k) > vol(Lk)− ε

Then

Lk · An−1
≥ Aε,k ·µ∗ε An−1

≥ vol(Aε,k)1/n

by the Khovanskii–Teissier inequality. Taking a limit over all ε, we find Lk · An−1
≥ vol(Lk)

1/n . Thus

L ·α = lim
k→∞

Lk ·α

Lk · An−1 ≤M(α)n−1/n
= 0. �

Example 3.12. Note that a movable curve class α with positive M need not lie in the interior of the
movable cone of curves. A simple example is when X is the blow-up of P2 at one point, H denotes the
pullback of the hyperplane class. For surfaces the functions M and vol coincide, so M(H) = 1 even
though H is on the boundary of Mov1(X)= Nef1(X).

It is also possible for a big movable curve class α to have M(α)= 0. This occurs for the projective
bundle X = PP1(O ⊕ O ⊕ O(−1)). There are two natural divisor classes on X : the class f of the
fibers of the projective bundle and the class ξ of the sheaf OX/P1(1). Using for example [Fulger 2011,
Theorem 1.1] and [Fulger and Lehmann 2017b, Proposition 7.1], one sees that f and ξ generate the
algebraic cohomology classes with the relations f 2

= 0, ξ 2 f =−ξ 3
= 1 and that Mov1(X)= 〈 f, ξ〉 and

Mov1(X)= 〈ξ f, ξ 2
+ξ f 〉. We see that the big and movable curve class ξ 2

+ξ f has vanishing intersection
against the movable divisor ξ so that M(ξ 2

+ ξ f )= 0 by Lemma 3.11.

Remark 3.13. Another perspective on Lemma 3.11 is provided by the numerical dimension of [Nakayama
2004; Boucksom 2004]. On a smooth variety the following conditions are equivalent for a class L ∈
Mov1(X). (They both correspond to the nonvanishing of the numerical dimension.)

• Fix an ample divisor class A. For any big class D, there is a positive constant C such that Ctn−1 <

vol(L + t A) for all t > 0.

• L 6= 0.

In particular, this implies that vol satisfies the sublinear boundary condition of order n − 1/n when
restricted to the movable cone, and this fact can be used in the previous proof. A variant of this statement
in characteristic p is proved by [Cascini et al. 2014].
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In many ways it is most natural to define M using the movable cone of divisors instead of the
pseudoeffective cone of divisors. Conceptually, this coheres with the fact that the polar transform can
be calculated using the positive part of a Zariski decomposition. Recall that the positive part Pσ (L) of
a pseudoeffective divisor L has Pσ (L) � L and vol(Pσ (L)) = vol(L). Arguing as in Lemma 3.11 by
taking positive parts, we see that for any α ∈Mov1(X) we have

M(α)= inf
D big and movable

(
D ·α

vol(D)1/n

)n/(n−1)

.

Thus for X smooth it is perhaps better to consider the following polar transform:

C=Mov1(X), f = vol, C∗ =Mov1(X)∗, H f =M′.

Since vol satisfies a sublinear condition on Mov1(X), the function M′ is strictly positive exactly in
Mov1(X)∗◦ and extends to a continuous function over N1(X). The relationship between the two functions
is given by

M′|Mov1(X) =M;

this follows immediately from the description for M earlier in this paragraph. In fact by Theorem 2.13
M′ admits a strong Zariski decomposition. Using the interpretation of positive parts via derivatives as in
Theorem 2.13, the results of [Boucksom et al. 2009; Lazarsfeld and Mustaţă 2009] show that the positive
parts for the Zariski decomposition of M′ lie in Mov1(X). In this way one can think of M as the “Zariski
projection” of M′.

Note one important consequence of this perspective: Lemma 3.11 shows that the subcone of Mov1(X)
where M is positive lies in the interior of Mov1(X)∗. Thus this region agrees with Mov1(X)M and M

extends to a differentiable function on an open set containing this cone by applying Theorem 2.13. In
particular M is +-differentiable and continuous on Mov1(X).

We next prove a refined structure of the movable cone of curves. Recall that by [Boucksom et al. 2013]
the movable cone of curves Mov1(X) is generated by the (n−1)-self positive products of big divisors. In
other words, any curve class in the interior of Mov1(X) is a convex combination of such positive products.
We show that Mov1(X) actually coincides with the closure of such products (which naturally form a cone).

Theorem 3.14. Let X be a smooth projective variety of dimension n. Then any movable curve class α
with M(α) > 0 has the form

α = 〈Ln−1
α 〉

for a unique big and movable divisor class Lα . We then have M(α)= vol(Lα) and any big and movable
divisor computing M(α) is proportional to Lα.

Proof. Applying Theorem 2.13 to M′, we get

α = D(Lα)+ nα

where Lα is a big movable class computing M(α) and nα ∈Mov1(X)∗. As D is the differential of vol1/n

on big and movable divisor classes, we have D(Lα)= 〈Ln−1
α 〉. Note that M(α)= 〈Ln−1

α 〉 · Lα = vol(Lα).
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To finish the proof, we observe that nα ∈Mov1(X). This follows since α is movable: by the definition
of Lα, for any pseudoeffective divisor class E and t ≥ 0 we have

α · Lα
vol(Lα)1/n ≤

α · Pσ (Lα + t E)
vol(Lα + t E)1/n ≤

α · (Lα + t E)
vol(Lα + t E)1/n

with equality at t = 0. This then implies

nα · E ≥ 0.

Thus nα ∈Mov1(X). Intersecting against Lα , we have nα · Lα = 0. This shows nα = 0 because Lα is an
interior point of Eff1(X) and Eff1(X)∗ =Mov1(X). So we have α = D(Lα)= 〈Ln−1

α 〉.
Finally, uniqueness follows from Corollary 3.7. �

We note in passing an immediate consequence:

Corollary 3.15. Let X be a projective variety of dimension n. Then the rays spanned by classes of
irreducible curves which deform to cover X are dense in Mov1(X).

Proof. It suffices to prove this on a resolution of X . By Theorem 3.14 it suffices to show that any class of
the form 〈Ln−1

〉 for a big divisor L is a limit of rescalings of classes of irreducible curves which deform
to cover X . Indeed, we may even assume that L is a Q-Cartier divisor. Then the positive product is a limit
of the pushforward of complete intersections of ample divisors on birational models, whence the result. �

We can also describe the boundary of Mov1(X), in combination with Lemma 3.11.

Corollary 3.16. Let X be a smooth projective variety of dimension n. Let α be a movable class with
M(α) > 0 and let Lα be the unique big movable divisor whose positive product is α. Then α is on the
boundary of Mov1(X) if and only if Lα is on the boundary of Mov1(X).

Proof. Note that α is on the boundary of Mov1(X) if and only if it has vanishing intersection against
a class D lying on an extremal ray of Eff1(X). Lemma 3.11 shows that in this case D is not movable,
so by [Nakayama 2004, Chapter III.1] D is (after rescaling) the class of an integral divisor on X which
we continue to call D. By [Boucksom et al. 2009, Proposition 4.8 and Theorem 4.9], the equation
〈Ln−1

α 〉·D= 0 holds if and only if D ∈B+(Lα). Altogether, we see that α is on the boundary of Mov1(X)
if and only if Lα is on the boundary of Mov1(X). �

Arguing using abstract properties of polar transforms just as in [Lehmann and Xiao 2016], the good
analytic properties of the volume function for divisors imply most of the other analytic properties of M.

Theorem 3.17 (see Theorem 2.14, and compare with [Lehmann and Xiao 2016, Theorem 5.6]). Let X be
a smooth projective variety of dimension n. For any movable curve class α with M(α) > 0, let Lα denote
the unique big and movable divisor class satisfying 〈Ln−1

α 〉 = α. As we vary α in Mov1(X)M, Lα depends
continuously on α.
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Theorem 3.18 (compare with [Lehmann and Xiao 2016, Theorem 5.11]). Let X be a smooth projective
variety of dimension n. For a curve class α = 〈Ln−1

α 〉 in Mov1(X)M and for an arbitrary curve class
β ∈ N1(X) we have

d
dt

∣∣∣∣
t=0

M(α+ tβ)=
n

n− 1
Pσ (Lα) ·β.

Theorem 3.19 (see Theorem 2.13, and compare with [Lehmann and Xiao 2016, Theorem 5.10]). Let
X be a smooth projective variety of dimension n. Let α1, α2 be two big and movable curve classes in
Mov1(X)M. Then

M(α1+α2)
n−1/n

≥M(α1)
n−1/n

+M(α2)
n−1/n

with equality if and only if α1 and α2 are proportional.

Remark 3.20. Theorem 3.19 can be interpreted as an analogue of the Knesser–Süss inequality for
polytopes. We clarify this relationship when discussing toric varieties in Section 4.

Another application of the results in this section is the Morse-type bigness criterion for movable curve
classes, which is slightly different from [Lehmann and Xiao 2016, Theorem 5.18].

Theorem 3.21. Let X be a smooth projective variety of dimension n. Let α, β be two curve classes lying
in Mov1(X)M. Write α = 〈Ln−1

α 〉 and β = 〈Ln−1
β 〉 for the unique big and movable divisor classes Lα, Lβ

given by Theorem 3.14. Then we have

M(α−β)n−1/n
≥ (M(α)− nLα ·β) ·M(α)−1/n

= (vol(Lα)− nLα ·β) · vol(Lα)−1/n.

In particular, we have

M(α−β)≥ vol(Lα)−
n2

n− 1
Lα ·β

and the curve class α−β is big whenever M(α)− nLα ·β > 0.

Proof. By [Lehmann and Xiao 2016, Section 4.2] it suffices to prove a Morse-type bigness criterion for
the difference of two movable divisor classes. So we need to prove L −M is big whenever

〈Ln
〉− n〈Ln−1

〉 ·M > 0.

This is proved (in the Kähler setting) in [Xiao 2018, Theorem 1.1]. �

Remark 3.22. We remark that we cannot extend this Morse-type criterion from big and movable divisors
to arbitrary pseudoeffective divisor classes. A very simple construction provides the counter-examples,
e.g., the blow up of P2 (see [Trapani 1995, Example 3.8]).

Combining Theorem 3.14 and Theorem 3.17, we obtain:

Corollary 3.23. Let X be a smooth projective variety of dimension n. Then

8 :Mov1(X)vol→Mov1(X)M, L 7→ 〈Ln−1
〉

is a homeomorphism.
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Remark 3.24. Modified versions of many of the results in this section hold for singular varieties as
well (see Remark 3.10). For example, by similar arguments we can see that any element in the interior
of Mov1(X) is the positive product of some big divisor class regardless of singularities. Conversely,
whenever M is +-differentiable we obtain a Zariski decomposition structure for vol by Theorem 2.13.

Remark 3.25. All the results above extend to smooth varieties over algebraically closed fields. How-
ever, for compact Kähler manifolds some results rely on Demailly’s conjecture on the transcendental
holomorphic Morse-type inequality, or equivalently, on the extension of the results of [Boucksom et al.
2009] to the Kähler setting. Since the results of [Boucksom et al. 2009] are used in an essential way in
the proof of Theorems 3.14 and 3.2 (via the proof of [Fulger and Lehmann 2017b, Proposition 5.3]),
the only statement in this section which extends unconditionally to the Kähler setting is Lemma 3.11.
However, these conjectures are known if X is a compact hyperkähler manifold or projective manifold
(see [Boucksom et al. 2013, Theorem 10.12; Nyström and Boucksom 2016]), so all of our results extend
to compact hyperkähler manifolds.

4. Positivity functions on toric varieties

We study the function M on toric varieties, showing that it can be interpreted by the underlying special
structures. In this section, X will denote a simplicial projective toric variety of dimension n. In terms of
notation, X will be defined by a fan 6 in a lattice N with dual lattice M . We let {vi } denote the primitive
generators of the rays of 6 and {Di } denote the corresponding classes of T -divisors. Our goal is to
interpret the properties of the function M in terms of toric geometry.

Positive product on toric varieties. Suppose that L is a big movable divisor class on the toric variety X .
Then L naturally defines a (nonlattice) polytope QL ; if we choose an expression L =

∑
ai Di , then

QL = {u ∈ MR | 〈u, vi 〉+ ai ≥ 0}

and changing the choice of representative corresponds to a translation of QL . Conversely, suppose that Q
is a full-dimensional polytope such that the unit normals to the facets of Q form a subset of the rays of 6.
Then Q uniquely determines a big movable divisor class L Q on X . The divisors in the interior of the
movable cone correspond to those polytopes whose facet normals coincide with the rays of 6.

Given polytopes Q1, . . . , Qn , let V (Q1, . . . , Qn) denote the mixed volume of the polytopes. [Bouck-
som et al. 2009] explains that the positive product of big movable divisors L1, . . . , Ln can be interpreted
via the mixed volume of the corresponding polytopes:

〈L1 · · · Ln〉 = n!V (Q1, . . . , Qn).

The function M. In this section we use a theorem of Minkowski to describe the function M. We thank
J. Huh for a conversation working out this picture.

Recall that a class α ∈Mov1(X) defines a nonnegative Minkowski weight on the rays of the fan 6—
that is, an assignment of a positive real number ti to each vector vi such that

∑
tivi = 0. From now on
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we will identify α with its Minkowski weight. We will need to identify which movable curve classes are
positive along a set of rays which span Rn .

Lemma 4.1. Suppose α ∈Mov1(X) satisfies M(α) > 0. Then α is positive along a spanning set of rays
of 6.

We will soon see that the converse is also true in Theorem 4.2.

Proof. Suppose that there is a hyperplane V which contains every ray of 6 along which α is positive.
Since X is projective, 6 has rays on both sides of V . Let D be the effective divisor consisting of the sum
over all the primitive generators of rays of 6 not contained in V . It is clear that the polytope defined by
D has nonzero projection onto the subspace spanned by V⊥, and in particular, that the polytope defined
by D is nonzero. Thus the asymptotic growth of sections of m D is at least linear in m, so Pσ (D) 6= 0 and
α has vanishing intersection against a nonzero movable divisor. Lemma 3.11 shows that M(α)= 0. �

Minkowski’s theorem asserts the following. Suppose that u1, . . . , us are unit vectors which span Rn

and that r1, . . . , rs are positive real numbers. Then there exists a polytope P with unit normals u1, . . . , us

and with corresponding facet volumes r1, . . . , rs if and only if the ui satisfy

r1u1+ · · ·+ rsus = 0.

Moreover, the resulting polytope is unique up to translation. (See [Klain 2004] for a proof which is
compatible with the results below.) If a vector u is a unit normal to a facet of P , we will use the notation
vol(Pu) to denote the volume of the facet corresponding to u.

If α is positive on a spanning set of rays, then it canonically defines a polytope (up to translation) via
Minkowski’s theorem by choosing the vectors ui to be the unit vectors in the directions vi and assigning
to each the constant

ri =
ti |vi |

(n− 1)!
.

Note that this is the natural choice of volume for the corresponding facet, as it accounts for

• the discrepancy in length between ui and vi , and

• the factor 1/(n− 1)! relating the volume of an (n−1)-simplex to the determinant of its edge vectors.

We denote the corresponding polytope in MR defined by the theorem of Minkowski by Pα.

Theorem 4.2. Suppose α is a movable curve class which is positive on a spanning set of rays and let Pα
be the corresponding polytope. Then

M(α)= n! vol(Pα).

Furthermore, the big movable divisor Lα corresponding to the polytope Pα satisfies 〈Ln−1
α 〉 = α.

Proof. Let L ∈Mov1(X) be a big movable divisor class and denote the corresponding polytope by QL .
We claim that the intersection number can be interpreted as a mixed volume:

L ·α = n!V (Pn−1
α , QL).
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To see this, define for a compact convex set K the function hK (u)= supv∈K {v · u}. Using [Klain 2004,
Equation (5)]

V (Pn−1
α , QL)=

1
n

∑
u a facet of Pα+QL

hQL (u) vol(Pu
α )=

1
n

∑
rays vi

(
ai

|vi |

)(
ti |vi |

(n− 1)!

)
=

1
n!

∑
rays vi

ai ti =
1
n!

L ·α.

Note that we actually have equality in the second line because L is big and movable. Recall that by the
Brunn–Minkowski inequality

V (Pn−1
α , QL)≥ vol(Pα)n−1/n vol(QL)

1/n

with equality only when Pα and QL are homothetic. Thus

M(α)= inf
L big movable class

(
L ·α

vol(L)1/n

)n/(n−1)

= inf
L big movable class

(
n!V (Pn−1

α , QL)

n!1/n vol(QL)1/n

)n/(n−1)

≥ n! vol(Pα).

Furthermore, the equality is achieved for divisors L whose polytope is homothetic to Pα, showing the
computation of M(α). Furthermore, since the divisor Lα defined by the polytope computes M(α) we see
that 〈Ln−1

α 〉 is proportional to α. By computing M we deduce the equality:

M(〈Ln−1
α 〉)= vol(L)= n! vol(Pα)=M(α). �

The previous result shows:

Corollary 4.3. Let α be a curve class in Mov1(X)M. Then α ∈ CI1(X) if and only if the normal fan to
the corresponding polytope Pα is refined by 6. In this case we have

v̂ol(α)= n! vol(Pα).

Proof. By the uniqueness in Theorem 3.14, α ∈ CI1(X) if and only if the corresponding divisor Lα as in
Theorem 4.2 is big and nef. �

For toric varieties, much of the theory developed in this paper reduces to results from the theory of
convex bodies. For example, suppose that we have movable curve classes α1, α2. Then the polytope
corresponding to α1+ α2 is (essentially by definition) the Blaschke sum of the polytopes Pα1 and Pα2 .
Thus the inequality

M(α1+α2)
n−1/n

≥M(α1)
n−1/n

+M(α2)
n−1/n

of Theorem 3.19 is exactly the Kneser–Süss inequality when interpreted via toric geometry. Similarly,
the derivative formula of Theorem 3.18 follows from the theory of mixed volumes. See [Lehmann and
Xiao 2017] for more details.

5. Comparing the complete intersection cone and the movable cone

Consider the functions v̂ol and M on the movable cone of curves Mov1(X). By their definitions we always
have v̂ol ≥M on the movable cone, and [Xiao 2017, Remark 3.1] asks whether one can characterize
when equality holds. In this section we show:
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Theorem 5.1. Let X be a smooth projective variety of dimension n and let α be a big and movable class.
Then v̂ol(α)=M(α) if and only if α ∈ CI1(X).

Thus v̂ol and M can be used to distinguish whether a big movable curve class lies in CI1(X) or not.
This result is important in Section 6.

Proof. If α = Bn−1 is a complete intersection class, then v̂ol(α) = vol(B) =M(α). By continuity the
equality holds true for any big curve class in CI1(X).

Conversely, suppose that α is not in the complete intersection cone. The claim is clearly true if
M(α)= 0, so by Theorem 3.14 it suffices to consider the case when there is a big and movable divisor
class L such that α = 〈Ln−1

〉. Note that L can not be big and nef since α /∈ CI1(X).
We prove v̂ol(α) >M(α) by contradiction. First, by the definition of v̂ol we always have

v̂ol(〈Ln−1
〉)≥M(〈Ln−1

〉)= vol(L).

Suppose v̂ol(〈Ln−1
〉) = vol(L). For convenience, we assume vol(L) = 1. By rescaling the positive

part of a Zariski decomposition, we find a big and nef divisor class B with vol(B) = 1 such that
v̂ol(〈Ln−1

〉)= (〈Ln−1
〉 · B)n/(n−1). For the divisor class B we get

〈Ln−1
〉 · B = 1= vol(L)n−1/n vol(B)1/n.

By Proposition 3.5, this implies L and B are proportional which contradicts the nonnefness of L . Thus
we must have v̂ol(〈Ln−1

〉) > vol(L)=M(〈Ln−1
〉). �

We also obtain:

Proposition 5.2. Let X be a smooth projective variety of dimension n and let α be a big and movable curve
class. Then α ∈ CI1(X) if and only if for any birational morphism φ : Y → X we have v̂ol(φ∗α)= v̂ol(α).

Proof. The forward implication is clear. For the reverse implication, we first consider the case when
M(α) > 0. Let L be a big movable divisor class satisfying 〈Ln−1

〉 = α. Choose a sequence of birational
maps φε : Yε→ X and ample divisor classes Aε on Yε defining an ε-Fujita approximation for L . Then
vol(L) ≥ vol(Aε) > vol(L)− ε and the classes φε∗Aε limit to L . Note that Aε · φ∗εα = φε∗Aε · α. This
implies that for any ε > 0 we have

v̂ol(α)= v̂ol(φ∗εα)≤
(α ·φε∗Aε)n/(n−1)

vol(L)1/n−1 .

As ε shrinks the right-hand side approaches vol(L)=M(α), and we conclude by Theorem 5.1.
Next we consider the case when M(α)= 0. Choose a class ξ in the interior of Mov1(X) and consider

the classes α+ δξ for δ > 0. The argument above shows that for any ε > 0, there is a birational model
φε : Yε→ X such that

v̂ol(φ∗ε (α+ δξ)) <M(α+ δξ)+ ε.
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But we also have v̂ol(φ∗εα)≤ v̂ol(φ∗ε (α+δξ)) since the pullback of the nef curve class δξ is pseudoeffective.
Taking limits as ε→ 0, δ→ 0, we see that we can make the volume of the pullback of α arbitrarily small,
a contradiction to the assumption and the bigness of α. �

As an illustration of the comparison between v̂ol and M, we discuss Mori dream spaces.

Example 5.3. Let X be a Mori dream space. Recall that a small Q-factorial modification (henceforth
SQM) φ : X 99K X ′ is a birational contraction (i.e., does not extract any divisors) defined in codimension 1
such that X ′ is projective Q-factorial. Hu and Keel [2000] showed that for any SQM the strict transform
defines an isomorphism φ∗ : N 1(X)→ N 1(X ′) which preserves the pseudoeffective and movable cones of
divisors. (More generally, any birational contraction induces an injective pullback φ∗ : N 1(X ′)→ N 1(X)
and dually a surjection φ∗ : N1(X)→ N1(X ′).) The SQM structure induces a chamber decomposition of
the pseudoeffective and movable cones of divisors.

One would like to see a “dual picture” in N1(X) of this chamber decomposition. However, it does not
seem interesting to simply dualize the divisor decomposition: the resulting cones are no longer pseudo-
effective and are described as intersections instead of unions. Motivated by the Zariski decomposition
for curves, we define a chamber structure on the movable cone of curves as a union of the complete
intersection cones on SQMs.

Note that for each SQM we obtain by duality an isomorphism φ∗ : N1(X)→ N1(X ′) which preserves
the movable cone of curves. We claim that the strict transforms of the various complete intersection cones
define a chamber structure on Mov1(X). More precisely, given any birational contraction φ : X 99K X ′

with X ′ normal projective, define

CI◦φ :=
⋃

A ample on X ′
〈φ∗An−1

〉.

Then:

• Mov1(X) is the union over all SQMs φ : X 99K X ′ of CI◦φ = φ
−1
∗

CI1(X ′), and the interiors of the
CI◦φ are disjoint.

• The set of classes in Mov1(X)M is the disjoint union over all birational contractions φ : X 99K X ′ of
the CI◦φ .

To see this, first recall that for a pseudoeffective divisor L the σ -decomposition of L and the volume are
preserved by φ∗. We know that each α ∈Mov1(X)M has the form 〈Ln−1

〉 for a unique big and movable
divisor L . If φ : X 99K X ′ denotes the birational canonical model obtained by running the L-MMP, and A
denotes the corresponding ample divisor on X ′, then φ∗α = An−1 and α = 〈φ∗An−1

〉. The various claims
now can be deduced from the properties of divisors and the MMP for Mori dream spaces as in [Hu and
Keel 2000, 1.11 Proposition].

Since the volume of divisors behaves compatibly with strict transforms of pseudoeffective divisors, the
description of φ∗ above shows that M also behaves compatibly with strict transforms of movable curves
under an SQM. However, the volume function can change: we may well have v̂ol(φ∗α) 6= v̂ol(α). The



Positivity functions for curves on algebraic varieties 1271

reason is that the pseudoeffective cone of curves is also changing as we vary φ. In particular, the set

Cα,φ := {φ∗α− γ | γ ∈ Eff1(X ′)}

will look different as we vary φ. Since v̂ol is the same as the maximum value of M(β) for β ∈ Cα,φ , the
volume and Zariski decomposition for a given model will depend on the exact shape of Cα,φ .

Remark 5.4. Theorem 5.1 also holds for smooth varieties over any algebraically closed field and for
compact hyperkähler manifolds or projective manifolds as explained in Section 2.

6. Comparison between the positivity functions for curves

Asymptotic point counts and v̂ol. In this section we give the proof of the main result, comparing the
volume function for pseudoeffective curves with its mobility function. Recall from the introduction what
we are trying to show (slightly reordered):

Theorem 6.1. Let X be a smooth projective variety of dimension n and let α∈Eff1(X) be a pseudoeffective
curve class. Then the following results hold:

(1) v̂ol(α)≤mob(α)≤ n! v̂ol(α).

(2) Assume Conjecture 1.4. Then mob(α)= v̂ol(α).

(3) v̂ol(α)= wmob(α).

The upper bound in the first part improves the related result [Xiao 2017, Theorem 3.2]. Before giving
the proof, we repeat the following estimate of v̂ol in [Lehmann and Xiao 2016].

Proposition 6.2. Let X be a smooth projective variety of dimension n. Choose positive integers {ki }
r
i=1.

Suppose that α ∈Mov1(X) is represented by a family of irreducible curves such that for any collection of
general points x1, x2, . . . , xr , y of X , there is a curve in our family which contains y and contains each xi

with multiplicity ≥ ki . Then

v̂ol(α)n−1/n
≥M(α)n−1/n

≥

∑
i ki

r1/n .

This is just a rephrasing of well-known results in birational geometry; see for example [Kollár 1996,
V.2.9 Proposition].

Proof. By continuity and rescaling invariance, it suffices to show that if L is a big and movable Cartier
divisor class then ( r∑

i=1

ki

)
vol(L)1/n

r1/n ≤ L ·C.

A standard argument (see for example [Lehmann 2016, Example 8.19]) shows that for any ε > 0 and
any very general points {xi }

r
i=1 of X there is a positive integer m and a Cartier divisor M numerically

equivalent to mL and such that multxi M ≥ mr−1/n vol(L)1/n
− ε for every i . By the assumption on
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the family of curves we may find an irreducible curve C with multiplicity ≥ ki at each xi that is not
contained M . Then

m(L ·C)≥
r∑

i=1

ki multxi M ≥
( r∑

i=1

ki

)(
m vol(L)1/n

r1/n − ε

)
.

Divide by m and let ε go to 0 to conclude. �

Example 6.3. The most important special case is when α is the class of a family of irreducible curves
such that for any two general points of X there is a curve in our family containing them. Proposition 6.2
then shows that v̂ol(α)≥ 1 and M(α)≥ 1.

We also need to give a formal definition of the mobility count. Its properties are studied in more depth
in [Lehmann 2016].

Definition 6.4. Let X be an integral projective variety and let W be a reduced variety. Suppose that
U ⊂W × X is a subscheme and let p :U→W and s :U→ X denote the projection maps. The mobility
count mc(p) of the morphism p is the maximum nonnegative integer b such that the map

U ×W U ×W · · · ×W U s×s×···×s
−−−−−→ X × X × · · ·× X

is dominant, where we have b terms in the product on each side. (If the map is dominant for every positive
integer b, we set mc(p)=∞.)

For α ∈ N1(X)Z, the mobility count of α, denoted mc(α), is defined to be the largest mobility count of
any family of effective curves representing α.

The mobility is then defined as

mob(α)= lim sup
m→∞

mc(mα)
mn/(n−1)/n!

.

Proof of Theorem 6.1. (1) We compare mob and v̂ol. We first prove the upper bound. By continuity and
homogeneity it suffices to prove the upper bound for a class α in the natural sublattice of integral classes
N1(X)Z. Suppose that p :U→W is a family of curves representing mα of maximal mobility count for a
positive integer m. Suppose that a general member of p decomposes into irreducible components {Ci };
arguing as in [Lehmann 2016, Corollary 4.10], we must have mc(p)=

∑
i mc(Ui ), where Ui represents

the closure of the family of deformations of Ci . We also let βi denote the numerical class of Ci .
Suppose that mc(Ui ) > 1. Then we may apply Proposition 6.2 with all ki = 1 and r =mc(Ui )− 1 to

deduce that
v̂ol(βi )≥mc(Ui )− 1.

If mc(Ui )≤ 1 then Proposition 6.2 does not apply but at least we still know that v̂ol(βi )≥ 0≥mc(Ui )−1.
Fix an ample Cartier divisor A, and note that the number of components Ci is at most m A ·α. All told,
we have

v̂ol(mα)≥
∑

i

v̂ol(βi )≥
∑

i

(mc(Ui )− 1)≥mc(mα)−m A ·α.
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Thus,

v̂ol(α)= lim sup
m→∞

v̂ol(mα)
mn/(n−1) ≥ lim sup

m→∞

mc(mα)−m A ·α
mn/(n−1) =

mob(α)
n!

.

The lower bound relies on the Zariski decomposition of curves in Theorem 2.16. By [Lehmann 2016,
Example 6.2] we have

Bn
≤mob(Bn−1)

for any nef divisor B. With Theorem 2.16, this implies

v̂ol(Bn−1)≤mob(Bn−1).

In general, for a big curve class α we have

mob(α)≥ sup
B nef,
α�Bn−1

mob(Bn−1)≥ sup
B nef,
α�Bn−1

Bn
= v̂ol(α).

where the last equality again follows from Theorem 2.16. This finishes the proof.

(2) To prove the second part of Theorem 6.1, we need the following result:

Lemma 6.5 [Fulger and Lehmann 2017b, Corollary 6.16]. Let X be a smooth projective variety of
dimension n and let α be a big curve class. Then there is a big movable curve class β satisfying β � α
such that

mob(α)=mob(β)=mob(φ∗β)

for any birational map φ : Y → X from a smooth variety Y .

We now prove the statement via a sequence of claims.

Claim. Assume Conjecture 1.4. If β is a movable curve class with M(β) > 0, then for any ε > 0 there is
a birational map φε : Yε→ X such that

M(β)− ε ≤mob(φ∗εβ)≤M(β)+ ε.

By Theorem 3.14, we may suppose that there is a big divisor L such that β = 〈Ln−1
〉. Without loss of

generality we may assume that L is effective. Fix an ample effective divisor G as in [Fulger and Lehmann
2017b, Proposition 6.24]; the proposition shows that for any sufficiently small ε there is a birational
morphism φε : Yε→ X and a big and nef divisor Aε on Yε satisfying

Aε ≤ Pσ (φ∗ε L)≤ Aε + εφ∗εG.

Note that vol(Aε)≤ vol(L)≤ vol(Aε + εφ∗εG). Furthermore, we have

vol(Aε + εφ∗εG)≤ vol(φε∗Aε + εG)≤ vol(L + εG).



1274 Brian Lehmann and Jian Xiao

Applying [Fulger and Lehmann 2017b, Lemma 6.21] and the invariance of the positive product under
passing to positive parts, we have

An−1
ε � φ∗εβ � (Aε + εφ

∗

εG)n−1.

Applying Conjecture 1.4 (which is only stated for ample divisors but applies to big and nef divisors by
continuity of mob), we find

vol(Aε)=mob(An−1
ε )≤mob(φ∗εβ)≤mob((Aε + εφ∗ε (G))

n−1)= vol(Aε + εφ∗εG).

As ε shrinks the two outer terms approach vol(L)=M(β).

Claim. Assume Conjecture 1.4. If a big movable curve class β satisfies mob(β)=mob(φ∗β) for every
birational φ then we must have β ∈ CI1(X).

When M(β) > 0, by the previous claim we see from taking a limit that mob(β) = M(β). By
Theorem 6.1(1) and Theorem 5.1 we get

v̂ol(β)≤M(β)≤ v̂ol(β)

and Theorem 5.1 implies the result. When M(β)= 0, fix a class ξ in the interior of the movable cone and
consider β + δξ for δ > 0. By the previous claim, for any ε > 0 we can find a sufficiently small δ and a
birational map φε : Yε→ X such that mob(φ∗ε (β+δξ)) < ε. We also have mob(φ∗εβ)≤mob(φ∗ε (β+δξ))
since the pullback of the nef curve class δξ is pseudoeffective. By the assumption on the birational
invariance of mob(β), we can take a limit to obtain mob(β)= 0, a contradiction to the bigness of β.

To finish the proof, recall that Lemma 6.5 implies that the mobility of α must coincide with the mobility
of a movable class β lying below α and satisfying mob(π∗β)=mob(β) for any birational map π . Thus
we have shown

mob(α)= sup
B nef,
α�Bn−1

mob(Bn−1).

By Conjecture 1.4 again, we obtain
mob(α)= sup

B nef,
α�Bn−1

Bn.

But the right-hand side agrees with v̂ol(α) by Theorem 2.16. This proves the equality mob(α)= v̂ol(α)
under the Conjecture 1.4.

(3) We now prove the equality v̂ol= wmob. The key advantage is that the analogue of Conjecture 1.4
is known for the weighted mobility: Example 8.19 of [Lehmann 2016] shows that for any big and nef
divisor B we have wmob(Bn−1)= Bn .

We first prove the inequality v̂ol ≥ wmob. The argument is essentially identical to the upper bound
in Theorem 6.1(1); by continuity and homogeneity it suffices to prove it for classes in N1(X)Z. Choose
a positive integer µ and a family of curves of class µmα achieving wmc(mα). By splitting up into
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components and applying Proposition 6.2 with equal weight µ at every point we see that for any
component Ui with class βi we have

v̂ol(βi )≥ µ
n/(n−1)(wmc(Ui )− 1)

Arguing as in Theorem 6.1(1), we see that for any fixed ample Cartier divisor A we have

v̂ol(mµα)≥ µn/(n−1)(wmc(mα)−m A ·α).

Rescaling by µ and taking a limit proves the statement.
We next prove the inequality v̂ol ≤ wmob. Again, the argument is identical to the lower bound in

Theorem 6.1(1). It is clear that the weighted mobility can only increase upon adding an effective class.
Using continuity and homogeneity, the same is true for any pseudoeffective class. Thus we have

wmob(α)≥ sup
B nef,
α�Bn−1

wmob(Bn−1)= sup
B nef,
α�Bn−1

Bn
= v̂ol(α).

where the second equality follows from [Lehmann 2016, Example 8.19]. This finishes the proof of the
equality v̂ol= wmob. �

Remark 6.6. We expect Theorem 6.1 to also hold over any algebraically closed field, but we have not
thoroughly checked the results on asymptotic multiplier ideals used in the proof of [Fulger and Lehmann
2017b, Proposition 6.24].

Theorem 6.1 yields two interesting consequences:

• The theorem indicates (loosely speaking) that if the mobility count of complete intersection classes is
optimized by complete intersection curves, then the mobility count of any curve class is optimized by
complete intersection curves lying below the class.

This result is very surprising: it indicates that the “positivity” of a curve class is coming from ample
divisors in a strong sense. For example, suppose that X and X ′ are isomorphic in codimension 1. If
we take a complete intersection class α on X , we expect that complete intersections of ample divisors
maximize the mobility count. However, the strict transform of these curves on X ′ should not maximize
the mobility count. Instead, if we deform these curves so that they break off a piece contained in the
exceptional locus, the part left over will lie in a family which deforms more than the original.
• The theorem suggests that the Zariski decomposition constructed in [Fulger and Lehmann 2017b] for
curves is not optimal: instead of defining a positive part in the movable cone, if Conjecture 1.4 is true we
should instead define a positive part in the complete intersection cone. It would be interesting to see an
analogous improvement for higher dimension cycles.

Asymptotic point counts and M. Finally, we show that M can be given an enumerative interpretation.
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Definition 6.7. Let p :U →W be a family of curves on X with morphism s :U → X . We say that U is
strictly movable if:

(1) For each component Ui of U , the morphism s|Ui is dominant.

(2) For each component Ui of U , the morphism p|Ui has generically irreducible fibers.

We then define mobmov and wmobmov exactly analogously to mob and wmob, except that we only
allow contributions of strictly movable families of curves. Note that mobmov and wmobmov vanish outside
of Mov1(X) since these classes are not represented by a sum of irreducible curves which deform to
dominate X . Arguing just as in [Lehmann 2016, Section 5], one sees that mobmov and wmobmov are
homogeneous of weight n/(n− 1), and are continuous in the interior of Mov1(X).

Lemma 6.8. Let φ : Y → X be a birational morphism of smooth projective varieties. Let p : U → W
be a family of irreducible curves admitting a dominant map s :U → X. Let UY be the family of curves
defined by strict transforms. Letting α, αY denote respectively the classes of the families on X, Y , we have
that φ∗α−αY is the class of an effective R-curve.

Proof. Since αY is the class of a family of irreducible curves which dominates Y , it has nonnegative
intersection against every effective divisor. Arguing as in the negativity of contraction lemma, we
can find a basis {ei } of ker(φ∗ : N1(Y )→ N1(X)) consisting of effective curves and a basis { f j } of
ker(φ∗ : N 1(Y )→ N 1(X)) consisting of effective divisors such that the intersection matrix is negative
definite and the only negative entries are on the diagonal. Just as in [Bauer et al. 2012, Lemma 4.1], this
shows that

αY = φ
∗φ∗αY −β = φ

∗α−β

for some effective curve class β supported on the exceptional divisors. �

Theorem 6.9. Let X be a smooth projective variety of dimension n and let α ∈Mov1(X)◦. Then:

(1) M(α)= wmobmov(α).

(2) Assume Conjecture 1.4. Then M(α)=mobmov(α).

Proof. (1) Suppose that φ : Y → X is a birational model of X and that A is an ample Cartier divisor on X .
By pushing-forward complete intersection families, we see that wmobmov(φ∗An−1)≥ An . By continuity
we obtain the inequality M(α)≤ wmobmov(α) for any α ∈Mov1(X)◦.

To see the reverse inequality, by continuity and homogeneity it suffices to consider the case when
α ∈Mov1(X)◦Z. Choose a positive integer µ and a strictly movable family of curves U of class µmα
achieving wmcmov(mα). Let φ : Y → X be a birational model and let UY denote the strict transform class
on Y with numerical class α′. By arguing as in the proof of Theorem 6.1, we find that

M(α′)≥ µn/(n−1)(wmcmov(mα)−m A ·α).

Furthermore by Lemma 6.8 we have v̂ol(mµφ∗α)≥ v̂ol(α′). Dividing by mn/(n−1) and taking a limit as
m increases, we see that M(α)≥ wmobmov(α).
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(2) The proof of M(α)≤mobmov(α) is the same as in (1). Conversely, suppose that U is a strictly movable
family of curves achieving mcmov(mα). Let φ : Y → X be a birational morphism of smooth varieties;
by combining Lemma 6.8 with [Fulger and Lehmann 2017b, Section 4], we see that mcmov(mα) ≤
mcK(mφ∗α), where K is a cone chosen as in [Fulger and Lehmann 2017b, Definition 4.8] and includes a
fixed effective basis of the kernel of φ∗ : N1(Y )→ N1(X) chosen as in Lemma 6.8. Taking limits, we see
that mobmov(α)≤mob(φ∗α) for any birational map φ.

Choose a sequence of birational maps φi : Yi → X as in the proof of Proposition 5.2 so that v̂ol(φ∗i α)
limits to M(α). By taking a limit over i and applying Theorem 6.1(2) we finish the proof. �
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