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We provide the first steps towards a new relative trace formula proof of the celebrated formula of
Waldspurger relating the square of a toric period integral on PGL2 to the central value of an L-function.
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Introduction

In this paper we present the first steps towards a new and independent proof of Waldspurger’s remarkable
formula for toric periods of automorphic forms on PGL2. This formula, which involves the period integral
of a cusp form ' 2 � on the group PGL2 — or an inner form — over a number field F along a nonsplit
torus T� PGL2, can be loosely written as

jP�.�/j
2
D .�/L

�
1
2
; �
�
:

Here, A is the ring of adeles over F, � D � ˝ � is an automorphic cuspidal representation of
T.A/ � PGL2.A/, L

�
1
2
; �
�

is the central critical value of the Rankin–Selberg L-function attached
to � D �˝ � , and the period integral P�.'/ is defined as

P�.�/ WD

Z
T.F /nT.A/

�.t/'.t/ dt D

Z
T.F /nT.A/

�.t/ dt;
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where we write � D �˝' 2 � . For the purpose of this introduction, we will be vague about the nature of
the quantity .�/, except to say that it can be made explicit and contains both local and global information
about the automorphic cuspidal representation � and the vector �.

This result has a storied past. The formula in question was first shown by Waldspurger [1985] using
methods of the theta correspondence. Since then, there have been many other proofs given. Most notably,
Jacquet [1986; 1987] provided an ambitious alternate approach to this theorem; see also [Jacquet and
Chen 2001]. The method relies on writing down and comparing two relative trace formulas, foregoing the
constructive methods of the theta correspondence and instead deducing the result from a spectral identity.
The technique is appealingly general. Indeed, by adapting these constructions, Jacquet and Rallis later
offered a possible avenue of attack on a high-rank relative of Waldspurger’s formula: the Gan–Gross–
Prasad (GGP) conjecture for unitary groups. This has been wildly successful. See [Jacquet and Rallis
2011; Yun 2011; Zhang 2014a; 2014b; Chaudouard and Zydor 2016; Xue 2017a; Beuzart-Plessis 2016].

Given the large number of distinct proofs of Waldspurger’s formula, it is reasonable to wonder whether
there is any benefit to seeing another. We believe there is, for the following reason. The main appeal of
our approach, over others, is that it is tuned to the interpretation of Waldspurger’s formula as the nD 2
case of a more general period relation: the Gross–Prasad conjecture for SOn �SOnC1. Unlike its cousin,
the GGP conjecture for unitary groups, orthogonal Gross–Prasad has so far resisted analysis through
trace formula techniques. And, although discussion in this paper remains restricted to Waldspurger’s
(known) case of T�PGL2 D SO2 �SO3, we hope that our work — a new relative trace formula proof of
Waldspurger’s formula — can be expanded to offer an approach to the high-rank problem. We hope to
directly address this generalization in future work.

For now, though, let us come back to earth and describe the trace formulas and comparison we have
in mind. We change notation slightly, and think of the group T�PGL2 (or an inner form T�PB�) via
exceptional isomorphism instead as SO2 �SO3. That is, we fix a nondegenerate quadratic space V of
dimension 3 together with an orthogonal decomposition V DW CFe, with e is a nonisotropic vector, and
consider the group SOW �SOV . Our first relative trace formula distribution J takes as input a function f
on .SOW �SOV /.A/. It is designed to encode the period integral P as part of its spectral expansion; it
also has a geometric expansion in terms of orbital integrals, and together we write (loosely)X

�

J�.f /D J.f /D
X


J .f /:

In the above, J�.f / is the global spherical character, a distribution that encodes the period integral P�

(the left-hand side of Waldspurger’s formula), while J .f / is the orbital integral, which is defined for
(regular semisimple)  by

J .f /D

Z
OW .A/

F.h�1h/ dh;

where

F.x/D

Z
SOW .A/

f ..h; h/.1; x// dh:
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We also construct a second, more interesting trace formula I. This distribution lives on GL2 �GL2, and
takes as input a test function f 0 on .GL2 �GL2/.A/, a Schwartz function ˆ 2 S.A/, and a “doubly even”
Schwartz function‰ 2SCC.AE/, where EDF Œ

p
dW � is the discriminant algebra ofW (equivalently, the

splitting field for the torus T ). It is designed to admit a spectral expansion into a sum of distributions I…,
which themselves encode the L-function side of Waldspurger’s formula (roughly, I… computes L

�
1
2
;…
�
,

but only for those … on GL2 �GL2 which are functorial lifts from SO2 �SO3). I also possesses a
geometric expansion, and in total we writeX

…

I….f
0
˝ˆ˝‰/D I.f 0˝ˆ˝‰/D

X
 0

s. 0/I 0.f
0
˝ˆ˝‰/:

There is something quite odd happening here. At first glance, the distribution I.f 0˝ˆ˝‰/ seems to
have no chance of admitting a geometric expansion in the usual sense of the relative trace formula, where
orbits of a group action appear through a double coset computation. However I.f 0˝ˆ˝‰/ amazingly
still unfolds into a sum of factorizable integrals, with sum indexed over some formal objects  0. These
 0 appear through a condition on Fourier coefficients. To that end, although there is some temptation
to call these objects “global orbits” — as a sum over these  0 makes up the “geometric side” of our
trace formula — we instead elect to call them global tones and their associated factorizable integrals
I 0.f

0˝ˆ˝‰/ tonal integrals. We identify a Zariski open set of tones, called the regular semisimple
locus. For such a regular semisimple tone  D .˛Iˇ; �/ the tonal integral is defined as

I 0.f
0
˝ˆ˝‰/D

Z
GL2.A/

Z
GL.2/2 .A/

f 0.g�1a.˛/h; g�1/W

�
a

�
ˇ

˛

�
g

�
R ‰.�/ dh dg:

We postpone a precise discussion of the terms appearing above to the body of this paper.
If we vary the quadratic spaces .W; V / over all pairs V DW ˚Fe with the same fixed discriminants

dW and dV , then there is a bijection between regular semisimple orbits  , which appear in the geometric
expansion of J, and regular semisimple tones  0, which appear in the geometric expansion of I. This
bijection has a remarkable property.

Theorem 0.1. Given a Schwartz function f D .f.W;V // 2
L
.W;V / S..SOW �SOV /.A//, there exists a

finite sum
P
i f
0
i ˝ˆi ˝‰i so that, for all  $  0 corresponding global regular semisimple orbits and

tones,

J .f /D
X
i

I 0 .fi ˝ˆi ˝‰i /:

Conversely, given
P
i f
0
i ˝ˆi ˝‰i , there exists f D .f.W;V // satisfying the above equality for all

 $  0.

Although we have stated this result in global language, this is really a theorem about the relationship
between the local versions of J and I 0 . See Theorem 3.4, which resolves the problem of “smooth
transfer”, as well as Theorems 3.7 and 3.15, which provide the “fundamental lemma” in the cases when
E=F is unramified or split respectively.
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It is worth noting that these results, which are the main content of the paper, still fall quite short of
reproving Waldspurger’s theorem. The main obstacle is the regularization of the trace formula I. In the
sequel [Krishna � 2019] we complete this global analysis and, as a consequence, rederive Waldspurger’s
result.

Outline of the paper. The body of this paper runs in reverse order to our discussion above. Namely, we
first describe the local results of smooth transfer and the fundamental lemma in Part I, and only then
describe the trace formulas motivating these results in Part II. Our discussion in Part II is entirely formal,
and should more or less be viewed only as motivation for the work we do in Part I. The analysis of
[Krishna � 2019] entirely supersedes this part; still, as the regularization of the trace formula is quite
foreboding, we believe it worthwhile to include this simple, albeit naive, discussion.

In Section 1 we first parametrize the orbits of SO3 =conj SO2 and describe the space of orbital integrals�,
viewed as functions on this quotient, completely explicitly. Then, in Section 2 we define �0, the space of
tonal integrals, and identify it as a space of functions on the set of tones. As a consequence, we derive
our result on smooth transfer, which we state carefully in Section 3 as Theorem 3.4. The remainder of
Section 3 in concerned with the fundamental lemma. This is stated and proved separately in these cases
of E=F unramified or E=F split as Theorems 3.7 and 3.15.

In Section 4, we construct the relative trace formula J in its naive form. Our presentation is a little
different from what one may consider the obvious approach, as we make some effort to incorporate the
outer automorphism of O2 into the trace formula. This is, in some sense, unnecessary, but appears to be the
correct philosophical setup in light of the necessary corrections to the Ichino–Ikeda conjecture (the analogue
of Waldspurger’s formula in the high-rank Gross–Prasad case); see [Xue 2017b]. Finally, in Section 5 we
set up the (naive form of the) trace formula I and decompose it into a sum of tonal integrals. As ingredients,
we briefly review some of the theory of Rankin–Selberg convolution on GL2 �GL2 as well as the theory
behind the integral representation of the symmetric square L-function for representations of GL2.

It may be helpful for the reader to violate convention and read Part II of the paper before tackling the
computations in Part I. The two parts are largely independent, and can be read in any order.

Notation. Throughout this paper, we adopt the following notation:

� F will denote either a number field or a local field of characteristic 0. In the local setting, O will denote
the ring of integers of F. In the global setting, A will denote its ring of adeles.

� E=F will be a quadratic extension. When F is a number field, we ask that E be a field. When F is
local, we allow E to be split. When E=F is local, we write OE for the integers of E, while when E=F
is global, we write AE for the adeles of E.

� Capitalized roman letters (e.g., G;GLn;GSpinV ) denote the appropriate algebraic groups over F. When
there is no real risk of confusion, and particularly when we are working in case of F a local field, we will
follow the typical abuse of notation and write G for both the algebraic group and its F -points G.F /.
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� We define, given our quadratic extension E=F, the algebraic group U.1/ to be

U.1/D fg 2 ResE=F GL1 W Ngg D 1g;

where N� is the nontrivial element of Gal.E=F / and Res denotes Weil restriction.

� When F is a local field, we will frequently talk about the space of Schwartz functions on the F points
G.F / of an algebraic group G. We denote this space by S.G.F //. It is defined as follows:

- If F is non-Archimedean, S.G.F //D C1c .G.F // is the space of locally constant and compactly
supported C-valued functions.

- If F is R or C, then we set

S.G.F // WD ff 2 C1.G.F // W jDf j is bounded for all polynomial differential operators Dg:

� We use the notation

ZD ZGL2 D

��
z 0

0 z

�
W z 2 F �

�
; ND

��
1 x

0 1

�
W x 2 F

�
;

AD
��
a1 0

0 a2

�
W ai 2 F

�

�
; BD N A; PD

��
a x

0 1

�
W a 2 F �; x 2 F

�
for subgroups of GL2 and similarly use the shorthand

z.z/D

�
z 0

0 z

�
; a.t/D

�
t 0

0 1

�
; d.a/D

�
a 0

0 a�1

�
; n.x/D

�
1 x

0 1

�
for elements of these subgroups. We will also occasionally refer to A as TGL2 throughout.

� In the global setting of F a number field, we will use Œ � � to denote the automorphic quotient. So, for
instance, we write

ŒGL2� WD GL2.F /nGL2.A/:

In various situations, we include, as is typical, the letter P to indicate that we additionally mod out by the
adelic points of the center. Thus, for instance,

ŒPGL2� WD Z.A/GL2.F /nGL2.A/D PGL2.F /nPGL2.A/:

We hope this does not cause confusion, as it conflicts slightly with our notation P for the mirabolic of GL2.

� Finally, we use

w D

�
0 1

1 0

�
; w0 D

�
0 1

�1 0

�
to denote fixed representatives of the nontrivial Weyl-group element for GL2 and for SL2 respectively.
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Part I. Local theory

In this part, we study the local integrals appearing on the “geometric” sides of the trace formulas of
Part II. These results are used crucially to establish the trace formula comparison and the resulting spectral
identities that form the backbone of our proof.

1. Orbits and orbital integrals for SO2 � SO3

1A. Preliminaries on quadratic spaces. Let us review some easy facts on quadratic spaces of dimen-
sions 2 and 3. For this subsection we let F denote an arbitrary field of characteristic not 2. Throughout
this subsection, and indeed this paper, we will use W to denote a nondegenerate quadratic space of
dimension 2 over F and V to denote one of dimension 3. If there is an embedding W ,! V then we say
that the pair .W; V / is relevant. Given any nondegenerate quadratic space U D .U;QU / of dimension n,
we call

dU WD .�1/
n.n�1/
2 det.QU /;

or its class in F �=.F �/2, the discriminant of U. Given such a U, we say a space U 0 is a pure inner form
of U if

dimU D dimU 0 D n

and
dU D dU 0

in F �=.F �/2.

Remark 1.1. Note that our language of relevant pairs is consistent with the terminology laid out in
Section 2 of [Gan et al. 2012]; in their language, given .W; V / with decomposition V DW ˚W ?, a pair
.W 0; V 0/ is a relevant pure inner form of .W; V / if V 0 DW ˚W 0?, d.W /D d.W 0/ and d.V /D d.V 0/,
and W ? ŠW 0?. This last condition is immediate when W is codimension 1 in V .

We begin with an elementary observation.

Lemma 1.2. Quadratic spaces of dimensions 2 and 3 admit the following explicit descriptions:

(1) Every nondegenerate quadratic space W of dimension 2 is of the form

.W;QW /Š .E; "N/;

where E=F is a quadratic étale algebra over F defined by E D F Œt �=.t2�dW / and " 2 F �=NE�.

(2) Every nondegenerate quadratic space V of dimension 3 is of the form

.V;QV /Š .B
TrD0;�d N/;

where B=F is a (possibly split) quaternion algebra over F, BTrD0 � B is the subspace of elements
with reduced trace 0, N denotes the reduced norm N W B! F, and d is an element of F �=.F �/2

with d D dV .
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Given a pair .dıW ; d
ı
V / 2 .F

�=.F �/2/2, there is a unique relevant pair of quadratic spaces .W0; V0/ of
dimensions 2 and 3 and with discriminants dW0 D d

ı
W , dV0 D d

ı
V so that V0 is split, i.e., has an isotropic

vector. We call this the quasisplit relevant pair associated to .dıW ; d
ı
V /. Explicitly, we may take a model

of these spaces to be

.W0;QW0/D

�
E;�

dıV
dıW

N
�

and

V0 DW0˚Fe;

where E D F Œt �=.t2� dıW / and QV0.e/D d
ı
V =d

ı
W .1 It is easy to see that .W0; V0/ as defined above are

quasisplit; if we denote by � the above identification of W0 with E and write s D �.1/, then u WD sC e is
visibly an isotropic vector of V0.

Lemma 1.2 can be thought of as a restatement of the exceptional isomorphism SOV0 Š PGL2. For
later computation, it is useful to put coordinates on this group. To do so we exploit this isomorphism,
first restating it as an observation about Clifford algebras.

1A1. Clifford algebras and GSpin. Recall that for any quadratic space U D .U;QU /, the Clifford algebra
is defined by

C.U /D T U=IQU ;

where T U denotes the tensor algebra of U and IQU is the ideal generated by all elements of the form
u˝u�Q.u/. This is a Z=2 graded algebra; i.e.,

C.U /D C0.U /˚C1.U /;

with even part denoted by C0.U /. The Clifford algebra defines a Gm extension GSpinU of SOU when U
is nondegenerate by

GSpinU D fg 2 C0.U /
�
W gug�1 2 U for all u 2 U g;

which comes equipped with a map � W GSpinU ! SOU defined by �.g/:uD gug�1. We write

1! Gm! GSpinU
�
�! SOU ! 1:

By Hilbert’s Theorem 90, this map is surjective on F -points; i.e., � W GSpinU .F /� SOU .F /.
When we restrict this construction to the simple case above, where U D W;V is either 2- or 3-

dimensional, then Lemma 1.2 implies that the Clifford algebra construction unravels into a familiar
picture.

Lemma 1.3. Let W and V be nondegenerate quadratic spaces of dimensions 2 and 3 respectively,
satisfying V DW ˚Fe for a nonisotropic vector e. Then:

1From here on, we fix two discriminants dı
W

and dı
V

and consider only relevant quadratic spaces W ,! V associated to this
pair; we also slightly simplify notation, writing dW for dı

W
and dV for dı

V
.
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(1) C0.W /ŠE, where E D F Œt �=.t2� dW /. Moreover,

GSpinW D C0.W /
�
Š ResE=F Gm

is a torus.

(2) C0.V /Š B , where B=F is the quaternion algebra of Lemma 1.2. Moreover,

GSpinV D C0.V /
�
Š B�

is an inner form of GL2.

We can put coordinates on GSpinV D C0.V /
�; every element x 2 C0.V / can be uniquely written as

x D zCwe;

where z 2C0.W / and w 2W . When .W; V /D .W0; V0/ is the unique quasisplit inner form corresponding
to a choice of two discriminants dW ; dV , then we can pin down an explicit isomorphism Mat2�2 �!�

C0.V0/; for example�
a b

c d

�
7!
aC d

2
C
bC cdW

2dW
i C

�
dW

dV

a� d

2
sC

b� cdW

2dV
s0
�
e; (1-1)

where here s D �.1/, s0 D �.
p
dW /, and i D .dW =dV /ss0 lies in C0.W0/ and satisfies i2 D dW . In the

above, � denotes the identification of .E;�.dV =dW /N/ �
�!W0. That the map Mat2�2! C0.V0/ is an

isomorphism is easy to see; we leave a proof of this assertion to the reader, with the reminder that, as
defined above, s; s0, and e all anticommute with one another.

1B. Orbits. With this language available, let us now compute the quotient space(s) that appear in our
analysis.

Let V D W ˚ Fe be as above, and denote by G D SOW �SOV the product of special orthogonal
groups. Inside of G is the subgroup HD�SOW , the diagonally embedded torus. The analysis of Part II
forces us to determine the double coset space

H.F /nG.F /=H.F /D�SOW .F /nSOW .F /�SOV .F /=�SOW .F /:

To do so, we simply note that, by the map .x; y/ 7! x�1y, we can identify

�SOW .F /nSOW .F /�SOV .F /=�SOW .F / �!� SOV .F /=conj SOW .F /;

where on the right we are considering the quotient of SOV .F / up to conjugation by SOW .F /.
We can explicitly parametrize orbits of SOW .F / acting on SOV .F / by conjugation. Let † denote a

fixed choice of representatives for F �=.F �/2.

Proposition 1.4. The set of orbits satisfies

SOV .F /=conj SOW .F /Š
�
.˛I z; b/ W ˛ 2†; z 2E=f˙1g; b 2

dV

dW
Q.W /; N zC b D ˛

�
:
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Proof. We first pull back the picture from SOV .F / to GSpinV .F /, since it is on the latter group that we
can easily put coordinates. The projection map � W GSpinV .F /! SOV .F /, which consists of scaling by
the central Gm, gives

� W F �nGSpinV .F /=
conj SOW .F / �!� SOV .F /=conj SOW .F /:

We can simplify the quotient on the left-hand side somewhat. Define

GSpin†V .F / WD fx 2 GSpinV .F / W N x 2†g;

where N is the spinor norm N W GSpinV ! Gm. This is not an algebraic variety or a group, despite
notation. However, the restriction of � to this set gives us

� W f˙1gnGSpin†V .F / �!
� SOV .F /

and so we write

� W f˙1gnGSpin†V .F /=
conj SOW .F / �!� SOV .F /=conj SOW .F /:

Let us compute the orbits of SOW .F / acting on GSpin†V .F / by conjugation. Given an element
x D z C ze satisfying N x D N z C .dV =dW /Q.w/ D ˛ for some ˛ 2 †, conjugating by an element
z0 2 C0.W /

� gives

s0.zCwe/s0�1 D zC .�.z0/:w/e

and orbits of SOW .F / on GSpin†V .F / are parametrized by the set of triples�
.˛I z; b/ W ˛ 2†; z 2E; b 2

dV

dW
Q.W /; N zC b D ˛

�
:

Finally, quotienting out by multiplication by f˙1g concludes the proof. �

The discussion above can be summarized. We identify, given x 2 SOV .F /, its associated .˛I z; b/ as
follows: first lift x arbitrarily to an element of GSpin†V .F /, which we also denote by x. This is determined
up to ˙1, and so in particular, determines an ˛ 2†. If we write this lift x D zCwe, then the invariants
by conjugation are z, up to sign, and b WD .dV =dW /Q.w/.

We can now identify a “good” locus of orbits. Recall the following definition from invariant theory.

Definition 1.5. An element x of SOW acting on SOV by conjugation is regular semisimple .r.s.s./ if both:

(1) (x is regular) The stabilizer of x is 0-dimensional.

(2) (x is semisimple) The orbit of x is (Zariski) closed.

We similarly call the orbit of x regular semisimple if x is.

Let us identify the locus of regular semisimple orbits explicitly.

Lemma 1.6. An orbit of x 2 SOV .F / is regular semisimple if and only if its corresponding b is nonzero.
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Proof. If b D 0, then x D z Cwe satisfies Q.w/ D 0. Thus, either w D 0, in which case x D z has
stabilizer all of SOW (x is not regular) or W is a split 2-dimensional quadratic space and w is a nonzero
isotropic vector. In this case, the element z lies in the closure of the orbit of x D zCwe but is not in the
orbit itself, i.e., x is not semisimple.

Conversely, it is apparent that x D z C we is nonregular if and only if w D 0. If x D z C we is
nonsemisimple, then there exists x0 D z0Cw0e which lies in the closure of the orbit of x but not in the
orbit itself. It is clear that z0D z. Now the orbit SOW :w of w in W is closed in W if W is nonsplit. Thus
the only remaining case to consider is when W is split: then, SOW :w is nonclosed only if Q.w/D 0. �

Remark 1.7. When x 2 SOV has b ¤ 0, the stabilizer of x in SOW is usually trivial. However, it can be
finite. For instance, if x D we in GSpin†V .F / with Q.w/¤ 0, then this is a regular semisimple element
and has stabilizer f˙1g � SOW of order 2.

We write

.SOV .F /=conj SOW .F //r:s:s:

for the collection of regular semisimple orbits of SOW .F / on SOV .F /.
The condition that b lie in .dV =dW /Q.W / in Proposition 1.4 may appear artificial. This can be

remedied by considering all relevant pure inner forms simultaneously.

Proposition 1.8. Taking the disjoint union over all pairs .W; V / of relevant quadratic spaces with fixed
discriminants, we finda

.W;V /

.SOV .F /=conj SOW .F //r:s:s: Š
˚
.˛I z; b/ W ˛ 2†; z 2E=f˙1g; b 2 F �;N zC b D ˛

	
:

Proof. One needs only to check the all relevant pure inner forms, i.e., relevant pairs .W; V / having the
same fixed discriminants are parametrized by elements of F �=NE�. This follows immediately from
Lemma 1.2. �

We should also say a brief word about a related quotient set, namely

SOV .F /=conj OW .F /:

It should be clear that an element of SOV .F / is OW -regular semisimple if and only if it is SOW -regular
semisimple (what we were calling, and will continue to call, simply regular semisimple). It follows
quickly that, as above, we havea
.W;V /

.SOV .F /=conj OW .F //r:s:s: Š
˚
.˛I z; b/ W ˛ 2†; z 2E=f˙1g � fid; N� g; b 2 F �; N zC b D ˛

	
;

where N� denotes the nontrivial automorphism of E=F. Note that N z D z Nz for z 2E=f˙1g � fid; N� g is
well-defined, i.e., is independent of choice of representative of z in E.
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1B1. GIT quotients. For the sake of conceptual clarity, it is worth packaging the set-theoretic orbit
analysis above in the more algebraic language of invariant theory. We will not use this interpretation
seriously, but we believe it is worth keeping in mind. We omit all proofs, as they do not differ significantly
from those given above.

Recall that given an affine variety X together with a right action of a group G, the GIT quotient,
denoted by X ==G, is simply

X ==G D Spec.F ŒX�G/;

where F ŒX� denotes the coordinate ring of X .
We can thus rewrite our description of the quotient sets above in invariant-theoretic language as follows:

SOV ==conj SOW Š f˙1g nn SpinV ==
conj SOW Š f˙1g nnResE=F Ga Š Spec.F ŒA;B; C �=.C 2�AB/;

where the last isomorphism sends aC bi D aC b
p
dW 7! .A;B; C /D .a2; b2; ab/.

Similarly, we have

SOV ==conj OW Š f˙1g nn SpinV ==
conj OW Š f˙1g � fid; N� g nnResE=F Ga Š Spec.F ŒX; Y �/;

where the last isomorphism sends xCyi D xCy
p
dW 7! .X; Y /D .x2; y2/.

The regular semisimple loci are also easy to identify: namely we have the open subvarieties

.SOV ==conj SOW /r:s:s:Df˙1gnn.ResE=F Ga�U.1//D Spec
�
F

�
A;B;C;

1

A� dWB � 1

�
=.C 2�AB/

�
and

.SOV ==conj OW /r:s:s: D Spec
�
F

�
X; Y;

1

X � dW Y � 1

��
:

Furthermore, we have identificationsa
.W;V /

.SOV .F /=conj SOW .F //r:s:s: �!� .SOV ==conj SOW /r:s:s:.F /;

.˛I xC iy; b/ 7!

�
x2

˛
;
y2

˛
;
xy

˛

�
;

and a
.W;V /

.SOV .F /=conj OW .F //r:s:s: �!� .SOV ==conj OW /r:s:s:.F /;

.˛I xC iy; b/ 7!

�
x2

˛
;
y2

˛

�
:

1C. Local orbital integrals and the space �. Let us now define one of our main objects of study: the
space of functions living on these orbits. So let F now denote a local field of characteristic 0.

Given a function f D f.W;V / 2 C1c .G.F //, consider the averaged function

F.x/D F.W;V /.x/ WD

Z
H.F /

f.W;V /.h.1; x// dh;
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which lives in C1c .SOV .F //. Note that the map

C1c .G.F //! C1c .SOV .F //;

f 7! F;

is clearly surjective.
We can now define the orbital integral as follows.

Definition 1.9. The orbital integral of f is the function J.f; / on .SOV .F /=conj OW .F //r:s:s: given by

J.; f /D

Z
OW .F /

F.h�1h/ dh;

which we will occasionally also write as J .f /.

We record for completeness the following very easy fact.

Lemma 1.10. If  in SOV .F / is regular semisimple, then

J.; f /D

Z
OW .F /

F.h�1h/ dh

converges absolutely.

Proof. Z
OW .F /

F.h�1h/ dhD j Stab .F /j
Z

Stab .F /nOW .F /
F.h�1h/ dh

The latter integral runs over a closed subset of SOV .F /, and F is compactly supported. �

By abuse of notation, we will also sometimes denote by f a tuple of functions, f D .f.W;V // indexed
by relevant quadratic spaces .W; V / with fixed discriminants. Observe that, if E=F is nonsplit, then there
are only two such relevant pairs of quadratic spaces — one quasisplit, and one nonquasisplit — while if
E=F is a split extension, there is only one such pair .W; V /— the split pair. In this setting, we will also
denote by J.; f / or J .f / the function on

`
.W;V /.SOV .F /=conj OW .F //r:s:s: given by

J.; f /D
X
.W;V /

J.; f.W;V //:

We hope that context will be enough to distinguish between these competing notations.

Definition 1.11. The space � of orbital integrals is the space of functions ona
.W;V /

.SOV .F /=conj OW .F //r:s:s: D .SOV ==conj OW /r:s:s:.F /D F 2�f.X; Y / WX � dV Y D1g

which are of the form J.f; / for some f D .f.W;V // smooth and compactly supported.

The main goal of this subsection is to give an explicit description of �. This is the content of the
following result.
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Theorem 1.12. Suppose that E=F is a field extension (i.e., is nonsplit). Then

�D

�
�1.˛I z; b/C�2.˛I z; b/!

�
b

˛

��
;

where each function �i .˛I � ; � / is smooth and compactly supported on the smooth variety N zCbD ˛, and
satisfies �i .˛I �z; b/D �i .˛I �z; b/ and �i .˛I Nz; b/D �i .˛I z; b/, and where !D!E=F is the nontrivial
quadratic character of F � associated to the extension E=F.

If E=F is split, then

�D

�
�1.˛I z; b/C�2.˛I z; b/ log

ˇ̌̌̌
b

˛

ˇ̌̌̌�
;

where �i are as above.

Remark 1.13. One can also restate Theorem 1.12 in terms of the coordinates on the GIT quotient given
by

.SOV ==conj OW /r:s:s:.F /D F 2�f.X; Y / WX � dV Y D 1;

which may be psychologically helpful; however, it is the theorem in the form written above which is most
useful to us.

Remark 1.14. We have been considering the space�, which consists of all functions of the form J. � ; f /

for .f.W;V // 2
L
.W;V / C

1
c ..SOW �SOV /.F //. We could instead consider �S , which consists of all

functions of the form J. � ; f /, where f 2
L
.W;V / S..SOW �SOV /.F // is a Schwartz function. This

differs from � only when F is Archimedean; in that case, the above theorem is still true if we replace �
with �S and force all �i to be Schwartz.

To show Theorem 1.12, it is helpful to first analyze a “toy model” of our space of orbital integrals. It
captures all of the essentials of our situation.

1C1. The toy model .nonsplit case/. Consider first the nonsplit case. Let E=F be a quadratic field
extension of characteristic 0 local fields. Fix " 2 F � a representative of the nontrivial class in F �=NE�

and consider the pair of maps

�0 WE! F;

z 7! N z;

�1 WE! F;

z 7! "N z:

We define the space of toy orbital integrals �toy to be the push-forward, under � D �0
`
�1, of the space

of compactly supported smooth functions on E
`
E. More concretely, we define for f D .f0; f1/ 2

C1c
�
E
`
E
�

the toy orbital integral by

J toy.f; /D J toy.f0; /CJ
toy.f1; /;

where

J toy.f0; /D

�R
U.1/.F / f0.uz/ du if  D N z;
0 if  62 NE�
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and

J toy.f1; /D

�R
U.1/.F / f1.uz/ du if  D "N z;
0 if  62 "NE�

and where all integrals are taken with respect to the Haar measure on U.1/.F /, normalized so that
vol.U.1/.F // D 1. The space �toy is the space of all functions on F � of the form J toy.f; � /. When
F D R is Archimedean, an analysis of the space �toy has been carried out in [Casselman and Tian 2013].
Let us explain the non-Archimedean case, which is easier. The results we state will also apply to the case
described in [loc. cit.].

Since U.1/.F / is compact, the space �toy is extremely easy to understand. For instance, it is clear
that, given any f0 2 C1c .E/, J

toy.f0; / is a smooth function on NE�, that

lim
!0
2NE�

J toy.f0; /D f0.0/;

and that J toy.f0; /D 0 for all j j sufficiently large. Moreover, any function J0 which satisfies these
three conditions, i.e.,

(1) has support in F � contained in NE�, and is smooth on NE�,

(2) has a limit
L0 D lim

!0
2NE�

J0./;

(3) is zero for j j sufficiently large,

can occur as an orbital integral J toy.f0; /: simply take f0.z/D J0.N z/ if z ¤ 0, and set f0.0/D L0.
The analogous statements are also true for J toy.f1; /. All together this shows that

�toy
D fA1./CA2./!./ W Ai 2 C

1
c .F /g;

or, more accurately, is the space of functions on F � obtained by restricting such functions A1CA2!
to F �.

Deducing this description on �toy from our analysis of the integrals J toy.fi ; / is very straightforward.
Given J0 and J1 satisfying the three conditions above (for J1, we must replace the set NE� with "NE�

everywhere), extend Ji to smooth compactly supported functions QJi on F satisfying

QJ0jNE� D J0 and QJ1j"NE� D J1:

Then set A1 D 1
2
. QJ0C QJ1/ and A2 D 1

2
. QJ0� QJ1/.

Summarizing, we have shown:

Proposition 1.15. When E=F is a (nonsplit) quadratic extension of local fields, the space �toy is exactly
the space of functions on F � which occur as restrictions of functions of the form

A1./CA2./!./;

where Ai 2 C1c .F / and ! D !E=F is the quadratic character associated to E=F.
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1C2. The toy model .split case/. Let us now consider the split case E D F �F. We again have a map

� WE D F �F ! F;

.x; y/ 7! N.x; y/D xy;

which is surjective. Given f 2 C1c .F �F / we define the toy orbital integral as a function of  2 F � by

J toy.f; /D

Z
F �
f . t; t�1/ d�t;

where

d�t D
1

1� q�1
dt

jt j

is the Haar measure on F �, normalized so that vol.O�/ D 1 (we have set dt to give O volume 1).
Furthermore, we call �toy the space of all functions on F � which are of the form J toy.f; � / for some
f 2 C1c .F �F /.

The following result is slightly harder to prove than the corresponding statement in the nonsplit case.

Proposition 1.16. Let E D F �F. The space �toy is exactly the space of functions on F � which occur
as restrictions of functions of the form

A1./CA2./ log j j;

where Ai 2 C1c .F /.

For a complete and detailed proof of this fact in the Archimedean case F D R;C, see [Casselman and
Tian 2013]. This fact is also discussed, albeit briefly, in both the Archimedean and non-Archimedean
settings, in [Sakellaridis 2013].

The argument presented in [Casselman and Tian 2013] more or less runs through verbatim in the non-
Archimedean case as well; for completeness we record an elementary version of it (in the non-Archimedean
setting) here.

The main point is to determine the asymptotics of functions J.x/ 2�toy as x! 0. To find this, it is
enough to apply the Mellin transform and examine the location and multiplicities of possible poles.

Keeping this in mind, let us digress for a moment to make some recollections on the non-Archimedean
Mellin transform. Let F be a finite extension of Qp, with uniformizer $ and residue field Fq . We take
the decomposition F � D $ZO� and say � W F � ! C� is a normalized character if �.$/ D 1. Any
character � W F �! C� can be uniquely written as �.t/D �.t/jt js, with � a normalized character and
s 2 C=.2�i= log q/Z; thus we can, and will, think of the space XD f� W F �! U1.R/g of characters as
a disjoint union of cylinders, indexed by normalized �, and with coordinate on each cylinder given by
s 2 C=.2�i= log q/Z.

The Mellin transform of a function J on F is the function on X defined by

MJ.�j � js/D

Z
F �

�.t/jt jsJ.t/ d�t;

assuming this integral converges.
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For functions J which are smooth and compactly supported on F � (in particular, as functions on F they
vanish on a neighborhood of 0), the integral above converges absolutely and uniformly for s in a compact
set. Moreover, since J has a conductor 1C$kO, i.e., there exists a minimal k so that J is invariant
under multiplication by 1C$kO, it is easy to see that MJ.�j � js/ D 0 for all � 62 .O�=.1C$kO//�.
Summarizing: for J 2 C1c .F

�/, we have

� MJ.�j � js/ is an entire function of s,

� MJ.�j � js/D 0 for all but finitely many �.

Let E denote the space of functions f .�j � js/ on X which satisfy these two conditions. Via Pontryagin
duality, there is an inverse Mellin transform which identifies

J.x/D
log q
2�i

X
�

�.x/�1
Z 2�

logq

0

MJ.�j � jcCiy/jxj�.cCiy/ dy;

where c 2 R is arbitrary (strictly speaking, Pontryagin duality shows this equality for c D 0, but since
MJ is entire we are free to shift contours). All together, we find

M W C1c .F
�/ �!� E :

For our purposes, we must consider Mellin transforms of a larger class of functions than C1c .F
�/.

Consider, for any � a real number, the functions C1
.�/
.F �/ on F � satisfying the following:

(1) J is uniformly locally constant on F �; i.e., there exists an open subgroup U � F � for which
J.x/D J.ux/ for all u 2 U and x 2 F �.

(2) J vanishes for jxj sufficiently large.

(3) jJ.x/jjx��j is bounded as x! 0.

For such functions, MJ.�j � js/ is analytic in the half-plane Re.s/ > � and 0 for all but finitely many �.
There is again a Mellin inversion formula: for any J 2 C1

.�/
.F �/, we have

J.x/D
log q
2�i

X
�

�.x/�1
Z 2�

logq

0

MJ.�j � jcCiy/jxj�.cCiy/ dy

for any c > �. The (finite) sum is over all normalized characters �.
We can apply this, and shift contours far to the left to derive the following proposition.

Proposition 1.17. Suppose that J 2 C1
.�/
.F �/ has the property that MJ.�j � js/ is meromorphic in s for

all s and �, and has only finitely many poles .�i ; si /. If we write the principal part of MJ.�j � js/ at each
pole as

�1X
kD�Ni

ai;k.s� si /
k
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then near x D 0, J.x/ satisfiesˇ̌̌̌
f .x/�

X
i

�1X
kD�N1

�i .x/
�1.�1/k�1

ai;k.log jxj/1�kjxj�si

.1� k/Š

ˇ̌̌̌
�M jxj

M

for any M.

Proof. This is a direct consequence of the Mellin inversion formula of the previous paragraph. �

Remark 1.18. We will write the conclusion of the proposition simply as

f .x/�
X
i

�1X
kD�N1

�i .x/
�1.�1/k�1

ai;k.log jxj/1�kjxj�si

.1� k/Š

and say that the right-hand side is the asymptotic expansion of f near x D 0.

Remark 1.19. In fact, under the assumptions of the above proposition, we can even say more: the Mellin
transform of the difference

f .x/�
X
i

�1X
kD�N1

�i .x/
�1.�1/k�1

ai;k.log jxj/1�kjxj�si

.1� k/Š
1O.x/

is clearly in E ; hence

f .x/D
X
i

�1X
kD�N1

�i .x/
�1.�1/k�1

ai;k.log jxj/1�kjxj�si

.1� k/Š
1O.x/Cg.x/

for some g.x/ 2 C1c .F
�/; we can also restate this conclusion as saying that f .x/ is of the form

f .x/D
X
i

�1X
kD�N1

Ai;k.x/�i .x/
�1.�1/k�1

.log jxj/1�kjxj�si

.1� k/Š

for some Ai;k.x/ 2 C1c .F / satisfying Ai;k.0/D ai;k .

With these tools in hand, let us now give a proof of Proposition 1.16 when F is a p-adic field.

Proof. Let f 2C1c .F �F /. Since f is compactly supported on F 2, there existsM such that f .x; y/D 0
if jxj � M or jyj � M. Since f .x; y/ is locally constant, by compactness of fx W jxj � M g and
fy W jyj �M g there also exists k so that f .x; y/D f .x; 0/ for all y 2$kO and f .x; y/D f .0; y/ for
all x 2$kO.

If we set �1.x/D f .x; 0/ and �2.y/D f .0; y/, then we can write

f .x; y/D �1.x/1$kO.y/C�2.y/1$kO.x/�f .0; 0/1$kO�$kO.x; y/Cg.x; y/;

where g.x; y/ 2 C1c .F
2/ is zero on a neighborhood of fxy D 0g.
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The orbital integral of any function g.x; y/ is easy to understand: since g 2 C1c .F
� �F �/ and the

map
�jF ��F � W F

�
�F �! F �;

.x; y/ 7! xy;

is simply composition of the isomorphism .x; y/ 7! .xy; y/ and projection onto the first factor, it follows
that the orbital integral of g must lie in C1c .F

�/. Conversely, it is easy to see that given a function
C1c .F

�/, there exists g.x; y/ 2 C1c .F
� �F �/ whose orbital integral is the given function.

So let us assume that f .x; y/ is of the form

f .x; y/D �1.x/1$kO.y/C�2.y/1$kO.x/�f .0; 0/1$kO�$kO.x; y/

and, for the sake of notation, let’s define

f1.x; y/D �1.x/1$kO.y/; f2.x; y/D �2.y/1$kO.x/; f3.x; y/D f .0; 0/1$kO�$kO.x; y/:

Let us compute the Mellin transform of the orbital integral J of f . This is

MJ.�j � js/D

Z
F �

�./j js
Z
F �
f . t; t�1/ d�t d�

D

Z
F ��F �

�.xy/jxyjsf .x; y/ d�x d�y:

Each term f1; f2; f3 contributes, respectively, the following products of Tate integrals:Z
F �

�.x/jxjs�1.x/ d
�x

Z
F �

1$kO.y/ d
�y DZ.s; �; �1/Z.s; �;1$kO/;Z

F �
�.x/jxjs1$kO.x/ d

�x

Z
F �
�2.y/ d

�y DZ.s; �;1$kO/Z.s; �; �2/;

f .0; 0/

Z
F �

�.x/jxjs1$kO.x/ d
�x

Z
F �

1$kO.y/ d
�y D f .0; 0/Z.s; �; 1$kO/Z.s; �;1$kO/:

Now, recall that if � is nontrivial then these Tate integrals are all entire; hence MJ.�j � js/ is an entire
function of s when �¤ 1. It also visibly vanishes for all but finitely many �.

When �D 1, the only pole of the Tate integral occurs at s D 0 2 C=.2�i= log q/Z — even further, we
have

Z.s; 1;1$kO/D
q�ks

1� q�s
D

1

log q
1

s
C
1

2
C h:o:t:;

where the last line is simply the first two terms of the Taylor expansion around 0 (h.o.t. is shorthand for
“higher-order terms”). Similarly, we can observe that

Z.s; 1; �i /D
f .0; 0/

log q
1

s
C lim
s!0

�
d

ds
sZ.s; 1; �i /

�
C h:o:t::
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It follows that the principal part of MJ.j � js/ near 0 is exactly

1

log q

�
f .0; 0/s�2C

1

2

�
lim
s!0

�
d

ds
sZ.s; 1; f . � ; 0//

�
C lim
s!0

�
d

ds
sZ.s; 1; f .0; � //

��
s�1
�

and hence, applying Proposition 1.17 (really the remark following that proposition) we find that

J./D A1./CA2./ log j j;

where

A1.0/D
1

2 log q

�
lim
s!0

�
d

ds
sZ.s; 1; f . � ; 0//

�
C lim
s!0

�
d

ds
sZ.s; 1; f .0; � //

��
and

A2.0/D�
1

log q
f .0; 0/:

Moreover, by our discussion it is clear that any function of the form J./ D A1./C A2./ log j j
can occur as the orbital integral of some f ; one needs only to choose f so that conditions on A1.0/
and A2.0/ above are met, and then one can freely modify our initial choice of f by a test function
g 2 C1c .F

� �F �/ to obtain the desired Ai .x/. �

Remark 1.20. Following the thread of Remark 1.14, we should remark that both Propositions 1.15
and 1.16 have variants where the test functions for orbital integrals are allowed to be Schwartz functions
(not just compactly supported and smooth functions). This version of Proposition 1.16 involving Schwartz
functions is verbatim the result appearing in [Casselman and Tian 2013]. The statements of the results
are the same; merely allow the Ai to be in S.F /. The result of Remark 1.14 then follows from these
variants and the argument in the next subsection.

1C3. Reduction to the toy model. We would now like to deduce Theorem 1.12 from our results on the
toy model. This is quite straightforward, because the action of OW on SOV by conjugation is in some
sense the action of U1.F / (for E=F nonsplit) or F � (for E=F split) on W occurring in the toy model.

But let us be careful. Let x 2 GSpinV be a semisimple but nonregular point; i.e., let x D z 2 E� �
GSpinV . The tangent space Tx GSpinV can be identified with the whole even Clifford algebra C0.V /. Let
U be an open SOW stable neighborhood of 0 in C0.V /, together with an SOW equivariant embedding
� W U ,! GSpinV satisfying �.0/D x. By the analytic Luna slice theorem [Aizenbud and Gourevitch
2009, Theorem 2.3.17], such a .U; �/ always exist, and in fact we can even take U to have saturated
image; i.e., �.U / is the preimage under GSpinV .F /! .GSpinV ==SOW /.F / of an open subset.

A quick aside: the use of the analytic Luna slice theorem is in some sense gross overkill. However, in
the interest of brevity, we simply cite it and move on rather than trying to explicitly write down such
a .U; �/.

In any case, this construction shows that the behavior of orbital integrals of functionsf2
`
.W;V /GSpinV

by SOW -conjugation is the same as that of functions on
`
.W;V / C0.V / by SOW -conjugation. But we
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have the diagram `
.W;V / C0.V /.F /

`
.W;V /W.F /

.C0.V / == SOW /.F / .W == SOW /.F /

'

where ' W zCwe 7! w. However, this makes it apparent that the map ' is nothing more than projection
onto the second factor, C0.V /DE �W !W , and so the left downward arrow in the above diagram is
nothing more than the right downward arrow, together with an untouched factor of E.

However, the right downward arrow
`
.W;V /W.F /! .W == SOW /.F / is exactly the map appearing

in our toy model. Thus, orbital integrals for GSpinV =
conj SOW are exactly those functions of the form

�1.z; b/C�2.z; b/!.b/

in the nonsplit case and

�1.z; b/C�2.z; b/ log jbj

in the split case (here, �i .z; b/ are smooth and compactly supported on fN zC b ¤ 0g). Integrating over
the central Gm, and averaging over the outer automorphism given by conjugation by � 2 OW =SOW
completes the proof of Theorem 1.12.

2. Tones and tonal integrals for GL2 � GL2

We now study the local integrals appearing on the “geometric” side of the GL2 �GL2 trace formula. This
will require a few preliminaries.

2A. Useful facts from the representation theory of GL2.F /. The definition of the local tonal integral
requires some knowledge of the Weil representation and of Whittaker functions for GL2. We give a brief
tour of these topics. Throughout we consider a fixed local field F of characteristic 0 and a fixed pair
.dW ; dV / of discriminants, and hence also an E=F defined by E D F Œ

p
dW �.

2A1. The Weil representation of GL.2/2 .F /. We follow the exposition of [Takeda 2014]. In the interest
of concision, we omit most details and instead direct the reader to the literature.

Given any ring R, let GL.2/2 .R/ be the subgroup of GL2.R/ consisting of R-valued 2�2 matrices with
square determinant. (Although notation suggests otherwise, GL.2/2 is in fact not an algebraic subgroup
of GL2. This fact will not cause any real difficulties.) Similarly, for any subgroup of GL2, let the
superscript .2/ denote its intersection with GL.2/2 .

Let F be a characteristic-0 local field as above. The theory of the Weil representation [1964] defines a
double cover fSL2.F / of SL2.F / often called the metaplectic group. It is easy to extend “the” cocycle

� W SL2.F /�SL2.F /! f˙1g
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corresponding to this central extension to a cocycle � for GL.2/2 .F /; this defines a metaplectic double
cover fGL.2/2 .F /. Set-theoretically,

fGL.2/2 .F /D GL.2/2 .F /� f˙1g

with multiplication given by

.h; �/.h0; �0/D .hh0; �.h; h0/��0/:

This central extension comes equipped with two important set-theoretic sections, which, following [Takeda
2014], we denote by � and s

�; s W GL.2/2 .F /! fGL.2/2 .F /:

(The distinction between the two sections is largely unimportant. They appear as the “obvious” set-
theoretic sections for two different (but cohomologous) choices of cocycle used to define fGL.2/2 .F /. For
our local considerations, we use s.)

Like fSL2.F /, the group fGL.2/2 .F / also comes equipped with a Weil representation r (which depends
on a choice of additive character  W F ! U1.R/).

The representation r can be realized as an action on the space SC.F / of even Schwartz functions
on F. It is given by the formulas

r 
�

s

�
0 1

�1 0

��
f .x/D . / Of .x/;

r 
�

s

�
1 b

1

��
f .x/D  .bx2/f .x/;

r 
�

s

�
a 0

0 a�1

��
f .x/D jaj

1
2� .a/f .ax/;

r 
�

s

�
1 0

0 a2

��
f .x/D jaj�

1
2f .a�1x/;

r .�/f .x/D �f .x/:

Here � lies in the central f˙1g used to define the double cover. In the above formulas, Of .x/ DR
F f .y/ .2xy/ dy is the Fourier transform, with dy a self-dual measure on F, and . / is the Weil

index of the character of second degree x 7!  .x2). We define

� .a/D . a/=. /:

The properties of the Weil index and of � are nicely explained in [Ranga Rao 1993]. We will not need
them seriously.

We are interested not in r , but in the “squared” representation R D r y̋ r �dW . As the product
of two genuine representations of fGL.2/2 , this descends to a representation of GL.2/2 .F /. The action can
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be realized on the space of Schwartz functions on E D F Œ
p
dW � which are invariant under z 7! �z and

z 7! Nz; we denote this space of functions as SCC.E/. R acts by the formulas

R 

��
0 1

�1 0

��
‰.z/D . ;N/y‰.z/;

R 

��
1 b

1

��
‰.z/D  .bN z/‰.z/;

R 

��
a 0

0 a�1

��
‰.z/D jaj!.a/‰.az/;

R 

��
1 0

0 a2

��
‰.z/D jaj�1‰.a�1z/:

Here, y‰.z/D
R
E ‰.z

0/ .N.zCz0/�N.z/�N.z0// dz0 is the Fourier transform, with dz0 normalized
so as to be self-dual. N is of course the norm map from E! F.

Remark 2.1. Observe that, by the above formulas, R .h/‰.z/DR �1.h/‰.z/.

We will call R the Weil representation for GL.2/2 and r the Weil representation for fGL.2/2 .

2A2. Whittaker functions for GL2. Let us now record some recollections on Whittaker functions for GL2.
Let � D .�1; �2/ W A.F / ! U1.R/ be a character of the diagonal maximal torus of GL2, with �i

normalized characters. Consider the space of smooth sections

I.s; �/D IndGL2.F /
B.F / .�˝ ıs�

1
2 /\L2

D

�
fs W GL2.F /! C W

fs.ang/D �.a/ı.a/
sfs.g/ for all a 2 A.F /; n 2 N.F /; g 2 G.F /;

fs is smooth and
R

K jfs.k/j
2 dk <1

�
In the above, Ind denotes normalized induction, and K is the usual choice of maximal compact subgroup
of GL2.F /. A choice of fs 2 I.s; �/ for varying s is said to be a standard or flat section if fsjK does not
depend on s.

We can construct elements in I.s; �/ explicitly in the following fashion: let ˆ 2 S.F 2/, and define

Fs.g/D Fs.g;ˆI s; �/ WD �1.detg/j detgjs
Z
F �
ˆ..0; t/g/�1�

�1
2 .t/jt j

2s d�t:

Here d�t is Haar measure on F �, normalized so that vol.O�//D 1. Fs for fixedˆ is not a flat section, but
it is K-finite, and one can achieve such sections by convolving flat sections with functions � 2C1c .G.F //.
See [Jacquet 2004]. Note that the integral defining Fs is a Tate integral for L.2s; �1��12 /, and hence
converges absolutely as long as Re.s/ > 0.

By [Jacquet and Zagier 1987], every K-finite vector in I.s; �/ can be written as a finite combination

fs.g/D
1

L.2s; �1�
�1
2 /

X
i

Pi .s/Fs.g;ˆi I s; �/; (2-1)

where Pi .s/ is the reciprocal of a polynomial in s and q�s which has no zeros in Re.s/ > 0.
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We will work largely with I.s; �/1 WDS.GL2.F //I.s; �/K -fin, where S.GL2.F // denotes the Schwartz
space of GL2.F / and this acts on the space of K-finite vectors in I.s; �/ via the left action of functions on
the group on representations. I.s; �/1 is the smooth (admissible moderate growth) Fréchet globalization
of the .g;K/-module of K-finite vectors I.s; �/K -fin. (Of course, these concerns only manifest when F is
Archimedean!)

Recall the following definition.

Definition 2.2. Given a section fs 2 I.s; �/, the Whittaker function associated to fs is the function
given by

W
 �1

fs
.g/ WD

Z
F

fs.wn.x/g/ 
�1.x/ dx;

assuming this integral converges.

The convergence of this integral for elements fs 2 I.s; �/1 for most values of s can analyzed in a
relatively straightforward manner. It reduces to understanding convergence for K-finite vectors, and hence
by (2-1) to understanding

W
 �1

Fs
.g/D �1.�1/�1.detg/j detgjs

Z
F

 .�x/

Z
F �
ˆ..t; tx/g/�1�

�1
2 .t/jt j

2s d�t dx

D �1.�1/�1.detg/j detgjs
Z
F �

1.g:ˆ/..t; t�1//�1��12 .t/jt j2s�1 d�t;

where O� denotes partial Fourier transform in the second variable. Since the above integral converges for
all s, the convergence of the integral defining W

 �1

fs
.g/ is established for all fs 2 I.�; s/1.

Indeed, essentially the same calculation also allows us to examine the asymptotics of

W
 �1

Fs
.a.b//D �1.�1/�1.detg/j detgjs

Z
F �

ŷ ..bt; t�1//�1�
�1
2 .t/jt j

2s�1 d�t

as b! 0. For every fixed s, we are looking at the integralZ
F �

ŷ ..bt; t�1//�1�
�1
2 .t/jt j

2s�1 d�t

and, as in our analysis of the split orbital integral above, the behavior of this function of b, as b! 0 can
be read off of the locations and multiplicities of the poles of its Mellin transform. Continuing this line of
thought leads to the following proposition. In the non-Archimedean case, this proposition is no more and
no less than the computation of the Kirillov model for principal series representations of GL2.

We use K.s; �/ to denote the space of functions on F � of the form W
 �1

fs
.a. � // for fs 2 I.s; �/1.

Proposition 2.3. Every element K 2K.s; �/ has the following form for some choices of Ai 2 S.F /:

� If �1 D �2 D � are equal and s ¤ 1
2

,

K.b/D A1.b/�.b/jbj
s
CA2.b/�.b/jbj

1�s:
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� If �1 D �2 D � are equal and s D 1
2

,

K.b/D jbj
1
2 .A1.b/�.b/CA2.b/�.b/ log jbj/:

� If �1 ¤ �2,

K.b/D A1.b/�1.b/jbj
s
CA2.b/�2.b/jbj

1�s:

Moreover, given choices of Ai 2 S.F /, there always exists K 2K.s; �/ of the above form, as appropriate.

Proof. For F D R;C this is the analysis of the “toy model” which was analyzed in [Casselman and
Tian 2013], although twisted by a character. It is also discussed in Section 3 of [Jacquet 2004]. For F
non-Archimedean, this can be viewed as a consequence of the computation of the Kirillov model of a
principal series. Alternatively, one can see this via an argument nearly identical to the one described
above for Proposition 1.16. �

Not surprisingly, this proposition will play an analogous role in our analysis of tonal integrals to that
played by the “toy model” in our discussion of orbital integrals.

2B. Tones. Preliminaries out of the way, we are now ready to begin defining our local integrals. As
one will see in Part II, the sum appearing in the “geometric side” of the GL2 �GL2 trace formula is
indexed not by orbits of a group action, but rather by what we will call tones. To that end, we propose the
following artificial-looking definition.

Definition 2.4. A tone  0 consists of a triple

 0 D .˛I �; ˇ/;

with ˛ 2†, a fixed set of representatives of F �=.F �/2, � 2E=.f˙1g � f1; N� g/, and ˇ 2 F, satisfying

N �Cˇ D ˛:

We say that a tone  0 is regular semisimple if ˇ ¤ 0.

Of course, one can choose different representatives of F �=.F �/2. If we replace ˛ by t2˛, then we
must replace a tone

 D .˛I �; ˇ/ 7! t: WD .t2˛I t�; t2ˇ/

by its scaled version t: . It will be a simple but important feature of our definition of tonal integrals that
they are invariant under this scaling action.

2C. Local tonal integrals and the space �0. We are finally in the position to define the tonal integral.
Throughout, whenever we write a Whittaker function W

 �1

Fs
, we take � D .1; !/ D .1; !�1/, where

! D !E=F is the quadratic character associated to E=F.
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Definition 2.5. Let f 0 2 C1c ..GL2 �GL2/.F //, and let ˆ 2 S.F 2/ and ‰ 2 SCC.E/. Given a regular
semisimple tone  0, the tonal integral of f 0˝ˆ˝‰ is the expression

I.s;  0If 0˝ˆ˝‰/D I 0.sIf
0
˝ˆ˝‰/

WD j˛j
1
2

Z
f 0..g�1; g�1/.a.˛/; 1/.h; 1//W

 �1

Fs

�
a

�
ˇ

˛

�
g

�
R �1.h/‰.�/

D j˛j
1
2

Z
f 0..g�1; g�1/.a.˛/; 1/.h; 1//W

 �1

Fs

�
a

�
ˇ

˛

�
g

�
R .h/‰.�/;

where the final equality follows from Remark 2.1. In the above, the integration is over g 2 GL2.F / and
h 2 GL.2/2 .F /. In interest of space, we omit writing the symbols dg; dh. We write �0.s/ for the space
of finite linear combinations of tonal integrals, viewed as a space of function on the locus of regular
semisimple tones.

When f 0 D f 01˝f
0
2, we often write this integral in an expanded, slightly different form

I 0.sIf
0
˝ˆ˝‰/D j˛j

1
2

Z
f 01.g

�1h/f 02.g
�1a.˛/�1/W

 �1

Fs
.a.ˇ/g/R .h/‰.�/:

Remark 2.6. The integral defining the tonal integral clearly converges absolutely — f 0 is compactly
supported and smooth.

Remark 2.7. A simple change of variables quickly shows that

It: 0.sIf
0
˝ˆ˝‰/D I 0.sIf

0
˝ˆ˝‰/;

so indeed, as alluded to above, the tonal integral is invariant under the scaling action  0 7! t: 0.

We are most concerned with the behavior of I 0.sIf 0˝ˆ˝‰/ at s D 1
2

; to this end, we simply write

I. 0; f 0˝ˆ˝‰/D I 0.f
0
˝ˆ˝‰/ WD I 0

�
1
2
If 0˝ˆ˝‰

�
and

�0 WD�0
�
1
2

�
:

We can give a complete description of �0. With our description of the asymptotics of Whittaker
functions at hand, this becomes extremely straightforward.

Theorem 2.8. Suppose E=F is a field extension. Then

�0 D

ˇ̌̌̌
b

˛

ˇ̌̌̌ 1
2
�
�1.˛I �; ˇ/C�2.˛I �; ˇ/!

�
ˇ

˛

��
;

where ! D !E=F is the quadratic character corresponding to E=F and �i are Schwartz functions. If
E D F �F is split,

�0 D

ˇ̌̌̌
b

˛

ˇ̌̌̌ 1
2
�
�1.˛I �; ˇ/C�2.˛I �; ˇ/ log

ˇ̌̌̌
ˇ

˛

ˇ̌̌̌�
:
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Proof. It is enough consider each ˛. Thus, fix ˛— we will show that I..˛I �; ˇ/; f 0˝ˆ˝‰/ has the
claimed behavior near ˇD 0, and that all such functions are (finite linear combinations of) tonal integrals.
We have

I 0.f
0
˝ˆ˝‰/D j˛j

1
2

Z
f 0..g�1; g�1/.a.˛/; 1/.h; 1//W

 �1

Fs

�
a

�
ˇ

˛

�
g

�
R .h/‰.�/I

if we write f 0˛ 2 C
1
c .GL2.F /�GL.2/2 .F // for the function

f 0˛.x; y/D f
0..x�1; x�1/.a.˛/; 1/.y; 1//

then the proof falls out. Consider the space V WDK
�
1
2
; .1; !/

�
y̋ SCC.E/. Here y̋ denotes the completed

tensor product.2 This is a Fréchet space. There is an obvious left action � of GL.2/2 .F /�GL.2/2 .F / on V
via

�.x; y/.K˝‰/DR.x/K˝R .y/‰;

where R denotes the action of GL2.F / on K
�
1
2
; .1; !/

�
given by the right action on the Whittaker model

of I
�
1
2
; .1; !/

�
. Now, simply applying the Dixmier–Malliavin theorem [1978] in the context of this group

action allows us to conclude. �

Remark 2.9. Given Proposition 2.3, the above theorem is completely elementary when F is a non-
Archimedean local field, since all representations are smooth. It is only when F is real or complex that
any functional-analytic subtleties manifest.

3. Matching and the fundamental lemma

We can relate the two spaces � and �0 of orthogonal orbital integrals and general linear tonal integrals
to one another by a matching of regular semisimple orbits to regular semisimple tones. This matching
induces a “transfer of smooth functions” which identifies �S and �0. Moreover, this transfer can be
completely explicated when test functions in question are taken to be elements of the respective spherical
Hecke algebras; this explication, also known as the fundamental lemma, is the main goal of this section.

3A. Matching of orbits and transfer of smooth functions. Thus far, our notation has been extremely
suggestive of the following definition.

Definition 3.1. Fix the same set of representatives † of F �=.F �/2. Let

 2
a
.W;V /

.SOV .F /=conj OW .F //r:s:s:

be a regular semisimple orbit and let

 0 D .˛I �; ˇ/; ˇ ¤ 0;

2Since both K
�
1
2 ; .1; !/

�
and SCC.E/ are nuclear spaces, this notation is unambiguous.
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be a regular semisimple tone. We say that  and  0 match if they are identical as tuples, i.e., if when
we write  in terms of coordinates on GSpinV , the corresponding tuple .˛I z; b/ is the tone  0. We write
 $  0 for matching regular semisimple orbits and tones.

Furthermore, given this definition of matching, Theorems 1.12 and 2.8 have a suggestive corollary. We
first make a simple definition.

Definition 3.2. Given  0 D .˛I �; ˇ/ a regular semisimple tone, the transfer factor corresponding to  is
the function

t . 0/D

ˇ̌̌̌
b

˛

ˇ̌̌̌ 1
2

:

Given this, we have the following definition

Definition 3.3. Let f D .f.W;V // be a tuple of functions on
`
.W;V / G.W;V /.F /, where the indexing

set is over a class of relevant pure inner forms .W; V / corresponding to a fixed pair of discriminants
.dW ; dV /. Let

P
f 0i ˝ˆi˝‰i be a finite sum of tensors, where fi is a function on G0.F /, ˆi 2 S.F 2/,

‰i 2 S
CC.E/. Then we say that .f.W;V // and

P
f 0i ˝ˆi ˝‰i are smooth transfers of one another, or

more simply, that they match, if, for all matching regular semisimple  $  0, we have

t . 0/J.; f /D
X
i

I. 0; f 0i ˝ˆi ˝‰i /:

For shorthand, we write f $
P
f 0i ˝ˆi ˝‰i if the two match.

Theorems 1.12 and 2.8 ensure that there are many matching functions. The following theorem is an
obvious corollary of the aforementioned results.

Theorem 3.4 (existence of smooth transfers). Given any f 2
L
.W;V / S.G.W;V /.F //, there exists a

matching
P
f 0i ˝ˆi ˝‰i , with f 0i 2C

1
c .G

0.F //, ˆi 2 S.F 2/, ‰i 2 SCC.E/. Conversely, given suchP
f 0i ˝ˆi ˝‰i , there exists a matching f 2

L
.W;V / S.G.W;V /.F //.

Remark 3.5. Contrary to what notation may suggest, given f , there is not a unique matching
P
f 0i ˝

ˆi ˝‰i (or vice versa).

Remark 3.6. The appearance of the transfer factor t . 0/ may seem strange; however, it is worth noting
that if  and  0 are global orbits or tones, then

Q
v tv.

0/D 1. Thus, the relation between global orbital
integrals and global tonal integrals does not see the transfer factor.

With these preliminaries behind us, let us now explicate this transfer for smooth functions for Hecke
elements.

3B. The fundamental lemma: E=F unramified. In this subsection, we assume that F and dW are such
that E=F is an unramified extension of non-Archimedean local fields of residue characteristic not 2.
We also make the simplifying assumption that dW ; dV 2 O�; this is not essential and merely simplifies
notation. In this setting, there are two relevant pure inner forms corresponding to the pair of discriminants
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.dW ; dV /: the first, .W0; V0/ has V0 split; the second, .W1; V1/ has V1 nonsplit. Concretely, we have
(noting that $ is a representative of the nontrivial class in F �=NE�)

.W0;Q0jW0/Š

�
E;�

dV

dW
N
�

and .W1;Q1jW1/Š

�
E;�$

dV

dW
N
�
;

while we always set
Vi ŠWi ˚Fe;

with Qi .e/D dV =dW .
As before, let Gi D G.Wi ;Vi / denote the group SOWi �SOVi and let G0 D GL2 �GL2. It may help to

orient the reader to recall

Gi Š
�
.GmnResE=F Gm/�PGL2 if i D 0;
.GmnResE=F Gm/�PB� if i D 1;

where B =F is the unique quaternion division algebra over F. In either case, as E=F is unramified,
the groups Gi are unramified; hence it makes sense to talk about their maximal compact subgroups
Ki D Gi .O/. Also let K0 D G0.O/ and let

Hi DHGi DH.Gi ;Ki /;

H0 DHG0 DH.G0;K0/

denote the spherical Hecke algebras for G and G0 respectively. H1ŠC as G1.F /DK1 is already compact.
Hence, we concentrate attention on the more interesting H0.

The standard functorial liftings of forms from SOW0 and SOV0 to GL2 are embodied in a homomorphism
of Hecke algebras

St WH0!H0:

We will abuse notation and also write St for the individual maps HGL2 !HSOW0 and HGL2 !HSOV0
when this does not cause any confusion.

We can now state the fundamental lemma in the case that E=F is unramified.

Theorem 3.7 (the fundamental lemma, E=F unramified). Let f 0 2H0 lie in the spherical Hecke algebra
for G0, and set ˆı D 1O˚2 and ‰ı D 1OE . Then the functions f 0˝ˆı˝‰ı and .St.f 0/; 0/ match each
other, in the sense that

I 0
�
1
2
If 0˝ˆı˝‰ı

�
D

�
J .St.f 0// if  0$  for  2 ŒSOV0.F /=SOW0.F /�

r:s:s:;

0 otherwise:

Before we prove this result, let us first describe the map St WH0!H in some detail. Let us write

KGL2 D GL2.O/;

KSOV0 D SOV0.O/:
Let us also take, for m� 0 and n 2 Z,

T 0m;n D 1KGL2$
.mCn;n/ KGL2

:

It is apparent by the Cartan decomposition that the collection of T 0m;n linearly spans HGL2 .
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If we similarly define Tm 2HSOV0 by

Tm D 1KSOV0
$m�0 KSOV0

;

where

$m�0 D �

�
$mC 1

2
C
$m� 1

2

dW

dV
se

�
;

then, upon noticing that the cocharacter

�0 W t 7! �

�
t C 1

2
C
t � 1

2

dW

dV
se

�
generates X�.TSOV0 /, it is again clear that the collection of Tm linearly span HSOV0 .

Now that we have established some notation, we can describe the map St on Hecke algebras.

Lemma 3.8. The morphism St breaks up according to the two factors in H0 DHGL2 ˝HGL2 as follows:

(1) On the first factor, the map
HGL2 !HSOW0 D C

is given by

T 0m;n 7!

8<:
.� 1/n if mD 0;
.� 1/n.q

m
2 C q

m�2
2 / if m¤ 0 is even;

0 if m is odd:

(2) On the second factor, the map
HGL2 !HSOV0

is given by
T 0m;n 7! Tm:

Proof. The first claim (1) is more or less straightforward. Since SOW0.F / is compact, HSOW0 D C. The
map St WHGL2 !HSOW0 is defined by

HGL2
SatGL2���!HTGL2

!HSOW0 D C:

The first map is the Satake isomorphism for GL2. The second map is defined as follows: write

HTGL2
D CŒX�.TGL2/�

W
D CŒX1; X2; X

�1
1 ; X�12 �W ;

where X1D 1$.1;0/TGL2 .O/
, X2D 1$.0;1/TGL2 .O/

and W acts by switching X1 and X2. If we then define

HTGL2
D CŒX1; X2; X

�1
1 ; X�12 �W ! CŒT; T �1�DHResE=F Gm

by sending
Xi 7! !.$/i�1T

1
2 D .�1/i�1T

1
2

and restricting to W invariants, then this is exactly the transfer map HTGL2
!HResE=F Gm used to define

the automorphic induction of forms from ResE=F Gm to GL2. See, as one of many possible references,
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[Lafforgue 2010]. To obtain the transfer map for automorphic forms on SOW0 D GmnResE=F Gm to
GL2, we simply compose this map with the map T 7! 1. Applying the Macdonald formula for GL2 (see
Lemma 3.13) gives

SatGL2.T
0
m;n/D

8̂<̂
:
.X1X2/

n if mD 0;
.X1X2/

nq
1
2 .X1CX2/ if mD 1;

.X1X2/
n
�
q
m
2

Pm
iD0X

m�i
1 X i2� q

m�2
2 X1X2

Pm�2
iD0 X

m�2�i
1 X i2

�
if m� 2

and claim (1) follows immediately.
The same strategy yields the second claim (2). Again, by definition, the morphism St WHGL2!HSOV0

factors as follows:

HGL2
SatGL2���!HTGL2

!HTSOV0

Sat�1SOV0
����!HSOV0 ;

where the first arrow is the Satake isomorphism on GL2, the second arrow is induced by the obvious
X�.TGL2/DX

�.TGL2/!X�.TSL2/DX�.TSOV0 /, and the third arrow is the inverse Satake transform
on SOV0 . To see that T 0m;n is sent to Tm, it remains to use the Macdonald formula on GL2 and SOV0 Š
PGL2, and to recall that 1$.k;l/ TGL2 .O/

7! 1$.k�l/�0 TSOV0
.O/. We omit the tedious details. �

It will be helpful for the proof of Theorem 3.7 to be more explicit about the double cosets
KGL2$

.k;l/ KGL2 and KSOV0 $
m�0 KSOV0 . The characterization for GL2 is well known: it is the

theory of elementary divisors.

Lemma 3.9. Let k � l be integers. We have

g D

�
a b

c d

�
2 KGL2

�
$k 0

0 $ l

�
KGL2

if and only if both

(1) val detg D kC l ,

(2) min.val a; val b; val c; val d/D l

hold.

On the other side we must describe KSOV0 double cosets in SOV0 in terms of the coordinates xD zCwe.
To do this, it helps to describe these double cosets in terms of O-lattices in V0. Indeed, when we wrote

above that
KSOV0 D SOV0.O/;

we were really abusing notation and talking about the O-points of an integral model of our group SOV0 ,
defined in terms of a quadratic form on a lattice. Consider the O-lattice L0 � V0 given by

L0 D OsCOs0COe:

It is easy to see that this is self-dual (under our assumption that dW ; dV 2 O�), and that L0 gives rise to
a good integral model for SOV0 , i.e., KSOV0 D SO.L0/.
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Just as in Lemma 3.9, we can similarly describe the double cosets KSOV0 $
m�0 KSOV0 .

Definition 3.10. Let L and L 0 be two self-dual lattices in V0 D .V0;Q/. We say that L and L 0 have
relative position $m�0 (or more simply just m) if m� 0 is the smallest integer so that

L �$�mL 0:

Since we can identify

SOV0.F /=KSOV0 �!
� fself-dual lattices L � V0g;

g 7! gL0;

it is immediate that

KSOV0 $
m�0 KSOV0 D fg W gL0 and L0 have relative position mg:

We now use this observation to deduce a clean description of these double cosets in terms of our
coordinates x D zCwe.

Lemma 3.11. The inverse image ��1.KSOV0 $
m�0 KSOV0 / in GSpinV0 of a double coset is given by

��1.KSOV0 $
m�0 KSOV0 /D

8̂̂<̂
:̂
n
zCwe W val

�N z�Q.e/Q.w/
N.x/

�
� 0

o
if mD 0;n

zCwe W val
�N z�Q.e/Q.w/

N.x/

�
D�m

o
if m> 0:

Proof. For notational convenience, let’s define

Km WD �
�1.KSOV0 $

m�0 KSOV0 /D fx D zCwe W �.x/L0 has relative position m with respect to L0g

and

K 0m WD

8̂̂<̂
:̂
n
zCwe W val

�N z�Q.e/Q.w/
N.x/

�
� 0

o
if mD 0;n

zCwe W val
�N z�Q.e/Q.w/

N.x/

�
D�m

o
if m> 0:

We wish to show that Km DK 0m. We expand out

�.x/.e/D xex�1 D

�
1

N x
ze Nz�

Q.e/Q.w/

N x
e

�
C 2

Q.e/

N x
zw

D
N z�Q.e/Q.w/

N x
eC 2

Q.e/

N x
zw

and for w0 2W

�.x/.w0/D xw0x�1 D
1

N x
..zw0 Nz�Q.e/ww0w/� .zw0wCww0 Nz/e/

D

�
N z
N x

�.z/.w0/C
Q.e/Q.w/

N x
w0� 2

.w0; w/

N x
w

�
� 2

.w0; Nzw/

N x
e:



608 Rahul Krishna

Observe too that since

val
�

N zCQ.e/Q.w/
N x

�
D val.1/D 0;

we have:

(1) If mD 0, then
N z�Q.e/Q.w/

N x
2 O

if and only if both N z=.N x/ and Q.e/Q.w/=.N x/ lie in O.

(2) If m> 0, then

val
�

N z�Q.e/Q.w/
N x

�
D�m

if and only if

val
�

N z
N x

�
D val

�
Q.e/Q.w/

N x

�
D�m:

The claim now follows quickly. Looking at the e-component of �.x/e shows that if x 2 K 0m, then
�.x/L has relative position at least m with respect to L0. Now we examine the sizes of each of the terms

2
Q.e/

N x
zw;

N z
N.x/

�.z/.w0/;
Q.e/Q.w/

N.x/
w0; 2

.w0; w/

N x
w; 2

.zw0; w/

N x
e

appearing in the calculations of �.x/e and �.x/w0 above; for exampleˇ̌̌̌
Q

�
2
Q.e/

N x
zw

�ˇ̌̌̌
D

ˇ̌̌̌
Q.e/2Q.w/N z

.N x/2

ˇ̌̌̌
D

ˇ̌̌̌
Q.e/Q.w/

N x
N z
N x

ˇ̌̌̌
(we have assumed jQ.e/j D 1) and use our above observation to conclude that, when w0 2 L0 \W

each term lives in $�mL0. Thus K 0m �Km. In fact, the above remarks also show the reverse inclusion
Km �K

0
m. We are done. �

We will require one last lemma before giving the proof of Theorem 3.7. It will help with bookkeeping.
Before stating it, we make the following easy definition.

Definition 3.12. Let f 2HGL2 be a spherical Hecke function. We define Sf .a; x/, the Fourier–Satake
transform of f , by

Sf .a; x/ WD

Z
F

f .an.y// .�xy/dy:

In the above, a 2 TGL2 and x 2 F.

It is worth noting that SatGL2 f .a/D jı.a/j
1
2Sf .a; 0/, which should offer some justification for our

choice of terminology.
One should also note that for each fixed x, Sf . � ; x/ 2 C1c .TGL2.O/nTGL2.F //, but it may not be

invariant under the Weyl group unless x D 0. For each fixed a, Sf .a; a/ 2 C1c .F /.
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The following lemma is, for xD 0, nothing more or less than a rederivation of the MacDonald formula
for GL2. For general x, we did not know a reference for the result, although we feel it (and relatives for
higher-rank groups) must be well-known.

Lemma 3.13 (the MacDonald formula for GL2). Suppose f D T 0m;0 with m� 0. Then

Sf .a; x/D

8̂̂<̂
:̂
qk1$kO.x/ if a 2

�
$k

0
0

$m�k

�
TGL2.O/; k D 0;m;

qk1$kO.x/� q
k�11$k�1O.x/ if a 2

�
$k

0
0

$m�k

�
TGL2.O/; 0 < k < m;

0 else:

Proof. As a function of a, Sf clearly depends only on the TGL2.O/ coset of a. Thus, if

a 2

�
$k 0

0 $ l

�
TGL2.O/;

then

Sf .a; x/D

Z
F

T 0m;0

��
$k $ky

0 $ l

��
 .�xy/ dy:

Lemma 3.9 implies that lDm�k and that this integral runs over y such that min.k; kCval.y/;m�k/D0.
That is, if k D 0 or m, then the integration takes place over y 2$�kO, while if 0 < k < m, then the
integration is over y 2$�kO �$1�kO. Thus,

Sf .a; x/D

�R
F 1$�kO.y/ .�xy/ dy if k D 0;m;R
F 1$�kO.y/� 1$1�kO.y/ .�xy/ dy if 0 < k < m;

D

�
qk1$kO.x/ if k D 0;m;
qk1$kO.x/� q

k�11$k�1O.x/ if 0 < k < m;

as desired. �

We can now show Theorem 3.7.

Proof. It suffices to show the result for f 0D f 01˝f
0
2 2H0 with f 0i DT

0
mi ;0

andˆıD 1O˚2 and‰ıD 1OE .
Thus, we compute the local tonal integral explicitly. For clarity we abbreviate our notation slightly, writing
the spherical Whittaker function as

W ı WDW
 �1

F ı
1=2

and writing the Weil representation as

R WDR :

To help with readability, we break the computation in several steps.

Step 1: relate the tonal integral to the Fourier–Satake transforms of f 01 and f 02.
Consider the local tonal integral

I 0
�
1
2
If 0˝ˆ˝‰

�
WD j˛j

1
2

Z
f 01.g

�1h/f 02.g
�1a.˛/�1/W ı.a.ˇ/g/R.h/‰.�/
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or simply just I 0 . We can analyze this using the Iwasawa decomposition. Write

g D n.x1/t1k1;

hD n.x2/t2k2;

where t1 2 TGL2 , t2 2 TGL.2/2
, xi 2 F , and k1 2GL2.O/, k2 2GL.2/2 .O/, with notation as laid out in the

Introduction. Then the tonal integral breaks into

I 0 D j˛j
1
2

Z
f 01.t

�1
1 n.x2�x1/t2/f

0
2.t
�1
1 n.�x1/a.˛/

�1/W ı.a.ˇ/n.x1/t1/R.n.x2/t2/‰
ı.�/jı.t1t2/j

�1:

We simplify this by first changing variables x2 7! x2C x1, followed by x1 7! �x1=˛ and x2 7! ı.t2/x2.
This gives

I 0 D j˛j
� 1
2

Z
f 01.t

�1
1 t2n.x2// .N �ı.t2/x2/f 02.t

�1
1 a.˛/�1n.x1// 

�
�
ˇCN �
˛

x1

�
�W ı.a.ˇ/t1/R.t2/‰

ı.�/jı.t1/j
�1

and we can recognize the integrals over x1 and x2 as Fourier–Satake transforms. Thus

I 0 D j˛j
� 1
2

Z
Sf 01.t

�1
1 t2;�N �ı.t2//Sf 02.t

�1
1 a.˛/�1; 1/W ı.a.ˇ/t1/R.t2/‰

ı.�/jı.t1/j
�1:

Step 2: rewrite the tonal integral as a finite sum.
If we now write t1D z.z1/�1a.a1/�1 and t2D z.z2/d.a2/, then after a change of variables z2 7! z�11 z2

we get

I 0 D j˛j
� 1
2

Z
Sf 01

�
z.z2/a.a1/d.a2/;�N.a2�/

�
Sf 02.z.z1/a.a1/a.˛/

�1; 1/

�!.z2a2/ja1a2jW
ı.a.ˇa�11 //‰

ı.a2�/: (3-1)

The computation of I 0 now reduces to evaluating a finite sum. Write ai D$kiui and zi D$ livi ,
where ui ; vi 2 O� are units. Then

I 0 D j˛j
� 1
2

X
Sf 01

��
$ l2Ck1Ck2 0

0 $ l2�k2

�
;N.$k2�/

�
Sf 02

��
$ l1Ck1�val˛ 0

0 $ l1

�
; 1

�
� .�1/l2Ck2q�k1�k2W ı.a.ˇ$�k1//‰ı.$k2�/;

where there are a number of restrictions in the sum, namely

� the determinant conditions

m1 D 2l2C k1; m2 D 2l1C k1� val˛;

and

� the support conditions: if we set r1D l2Ck1Ck2 (hencem1�r1D l2�k2) and r2D l1Ck1�val˛
(hence m2� r1 D l1), then

0� r1 �m1; 0� r2 �m2:
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Step 3: change variables in the sum.
We can write the ki and li in terms of the ri and the fixed mi ; this yields

l1 Dm2� r2;

l2 D
1
2
.m2�m1� val˛/Cm1� r2;

k1 D 2r2�m2C val˛;

k2 D
1
2
.m2�m1� val˛/C r1� r2

(note that T D T .m1; m2; ˛/ WD 1
2
.m2�m1� val˛/ must be an integer, otherwise I 0 is zero for parity

reasons) and so

I 0 D

m1X
r1D0

m2X
r2D0

Sf 01

��
$r1 0

0 $m1�r1

�
;N.$TCr1�r2�/

�
Sf 02

��
$r2 0

0 $m2�r2

�
; 1

�
� .�1/m1�r1q

m1
2
�r1C

m2
2
�r2W ı.a.ˇ$m2�2r2�val˛//‰ı.$TCr1�r2�/

or, better,

I 0 D

m2X
r2D0

q
m2
2
�r2Sf 02

��
$r2 0

0 $m2�r2

�
; 1

�
W ı.a.ˇ$m2�2r2�val˛//

�

m1X
r1D0

.�1/m1�r1q
m1
2
�r1Sf 01

��
$r1 0

0 $m1�r1

�
;N.$TCr1�r2�/

�
‰ı.$TCr1�r2�/:

Step 4: exploit cancellation.
Let us first examine the inner sum over r1. This is

.�1/m1q
m1
2

m1X
r1D0

.�1/r1q�r1Sf 01

��
$r1 0

0 $m1�r1

�
;N.$TCr1�r2�/

�
‰ı.$TCr1�r2�/:

If we apply Lemma 3.13, this yields

.�1/m1q
m1
2

�
1O.N.$T�r2�//1OE .$

T�r2�/

C

m1�1X
r1D1

.�1/r1
�
1$r1O.N.$TCr1�r2�//�q�11$r1�1O.N.$

TCr1�r2�//
�
1OE .$

TCr1�r2�/

C.�1/m11$m1O.N.$TCm1�r2�//1OE .$
TCm1�r2�/

�
:

Observe that
1$r1O.N.$TCr1�r2�//D 1$r2�T�br1=2cOE

.�/;

1$r1�1O.N.$
TCr1�r2�//D 1$r2�T�dr1=2eOE

.�/;

1OE .$
TCr1�r2�/D 1$r2�r1�TOE

.�/:
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Thus, this inner sum becomes

.�1/m1q
m1
2

�
1$r2�TOE

.�/C

m1�1X
r1D1

.�1/r1
�
1$r2�T�br1=2cOE

.�/� q�11$r2�T�dr1=2eOE
.�/
�

C .�1/m11$r2�T�bm1=2cOE
.�/

�
;

which, if m1 is odd, telescopes to 0. If m1 is even, then it simplifies dramatically to

.q
m1
2 C q

m1�2

2 /1$r2�T�m1=2OE
.�/D .q

m1
2 C q

m1�2

2 /1$.val˛�m2/=2Cr2OE
.�/:

Step 5: apply the Casselman–Shalika formula and simplify.
Returning to I 0 , we have shown that, if m1 is even, then

I 0 D .q
m1
2 C q

m1�2

2 /

m2X
r2D0

q
m2
2
�r2Sf 02

��
$r2 0

0 $m2�r2

�
; 1

�
�W ı.a.ˇ$m2�2r2�val˛//1$.val˛�m2/=2Cr2OE

.�/:

Now, if we denote by Oeven the subset of elements of O with even valuation, then the Casselman–Shalika
formula gives

W ı.a.t//D jt j
1
21Oeven.t/:

If we apply this together with Lemma 3.13, in total we find

I 0 D

ˇ̌̌̌
ˇ

˛

ˇ̌̌̌ 1
2

.q
m1
2 C q

m1�2

2 /

�

�
1O.1/1$val˛�m2Oeven.ˇ/1$.val˛�m2/=2OE

.�/

C

m2�1X
r2D1

.qr21$r2O.1/� q
r2�11$r2�1O.1//1$val˛�m2C2r2Oeven.ˇ/1$.val˛�m2/=2Cr2OE

.�/

C qm21$m2O.1/1$val˛Cm2Oeven.ˇ/1$.val˛Cm2/=2OE
.�/

�
;

which clearly simplifies to

I 0 D

ˇ̌̌̌
ˇ

˛

ˇ̌̌̌ 1
2

.q
m1
2 C q

m1�2

2 /
�
1$val˛�m2Oeven.ˇ/1$.val˛�m2/=2OE

.�/

� 1$val˛�m2C2Oeven.ˇ/1$.val˛�m2/=2C1OE
.�/
�
:

Applying Lemma 3.11 and noting that SOW0.F /� KSOV0 allows us to conclude. �

Remark 3.14. If one is only interested in the fundamental lemma for the unit element of the Hecke
algebra, then the computation above greatly simplifies. We encourage any reader unhappy with the ugly
manipulations above to work out this example, which becomes nearly trivial.

3C. The fundamental lemma: E=F split. In this subsection, we again assume F is a non-Archimedean
local field, but now ask that E Š F �F is split, i.e., that dW 2 .F �/2. There is now only one relevant
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pure inner form corresponding to the pair of discriminants .dW ; dV /; we denote it simply by .W; V / and
the corresponding product of split special orthogonal groups by GD SOW �SOV . We have

GŠ Gm �PGL2

since

.W;Q/Š

�
F �F;�

dV

dW
N
�
;

where N W .x; y/ 7! xy is visibly split.
Because SOW is now a split torus of SOV , in this subsection we now use a different identification of

C0.V / with Mat2�2 than previously. Rather than (1-1), we choose the isomorphism

zCwe D .a; d/C �.b; c/e 7!

 
a �

dV
dW
b

dV
dW
c d

!
: (3-2)

In the above, .a; d/; .b; c/ 2 E D F �F. The choice of identification (3-2) will simplify expressions
quite significantly.

Write G0 D GL2 �GL2 and denote the corresponding spherical Hecke algebras for G and G0 by

HDH.G;K/;

H0 DH.G0;K0/:

As before, there is a standard map of Hecke algebras

St WH0!HI

in this subsection, we will show that in this split case, this again respects formation of orbital and tonal
integrals.

Theorem 3.15 (the fundamental lemma, E=F split). Let f 0 2 H0 lie in the spherical Hecke algebra
for G0, and setˆıD 1O˚2 and ‰ıD 1OE . Then the functions f 0˝ˆı˝‰ı and St.f 0/ match each other,
in the sense that

I 0
�
1
2
If 0˝ˆı˝‰ı

�
D J .St.f 0//

for all  0$  matching regular semisimple tones and orbits.

Once again, it is helpful to explicate the transfer map St on Hecke algebras. We denote by

T 0m;n WD 1KGL2$
.mCn;m/ KGL2

;

Sk WD 1$k�0 KSOW
;

Tm WD 1KSOV $
m�0 KSOV

the obvious generators of HGL2 , HSOW , and HSOV respectively. In the above, if we denote by i D .l;�l/
a fixed element in E Š F �F with l in F satisfying l2 D dW , then
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�0 W Gm! SOW ;

t 7! �

�
t C 1

2
l C

t � 1

2
i

�
D �

�
t C 1

2
C
t � 1

2
.1;�1/

�
;

is a generator of both X�.SOW / and X�.TSOV /.

Lemma 3.16. The morphism St breaks up according to the two factors in H0 DHGL2 ˝HGL2 as follows:

(1) On the first factor, the map

HGL2 !HSOW

is given by

T 0m;n 7!

8̂<̂
:
S0 if mD 0;
q
1
2 .S1CS�1/ if mD 1;
q
m
2

Pm
iD0 Sm�2i � q

m�2
2

Pm�2
iD0 Sm�2�2i if m� 1:

(2) On the second factor, the map

HGL2 !HSOV

is given by

T 0m;n 7! Tm:

Proof. Part (1) follows directly from the Macdonald formula for GL2. St is given as the composition

HGL2
SatGL2���!HTGL2

!HSOW :

If we write

HTGL2
D CŒX�.TGL2/�

W
D CŒX1; X2; X

�1
1 ; X�12 �W ;

with X1 D 1$.1;0/TGL2 .O/
, X2 D 1$.0;1/TGL2 .O/

, then this second map above is simply

HTGL2
D CŒX1; X2; X

�1
1 ; X�12 �W ! CŒS; S�1�DHSOW ;

which sends X1 to S and X2 to S�1. Applying the Macdonald formula for GL2 gives

St.T 0m;n/D

8̂<̂
:
1 if mD 0;
q
1
2 .S CS�1/ if mD 1;
q
m
2

Pm
iD0 S

m�2i � q
m�2
2

Pm�2
iD0 S

m�2�2i if m� 2:

For the second claim (2), see Lemma 3.8. �

This information in hand, we can now show Theorem 3.15. The calculation of tonal integrals is similar
to the one given in the proof of Theorem 3.7, so we will be a bit terse. However, unlike in the proof
of that theorem, we will not include a step-by-step breakdown of the argument. This is since the basic
structure of the computation is so similar (although this is a bit more ferocious). We adopt the same
notation as in Theorem 3.7.
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Proof. As before, let f 0 D f 01˝f
0
2 2H0 satisfy f 0i D T

0
mi ;0

, ˆı D 1O˚2 and ‰ı D 1OE .
We again reduce the computation of I 0 to evaluating the expression in (3-1), which we recall states

I 0 D j˛j
� 1
2

Z
Sf 01

�
z.z2/a.a1/d.a2/;�N.a2�/

�
Sf 02.z.z1/a.a1/a.˛/

�1; 1/

�!.z2a2/ja1a2jW
ı.a.ˇa�11 //‰

ı.a2�/:

Once again, this is a finite sum. Write ai D$kiui and zi D$ livi , where ui ; vi 2O� are units. Then,
as ! D 1,

I 0 D j˛j
� 1
2

X
Sf 01

��
$ l2Ck1Ck2 0

0 $ l2�k2

�
;N.$k2�/

�
Sf 02

��
$ l1Ck1�val˛ 0

0 $ l1

�
; 1

�
�W ı.a.ˇ$�k1//‰ı.$k2�/;

where this sum is over all ki ; li . Changing variables in the sum as in the proof of Theorem 3.7, we end
up with, if we set T D T .m1; m2; ˛/ WD 1

2
.m2�m1� val˛/,

I 0 D

m1X
r1D0

m2X
r2D0

Sf 01

��
$r1 0

0 $m1�r1

�
;N.$TCr1�r2�/

�
Sf 02

��
$r2 0

0 $m2�r2

�
; 1

�
� q

m1
2
�r1C

m2
2
�r2W ı.a.ˇ$m2�2r2�val˛//‰ı.$TCr1�r2�/

or, better written,

I 0 D

m2X
r2D0

q
m2
2
�r2Sf 02

��
$r2 0

0 $m2�r2

�
; 1

�
W ı.a.ˇ$m2�2r2�val˛//

�

m1X
r1D0

q
m1
2
�r1Sf 01

��
$r1 0

0 $m1�r1

�
;N.$TCr1�r2�/

�
‰ı.$TCr1�r2�/:

Now we must proceed slightly differently from before. The “inner sum” in this calculation does not admit
the same sort of cancellation as in Theorem 3.7, so further bookkeeping is essential.

Let us write the inner sum in the above expression as

A.r2; �/ WD q
m1
2

m1X
r1D0

q�r1Sf 01

��
$r1 0

0 $m1�r1

�
;N.$TCr1�r2�/

�
‰ı.$TCr1�r2�/:

The tonal integral is thus

I 0 D

m2X
r2D0

q
m2
2
�r2Sf 02

��
$r2 0

0 $m2�r2

�
; 1

�
W ı.a.ˇ$m2�2r2�val˛//A.r2; �/

and applying Lemma 3.13, this gives

I 0 D

(
q
m2
2 W ı.a.ˇ$m2�val˛//A.0; �/ if m2 D 0; 1;

q
m2
2 W ı.a.ˇ$m2�val˛//A.0; �/� q

m2�2

2 W ı.a.ˇ$m2�2�val˛//A.1; �/ if m2 > 1:
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So let us now compute the inner sums A.0; �/ and A.1; �/. If we once again apply Lemma 3.13, we
find A.r2; �/ is given by

q
m1
2

�
1O.N.$T�r2�//1OE .$

T�r2�/

C

m1�1X
r1D1

�
1$r1O.N.$TCr1�r2�//� q�11$r1�1O.N.$

TCr1�r2�//
�
1OE .$

TCr1�r2�/

C1$m1O.N.$TCm1�r2�//1OE .$
TCm1�r2�/

�
:

Observe that, as we are in the split case E D F �F, when we write � D .�1; �2/

1$r1O.N.$TCr1�r2�//D 1f.�1;�2/Wval.�1/Cval.�2/�2r2�r1�2T g.�/;

1$r1�1O.N.$
TCr1�r2�//D 1f.�1;�2/Wval.�1/Cval.�2/�2r2�r1�2T�1g.�/;

1OE .$
TCr1�r2�/D 1f.�1;�2/Wval.�i /�r2�r1�T g.�/:

Thus, A.r2; �/, 0� r2 � 1, becomes

q
m1
2

�
1fval.�1/Cval.�2/�2r2�2T g.�/1fval.�i /�r2�T g.�/

C

m1�1X
r1D1

�
1fval.�1/Cval.�2/�2r2�r1�2T g.�/�q

�11fval.�1/Cval.�2/�2r2�r1�2T�1g.�/
�
1fval.�i /�r2�r1�T g.�/

C1fval.�1/Cval.�2/�2r2�m1�2T g.�/1f.�1;�2/Wval.�i /�r2�m1�T g.�/

�
:

We can write this compactly. Define, for 0� i �m1,

Bi .r2; �/ WD 1fval.�1/Cval.�2/�2r2�i�2T g.�/1fval.�i /�r2�i�T g.�/:

We can rewrite our expression as

A.r2; �/D q
m1
2

�
B0.r2; �/C

m1�1X
r1D1

�
Br1.r2; �/� q

�1Br1�1.r2;$�/
�
CBm1.r2; �/

�

D q
m1
2

m1X
r1D0

Br1.r2; �/� q
m1�2

2

m1�1X
r1D1

Br1�1.r2;$�/;

and thus, after noting that

Bi .1; �/D Bi .0;$
�1�/;

we find

I 0 D

(
q
m2
2 W ı.a.ˇ$m2�val˛//A.0; �/ if m2 D 0; 1;

q
m2
2 W ı.a.ˇ$m2�val˛//A.0; �/� q

m2�2

2 W ı.a.ˇ$m2�2�val˛//A.0;$�1�/ if m2 > 1:
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It will be also be helpful to introduce the notation

Ck.�/ WD

kX
r1D0

Br1.0; �/:

When we combine this with the Casselman–Shalika formula, which in this split setting gives

W ı.a.t//D jt j
1
2 .1C val.t//1O.t/;

we find that

I 0 D

ˇ̌̌̌
ˇ

˛

ˇ̌̌̌ 1
2
�
1Cm2C val

�
ˇ

˛

��
1$�m2O

�
ˇ

˛

�
.q

m1
2 Cm1.�/� q

m1�2

2 Cm1�2.$�// (3-3)

if m2 D 0; 1, while

I 0 D

ˇ̌̌̌
ˇ

˛

ˇ̌̌̌ 1
2

 
q
m1
2

 �
1Cm2C val

�
ˇ

˛

��
1$�m2O

�
ˇ

˛

�
Cm1.�/

�

�
�1Cm2C val

�
ˇ

˛

��
1$�.m2�2/O

�
ˇ

˛

�
Cm1.$

�1�/

!

� q
m1�2

2

 �
1Cm2C val

�
ˇ

˛

��
1$�m2O

�
ˇ

˛

�
Cm1�2.$�/

�

�
�1Cm2C val

�
ˇ

˛

��
1$�.m2�2/O

�
ˇ

˛

�
Cm1�2.�/

!!
(3-4)

if m2 > 1.
There is one last manipulation required before we can identify this as the orbital integral of St.Tm1˝Tm2/.

This requires recognizing that

Cm1.�/ WD

m1X
r1D0

Br1.0; �/

D

m1X
iD0

1fval.�1/��T�m1Ci;val.�2/��T�ig.�/

D

m1X
iD0

1fval.�1/� 12 .val˛�.m1�2i/�m2/;val.�2/� 12 .val˛C.m1�2i/�m2/g
.�/:

Similarly

Cm1�2.$�/D

m1�2X
jD0

1fval.�1/��TC1�m1Cj;val.�2/��T�1�ig.�/

D

m1�2X
jD0

1fval.�1/� 12 .val˛�.m1�2�2j /�m2/;val.�2/� 12 .val˛C.m1�2�2j /�m2/g
.�/:
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If we apply these expansions to (3-3) and (3-4), then we write, for example when m2 > 1,

I 0D

ˇ̌̌̌
ˇ

˛

ˇ̌̌̌ 1
2

 
q
m1
2

m1X
iD0

 �
1Cm2Cval

�
ˇ

˛

��
1$�m2O

�

�
ˇ

˛

�
1fval.�1/� 12 .val˛�.m1�2i/�m2/;val.�2/� 12 .val˛C.m1�2i/�m2/g

.�/

�

�
�1Cm2Cval

�
ˇ

˛

��
1$�.m2�2/O

�

�
ˇ

˛

�
1fval.�1/� 12 .val˛�.m1�2i/�m2/C1;val.�2/� 12 .val˛C.m1�2i/�m2/C1g

.�/

!

�q
m1�2

2

m1�2X
jD0

 �
1Cm2Cval

�
ˇ

˛

��
1$�m2O

�

�
ˇ

˛

�
1fval.�1/� 12 .val˛�.m1�2�2j /�m2/;val.�2/� 12 .val˛C.m1�2�2j /�m2/g

.�/

�

�
�1Cm2Cval

�
ˇ

˛

��
1$�.m2�2/O

�

�
ˇ

˛

�
1fval.�1/� 12 .val˛�.m1�2�2j /�m2/C1;val.�2/� 12 .val˛C.m1�2�2j /�m2/C1g

.�/

!!
:

By the following lemma, these expressions are exactly those appearing in the computation of orbital
integrals. �

Lemma 3.17. Let

f D fW ˝fV D Sl ˝Tm 2H:

Then J .f / is given by, for  D �..a; d/C �.b; c/e/,

J .f /

D

�
1CmCval

�
Q.�.b;c//

N

��
1$�mO

�
Q.�.b;c//

N

�
1fval.a/� 1

2
.val.N/�l�m/;val.d/� 1

2
.val.N/Cl�m/g..a;d//

if mD 0; 1, while

J .f /D

�
1CmC val

�
Q.�.b; c//

N 

��
1$�mO

�

�
Q.�.b; c//

N 

�
1fval.a/� 1

2
.val.N/�l�m/;val.d/� 1

2
.val.N/Cl�m/g..a; d//

�

�
�1CmC val

�
Q.�.b; c//

N 

��
1$�.m�2/O

�

�
Q.�.b; c//

N 

�
1fval.a/� 1

2
.val.N/�l�m/C1;val.d/� 1

2
.val.N/Cl�m/C1g..a; d//

if m> 1.
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Proof. Recall that J .f / is defined by first setting

F.x/D

Z
SOW .F /

fW .h/fV .hx/ dh

and then taking

J .f /D

Z
SOW .F /

F.h�1h/ dh:

So note first that for f D Sl ˝Tm we have (since we have taken vol.SOW .O//D 1)

F.x/D 1$�l�0 KSOV $
m�0 KSOV

.x/;

which does not lie in HSOV . Nevertheless, we may compute its regular semisimple orbital integrals.
Suppose  D �..a; d/ C �.b; c/e/; then by the identification (3-2) and Lemma 3.9, we know that
 2$�l�0 KSOV $

m�0 KSOV if and only if

l C val
�
ad �

d2V

d2W
bc

�
� 2min

�
l C val.a/; l C val

�
dV

dW
b

�
; val

�
dV

dW
c

�
; val.d/

�
Dm;

which is better written as

min
�
l C val.a/; l C val

�
dV

dW
b

�
; val

�
dV

dW
c

�
; val.d/

�
D

val.N /C l �m
2

: (?)

Observe that 1
2
.val.N /C l �m/ must be an integer in order for  to lie in $�l�0 KSOV $

m�0 KSOV .
Note that the right-hand side of the above expression (?) does not change when we conjugate  by an

element hD .t; 1/ 2 SOW .F /, while such conjugation replaces the left-hand side with

min
�
kC val.a/; kC val

�
dV

dW
t�1b

�
; val

�
dV

dW
tc

�
; val.d/

�
:

Keeping this in mind, let us determine which  are conjugate to an element of $�l�0 KSOV $
m�0 KSOV .

Let us assume now that m> 1; the analysis for mD 0; 1 is similar but even easier. There are a number
of possible cases to consider.

(1)
Q.�.b; c//Q.e/

N 
D�

d2V

d2W

bc

N 
62$�mO.

This implies

l C val
�
dV

dw
b

�
C val

�
dV

dW
c

�
< val.N /C l �mI

hence at least one of l C val..dV =dW /b/, val..dV =dW /c/ is less than 1
2
.val.N /C l �m/. Thus  can

never be conjugate to an element of $�l�0 KSOV $
m�0 KSOV .

(2)
Q.�.b; c//Q.e/

N 
2$�mO �$�mC2O.
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In this case, since we have

N  D ad �
d2V

d2W
bc;

this forces val.ad=.N //D�m;�mC 1 as well. Thus, in order to have  conjugate to an element satis-
fying (?), it must be the case that at least one of lCval.a/ or val.d/ must be exactly 1

2
.val.N /C l�m/.

(3)
Q.�.b; c//Q.e/

N 
2$�mC2O, at least one of l C val.a/; val.d/ < 1

2
.val.N /C l �m/.

Here, it is clear that  can never be conjugate to an element satisfying (?).

(4)
Q.�.b; c//Q.e/

N 
2$�mC2O, at least one of l C val.a/; val.d/D 1

2
.val.N /C l �m/.

We implicitly assume both l C val.a/; val.d/ � 1
2
.val.N /C l �m/ so that we are not in case (3).

Then  is always conjugate to an element satisfying (?).

(5)
Q.�.b; c//Q.e/

N 
2$�mC2O, with l C val.a/; val.d/ > 1

2
.val.N /C l �m/.

Here again,  is always conjugate to an element satisfying (?).

In each case, we can easily determine the value of J .f /. In (1) and (3), it is clear that J .f /D 0. In
cases (2) and (4), we get 1C val.Q.�.b; c//Q.e/=.N //Cm. Finally, in case (5), we find J .f /D 2.
This is exactly the claimed formula. �

Part II. Trace formulas, done naively

In this part, we present the global motivations underlying the calculations in Part I. Throughout this
part, unless otherwise specified, F will be a number field. We will describe the construction of two trace
formulas, the “geometric sides” of which will involve the orbital and tonal integrals studied in Part I.

However, a caveat: all manipulations will be purely formal. We give little to no thought towards
convergence of various sums and integrals, and we will freely interchange these as needed. This failing
will be remedied in the sequel to this paper, where we will give a complete discussion of the “correct”
form of these trace formulas, and where we confront these analytic issues and provide suitable regularized
versions of these trace formula identities.

Because of this, some words should be said in defense of including this discussion at all — after all,
with these naive manipulations there are no real results in this part, only motivation! We mention only that
the regularized forms of the trace formulas we allude to above appear quite obscure, and discussion of
them lacks the clarity that we feel underlies our approach, and which is apparent in this naive discussion.

That said, let us begin with a description of our first relative trace formula, which is designed to encode
“the periods side” of Waldspurger’s formula.
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4. The relative trace formula on SO2 � SO3

The setup for our trace formula here mostly follows the basic pattern for all relative trace formulas. At first
approximation, we simply consider the group GD SOW �SOV together with its diagonally embedded
subgroup HD�SOW , and write down the relative trace formula corresponding to the double coset space
H nG =H. This gives a trace formula whose spectral side appears well-adapted to encode “the periods
side” of Waldspurger’s formula and whose geometric side carries a natural interpretation.

However, there is a slight hiccup with this clean approach. This only really rears its head not in the
case of SO2 �SO3, but in the more general study of SOn periods for forms on SOnC1 when n is large.
For instance, the naive analogue of Waldspurger’s formula in high rank — the Ichino–Ikeda conjecture
[2010] — is not quite correct as stated, and must be slightly modified. See [Xue 2017b] Conjecture 6.2.1
for a corrected version of the Ichino–Ikeda formula; see also Conjecture 6.3.1 of that paper for another
variant, which reinterprets the corrected Ichino–Ikeda formula as a formula for periods on On �OnC1.

So what is this hiccup? The root cause of the matter is the existence of the outer automorphism of SOn,
when nD 2r is even, which we may view as given by conjugation by a representative of the nontrivial
element in On =SOn, and which brings about, when nD 2r is large, the failure of multiplicity 1 in the
cuspidal spectrum of SOn.

As one might imagine, this does not cause any serious problems in the Waldspurger case of SO2 �SO3
(SO2 certainly has multiplicity 1!) and could more or less be ignored in this setting; i.e., we could
easily deal with the trace formula in the naive manner described above. We believe that this would be
philosophically incorrect. To that end, we will incorporate the outer automorphism of SO2 into the setup
of our trace formula, which will force us to deviate slightly from the clear outline presented in the first
paragraph of this section.

The basic idea behind this correction is simple. Since the most natural setting for the (corrected)
SOn �SOnC1 Ichino–Ikeda conjecture is not on SOn �SOnC1 at all, but rather on On �OnC1 (again, see
Conjecture 6.3.1 of [Xue 2017b]), we would like to “push forward” the relative trace formula on OW �OV
corresponding to the double coset space �OW nOW �OV =�OW from OW �OV to GD SOW �SOV .
This will give a distribution on G with a spectral side designed to encode periods on OW �OV , as desired.

Let us begin by giving a few simple definitions.

4A. The period integral and the global spherical character. We assume here that F is a number field.
Let our notation be as above: GDSOW �SOV and HD�SOW Df.h; �.h// Wh2SOW } is the diagonally
embedded SOW . In the future, we will omit writing the embedding � W SOW ,! SOV . Let � D �˝ �
be an irreducible automorphic cuspidal representation of G; i.e., let � be an automorphic character
� W SOW .F /nSOW .A/! C� and � an irreducible automorphic cuspidal representation of SOV .

We must consider the period integral of Waldspurger–Gross–Prasad applied to forms in � . This is
defined by

P W � D �˝ � ! C;

�˝� 7!
R
ŒH� �.h/�.h/ dh:
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Here � 2 � and dh is the measure on H.A/D SOW .A/ normalized to give vol.ŒH�/D 1. The notation
� 2 � is unambiguous, since by the multiplicity-one theorem for SOV Š PB� there is only one realization
of � in the space of automorphic forms.

The period integral P.�/ is absolutely convergent when � is cuspidal.

4A1. The global spherical character. Let� be an automorphic cuspidal representation of GDSOW �SOV .
We define the global spherical character by taking for f 2 C1c .G.A//

J�.f /D
X

'2ON.�/

P.�.f /'/P.'/:

Here the sum runs over a fixed orthonormal basis of ON.�/� � � L2.ŒG�/, and the operator �.f / is
defined by

�.f /' D

Z
G.A/

f .g/�.g/' dg:

J� is visibly a distribution of positive type, in the following sense: if f D a � a_ for a function a,
where a_.g/D a.g�1/, then

J�.f /� 0:

Moreover, the following lemma is easily apparent:

Lemma 4.1. Let P denote the period integral, viewed as an element in HomH.A/.�;C/. Then P D 0 if
and only if J� D 0.

This should be interpreted as the statement that the distribution J� encodes the period integral, viewed
as a functional on � .

4A2. A variant for full orthogonal groups. We also define, for future use, the corresponding objects for
full orthogonal groups OW �OV . Let Q� D Q�˝ Q� be a cuspidal representation of OW �OV (note that Q�
does not mean contragredient here!), and consider the functional

zP W Q�! C;

Q' 7!
R
Œ�OW �

Q'. Qh/ d Qh:

As above, we can define a global spherical character

QJ Q�. Qf /D
X
Q'2ON. Q�/

zP. Q�. Qf / Q'/ zP Q':

4B. The SOW � SOV trace formula. Consider the homomorphism

D W OW �OW ! �2;

.h1; h2/ 7! det h1 det h2;

and define the disconnected group H D .H2/˙ by setting

.H2/˙ WD ker.D/:
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We can also write this group as the semidirect product .H2/˙D .H�H/Ìf1; �g, where � is the element of
OW induced by the nontrivial automorphism N� 2Gal.E=F / acting through the identificationW Š .E; "N/.
The semidirect product is given by the diagonal action

�.h1; h2/�
�1
D .�h1;

�h2/:

We use hD .h1s; h2s/, s 2 f1; �g, to denote an element of H D .H2/˙.
We will identify the group f1; �g with �2 as follows. Denote by s W �2! OW the map

t 7! st ;

where

st D

�
1 if t D 1;
� if t D�1:

We also define another map z W �2! OV , written

t 7! zt :

Here zt 2 OV is the transformation which is the identity on W and multiplication by t on W ? D Fe. It
is worth noting by construction that any element zt commutes with any element of OW .

We take Haar measures dhv on SOW .Fv/ and dtv on �2.Fv/ so that for almost all places

vol.KSOW ;v/D 1;

while for all v,
vol.�2.Fv//D 1:

We also take Haar measures dhD
Q
dhv and dt D

Q
dtv on SOW .A/ and �2.A/— by scaling dhv at

finitely many places, we can ensure that

vol.ŒSOW �/D 1;

while, without scaling dtv, we still have

vol.Œ�2�/D 1
2
:

Together, these induce a Haar measure dh on H .A/ and a corresponding measure on the automorphic
quotient ŒH � via Z

ŒH �

�.h/ dhD

Z
Œ�2�

Z
ŒSOW �

Z
ŒSOW �

�.h1st ; h2st / dh1 dh2 dt

for � a smooth function on ŒH �.
We can now define our trace formula. Let f 2 C1c .G.A// be a test function, and let x D .x1; x2/,

y D .y1; y2/ be elements of G.A/D SOW .A/�SOV .A/. Consider the usual kernel function

Kf .x; y/D
X

ı2G.F /

f .x�1ıy/:
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It is easy to see that this is formally represented by the sum

Kf .x; y/D
X

'2ON.L2.ŒG�//

.R.f /'/.x/'.y/:

Here ON.L2.ŒG�// denotes a fixed orthonormal basis of automorphic forms of theL2 space of G.F /nG.A/
and R.f /' is the right regular action of Hecke operators, namely

R.f /'.x/D

Z
G.A/

f .y/'.xy/ dy:

We must consider the following:

Definition 4.2. The SOW �SOV trace formula distribution J.f / is defined formally as

J.f /D

Z
Œ�2�

Z
ŒSOW �

Z
ŒSOW �

Kf ..h1st ; h1st /; .h2st ; h2st // dh1 dh2 dt: (4-1)

There is small inconsistency in our notation: we defined Kf as a function on .SOW .A/� SOV .A//2,
while above we seem to be evaluating this at elements of OW .A/2. However, the expression (4-1) can,
and should, be made sense of in the following way:Z
Œ�2�

Z
ŒSOW �

Z
ŒSOW �

Kf ..h1st ; h1st /; .h2st ; h2st // dh1 dh2 dt

D

Z
Œ�2�

Z
ŒSOW �

Z
ŒSOW �

X
.ı1;ı2/2G.F /

f .s�1t h
�1
1 ı1h2st ; s

�1
t h
�1
1 ı2h2st / dh1 dh2 dt

D

Z
Œ�2�

Z
ŒSOW �

Z
ŒSOW �

X
.ı1;ı2/2G.F /

f .st.h�11 ı1h2/;
st.h�11 ı2h2// dh1 dh2 dt:

If we omitted the integration over Œ�2� in our definition of J.f /, then it would be extremely easy to
interpret the corresponding distribution spectrally. Simply write (formally) L2.ŒG�/D

L
� , where the

“sum” is over all automorphic representations of G. This givesZ
ŒSOW �

Z
ŒSOW �

Kf ..h1;h1/; .h2;h2//dh1dh2D

Z
ŒSOW �

Z
ŒSOW �

X
'2ON.L2.ŒG�//

.R.f /'/.h1/'.h2/dh1dh2

D

X
�

X
'2ON.�/

P.�.f /'/P.'/

D

X
�

J�.f /

and so spectrally, this distribution is nothing more than the sum of all the global spherical characters J� .
The same argument, but applied to OW �OV , gives the spectral decomposition of J.f /, as we will

now explain.
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Consider the distribution QJ, defined by, for a function Qf 2 C1c ..OW �OV /.A//,

QJ . Qf / WD

Z
ŒOW �

Z
ŒOW �

K Qf .
Qh1; Qh2/ d Qh1 d Qh2;

where

K Qf .x; y/D
X

ı2.OW �OV /.F /

Qf .x�1ıy/

is the Selberg kernel function for OW �OV . Here d Qhi D d Qh denote the same measure on ŒOW �, defined
using our fixed measures dt on Œ�2� and dh on ŒSOW � as above viaZ

ŒOW �
�. Qh/ d QhD

Z
Œ�2�

Z
ŒSOW �

�.hst / dh dt:

By the same argument as above, QJ . Qf / formally decomposes as a sum of global spherical characters
QJ Q�. Qf / for OW �OV . Some simple manipulations will also allow us to relate QJ . Qf / to the distribution
J.f /.

Expand out QJ . Qf / to get

QJ . Qf /D

Z
ŒOW �

Z
ŒOW �

K Qf .
Qh1; Qh2/ d Qh1 d Qh2

D

Z
Œ�2�2

Z
ŒSOW �2

X
ı2G.F /

X
�12�2.F /
�22�2.F /

Qf .s�1t1 h
�1
1 ı1s�1h2st2 ; s

�1
t1
h�11 ı2s�2h2st2/ dh1 dh2 dt1 dt2:

Changing variables in the sum ı1 7! s�1ı1s
�1
�1

, ı2 7! s�1ı2s
�1
�1

, followed by s�2 7! s�1s�2 , and finally
followed by h1 7! s�1h1s

�1
�1

gives

QJ . Qf /

D

Z
Œ�2�2

Z
ŒSOW �

Z
ŒSOW �

X
ı2G.F /

X
�12�2.F /
�22�2.F /

Qf
�
.s�1st1/

�1h�11 ı1h2st2 ;.s�1st1/
�1h�11 ı2s�2h2st2

�
dh1dh2dt1dt2:

If we unfold the integration over one copy of Œ�2� and change variables st1 7! st2s
�1
t1

, we find that

QJ . Qf /

D

Z
Œ�2�

Z
ŒSOW �2

X
ı2G.F /

�Z
�2.A/

X
�22�2.F /

Qf .s�1t1 h
�1
1 ı1h2st2 ; s

�1
t1
h�11 ı2s�2h2st2/dt1

�
dh1dh2dt2

D

Z
Œ�2�

Z
ŒSOW �2

X
ı2G.F /

�Z
�2.A/

X
�22�2.F /

Qf .st1s
�1
t2
h�11 ı1h2st2 ; st1s

�1
t2
h�11 ı2s�2h2st2/dt1

�
dh1dh2dt2:
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Finally, we change ı2 7! ı2s
�1
�2
z�2 , noting that z�2 commutes with elements in SOW , and write

QJ . Qf /

D

Z
Œ�2�

Z
ŒSOW �2

X
ı2G.F /

�Z
�2.A/

X
�22�2.F /

Qf .st1s
�1
t2
h�11 ı1h2st2 ; st1s

�1
t2
h�11 ı2h2st2z�2/dt1

�
dh1dh2dt2

D

Z
Œ�2�

Z
ŒSOW �2

X
ı2G.F /

f .s�1t2 h
�1
1 ı1h2st2 ; s

�1
t2
h�11 ı2h2st2/dh1dh2dt2

DJ.f /;

where, given Qf , we take

f .a; b/D

Z
�2.A/

X
�2�2.F /

Qf .sta; stbz� / dt:

Since the map Qf 7! f is clearly surjective, we find that J.f / does indeed have a spectral interpretation:
it is essentially the corresponding relative trace formula on OW �OV , and so exactly encodes the sum of
global spherical characters on OW �OV . For more on why these global spherical characters on OW �OV
are the correct objects of study (rather than those on SOW �SOV ), we once again refer the reader to
[Xue 2017b, Conjecture 6.3.1].

4B1. The geometric side. We turn to the geometric expansion of J.f / as a sum of orbital integrals.
These are defined purely locally in Part I: see Definition 1.9.

We can also easily define, for F a number field,  2 SOV .F /, and f ] D
N
f
]
v 2 C

1
c .SOV .A// a

factorizable function, the global orbital integral by setting

J.; f ]/D J .f
]/ WD

Z
OW .A/

f ].h�1h/ dhD
Y
v

Jv.; f
]
v /:

As in Part I, if f 2 C1c .G.A//, then we associate a corresponding f ] via

f ].x/D

Z
SOW .A/

f .h.1; x// dh:

Again, it is easy to see that the map

C1c .G.A//! C1c .SOV .A//;

f 7!
�
f ] W x 7!

R
SOW .A/

f .h.1; x// dh
�
;

is surjective. We often abuse notation and interchangeably write J.; f / for J.; f ]/.
Let us return to discussing the geometric expansion of J.f /. We can decompose J.f / as a sum of

global orbital integrals — in practice, this is little more than the double coset computation

�SOW n.SOW �SOV /=�SOW �!� SOV =conj SOW ;

.a; b/ 7! a�1b;
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but where we also keep track of the outer automorphism of SOW . Better said: consider the right action
of H on G given, if hD .h1s; h2s/, by

.a; b/:hD .s�1h�11 ah2s; s
�1h�11 bh2s/:

Then, we have
.SOW �SOV /=H �!� SOV =conj OW ;

.a; b/ 7! a�1b:

Recall that we have defined

J.f /D

Z
ŒH �

X
ı2G.F /

f .ı:h/ dh:

Denote by Hı the stabilizer in H of ı 2G. We can take as orbit representatives of G.F /=H .F / elements
of the form ı D .1; /, with  a representative of SOV .F /=conj OW .F /, and for such ı

Hı D�.OW / ;

where by .OW / , we mean the stabilizer in OW of  2 SOV under the conjugation action. Note that this
group can be identified either as OW , SOW , �2, or 1. When  is regular semisimple, it is either 1 or �2.

In any case, we may unfold the integral defining J.f / to find

J.f /D
X

ı2G.F /=H .F /

vol.ŒHı �/

Z
Hı.A/nH .A/

f .ı:h/ dh

D

X
2SOV .F /=conj OW .F /

vol.Œ.OW / �/
Z
.OW / .A/nOW .A/

F.h�1h/ dh

or, even more simply,

J.f /D
X

2.SOV .F /=conj SOW .F //r:s:s:
J .f /C non-r.s.s orbital integrals:

Thus, the orbital integrals studied in Part I are exactly the terms appearing in the geometric side of our
first trace formula.

5. The relative trace formula on GL2 � GL2

Having now produced a trace formula distribution which encodes “the periods side” of Waldspurger’s
formula, it remains to construct one which controls “the L-function side”. This is the goal of this section.
Our distribution in question will live on the group G0 WD GL2 �GL2. To define it, we will require some
ingredients.

5A. Preliminaries. Let …D…1˝…2 be an irreducible automorphic cuspidal representation of G0.A/;
i.e., let …i be irreducible cuspidal representations of GL2.A/, and denote by !1 and !2 their (unitary)
central characters. The main ingredients for our trace formula will be certain period integrals PRS and
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Pdist of forms �0 2…. These are integrals taken along two subgroups H01D�GL2 and H02DGL.2/2 �N,
but weighted by various functions (Eisenstein series and theta functions respectively).

Thus, before we can proceed, we must review some basics on how these periods are defined, what they
compute, and why we include them in our construction.

5A1. Rankin–Selberg convolution on GL2. We begin with a flurry of definitions regarding Eisenstein
series, and briefly survey their role in the theory of Rankin–Selberg convolution for GL2 �GL2.

We first confront the global analogue of Section 2A2. Let ˆ 2 S.A2/ be a Schwartz function on A2,
and let ! be a unitary central character of GL2:

! W F �nA�! C�:

Recall that we denote by

PD
��
� �

0 1

�
2 GL2

�
the usual “mirabolic” subgroup of GL2, and by

BD Z PD
��
� �

0 �

�
2 GL2

�
the full Borel subgroup containing P. As in Section 2A2, we may define (via the identification A2�f0g Š

P nGL2) a section Fs by the Tate integral

Fs.g/D j detgjs
Z

A�
ˆ..0; t/g/!.t/jt j2s d�t:

Again, Fs 2 IndGL2.A/
B.A/ .ıs�

1
2 .1; !�1//, where

ı

��
a �

b

��
D

ˇ̌̌̌
a

b

ˇ̌̌̌
is the modular quasicharacter of B,

.1; !�1/

��
a �

b

��
WD !�1.b/;

and Ind denotes normalized induction.

Definition 5.1. The Eisenstein series associated to ˆ and ! is given, when Re.s/� 0, by the expression

E.g/DE.s; g/DE.s; .1; !�1/Ig;ˆ/ WD
X

2B.F /nGL2.F /

Fs.g/:

To us, the importance of this Eisenstein series stems entirely from the following application.

Proposition 5.2 (Jacquet, Piatetski-Shapiro, Shalika, Rankin, Selberg). Let …1 and …2 be irreducible
automorphic cuspidal representations of GL2.A/, with central characters !1 and !2. Let 'i 2…i be
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forms, and let ˆ 2 S.A2/ be a Schwartz function. Then the integral

Z.sI'1; '2; ˆ/ W D

Z
Z.A/GL2.F /nGL2.A/

'1.g/'2.g/E.s; .1; !
�1
1 !�12 /Ig;ˆ/ dg

D

Z
ŒPGL2�

'1.g/'2.g/E.s; g/ dg

unfolds to an Euler product

Z.sI'1; '2; ˆ/D

Z
N.A/nGL2.A/

W  �1'1.g/W
 '2.g/ˆ..0; 1/g/j detgjs dg;

where

W  �1'1.g/D

Z
ŒN�
'1.ng/ 

�1.n/ dn;

W  '2.g/D

Z
ŒN�
'2.ng/ .n/ dn

are the  -th and  �1-th Fourier coefficients of '1 and '2 respectively. Once one fixes factorizations
of the global Whittaker functionals of taking  -th or  �1-th Fourier coefficient into products of local
Whittaker functionals, this gives a factorization

Z.sI'1; '2; ˆ/D
Y
v

Zv.sI'1;v; '2;v; ˆv/;

where each Zv is a local integral

Zv.sI'1;v; '2;v; ˆv/D

Z
N.Fv/nGL2.Fv/

W  �1

v '1;v.g/W
 
v '2;v.g/ˆv.eng/j detgjs dg

which exactly computes the local factors Lv.s;…1;v �…2;v/ for unramified places and unramified data.

Remark 5.3. The ramified places can be controlled by nonvanishing results for the local integrals, and
thus this integral gives a robust understanding of the analytic properties of L.s;…1 �…2/. In fact, even
more can be said: the L-function occurs as a “g.c.d.” of zeta integrals Z.s; '1; '2; ˆ/ as '1; '2; ˆ vary.
The functional equation follows from the functional equation of the Eisenstein series.

Proof. For a very readable discussion and proof in the general case of GLn �GLn, see [Cogdell and
Piatetski-Shapiro 2004]. �

We will interpret the map '1˝'2˝ˆ 7!Z.s; '1; '2; ˆ/ as a linear functional, which we denote by

PRS.s/ W…1˝…2˝S.A
2/! C;

'1˝'2˝ˆ 7!Z.s; '1; '2; ˆ/:

5A2. Fourier coefficients of E.g; s/. The Fourier expansion of the GL2-Eisenstein series will be used
later. The relevant and well-known computation follows.
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Lemma 5.4. Let ˆD˝ˆv be factorizable Schwartz function, and let Re.s/� 0. The Eisenstein series

E.g/DE.s; .1; !�1/Ig;ˆ/D
X

2B.F /nGL2.F /

F.g;ˆI s; !/

has ˛-th Fourier coefficient given by

E˛.g/D

Z
F nA

E.n.x/g/ .�˛x/ dx

D

�R
A
Fs.wn.x/g/ 

�1.x/ dx if ˛ ¤ 0;
Fs.g/C

R
A
Fs.wn.x/g/ dx if ˛ D 0

D

(
W
 �1

Fs
.g/ if ˛ ¤ 0;

Fs.g/CM.s/Fs.g/ if ˛ D 0:

Here M.s/ is the usual intertwining integral between principal series of GL2, given by

M.s/ W fs.g/ 7!

Z
A

fs.wn.x/g/ dx:

Proof. Recall the Eisenstein series is given by

E.g/D
X

2B.F /nGL2.F /

Fs.g/:

Taking a set of representatives of B.F /nGL2.F / to be the identity matrix 1 (the small Bruhat cell) and
matrices of the form wn.t/ (the large cell), we find

E˛.g/D

Z
F nA

�
Fs.n.x/g/C

X
t2F

Fs.wn.t/n.x/g/

�
 .�˛x/ dx:

Note that Z
F nA

Fs.n.x/g/ .�˛x/ dx D Fs.g/

Z
F nA

 .�˛x/ dx D 0

unless ˛ D 0.
So suppose first that ˛ ¤ 0. Then we unfold to find

E˛.g/D

Z
F nA

X
t2F

Fs.wn.xC t /g/ .�˛x/ dx

D

Z
A

Fs.wn.x/g/ .�˛x/ dx

DW
 �1

Fs
.a.˛/g/

so this coefficient is factorizable.
If ˛ D 0, the computation is similar. Proceeding as above, we get

E0.g/D Fs.g/C

Z
A

Fs.wn.x/g/ dx;

as desired. �
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5A3. The symmetric square L-function for GL2. Let us quickly review the construction of the symmetric
square L-function for GL2 due to Shimura and Gelbart–Jacquet. This crucially involves the Weil
representation, treated adelically, and so, just as Section 2A1 did for the corresponding local picture, we
now give a brief tour of this global theory.

Once again, for these matters we follow [Takeda 2014]. Most details will be omitted. Recall that we
write, for any ring R,

GL.2/2 .R/D fg 2 GL2.R/ W det.g/ 2 .R�/2g:

These are not the R-points of an algebraic group, but we will still use this notation freely.
As in the local story, one can define a double cover fSL2.A/ of SL2.A/ as well as a central extension

1! f˙1g ! fGL.2/2 .A/! GL.2/2 .A/! 1:

This central extension comes equipped with two important (partially defined) set-theoretic sections, �
and s

�; s W GL.2/2 .A/! fGL.2/2 .A/:

More precisely, � is an honest set-theoretic section, defined for all h, while s.h/ only makes sense for
h 2 B.2/.A/ or h 2 GL.2/2 .F /. (For more discussion on �; s, and the precise cocycle used to write down
the global metaplectic group, see [Takeda 2014].)fGL.2/2 .A/ also comes equipped with a Weil representation r . It can be realized as an action on the
space SC.A/ of even Schwartz functions on A, where it is given by the formulas

r 
�

s

�
0 1

�1 0

��
f .x/D . ; �2 / Of .x/;

r 
�

s

�
1 b

1

��
f .x/D  .bx2/f .x/;

r 
�

s

�
a 0

0 a�1

��
f .x/D jaj

1
2� .a/f .ax/;

r 
�

s

�
1 0

0 a2

��
f .x/D jaj�

1
2f .a�1x/;

r .�/f .x/D �f .x/;

as in the local setting. The Schwartz space model of r gives rise to a well-known automorphic realization:
to any f 2 SC.A/ we attach a theta function

� . Qh; f /D
X
�2F

r . Qh/f .�/

which is an automorphic form on fGL.2/2 .A/.
The representation r can also be constructed via the residues of Eisenstein series on fGL.2/2 . This

proceeds as follows. Let zT
.2/
.A/ denote the preimage of the diagonal maximal torus T.2/.A/ of GL.2/2 .A/
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in the double cover. We define a character ! by

! W zT
.2/
.A/! C�;

.1; �/s.t/ 7! �� .t1/;

where t D diag.t1; t2/ (again, the definition and properties of � can be found in [Ranga Rao 1993,
Appendix]). Then, given a section

Qf  s 2 Ind
eGL.2/2 .A/

zT
.2/
.A/s.N.A//

! ˝ ıs�
1
2 ;

one can construct an Eisenstein series

zE.sI Qh; Qf  s / WD
X

2B.2/.F /nGL.2/.F /

Qf  s .s./
Qh/

on fGL.2/2 .A/. As zE.sI Qh; f  s / lives on fGL.2/2 .A/, but does not descend on GL.2/2 .A/, we refer to it as a
genuine or half-integral weight Eisenstein series. zE.sI Qh; f  s / is known to have a pole at s D 3

4
, and in

fact r can be realized as the space of residues of these Eisenstein series at s D 3
4

. For a simple proof of
this fact, see [Gelbart and Piatetski-Shapiro 1980].

The importance of the functions � . Qh; f / and zE.sI Qh; fs/ rests in the following integral representation
of the symmetric square L-function for GL2.

Proposition 5.5 (Jacquet, Gelbart, Bump, Ginzburg, Takeda). Let … be a cuspidal representation of
GL2.A/, with quadratic central character ! D !E=F , with E D F.

p
d/. Let ' 2…;f 2 SC.A/, and

Qf  �ds 2 Ind
eGL.2/2 .A/

zT
.2/
.A/s.N.A//

! �d ˝ ıs�
1
2 :

Then the integral

Z.sI';‰; fs;Sym2/ WD
Z
ŒPGL.2/2 �

'.h/� .�.h/; f / zE.sI �.h/; Qf  �ds / dh

unfolds to an Euler product

Z.sI';‰; fs;Sym2/D
Y
v

Zv.sI'v; ‰v; fs;v;Sym2/;

where the local zeta integrals

Zv.sI'v; ‰v; fs;v;Sym2/

have the property that, for unramified places v and unramified test data 'v; ‰v; fs;v,

Zv.sI'v; ‰v; fs;v;Sym2/D Lv
�
2s� 1

2
;…;Sym2

�
�F;v.4s� 1/

�1:

Proof. This, and a twisted form of it, are the main theorem of [Takeda 2014] in the more general setting
of GLn. �
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Remark 5.6. The restriction above that the central character ! be quadratic is entirely artificial — with
some easy modification, the integral above can be defined for any irreducible cuspidal …, not just those
with quadratic central character. It then follows from this representation of L.s;…;Sym2/ that the
symmetric square L-function cannot have a pole at s D 1 if !2 ¤ 1. See [Takeda 2014].

One can take the residue at sD 3
4

of the above integral representation to find an explicit period integral
which detects the existence of a pole of L.s;…;Sym2/ at s D 1. Before we state this result though, let us
repackage some of the ingredients slightly.

Consider the 2-dimensional quadratic space .E;N/. We can, in a similar manner to what we did above,
define the representation R of GL.2/.2;A/ acting on SCC.AE /, the space of Schwartz functions on
AE invariant under z 7! Nz and z 7! �z, by the formulas

R 

��
0 1

�1 0

��
‰.z/D . ;N/y‰.z/;

R 

��
1 b

1

��
‰.z/D  .bN z/‰.z/;

R 

��
a 0

0 a�1

��
‰.z/D jaj!.a/‰.az/;

R 

��
1 0

0 a2

��
‰.z/D jaj�1‰.a�1z/:

Here, y‰.z/D
R

AE
‰.z0/ .N.zC z0/�N.z/�N.z0// dz0 is the Fourier transform, with dz0 normalized

so as to be self-dual.
R has an automorphic realization by considering, given ‰ 2 SCC.AE /, the associated theta function

‚ .h;‰/D
X
�2E

.R .h/‰/.�/:

We are interested in this representation R entirely because

R 
Š r y̋ r �d

and because of its appearance in the following proposition.

Proposition 5.7 (Jacquet, Gelbart, Bump, Ginzburg, Takeda). Let … be a cuspidal representation
of GL2.A/. L.s;…;Sym2/ has a pole at s D 1 if and only if for one (equivalently any)  we have both

(1) the central character ! of … is of the form ! D !E=F for some E D F Œ
p
d� (i.e., !2 D 1),

(2) the linear functional

PSym2 W…˝R 
! C;

'˝‰ 7!
R
ŒPGL.2/2 �

'.h/‚ .h;‰/ dh;

is not identically zero.
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Proof. Indeed, this fact is also discussed in [Takeda 2014]. In addition to this reference, let us make some
quick remarks. The result we are after follows directly from the integral representation of Proposition 5.5
and the observation that R is exactly the representation whose automorphic realization consists of forms
like

ressD 3
4
� . � ; ‰/ zE.sI � ; Qf  �ds /:

This latter observation is a consequence of the dual identity of r either as the Weil representation, as
described by the action of fGL.2/2 .A/ on SC.A/ and its automorphic realization as theta functions, or as
the space of residues of metaplectic Eisenstein series. For more on this, see [Gelbart and Piatetski-Shapiro
1980], particularly Proposition 3.3.3 and their Section 6. �

Why are we concerned with Proposition 5.7? In Section 5B we will need to characterize those cusp
forms on GL2.A/ which appear as functorial lifts (via the “standard” transfer map) from SOW .A/.
Assuming Langlands functoriality, here is the conjectural answer. According to the Langlands philosophy,
an irreducible cuspidal automorphic representation … of GL2.A/ is a functorial lift from SOW .A/ if and
only if its corresponding L-parameter factors through the L-group of SOW .A/. This should occur if and
only if we have both

(1) the L-parameter preserves a symmetric bilinear form on C2,

(2) the determinant of the L-parameter corresponds under class field theory to the character !E=F .

This should be equivalent to

(1) the symmetric square L-function L.s;…;Sym2/ has a pole at s D 1,

(2) the central character ! of … is the quadratic character !E=F .

Summarizing: … should be a functorial lift from SOW .A/ if and only if its central character ! happens
to be !E=F for E D F Œ

p
dW � and PSym2 is not identically zero on …˝R . This is what PSym2 is

really designed to detect.

Remark 5.8. The soft discussion above, where we relied on some unproven black boxes (such as
Langlands functoriality!) to arrive at a conjectural characterization of functorial lifts from SOW .A/ can
be reformulated in a more concrete manner. This is largely because we know the construction of the
functorial transfer from SOW .A/ to GL2.A/. It is the simplest case of the theta correspondence. Better
said, the theta correspondence (with similitude factors) explains our functorial transfer. Note that our
representation R is the restriction to GL.2/2 .A/ of a Weil representation on AE �GL.2/2 .A/ (which itself
is the restriction of a representation from the metaplectic double cover of GSp4). It is then not too hard to
see that R is the sum of all possible dihedral forms with central character !E=F ; hence integration next
to R determines whether … is a functorial lift from SOW .

We have avoided this perspective because it so crucially relies on the exceptional isomorphism
SL2 D Sp2 at its heart, and thus cannot offer any insight into the same problem for higher-rank even
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orthogonal groups SOn and their functorial transfers to GLn. On the other hand, the theory of integral
representations is bound by no such restriction.

Remark 5.9. It is also worth pointing out that the black boxes referenced in the remark above are largely
proven in the case we need, namely that of functorial transfer from a classical group to GLN . See [Arthur
2013].

5A4. Fourier coefficients of ‚.h;‰/. For later use, we include the following simple lemma.

Lemma 5.10. Let ‚.h/D‚ .h;‰/ be as above. Then the ˛-th Fourier coefficient is given by

‚˛.h/D
X
�2E

N �D˛

.R .h/‰/.�/:

Proof. We compute

‚˛.h/D

Z
F nA

‚.n.x/h/ .�˛x/ dx

D

Z
F nA

X
�2E

.R .n.x/h/‰/.�/ .�˛x/ dx

D

X
�2E

.R .h/‰/.�/

Z
F nA

 .N.�// .�˛x/ dx:

This last integral is 0 unless N.�/D ˛. By our normalization of measures, it is 1 when N.�/D ˛. �

5A5. The exterior square L-function for GL2. This is even easier. We record the following very simple
fact.

Proposition 5.11. Let… be an irreducible automorphic cuspidal representation of GL2. Then the exterior
square L-function L.s;…;^2/ has a pole at s D 1 if and only if , for  nontrivial, the linear functional

P^2 DP
 

^2
W…! C;

' 7!
R
ŒZ N� '.zn/ .n/ dn dz;

is not identically zero.

Proof. This follows immediately upon noting two things: first, that every irreducible cuspidal representation
of GL2.A/ is generic; and second, that for GL2 the exterior square L-function L.s;…;^2/ is nothing
more than the Hecke L-function L.s; !…/, where !… is the central character of …. �

Just as in the discussion following Proposition 5.7, we can view Proposition 5.11 as identifying
which cusp forms on GL2.A/ are functorial transfers from SOV .A/. Once again, this is a consequence
of Langlands functoriality. Here, the pole of L.s;…;^2/ at s D 1 keeps track of whether or not the
L-parameter of … factors through Sp2.C/, which is the Langlands dual of SOV .
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5B. The global spherical character. We are now ready to define the GL2 �GL2 global spherical charac-
ter. This is designed to encode the L-function side of Waldspurger’s formula. That is, given…D…1˝…2
a cuspidal representation of G0DGL2 �GL2, the spherical character I… is a distribution that should both

� detect whether … is a functorial transfer from GD SOW �SOV (more accurately, from OW �OV ),

� compute the Rankin–Selberg L-function L.s;…/D L.s;…1 �…2/.

Let us address the first point. If … is a lift from G, then the central characters of …1 and …2 are
simple enough to determine: namely, the central character of …1 must be ! D !E=F , i.e., the quadratic
automorphic quadratic character of A� corresponding to E D F Œ

p
dW �, while the central character of

…2 must be trivial. Furthermore, our discussion immediately following Propositions 5.7 and 5.11 shows
that in addition, …D…1˝…2 should be a lift from G if and only if the linear functional

Pdist WDP
 �1

Sym2
˝P^2 W .…1˝R �1/˝…2!C;

'1˝‰˝'2 7!

Z
ŒPGL.2/2 �

'1.h/‚
 �1.h;‰/dh

Z
ŒZN�

'2.zn/ .n/dndz;

is not identically zero.

Remark 5.12. Note that in the above, we have used  �1 rather than  in the definition of PSym2 . This
is so that the integrals appearing on the geometric side of our GL2 �GL2 trace formula are exactly the
tonal integrals defined in Part I.

As for the second point, by the discussion of the Rankin–Selberg integral representation, PRS exactly
computes the L-function we are looking for. This motivates the following definition.

Definition 5.13. Let f 0 2 C1c .G
0.A//, ˆ 2S .A˚2/, and ‰ 2SCC.AE /. We define the GL2 �GL2

global spherical character by

I….sIf
0
˝ˆ˝‰/D

X
'2ON.…/

PRS.….f
0/'˝ˆ/Pdist.'˝‰/:

The sum above runs over a fixed orthonormal basis of ON.…/�…�L2.ŒG0�/, and the operator ….f /
is defined by

….f /' D

Z
G0.A/

f .g/….g/' dg:

5C. The GL2 � GL2 trace formula. Let f 0 2 C1c .G
0.A//. Consider the kernel function

Kf 0.x; y/D
X

2G0.F /

f 0.x�1y/:

This kernel function is formally represented by the sum

Kf 0.x; y/D
X

�2ON.L2.ŒG0�//

.R.f 0/�/.x/�.y/:
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Here ON.L2.ŒG0�// denotes a fixed orthonormal basis of automorphic forms of theL2 space of G0.F /nG0.A/
and R.f 0/� is the right regular representation, namely

R.f 0/�.x/D

Z
G0.A/

f 0.y/�.xy/ dy:

Rather than sum over all � in an orthonormal basis of the full L2 space, it is helpful to sum only over
forms with given central character. That is, let

�D �1˝ �2 W ŒZGL2 �ZGL2 �D F
�
nA� �F �nA�! U1.R/

be an automorphic unitary character of the center of G0. Then we define

Kf 0;�.x; y/D

Z
ŒZ�Z�

Kf 0.x; zy/�.z/ dz:

If we write L2.ŒG0�; �/ for the L2 completion of the space of square integrable automorphic forms on G0

with central character �, then we formally have

Kf 0;�.x; y/D
X

�2ON.L2ŒG0�;�/

.R.f 0/�/.x/�.y/:

Now let �D !˝ 1, where ! D !E=F .

Definition 5.14. The GL2 �GL2-distribution I .sIf 0˝ˆ˝‰/DI.sIf 0˝ˆ˝‰/ is defined formally as

I.sIf 0˝ˆ˝‰/

D

Z
ŒN�

Z
ŒPGL.2/2 �

Z
ŒPGL2�

Kf 0;!˝1..g; g/; .h; n//E.s; .1; !
�1/Ig;ˆ/‚ 

�1
.h;‰/ .n�1/ dg dh dn:

Remark 5.15. Note that we are “ignoring” one integration over ŒZ� that should be appearing in the
exterior square period; this is since this integration is hidden in the definition of Kf;!˝1.

The distribution I .sIf 0˝ˆ˝‰/ is engineered to decompose formally as a sum of global spherical
characters I….sIf 0˝ˆ˝‰/. This is done in the usual way: write L2.ŒG0�; !˝ 1/D

L
…, where the

“sum” is over all automorphic representations … of G0 D GL2 �GL2 with central character !˝ 1. Then

Kf 0;!˝1.x; y/D
X

'2ON.L2.ŒG0�;!˝1//

.R.f 0/'/.x/'.y/D
X
…

X
'2ON.…/

.….f 0/'/.x/'.y/

and thus

I.sIf 0˝ˆ˝‰/D

Z
ŒN�

Z
ŒPGL.2/2 �

Z
ŒPGL2�

Kf 0;!˝1..g; g/; .h; n//E.s; g/‚
 �1.h/ .n�1/ dg dh dn

D

X
…

X
'2ON.…/

PRS.….f
0/'/Pdist.'/

D

X
…

I….sIf
0
˝ˆ˝‰/:

Thus I formally decomposes as a sum over all global spherical characters.
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5C1. Decomposition into tones. Let us now expand I.sIf 0˝ˆ˝‰/ into a “geometric side”.

Theorem 5.16. The distribution I.s/D I.sIf 0˝ˆ˝‰/ decomposes formally as

I.s/D s. 0/
X
 0 r.s.s.

I 0.f
0
˝ˆ˝‰/C non-r.s.s. tonal integrals

Here the sum is over regular semisimple global tones  0 D .˛I �; ˇ/ and the expression I 0 (the global
tonal integral) is defined by

I 0.f
0
˝ˆ˝‰/ WD

Z
f 0
�
.g�1; g�1/.a.˛/; 1/.h; 1/

�
W
 �1

Fs

�
a

�
ˇ

˛

�
g

�
R ‰.�/;

where the integration is over g 2GL2.A/ and h 2GL.2/2 .A/. For  0 D .˛I �; ˇ/ a tone, the constant s. 0/
is defined as the size of the fiber over � of the map

E!E=f˙1g � fid; N� g:

It is either 1; 2, or 4.
Finally, the term “non-r.s.s tonal integrals” refers to the sumX

˛2†
�2E=f˙1g�fid; N� g;N �D˛

s..˛I �; 0//

Z
f 0
�
.g�1; g�1/.a.˛/; 1/.h; 1/

�
.Fs.g/CM.s/Fs.g//R

 .h/‰.�/:

Remark 5.17. Note that if f 0, ˆ, ‰ are all factorizable, then the global tonal integral factors

I 0.f
0
˝ˆ˝‰/D

Y
v

I 0;v.f
0
v ˝ˆv˝‰v/

as a product of local tonal integrals. In the above equality, we have used the fact that for ˛ 2†, our fixed
set of representatives of F �=.F �/2, we have

Q
v j˛j

1
2
v D 1.

Remark 5.18. For an obvious Zariski open subset of tones, s. 0/D 4.

Proof of Theorem 5.16. We unfold

I.s/D

Z X
D.1;2/2G0.F /

f 0.g�11z1h; g
�12z2n/!.z1/E.g; s/‚.h/ .n

�1/;

where, in the above, integration is over zi 2 ŒZGL2 �, h 2 ŒPGL.2/2 �, g 2 ŒPGL2�, and n 2 ŒN�. First, change
variables z1 7! z2z1. This gives

I.s/D

Z X
.1;2/2G0.F /

f 0.g�1z21z1h; g
�1z22n/!.z2/E.g; s/!.z1/‚.h/ .n

�1/

D

Z X
.1;2/2G0.F /

f 0.g�1z21z1h; g
�1z22n/E.z

�1
2 g; s/‚.z1h/ .n

�1/:
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Collapsing the integrations over z1 and z2 into the integrations over g and h, we can rewrite

I.s/D

Z X
.1;2/2G0

f 0.g�11h; g
�12n/E.g; s/‚.h/ .n

�1/;

where now g 2 ŒGL2�, h 2 ŒGL.2/2 �, and n 2 ŒN�.
Now, we change variables 1 7! 21 and unfold the summation in 2 to find

I.s/D

Z X
12GL2.F /

f 0.g�11h; g
�1n/E.g; s/‚.h/ .n�1/;

where g 2 GL2.A/, h 2 ŒGL.2/2 �, and n 2 ŒN�.
We can write every element 1 2 GL2.F / uniquely as 1 D a.˛/ı, where ı runs over GL.2/2 .F / and

where ˛ runs over †, a fixed set of representatives of F �=.F �/2. We unfold in ı and write

I.s/D

Z X
˛2†

f 0.g�1a.˛/h; g�1n/E.g; s/‚.h/ .n�1/;

where now g 2 GL2.A/, h 2 GL.2/2 .A/, and n 2 ŒN�.
Change variables g 7! ng to find

I.s/D
X
˛2†

Z
f 0.g�1n�1a.˛/h; g�1/E.ng; s/‚.h/ .n�1/:

We write

nD n.x/D

�
1 x

0 1

�
;

with x 2 F nA and conjugate n�1 by a.˛/ to find

I.s/D
X
˛2†

Z
f 0
�
g�1a.˛/n.�˛�1x/h; g�1

�
E.ng; s/‚.h/ .n�1/

D

X
˛2†

Z
f 0.g�1a.˛/h; g�1/E.ng; s/‚.n.˛�1x/h/ .n�1/:

Now we change variables x 7! ˛x, noting that as ˛ 2 F � the measure on ŒN� remains unchanged, to
arrive at X

˛2†

Z
f 0.g�1a.˛/h; g�1/E.n.˛x/g; s/‚.n.x/h/ .�˛x/:

The integration is running over g 2 GL2.A/, h 2 GL.2/2 .A/, and x 2 F nA. Note that the integration in x
can now pass through f 0.

We are led to consider, for each ˛ in our fixed set of representatives of F �=.F �/2, the inner integral

FC.˛/D FC.˛; g; hIˆ;‰; s/

WD

Z
F nA

E.n.˛x/g;ˆ/‚ 
�1
.n.x/h;‰/ .�˛x/ dx:
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We use the Fourier expansions

E.n.x/g/D
X
ˇ 02F

Eˇ
0

.g/ .ˇ0x/;

‚ 
�1

.n.x/h/D
X
ˇ 002F

‚ 
�1;ˇ 00.h/ .ˇ00x/

to determine that

FC.˛/D
Z
F nA

�X
ˇ 02F

Eˇ
0

.g/ .˛ˇ0x/

�� X
ˇ 002F

‚ 
�1;ˇ 00.h/ .�ˇ00x/

�
 .�˛x/ dx

D

X
ˇ 0;ˇ 002F
�ˇ 00C˛ˇ 0D˛

Eˇ
0

.g/‚ 
�1;ˇ 00.h/:

That is, this inner integral is a sum of products of Fourier coefficients of the Eisenstein series and theta
functions. Using Lemma 5.10 (while keeping in mind that we are using the theta function associated to
R �1 instead of R ) we find that

FC.˛/D
X

ˇ2F;�2E
N �CˇD˛

E
ˇ
˛ .g/.R �1.h/‰/.�/;

where in the above we have substituted ˇ D ˛ˇ0.
Substituting this expression back into the decomposition of the distribution I gives

I.sIf 0˝ˆ˝‰/D
X
˛2†

X
ˇ2F;�2E
N �CˇD˛

Z
f 0.g�1a.˛/h; g�1/E

ˇ
˛ .g/.R �1.h/‰/.�/;

where we integrate over g 2 GL2.A/ and h 2 GL.2/2 .A/. Applying Lemma 5.4 and noting that

.R �1‰/.�0/D .R �1‰/.��0/;

.R �1‰/.�0/D .R �1‰/. N�/

concludes the calculation. �
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