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Runge’s method is a tool to figure out integral points on algebraic curves effectively in terms of height.
This method has been generalized to varieties of any dimension, but unfortunately the conditions needed
to apply it are often too restrictive. We provide a further generalization intended to be more flexible while
still effective, and exemplify its applicability by giving finiteness results for integral points on some Siegel
modular varieties. As a special case, we obtain an explicit finiteness result for integral points on the Siegel
modular variety A2(2).
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Introduction

One of the major motivations of number theory is the description of rational or integral solutions of
diophantine equations, which from a geometric perspective amounts to understanding the behavior of
rational or integral points on algebraic varieties. In dimension one, several fundamental results provide
a good overview of the situation, including the famous Faltings’ theorem (for genus ≥ 2 and algebraic
points) or Siegel’s theorem (for integral points and a function with at least three poles). Nevertheless,
the quest for general effectivity (meaning a bound on the height on these points, or hopefully complete
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determination of the points) is still ongoing, and effective methods are quite different from these two
powerful theoretical theorems.

On the other hand, there is major interest in the study of algebraic torsion points of elliptic curves,
or more generally abelian varieties, defined over a given number field. In many situations, it amounts
to understanding the algebraic points of so-called modular spaces, parametrizing isomorphism classes
of abelian varieties with additional datum. For modular curves (i.e., modular spaces of elliptic curves),
the existing techniques are numerous and far-reaching (for example, with Merel’s uniform boundedness
theorem [1996] or Mazur’s isogeny theorem [1977]), but the world of higher-dimensional abelian varieties
is far less known.

We thus focus in this paper on a method for integral points on curves called Runge’s method, and its
generalizations to algebraic varieties and applications for Siegel modular varieties. This introduction is
twofold: first, we give the guiding principles behind our approach and second, we flesh out the precise
structure of the article and indicate where to find the details for each claim made.

Runge’s method for algebraic varieties. On a smooth algebraic projective curve C over a number field K ,
Runge’s method proceeds as follows. Let φ ∈ K (C) be a nonconstant rational function on C . For any
finite extension L/K , we denote by ML the set of places of L (and by M∞L the archimedean ones). For SL ,
a finite set of places of L containing M∞L , we denote the ring of SL -integers of L by

OL ,SL = {x ∈ L : |x |v ≤ 1 for all v ∈ ML\SL}.

Now, let rL be the number of orbits of poles of φ under the action of Gal(L/L). The Runge condition on
a pair (L , SL) is the inequality

|SL |< rL . (1)

Then, Bombieri’s generalization [Bombieri and Gubler 2006, paragraph 9.6.5 and Theorem 9.6.6] of
Runge’s old theorem [1887] states that given such C and φ, there is an absolute bound B such that for
every pair (L , SL) satisfying the Runge condition and every point P ∈ C(L) such that φ(P) ∈OL ,SL ,

h(φ(P))≤ B,

where h is the Weil height. In short, as long as the point φ(P) has few nonintegrality places (the exact
condition being (1)), there is an absolute bound on the height of φ(P). When applicable, this method has
two important assets: it gives good bounds and is uniform in the pairs (L , SL), which for example is not
true for Baker’s method [Bilu 1995].

Our first goal was to transpose the ideas for Runge’s method on curves to higher-dimensional varieties.
First, let us recall a previous generalization of Bombieri’s theorem in higher dimensions obtained by
Levin [2008, Theorem 4] under a simplified form. On a projective smooth variety X , the analogues of
poles of φ are effective divisors D1, . . . , Dr . We have to fix a smooth integral model X of X on OK , and
denote by D1, . . . ,Dr the Zariski closures of the divisors in this model, of union D, so our integral points
here are the points of (X\D)(OL ,SL ). There are two major changes in higher dimension. Firstly, the
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divisors have to be ample (or at least big) to obtain finiteness results (this was automatic for dimension 1).
Secondly, instead of the condition |SL |< r as for curves, the higher-dimensional Runge condition is

m|SL |< r, (2)

where m is the smallest number such that any (m+1) divisors amongst D1, . . . , Dr have empty common
intersection. Levin’s theorem states in particular that when the divisors are ample,( ⋃

(L ,SL )
m|SL |<r

(X\D)(OL ,SL )

)
is (effectively) finite.

The issue with (2) is that the maximal number |SL | satisfying this condition is lowered by m, since
the ample (or big) hypothesis tends to give a lower bound on m, condition (2) is impossible to satisfy
(remember that SL contains archimedean places, so |SL | ≥ [L :Q]/2). This was the initial motivation for
a generalization of this theorem, called “tubular Runge’s theorem”, designed to be more flexible in terms
of the Runge condition. Let us explain its principle below.

In addition to X and D1, . . . , Dr , we fix a closed subvariety Y of X which is meant to be “where the
divisors D1, . . . , Dr intersect a lot”. More precisely, let mY be the smallest number such that for any
(mY + 1) distinct divisors amongst D1, . . . , Dr , their common intersection is included in Y . In particular,
mY ≤ m, and the goal is to have mY as small as possible without asking Y to be too large. Now, we fix a
“tubular neighborhood” of Y , which is the datum of a family V = (Vv)v where v goes through the places v
of K , every Vv is a neighborhood of Y in the v-adic topology, and this family is uniformly not too small
in some sense. As the main example, if Y is the Zariski closure of Y in X , we can define at a finite place
v the neighborhood Vv to be the set of points of X (Kv) reducing in Y modulo v. A point P ∈ X (K ) does
not belong to V if P /∈ Vv for every place v of K , and intuitively, this means that P is v-adically far away
from Y for every place v of K . Now, assume our integral points are not in V . It implies that at most mY

divisors amongst D1, . . . , Dr can be v-adically close to them, hence using the same principles of proof
as Levin, this gives the tubular Runge condition

mY |SL |< r. (3)

With this additional data, one can now sketch our tubular Runge’s theorem.

Theorem (simplified version of the “tubular Runge’s theorem” (Theorem 5.1)). For X , X , D1, . . . , Dr ,
Y , mY and a tubular neighborhood V of Y as in the paragraph above, let (X\D)(OL ,SL )\V be the set of
points of (X\D)(OL ,SL ) which do not belong to V . Then, if D1, . . . , Dr are ample, for every such tubular
neighborhood, the set ( ⋃

(L ,SL )
mY |SL |<r

(X\D)(OL ,SL )\V
)

is finite,

and bounded in terms of some auxiliary height.
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As the implicit bound on the height is parametrized by the tubular neighborhood V , this theorem
can be seen as a concentration result rather than a finiteness one; essentially, it states that the points
of (X\D)(OL ,SL ) concentrate near the closed subset Y . As such, we have compared it to theorems of
[Corvaja et al. 2009], notably Autissier’s theorem and the CLZ theorem, in Section 5 (in particular, our
version is made to be effective, whereas these results are based on Schmidt’s subspace theorem, of which
no effective proof is known yet). On the other hand, there is an interesting (and genuine finiteness result)
variant only using the tubular neighborhood at finite places: under all above assumptions, we also have
finiteness of the union of all the (X\D)(OL ,SL ) minus all the points reducing in Y at some finite place,
where the pairs (L , SL) satisfy the mixed tubular Runge condition

m|M∞L | +mY |SL\M∞L |< r, (4)

and this will be straightforward given the proof of the theorem.
In the second part of our paper, we apply the method to Siegel modular varieties, both as a proof

of principle and because integral points on these varieties are not very well understood, apart from the
Shafarevich conjecture proved by Faltings. As we will see below, this is also a case where a candidate for
Y presents itself, thus giving tubular neighborhoods a natural interpretation.

For n≥ 2, the variety denoted by A2(n) is the variety over Q(ζn) parametrizing triples (A, λ, αn) where
(A, λ) is a principally polarized abelian variety of dimension 2 and αn is a symplectic level n structure
on (A, λ). It is a quasiprojective algebraic variety of dimension 3, and its Satake compactification (which
is a projective algebraic variety) is denoted by A2(n)S , the boundary being ∂A2(n)= A2(n)S

\A2(n). The
extension of scalars A2(n)C is the quotient of the half-superior Siegel space H2 by the natural action of the
symplectic congruence subgroup 02(n) of Sp4(Z)made up with the matrices congruent to the identity mod-
ulo n. Now, we consider some divisors (n4/2+2 of them) defined by the vanishing of some modular forms,
specifically theta functions. One finds that they intersect a lot on the boundary ∂A2(n) (m comparable
to n4), but when we fix Y = ∂A2(n), we get mY ≤ (n2

− 3) hence giving the tubular Runge condition

(n2
− 3)|SL |<

1
2 n4
+ 2.

The application of our tubular Runge’s theorem gives for every even n ≥ 2 a finiteness result for the
integral points for these divisors and some tubular neighborhoods associated to potentially bad reduction
for the finite places; this is Theorem 7.12. In the special case n = 2, we made this result completely
explicit in Theorem 8.2. A simplified case of this theorem (using (4)) is the following result.

Theorem (Theorem 8.2, simplified case). Let K be either Q or a quadratic imaginary field.
Let A be a principally polarized abelian surface defined over K , whose full 2-torsion is also defined

over K and having potentially good reduction at all finite places of K .
Then, if the semistable reduction of A is a product of elliptic curves at most at 3 finite places of K , we

have the explicit bound

hF (A)≤ 828,

where hF is the stable Faltings height. In particular, there are only finitely many such abelian surfaces.
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Let us finally explain the structure of the paper.

1

�� ''2

��

6

��
3

��

// 5

��

// 7

��
4 8

Section 1 is devoted to the notations used throughout the paper, including heights, MK -constants and
bounded sets. We advise the reader to pay particular attention to its reading as it introduces notations
which are ubiquitous in the rest of the paper. Section 2 is where the exact definition and basic properties
of tubular neighborhoods are given. In Section 3, we prove the key result for the tubular Runge’s theorem
(Proposition 3.1), essentially relying on a well-applied Nullstellensatz. In Section 4, we reprove Bombieri’s
theorem for curves with Bilu’s idea, as it is not yet published to our knowledge (although this is exactly
the principle behind Runge’s method in [Bilu and Parent 2011] for example). Finally, we prove and
discuss our tubular Runge’s theorem (Theorem 5.1) in Section 5.

For the applications to Siegel modular varieties, Section 6 gathers the necessary notations and reminders
on these varieties (Section 6A), their integral models and their properties (Section 6B) and the key notion
of theta divisors on abelian varieties and their link with classical theta functions (Section 6C). The theta
functions are essential because they define the divisors we use in our applications of the tubular Runge’s
theorem.

In Section 7, we focus on the case of abelian surfaces (the one we are interested in), especially regarding
the behavior of theta divisors (Section 7A) and state in Section 7B the applications of our tubular Runge’s
theorem for the varieties A2(n)S and the divisors mentioned above (Theorems 7.11 and 7.12).

Finally, in Section 8, we make explicit Theorem 7.11 by computations on the ten fourth powers of
even characteristic theta constants. To do this, the places need to be split into three categories. The finite
places not above 2 are treated by the theory of algebraic theta functions in Section 8A, the archimedean
places by estimates of Fourier expansions in Section 8B and the finite places above 2 (the hardest case)
by the theory of Igusa invariants and with polynomials built from our ten theta constants in Section 8C.
The final estimates are given as Theorem 8.2 in Section 8D, both in terms of a given embedding of A2(2)
and in terms of Faltings height.

The main results of this paper have been announced in the recently published note [Le Fourn 2017], and
apart from Section 8 and some improvements can be found in the author’s thesis manuscript [Le Fourn
2015] (both in French).
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1. Notations and preliminary notions

The following notations are classical and given below for clarity. They will be used throughout the paper.

• K is a number field, MK and M∞K are the set of places and archimedean places of K , respectively. We
also denote by MK the set of places of K .

• |·|∞ is the usual absolute value on Q, and |·|p is the place associated to p prime, whose absolute value
is normalized by

|x |p = p− ordp(x),

where ordp(x) is the unique integer such that x = pordp(x) a
b with p -ab (by convention, |0|p=0). Similarly,

|·|v is the absolute value on K associated to v ∈ MK , normalized to extend |·|v0 when v is above v0 ∈ MQ,
and the local degree is nv = [Kv :Qv0]. For every x ∈ K ∗, one has the classical product formula∏

v∈MK

|x |nvv = 1.

When v comes from a prime ideal p of OK , we indifferently write |·|v and |·|p.

• For any place v of K , one defines the sup norm on K n+1 by

‖(x0, . . . , xn)‖v = max
0≤i≤n
|xi |v.

• Every set of places S ⊂ MK considered is finite and contains M∞K . The ring of S-integers is

OK ,S = {x ∈ K : |x |v ≤ 1 for every v ∈ MK \S}.

• For every P ∈ Pn(K ), we denote by xP = (xP,0, . . . , xP,n) ∈ K n+1 any possible choice of projective
coordinates for P , this choice being of course fixed for consistency when used in a formula or a proof.
The logarithmic Weil height of P is defined by

h(P)=
1

[K :Q]

∑
v∈MK

nv log‖xP‖v, (1-1)

this does not depend on the choice of xP nor on the number field, and satisfies the Northcott property.

• For every n ≥ 1 and every i ∈ {0, . . . , n}, the i-th coordinate open subset Ui of Pn is the affine subset
defined as

Ui = {(x0 : · · · : xn) | xi 6= 0}. (1-2)

The normalization function ϕi :Ui → An+1 is then defined by

ϕi (x0 : · · · : xn)=

(
x0

xi
, . . . , 1, . . .

xn

xi

)
. (1-3)

For most of our results, we need to formalize the notion that some families of sets indexed by the
places v ∈ MK are “uniformly bounded”. To this end, we recall some classical definitions (see [Bombieri
and Gubler 2006, §2.6]).



A tubular variant of Runge’s method in all dimensions 165

Definition 1.1 (MK -constants and MK -bounded sets). • An MK -constant is a family C= (cv)v∈MK of real
numbers such that cv= 0 except for a finite number of places v ∈MK . The set of MK -constants is stable by
finite sum and finite maximum on each coordinate, a fact which we will often use without further mention.

• Let L/K be a finite extension. For an MK -constant (cv)v∈MK , we define (with abuse of notation) an
ML -constant (cw)w∈ML by cw := cv if w | v. Conversely, if (cw)w∈ML is an ML -constant, we define (again
with abuse of notation) (cv)v∈MK by cv :=maxw | v cw, and get in both cases the inequality

1
[L :Q]

∑
w∈ML

nwcw ≤
1

[K :Q]

∑
v∈MK

nvcv. (1-4)

• If U is an affine variety over K and E ⊂U (K )×MK , a regular function f ∈ K [U ] is MK -bounded
on E if there is a MK -constant C = (cv)v∈MK such that for every (P, w) ∈ E with w above v in MK ,

log| f (P)|w ≤ cv.

• An MK -bounded subset of U is, by abuse of definition, a subset E of U (K )× MK such that every
regular function f ∈ K [U ] is MK -bounded on E .

Remark 1.2. (a) In the projective space Pn
K , for every i ∈ {0, . . . , n}, consider the set

Ei = {(P, w) ∈ Pn(K )×MK : |xP,i |w = ‖xP‖w}. (1-5)

The regular functions x j/xi ( j 6= i) on K [Ui ] (notation (1-2)) are trivially MK -bounded (by the zero
MK -constant) on Ei , hence Ei is MK -bounded in Ui . Notice that the Ei cover Pn(K )×MK .

(b) With notations (1-1), (1-2) and (1-3), for a subset E of Ui (K ), if the coordinate functions of Ui

are MK -bounded on E ×MK , the height h ◦ϕi is straightforwardly bounded on E in terms of the
involved MK -constants. This simple observation will be the basis of our finiteness arguments.

The following lemma allows us to split MK -bounded sets in an affine cover.

Lemma 1.3. Let U be an affine variety and E an MK -bounded set. If (U j ) j∈J is a finite affine open
cover of U , there exists a cover (E j ) j∈J of E such that every E j is MK -bounded in U j .

Proof. This is Lemma 2.2.10 together with Remark 2.6.12 of [Bombieri and Gubler 2006]. �

Let us now recall some notions about integral points on schemes and varieties.
For a finite extension L of K , a point P ∈ Pn(L) and a nonzero prime ideal P of OL of residue field

k(P)=OL/P, the point P extends to a unique morphism SpecOL ,P→Pn
OK

, and the image of its special
point is the reduction of P modulo P, denoted by PP ∈ Pn(k(P)). More explicitly, after normalization
of the coordinates xP of P so that they all belong to OL ,P and one of them to O∗L ,P, one has

PP = (xP,0 mod P : · · · : xP,n mod P) ∈ Pn
k(P). (1-6)

The following (easy) proposition expresses scheme-theoretic reduction in terms of functions (there
will be another in Proposition 3.4). We write it below as it is the inspiration behind the notion of tubular
neighborhood in Section 2.
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Proposition 1.4. Let S be a finite set of places of K containing M∞K , and X be a projective scheme on
OK ,S , seen as a closed subscheme of Pn

OK ,S
.

Let Y be a closed sub-OK ,S-scheme of X .
Consider g1, . . . , gs ∈ OK ,S[X0, . . . , Xn] homogeneous generators of the ideal of definition of Y in

Pn
OK ,S0

. For every nonzero prime P of OL not above S and every point P ∈ X (L), the reduction PP

belongs to Yp(k(P)) (with p=P∩OK ) if and only if ∀ j ∈ {1, . . . , s}

|g j (xP)|P < ‖xP‖
deg g j
P . (1-7)

Proof. For every j ∈ {1, . . . , s}, by homogeneity of g j , for a choice xP of coordinates for P belonging to
OL ,P with one of them in O∗L ,P, the inequality (1-7) amounts to

g j (xP,0, . . . , xP,n)= 0 mod P.

On the other hand, the reduction of P modulo P belongs to Yp(k(P)) if and only if its coordinates satisfy
the equations defining Yp in Xp, but these are exactly the equations g1, . . . , gs modulo p. This remark
immediately gives the proposition by (1-6). �

2. Definition and properties of tubular neighborhoods

The explicit expression (1-7) is the motivation for our definition of tubular neighborhood, at the core of
our results. This definition is meant to be used by exclusion; with the same notations as Proposition 1.4,
we want to say that a point P ∈ X (L) is not in some tubular neighborhood of Y if it never reduces in Y ,
whatever the prime ideal P of OL is.

The main interest of this notion is that it provides us with a convenient alternative to the reduction
assumption for the places in S (which are the places where the reduction is not well defined, including
the archimedean places), and also allows us to loosen up this reduction hypothesis in a nice fashion.
Moreover, as the definition is function-theoretic, we only need to consider the varieties over a base field,
keeping in mind that Proposition 1.4 makes the link with reduction at finite places.

Definition 2.1 (tubular neighborhood). Let X be a projective variety over K and Y be a closed K -
subscheme of X .

We choose an embedding X ⊂ Pn
K , a set of homogeneous generators g1, . . . , gs in K [X0, . . . , Xn] of

the homogeneous ideal defining Y in Pn and an MK -constant C = (cv)v∈MK .
The tubular neighborhood of Y in X associated to C and g1, . . . , gs (the embedding made implicit) is

the family V = (Vw)w∈MK
of subsets of X (K ) defined as follows.

For every w ∈ MK above some v ∈ MK , Vw is the set of points P ∈ X (K ) such that, ∀ j ∈ {1, . . . , s},

log|g j (xP)|w < deg(g j ) · log‖xP‖w + cv. (2-1)

As we said before, this definition will be ultimately used by exclusion:

Definition 2.2. Let X be a projective variety over K and Y be a closed K -subscheme of X .
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For any tubular neighborhood V = (Vw)w∈MK
of Y , we say that a point P ∈ X (K ) does not belong to

V (and we denote it by P /∈ V) if, ∀w ∈ MK ,

P /∈ Vw.

Remark 2.3. (a) A tubular neighborhood of Y can also be seen as a family of open subsets defined
by bounding strictly a global height function relative to Y coming from arithmetic distance functions
(see [Vojta 1987], paragraph 2.5 or the original article [Silverman 1987] for more details on arithmetic
distance functions). In particular, functoriality of global height functions (Theorem 2.1(h) of [Vojta 1987]
for example) implies that if one fixes a second embedding X ⊂ Pm

K , any tubular neighborhood of Y
defined using this embedding can be put between two tubular neighborhoods defined using the original
embedding, and conversely. The notion of tubular neighborhood is thus essentially independent of the
choice of embedding (which is there to make things as explicit as needed).

(b) Comparing (1-7) and (2-1), for the MK -constant C = 0 and with the notations of Proposition 1.4,
at the finite places w not above S, the tubular neighborhood Vw is exactly the set of points P ∈ X (K )
reducing in Y modulo w.

(c) If Y is an ample divisor of X and V is a tubular neighborhood of Y , one easily sees that if P /∈ V
then h(ψ(P)) is bounded for some embedding ψ associated to Y , from which we get the finiteness of the
set of points P of bounded degree outside of V . This illustrates why such an assumption is only really
relevant when Y is of small dimension.

Example 2.4. We have drawn in Figures 1, 2 and 3 three different pictures of tubular neighborhoods in
P2(R), at the usual archimedean norm. The coordinates are x, y, z, the affine open subset Uz defined
by z 6= 0, and Ex , Ey, Ez the respective sets such that |x |, |y|, |z| = max(|x |, |y|, |z|). These different
tubular neighborhoods are drawn in Uz , and the contribution of the different parts Ex , Ey and Ez is made
clear.

3. Key results

We will now prove the key result for Runge’s method, as a consequence of the Nullstellensatz. We only
use the projective case in the rest of the paper but the affine case is both necessary for its proof and
enlightening for the method we use.

Proposition 3.1 (key proposition). (a) (Affine version) Let U be an affine variety over K , Y a closed
subset of U , g1, . . . , gr ∈ K [U ] whose set of common zeroes is Y and h1, . . . , hs ∈ K [U ] all vanishing
on Y . For every MK -bounded set E of U and every MK -constant C0, there is an MK -constant C such that
for every (P, w) ∈ E with w above v ∈ MK , one has the following dichotomy:

max
1≤`≤r

log|g`(P)|w ≥ cv or max
1≤ j≤s

log|h j (P)|w < c0,v. (3-1)
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(2, 2)
•

(0, 6) •

(6, 0)
•

(6, 6)•

P•

Ey

Ex

Figure 1. Tubular neighborhood of the point P = (3 : 3 : 1) associated to the inequality
max(|x − 3y, y− 3z|) < 1

2 max(|x |, |y|, |z|).

(b) (Projective version) Let X be a normal projective variety over K and φ1, . . . , φr ∈ K (X). Let Y be
the closed subset of X defined as the intersection of the supports of the (Weil) divisors of poles of the φi .
For every tubular neighborhood V of Y (Definition 2.1), there is an MK -constant C depending on V such
that for every w ∈ MK (above v ∈ MK ) and every P ∈ X (K ),

min
1≤`≤r

log|φ`(P)|w ≤ cv or P ∈ Vw. (3-2)

This result has an immediate corollary when Y =∅:

Corollary 3.2 [Levin 2008, Lemma 5]. Let X be a normal projective variety over K and φ1, . . . , φr ∈

K (X) having globally no common pole. Then, there is an MK -constant C such that for every w ∈ MK

(above v ∈ MK ) and every P ∈ X (K ),

min
1≤`≤r

log|φ`(P)|w ≤ cv. (3-3)

Remark 3.3. (a) As will become clear in the proof, part (b) is actually part (a) applied to a good cover of
X by MK -bounded subsets of affine open subsets of X (inspired by the natural example of Remark 1.2(a)).

(b) Besides the fact that the results must be uniform in the places (hence the MK -constants), the principle
of (a) and (b) is simple. For (a), we would like to say that if the first part of the dichotomy is not satisfied,
the point P must be close to each set of zeroes of the g` hence to their intersection Y . Consequently, the
functions vanishing on Y must be small at P (second part of the dichotomy). This is not immediately
true yet (take for example functions vanishing respectively on one hyperbola and one of its axes on the
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•

(−4,−4)

(−4/3,4/3)

(4,4)

•

•

•

(−1,1/2)

• (−1/2,1)

L

Ez

Ey Ey

Ex

Ex

Figure 2. Tubular neighborhood of the line D : y−x+2z= 0 associated to the inequality
max(|x − y+ 2z|) < 1

2 max(|x |, |y|, |z|). The boundary of the neighborhood is made up
with segments between the indicated points.

affine plane). Indeed, one needs to restrict to bounded sets to compactify the situation, which is also why
it works in the projective case as the closed sets are then compact.

(c) Corollary 3.2 is the key for Runge’s method in the case of curves in Section 4. Notice that Lemma 5
of [Levin 2008] assumed X smooth, but the proof is actually exactly the same for X normal. Moreover,
the argument below follows the structure of Levin’s proof.

(d) If we replace Y by Y ′ ⊃ Y and V by a tubular neighborhood V ′ of Y ′, the result remains true with
the same proof, which is not surprising because tubular neighborhoods of Y ′ are larger than tubular
neighborhoods of Y .

Proof of Proposition 3.1.

(a) By the Nullstellensatz applied to K [U ], there are p ∈ N≥1 and regular functions f`,m ∈ K [U ] such
that for every m ∈ {1, . . . , s}, ∑

1≤`≤r

g` f`,m = h p
m .
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Figure 3. Tubular neighborhood of the hyperbola H : xy−z2
= 0 given by the inequality

|xy−z2
|< 1

2 max(|x |, |y|, |z|). The boundary is made up with arcs of hyperbola between
the indicated points.

As E is MK -bounded on U , all the f`,m are MK -bounded on E hence there is an auxiliary MK -constant
C1 such that for all (P, w) ∈ E ,

max
1≤`≤r
1≤m≤s

log| f`,m(P)|w ≤ c1,v,

therefore

|hm(P)p
|w =

∣∣∣∣ ∑
1≤`≤r

g`(P) f`,m(P)
∣∣∣∣
w

≤ r δvec1,v max
1≤`≤r
|g`(P)|w,

where δv is 1 if v is archimedean and 0 otherwise. For fixed w and P , either log|hm(P)|w < c0,v for all
m ∈ {1, . . . , s} (second part of dichotomy (3-1)) or the above inequality applied to some m ∈ {1, . . . , s}
gives

p · c0,v ≤ δv log(r)+ c1,v + max
1≤`≤r

log|g`, j (P)|w,

which is equivalent to

max
1≤`≤r

log|g`(P)|w ≥ p · c0,v − δv log(r)− c1,v

and taking the MK -constant defined by cv := c1,v + δv log(r)− p · c0,v for every v ∈ MK gives exactly
the first part of (3-1).
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(b) We consider X as embedded in some Pn
K so that V is exactly the tubular neighborhood of Y in X

associated to an MK -constant C0 and generators g1, . . . , gs for this embedding. Let us define X i := X∩Ui

for every i ∈ {0, . . . , n} (see notations (1-2), (1-3) and (1-5)). The following argument is designed to
make Y appear as a common zero locus of regular functions built from the φ`.

For every `∈{1, . . . , r}, let D` be the positive Weil divisor of zeroes of φ` on X . For every i ∈{0, . . . , n},
let I`,i be the ideal of K [X i ] made up with the regular functions h on the affine variety X i such that
div(h)≥ (D`)|X i , and we choose generators h`,i,1, . . . , h`,i, j`,i of this ideal. The functions h`,i, j/(φ`)|X i

are then regular on X i and ∀ j ∈ {1, . . . , j`,i },

div
(

h`,i, j

(φ`)|X i

)
≥ (φ`,i )∞

(the divisor of poles of φ` on X i ). By construction of I`,i , the minimum (prime Weil divisor by prime
Weil divisor) of the div(h`,i, j ) is exactly (D`)|X i ; indeed, for every finite family of distinct prime Weil
divisors D′1, . . . , D′s, D′′ on X i , there is a uniformizer h for D′′ of order 0 for each of the D′k , otherwise
the prime ideal associated to D′′ in X i would be included in the finite union of the others. This allows
us to build for every prime divisor D′ of X i not in the support of (D`)|X i a function h ∈ I`,i of order 0
along D′ (and of the proper order for every D′ in the support of (D`)|X i ). Consequently, the minimum
of the divisors of the h`,i, j/(φ`)|X i , being naturally the minimum of the divisors of the h/(φ`)|X i (for
h ∈ K [X i ]), is exactly (φ`,i )∞.

Thus, by definition of Y , for fixed i , the set of common zeroes of the regular functions h`,i, j/(φ`)|X i

(for 1 ≤ ` ≤ r and 1 ≤ j ≤ j`,i ) on X i is Y ∩ X i , so they generate an ideal whose radical is the ideal
of definition of Y ∩ X i . We apply part (a) of this proposition to the h`,i, j/(φ`)|X i (for 1 ≤ ` ≤ r and
1≤ j ≤ j`,i ), the g j ◦ϕi (for 1≤ j ≤ s) and the MK -constant C0, which gives us an MK -constant C′i and
the following dichotomy on X i for every (P, w) ∈ Ei :

max
1≤`≤r
1≤ j≤si

log
∣∣∣∣h`,i, j

φ`
(P)

∣∣∣∣
w

≥ c′i,v or max
1≤ j≤s

log|g j ◦ϕi (P)|w < c0,v.

Now, the h`,i, j are regular on X i hence MK -bounded on Ei , therefore there is a second MK -constant C′′i
such that for every (P, w) ∈ Ei

max
1≤`≤r
1≤ j≤si

log
∣∣∣∣h`,i, j

φ`
(P)

∣∣∣∣
w

≥ c′i,v H⇒ min
1≤`≤r

log|φ`(P)|w ≤ c′′i,v.

Taking C as the maximum of the MK -constants C′′i , 0≤ i ≤ n, for every (P, w)∈ X (K )×MK , we choose i
such that (P, w)∈ Ei and then we have the dichotomy (3-2) by definition of the tubular neighborhood Vw.

�

To finish this section, we will give the explicit link between integral points on a projective scheme
(relative to a divisor) and integral points relative to rational functions on the scheme. This will also tie
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our notion of integer points with that of [Levin 2008, Section 2], showing that the two can be treated
exactly in the same way.

Proposition 3.4. Let X be a normal projective scheme over OK ,S .

(a) If Y is an effective Cartier divisor on X such that YK is an ample (Cartier) divisor of XK , there is a
projective embedding ψ :XK →Pn

K and an MK -constant C such that the pullback by ψ of the hyperplane
of equation x0 = 0 in Pn

K is YK , and for any finite extension L of K and any w ∈ ML not above S,
∀P ∈ (X\Y)(OL ,w),

log‖xψ(P)‖w ≤ cv + log|xψ(P),0|w. (3-4)

(b) If Y is an effective Cartier divisor on X such that YK is a big (Cartier) divisor of XK , there is a strict
Zariski closed subset Z K of XK , a closed immersion ψ : XK \Z K → Pn

K \{x0 = 0} and an MK -constant C
such that for any finite extension L of K and any w ∈ ML not above S, formula (3-4) holds outside Z K .

Proof of Proposition 3.4. (a) and (b) come from the classical link between integral points in terms of a
scheme and integral points in terms of local heights (proven in Lemma 1.4.6 and Proposition 1.4.7 of
[Vojta 1987] for instance), combined with the properties of the morphisms associated to (very) ample
or big divisors. �

Remark 3.5. (a) This proposition is formulated to avoid the use of local heights, but the idea is exactly
that under the hypotheses above, if P ∈ (X\Y)(OL ,w), the local height at w of P for the divisor Y is
strictly bounded.

(b) The hypotheses on ampleness (or “bigness”) are only necessary at the generic fiber. Once again, the
auxiliary functions replace the need for a complete understanding of what happens at the finite places.

4. The case of curves revisited

In this section, we reprove the generalization of an old theorem of Runge [1887], obtained by Bombieri
[1983, p. 305] (also rewritten as [Bombieri and Gubler 2006, Theorem 9.6.6]), following an idea explained
by Bilu in an unpublished note and mentioned for the case K = Q by [Schoof 2008, Chapter 5]. The
aim of this section is to give a general understanding of this idea (quite different from the original proof
of Bombieri), as well as explain how it actually gives a method to bound heights of integral points on
curves. It is also a good start to understand how the intuition behind this result can be generalized to
higher dimension, which will be done in the next section.

Proposition 4.1 (Bombieri, 1983). Let C be a smooth projective algebraic curve defined over a number
field K and φ ∈ K (C) not constant.

For any finite extension L/K , let rL be the number of orbits of the natural action of Gal(L/L) over
the poles of φ. For any set of places SL of L containing M∞L , we say that (L , SL) satisfies the Runge
condition if

|SL |< rL . (4-1)
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Then, the union ⋃
(L ,SL )

{P ∈ C(L) | φ(P) ∈OL ,SL }, (4-2)

where (L , SL) runs through all the pairs satisfying the Runge condition, is finite and can be explicitly
bounded in terms of the height h ◦φ.

Example 4.2. As a concrete example, consider the modular curve X0(p) for p prime and the j -invariant
function. This curve is defined over Q and j has two rational poles (which are the cusps of X0(p)), hence
rL = 2 for any choice of L , and we need to ensure |M∞L | ≤ |SL |< 2. The only possibilities satisfying the
Runge condition are thus imaginary quadratic fields L with SL = {|·|∞}.

We proved in [Le Fourn 2016] that for any imaginary quadratic field L and any P ∈ X0(p)(L) such
that j (P) ∈OL , one has

log| j (P)| ≤ 2π
√

p+ 6 log(p)+ 8.

The method for general modular curves is carried out in [Bilu and Parent 2011] and gives explicit estimates
on the height for integral points satisfying the Runge condition. This article uses the theory of modular
units and implicitly the same proof of Bombieri’s result as the one we explain below.

Remark 4.3. (a) The claim of an explicit bound deserves a clarification: it can actually be made explicit
when one knows well enough the auxiliary functions involved in the proof below (which is possible in
many cases, e.g., for modular curves thanks to the modular units). Furthermore, even as the theoretical
proof makes use of MK -constants and results of Section 3, they are frequently implicit in practical cases.

(b) Despite the convoluted formulation of the proof below and the many auxiliary functions to obtain the
full result, its principle is as described in the introduction. It also gives the framework to apply Runge’s
method to a given couple (C, φ).

Proof of Proposition 4.1. We fix K ′ a finite Galois extension of K on which every pole of φ is defined. For
any two distinct poles Q and Q′ of φ, we choose by the Riemann–Roch theorem a function gQ,Q′ ∈ K ′(C)
whose only pole is Q and which vanishes at Q′. For every point P of C(K ) which is not a pole of φ,
one has ordP(gQ,Q′)≥ 0 thus gQ,Q′ belongs to the intersection of the discrete valuation rings of K (C)
containing φ and K [Hartshorne 1977, proof of Lemma I.6.5], which is exactly the integral closure of
K [φ] in K (C) [Atiyah and Macdonald 1969, Corollary 5.22]. Hence, the function gQ,Q′ is integral on
K [φ] and up to multiplication by some nonzero integer, we can and will assume it is integral on OK [φ].

For any fixed finite extension L of K included in K , we define fQ,Q′,L ∈ L(C) the product of the
conjugates of gQ,Q′ by Gal(L/L). If Q and Q′ belong to distinct orbits of poles for Gal(L/L), the set
of poles of fQ,Q′,L is exactly the orbit of Q by Gal(K/L), and its set of zeroes contains all the orbit of
Q′ by Gal(K/L). Notice that we thus built only finitely many different functions (even with L running
through all finite extensions of K ) because each gQ,Q′ only has finitely many conjugates in Gal(K ′/K ).

Now, let O1, . . . ,OrL be the orbits of poles of φ and denote for any i ∈ {1, . . . , rL} by fi,L a product
of fQi ,Q′j ,L where Qi ∈Oi and Q′j runs through representatives of the orbits (except Oi ). Again, there is
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a finite number of possible choices, and we obtain a function fi,L ∈ L(C) having for only poles the orbit
Oi and vanishing at all the other poles of φ.

We apply Corollary 3.2 to fi,L/φ
k and fi,L (for any i) for some k such that fi,L/φ

k does not have poles
at Oi , and take the maximum of the induced MK -constants (Definition 1.1) for any L and 1 ≤ i ≤ rL .
This gives an MK -constant C0 independent of L such that ∀i ∈ {1, . . . , rL}, ∀w ∈ MK and ∀P ∈ C(K ),

log min
(∣∣∣∣ fi,L

φk (P)
∣∣∣∣
w

, | fi,L(P)|w

)
≤ c0,v (w | v ∈ MK ).

In particular, the result interesting us in this case is that ∀i ∈ {1, . . . , rL}, ∀w ∈ MK and ∀P ∈ C(K ),

|φ(P)|w ≤ 1⇒ log| fi,L(P)|w ≤ c0,v, (4-3)

and we can assume c0,v is 0 for any finite place v by integrality of the fi,L over OK [φ].
Given our construction, we also fix n such that for every i ∈ {1, . . . , rL}, the φ f n

i,L have poles at Oi and
vanish at all other poles of φ. We reapply Corollary 3.2 for every pair (φ f n

i,L , φ f n
j,L) with 1≤ i < j ≤ rL ,

which again by taking the maximum of the induced MK -constants for all the possible combinations
(Definition 1.1) gives an MK -constant C1 such that for every v ∈ MK and every (P, w) ∈ C(K )×MK

with w | v, the inequality

log|(φ · f n
i,L)(P)|w ≤ c1,v (4-4)

is true for all indices i except at most one (depending on the choice of P and w).
Let us now suppose that (L , SL) is a pair satisfying the Runge condition and P ∈ C(L) with φ(P) ∈

OL ,SL . By integrality on OK [φ], for every i ∈ {1, . . . , rL}, | fi,L(P)|w ≤ 1 for every place w ∈ ML\SL .
For every place w ∈ SL , there is at most one index i not satisfying (4-4) hence by the Runge condition
and the pigeon-hole principle, there remains one index i (depending on P) such that ∀w ∈ ML ,

log|φ(P) f n
i,L(P)|w ≤ c1,v. (4-5)

With (4-3) and (4-5), we have obtained all the auxiliary results we need to finish the proof. By the product
formula,

0=
∑
w∈ML

nw log| fi,L(P)|w

=

∑
w∈ML
|φ(P)|w>1

nw log| fi,L(P)|w +
∑

w∈M∞L |φ(P)|w≤1

nw log| fi,L(P)|w +
∑

w∈ML\M∞L
|φ(P)|w≤1

nw log| fi,L(P)|w.

Here, the first sum on the right side will be linked to the height h ◦φ and the third sum is negative by
integrality of the fi,L , so we only have to bound the second sum. From (4-3) and (1-4), we obtain∑

w∈M∞L
|φ(P)|w≤1

nw log| fi,L(P)|w ≤
∑
w∈M∞L
|φ(P)|w≤1

nwc0,v ≤ [L : K ]
∑
v∈M∞K

nvc0,v.
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On another side, by (4-5) (and (1-4) again), we have

n ·
∑
w∈ML
|φ(P)|w>1

nw log| fi,L(P)|w =
∑
w∈ML
|φ(P)|w>1

nw log|φ f n
i,L(P)|w −

∑
w∈ML
|φ(P)|w>1

nw log|φ(P)|w

≤

(
[L : K ]

∑
v∈MK

nvc1,v

)
− [L :Q]h(φ(P)).

Hence, we obtain

0≤ [L : K ]
∑
v∈MK

nvc1,v − [L :Q]h(φ(P))+ [L : K ]n
∑
v∈M∞K

nvc0,v,

which is equivalent to

h(φ(P))≤
1

[K :Q]

∑
v∈MK

nv(c1,v + nc0,v).

We thus obtained a bound on h(φ(P)) independent on the choice of (L , SL) satisfying the Runge condition,
and together with the bound on the degree [L :Q] ≤ 2|SL |< 2rL ≤ 2r , we get the finiteness. �

5. The main result: tubular Runge’s theorem

We will now present our version of Runge theorem with tubular neighborhoods, which generalizes
Theorem 4(b) and (c) of [Levin 2008]. As its complete formulation is quite lengthy, we indicated the
different hypotheses by the letter H and the results by the letter R. The key condition for integral points
(generalizing the Runge condition of Proposition 4.1) is indicated by the letters TRC.

We recall that the crucial notion of tubular neighborhood is explained in Definitions 2.1 and 2.2, and
we advise the reader to look at the simplified version of this theorem stated in the Introduction to get
more insight if necessary.

Theorem 5.1 (tubular Runge’s theorem). (H0) Let K be a number field, S0 a set of places of K containing
M∞K and O the integral closure of OK ,S0 in some finite Galois extension K ′ of K .

(H1) Let X be a normal projective scheme over OK ,S0 and D1, . . . , Dr be effective Cartier divisors on
XO = X ×OK ,S0

O such that DO =
⋃r

i=1 Di is the scalar extension to O of some Cartier divisor D on X ,
and that Gal(K ′/K ) permutes the generic fibers (Di )K ′ . For every extension L/K , we denote by rL the
number of orbits of (D1)K ′, . . . , (Dr )K ′ for the action of Gal(K ′L/L).

(H2) Let Y be a closed subscheme of XK and V be a tubular neighborhood of Y in XK . Let mY ∈ N

be the minimal number such that the intersection of any (mY + 1) of the divisors (Di )K ′ amongst the r
possible ones is included in YK ′ .

TRC The tubular Runge condition for a pair (L , SL), where L/K is finite and SL contains all the
places above S0, is

mY |SL|< rL .
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Under these hypotheses and notations, the results are the following:

(R1) If (D1)K ′, . . . , (Dr )K ′ are ample divisors, the set⋃
(L ,SL )

{P ∈ (X\D)(OL ,SL ) | P /∈ V}, (5-1)

where (L , SL) goes through all the pairs satisfying the tubular Runge condition, is finite.

(R2) If (D1)K ′, . . . , (Dr )K ′ are big divisors, there exists a proper closed subset Z K ′ of XK ′ such that the
set ( ⋃

(L ,SL )

{P ∈ (X\D)(OL ,SL ) | P /∈ V}
)
\Z K ′(K ),

where (L , SL) goes through all the pairs satisfying the tubular Runge condition, is finite.

Remark 5.2 explains the hypotheses and results of this theorem, and Remark 5.3 compares it with
other theorems.

Remark 5.2. (a) The need for the extensions of scalars to K ′ and O in (H0) and (H1) is the analogue of
the fact that the poles of φ are not necessarily K -rational in the case of curves, hence the assumption
that the (Di )K ′ are all conjugates by Gal(K ′/K ) and the definition of rL given in (H1). It will induce
technical additions of the same flavor as the auxiliary functions fQ,Q′,L in the proof of Proposition 4.1.

(b) The motivation for the tubular Runge condition is the following: imitating the principle of proof for
curves (Remark 4.3(b)), if P ∈ (X\D)(OL ,SL ), we can say that at the places w of ML\SL , this point is
“w-adically far” from D. Now, the divisors (D1)K ′, . . . , (Dr )K ′ can intersect (which does not happen for
distinct points on curves), so for w ∈ SL , this point P can be “w-adically close” to many divisors at the
same time. More precisely, it can be “w-adically close” to at most m such divisors, where m = m∅, i.e.,
the largest number such that there are m divisors among D1, . . . , Dr whose set-theoretic intersection is
nonempty. This number is also defined in [Levin 2008] but we found that for our applications, it often
makes the Runge condition too strict. Therefore, we allow the use of the closed subset Y in (H2), and if
we assume that our point P is never too close to Y (i.e., P /∈ V), this m goes down to mY by definition.
Thus, we only need to take out mY divisors for each place w in SL , hence the tubular Runge condition
mY |SL |< rL . Actually, one can even mix the Runge conditions, i.e., assume that P is close to Y exactly
at s1 places, and close to one of the divisors (but not from Y ) at s2 places: following along the lines of
the proof below, we obtain finiteness given the Runge condition s1m∅+ s2mY < rL (this is exactly what
we do for Theorem 8.2(a)).

(c) The last main difference with the case of curves is the assumption of ample or big divisors, respectively
in (R1) and (R2). In both cases, such an assumption is necessary twice. First, we need it to translate by
Proposition 3.4 the integrality condition on schemes to an integrality expression on auxiliary functions (such
as in Section 2 of [Levin 2008]) to use the machinery of MK -constants and the key result (Proposition 3.1).
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Then, we need it to ensure that after obtaining a bound on the heights associated to the divisors, it implies
finiteness (implicit in Proposition 3.4, see also Remark 3.5(a)).

Remark 5.3. (a) This theorem has some resemblance to the CLZ theorem of [Corvaja et al. 2009] (where
our closed subset Y would be the analogue of the Y in that article), let us point out the differences. In
the CLZ theorem, there is no hypothesis of the set of places SL , no additional hypothesis of integrality
(appearing for us under the form of a tubular neighborhood), and the divisors are assumed to be normal
crossing divisors, which is replaced in our case by the tubular Runge condition. As for the results
themselves, the finiteness formulated by CLZ depends on the set SL (that is, it is not clear how it would
prove that (5-1) is finite). Finally, the techniques employed are greatly different: the CLZ theorem uses
Schmidt’s subspace theorem (which has not been made effective yet), whereas our method can be made
effective if one knows the involved auxiliary functions. It might be possible (and worthy of interest) to
build some bridges between the two results, and the techniques involved.

(b) Theorem 5.1 can be seen as a stratification of Runge-like results depending on the dimension of
the intersection of the involved divisors: at one extreme, the intersection is empty, and we get back
Theorem 4(b) and (c) of [Levin 2008]. At the other extreme, the intersection is a divisor (ample or big),
and the finiteness is automatic by (Remark 2.3). Of course, this stratification is not relevant in the case of
curves. In another perspective, for a fixed closed subset Y , Theorem 5.1 is more a concentration result of
integral points than a finiteness result, as it means that even if we choose a tubular neighborhood V of Y
as small as possible around Y , there is only a finite number of integral points in the set (5-1), i.e., these
integral points (ignoring the hypothesis P /∈ V) must concentrate around Y (at least at one of the places
w ∈ ML ). Specific examples are given in Sections 7 and 8.

Let us now prove Theorem 5.1, following the ideas outlined in Remark 5.2.

Proof of Theorem 5.1. (R1) Let us first build the embeddings we need. For every subextension K ′′ of K ′/K ,
the action of Gal(K ′/K ′′) on the divisors (D1)K ′, . . . , (Dr )K ′ has orbits denoted by OK ′′,1, . . . , OK ′′,rK ′′

.
Notice that any mY + 1 such orbits still have their global intersection included in Y .

For each such orbit, the sum of its divisors is ample by hypothesis and coming from an effective Cartier
divisor on XK ′′ , One can then choose by Proposition 3.4 an appropriate embedding ψK ′′,i : XK ′′→ P

ni
K ′′ ,

whose coordinate functions (denoted by φK ′′,i, j = (x j/x0)◦ψK ′′,i (1≤ j ≤ ni )) satisfy Proposition 3.4 on
all points of (XO\OK ′′,i ) (where OK ′′,i denotes the Zariski closure of OK ′′,i in XO). We will denote by
C0 the maximum of the (induced) MK -constants obtained from Proposition 3.4 for all possible K ′′/K
and orbits OK ′′,i (1≤ i ≤ rK ′′). The important point is that for any extension L/K , any v ∈ MK \S0, any
place w ∈ ML above v and any P ∈ (X\D)(OL ,w), choosing L ′ = K ′ ∩ L , one has

max
1≤i≤rL
1≤ j≤ni

log|φL ′,i, j (P)|w ≤ c0,v. (5-2)

This is the first step to obtain a bound on the height of one of the ψK ′′,i (P). For fixed P , we only have
to do so for one of the i ∈ {1, . . . , rL} as long as the bound is uniform in the choice of (L , SL) (and P),
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to obtain finiteness as each ψK ′′,i is an embedding. To this end, one only needs to bound the coordinate
functions on the places w of SL , which is what we will do now.

For a subextension K ′′ of K ′/K again, by (H2) (see the definition of mY ), taking any set I of
mY + 1 couples (i, j), 1≤ i ≤ rK ′′, j ∈ {1, . . . , ni } with mY + 1 different indices i and considering the
rational functions φK ′′,i, j , (i, j) ∈ I, whose common poles are included in Y by hypothesis, we can
apply Proposition 3.1 to these functions and the tubular neighborhood V = (Vw)w∈MK

. Naming as C1 the
maximum of all the (induced) obtained MK -constants (also for all the possible K ′′), we just proved that
for every subextension K ′′ of K ′/K , every place w ∈ MK (above v ∈ MK ) and any P ∈ X (K )\Vw, the
inequality

max
1≤ j≤ni

log|φK ′′,i, j (P)|w ≤ c1,v (5-3)

is true except for at most mY different indices i ∈ {1, . . . , rK ′′}.
Now, let us consider (L , SL) a pair satisfying the tubular Runge condition mY |SL |< rL and denote

L ′ = K ′ ∩ L again. For P ∈ (X\D)(OL ,SL ) not belonging to V , by (5-2), (5-3) and the tubular Runge
condition, there remains an index i ∈ {1, . . . , rL} (dependent on P) such that ∀w ∈ ML ,

max
1≤ j≤ni

log|φL ′,i, j (P)|w ≤max(c0,v, c1,v) (w | v ∈ MK ).

This immediately gives a bound on the height of ψL ′,i (P) independent of the choice of pair (L , SL)

(except the fact that L ′ = K ′ ∩ L). As ψL ′,i is an embedding and [L :Q] ≤ 2|SL |< 2r , by Northcott’s
property, P belongs to a finite family of points (depending on i but not on (L , SL)), and taking the union
of these families for i ∈ {1, . . . , rL}, we have proven the finiteness of the set of points⋃

(L ,SL )

{P ∈ (X\D)(OL ,SL ) | P /∈ V},

where (L , SL) goes through all the pairs satisfying the tubular Runge condition.

(R2) The proof is the same as for (R1) except that we have to exclude a closed subset of XK ′ for every
big divisor involved, and their union will be denoted by Z K ′ . The arguments above hold for every point
P /∈ Z K ′(K ) (both for the expression of integrality by auxiliary functions, and for the conclusion and
finiteness outside of this closed subset), using again Propositions 3.4 and 3.1. �

6. Reminders on Siegel modular varieties

In this section, we recall the classical constructions and results for the Siegel modular varieties, parametriz-
ing principally polarized abelian varieties with a level structure. Most of those results are extracted (or
easily deduced) from these general references: Chapter V of [Cornell and Silverman 1986] for the basic
notions on abelian varieties, [Debarre 1999] for the complex tori, their line bundles, theta functions and
moduli spaces, Chapter II of [Mumford 2007] for the classical complex theta functions, [Mumford 1984]
for their links with theta divisors, and Chapter V of [Faltings and Chai 1990] for abelian schemes and
their moduli spaces.
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Unless specified, all the vectors of Zg,Rg and Cg are assumed to be row vectors.

6A. Abelian varieties and Siegel modular varieties.

Definition 6.1 (abelian varieties and polarization). • An abelian variety A over a field k is a projective
algebraic group over k. Each abelian variety A/k has a dual abelian variety denoted by Â = Pic0(A/k)
[Cornell and Silverman 1986, §V.9].

• A principal polarization is an isomorphism λ : A→ Â such that there exists a line bundle L on Ak

with dim H 0(Ak, L)= 1 and λ is the morphism

λ : Ak→ Âk

x 7→ T ∗x L ⊗ L−1

[Cornell and Silverman 1986, §V.13].

• Given a pair (A, λ), for every n ≥ 1 prime to char(k), we can define the Weil pairing

A[n]× A[n] → µn(k),

where A[n] is the n-torsion of A(k) and µn the group of n-th roots of unity in k. It is alternating and
nondegenerate [Cornell and Silverman 1986, §V.16].

• Given a pair (A, λ), for n ≥ 1 prime to char(k), a symplectic level n structure on A[n] is a basis αn of
A[n] in which the matrix of the Weil pairing is

J =
(

0 Ig

−Ig 0

)
.

• Two triples (A, λ, αn) and (A′, λ′, α′n) of principally polarized abelian varieties over K with level
n-structures are isomorphic if there is an isomorphism of abelian varieties φ : A→ A′ such that φ∗λ′ = λ
and φ∗α′n = αn .

In the case of complex abelian varieties, the previous definitions can be made more explicit.

Definition 6.2 (complex abelian varieties and symplectic group). Let g ≥ 1.
• The half-superior Siegel space of order g, denoted by Hg, is the set of matrices

Hg := {τ ∈ Mg(C) |
tτ = τ and Im τ > 0}, (6-1)

where Im τ > 0 means that this symmetric matrix of Mg(R) is positive definite. This space is an open
subset of Mg(C).

• For any τ ∈Hg, we define

3τ := Zg
+Zgτ and Aτ := Cg/3τ . (6-2)

Let Lτ be the line bundle on Aτ made up as the quotient of Cg
×C by the action of3τ defined ∀p,q∈Zg, by

(pτ + q) · (z, t)= (z+ pτ + q, e−iπpτ t p−2iπpt zt). (6-3)
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Then, Lτ is an ample line bundle on Aτ such that dim H 0(Aτ , Lτ )= 1, hence Aτ is a complex abelian
variety and Lτ induces a principal polarization denoted by λτ on Aτ (see for example [Debarre 1999,
Theorem VI.1.3]). We also denote by πτ : Cg

→ Aτ the quotient morphism.

• For every n ≥ 1, the Weil pairing wτ,n associated to (Aτ , λτ ) on Aτ [n] is defined by

wτ,n : Aτ [n]× Aτ [n] → µn(C)

(x, y) 7→ e2iπnwτ (x,y)

where x, y ∈ Cg have images x and y by πτ , and wτ is the R-bilinear form on Cg
× Cg (so that

wτ (3τ ×3τ )= Z) defined by

wτ (x, y) := Re(x) · Im(τ )−1
·

t Im(y)−Re(y) · Im(τ )−1
·

t Im(x)

(also readily checked by making explicit the construction of the Weil pairing).

• Let (e1, . . . , eg) be the canonical basis of Cg. The family

(πτ (e1/n), . . . , πτ (eg/n), πτ (e1 · τ/n), . . . , πτ (eg · τ/n)) (6-4)

is a symplectic level n structure on (Aτ , λτ ), denoted by ατ,n .

• Let J =
( 0
−1

1
0

)
∈M2g(Z). For any commutative ring A, the symplectic group of order g over A, denoted

by Sp2g(A), is the subgroup of GL2g(A) defined by

Sp2g(A) := {M ∈ GL2g(A) | t M J M = J }, J :=
(

0 Ig

−Ig 0

)
. (6-5)

For every n ≥ 1, the symplectic principal subgroup of degree g and level n, denoted by 0g(n), is the
subgroup of Sp2g(Z) made up by the matrices congruent to I2g modulo n. For every γ =

( A
C

B
D

)
∈ Sp2g(R)

and every τ ∈Hg, we define

jγ (τ )= Cτ + D ∈ GLg(C) and γ · τ = (Aτ + B)(Cτ + D)−1, (6-6)

which defines a left action by biholomorphisms of Sp2g(R) on Hg, and (γ, τ ) 7→ jγ (τ ) is a left cocycle
for this action [Klingen 1990, Proposition I.1].

• For every g ≥ 2, n ≥ 1 and k ≥ 1, a Siegel modular form of degree g, level n and weight k is an
holomorphic function f on Hg such that ∀γ ∈ 0g(n),

f (γ · z)= det( jγ (z))k f (z). (6-7)

The reason for this description of the complex abelian varieties is that the (Aτ , λτ ) defined above make
up all the principally polarized complex abelian varieties up to isomorphism. The following results can
be found in Chapter VI of [Debarre 1999] except the last point which is straightforward.
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Definition-Proposition 6.3 (uniformization of complex abelian varieties). • Every principally polarized
complex abelian variety of dimension g with symplectic structure of level n is isomorphic to some triple
(Aτ , λτ , ατ,n) where τ ∈Hg.

• For every n ≥ 1, two triples (Aτ , λτ , ατ,n) and (Aτ ′, λτ ′, ατ ′,n) are isomorphic if and only if there exists
γ ∈ 0g(n) such that γ · τ = τ ′, and then such an isomorphism is given by

Aτ → Aτ ′

z mod3τ 7→ z · jγ (τ )−1 mod3τ ′
.

• The Siegel modular variety of degree g and level n is the quotient Ag(n)C := 0g(n)\Hg. From the
previous result, it is the moduli space of principally polarized complex abelian varieties of dimension g
with a symplectic level n structure. As a quotient, it also inherits a structure of normal analytic space
(with finite quotient singularities) of dimension g(g+ 1)/2, because 0g(n) acts properly discontinuously
on Hg.

• For every positive divisor m of n, the natural morphism Ag(n)C→ Ag(m)C induced by the identity of
Hg corresponds in terms of moduli to multiplying the symplectic basis ατ,n by n/m, thus obtaining ατ,m .

• For every g ≥ 1 and n ≥ 1, the quotient of Hg ×C by the action of 0g(n) defined as

γ · (τ, t)= (γ · τ, t/ det( jγ (z))) (6-8)

is a variety over Hg denoted by L . For a large enough power of k (or if n ≥ 3), L⊗k is a line bundle over
Ag(n)C, hence L is a Q-line bundle over Ag(n)C called line bundle of modular forms of weight one over
Ag(n)C. By definition (6-7), for every k ≥ 1, the global sections of L⊗k are the Siegel modular forms of
degree g, level n and weight k.

Let us now present the compactification of Ag(n)C we will use, that is the Satake compactification (for
a complete description of it, see Section 3 of [Namikawa 1980]).

Definition-Proposition 6.4 (Satake compactification). Let g ≥ 1 and n ≥ 1. The normal analytic space
Ag(n)C admits a compactification called Satake compactification and denoted by Ag(n)S

C
, satisfying the

following properties.

(a) Ag(n)S
C

is a compact normal analytic space (of dimension g(g+1)/2, with finite quotient singularities)
containing Ag(n)C as an open subset and the boundary ∂Ag(n)C := Ag(n)S

C
\Ag(n)C is of codimension g

(see [Satake and Cartan 1957] for details).

(b) As a normal analytic space, Ag(n)S
C

is a projective algebraic variety. More precisely, for Mg(n)
the graded ring of Siegel modular forms of degree g and level n, Ag(n)S

C
is canonically isomorphic to

ProjC Mg(n) [Cartan 1957, Théorème fondamental].
In particular, one can naturally obtain Ag(n)S

C
by fixing for some large enough weight k a basis of

modular forms of Mg(n) of weight k and evaluating them all on Ag(n)C to embed it in a projective space,
so that Ag(n)S

C
is the closure of the image of the embedding in this projective space.
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(c) The Q-line bundle L of modular forms of weight 1 on Ag(n)C extends naturally to an ample Q-line
bundle on Ag(n)S

C
(which is also denoted L); this is a direct consequence of (b).

6B. Further properties of Siegel modular varieties. As we are interested in the reduction of abelian
varieties on number fields, one needs to have a good model of Ag(n)C over integer rings, as well as
some knowledge of the geometry of Ag(n)C. The integral models below and their properties are given in
Chapter V of [Faltings and Chai 1990].

Definition 6.5 (abelian schemes). (a) An abelian scheme A→ S is a smooth proper group scheme whose
fibers are geometrically connected. It also has a natural dual abelian scheme Â = Pic0(A/S), and it is
principally polarized if it is endowed with an isomorphism λ : A→ Â such that at every geometric point
s of S, the induced isomorphism λs : As→ Âs is a principal polarization of As .

(b) A symplectic structure of level n≥1 on a principally polarized abelian scheme (A, λ) over a Z[ζn, 1/n]-
scheme S is the datum of an isomorphism of group schemes A[n]→ (Z/nZ)2g, which is symplectic with
respect to λ and the canonical pairing on (Z/nZ)2g given by the matrix J (as in (6-5)).

Definition-Proposition 6.6 (algebraic moduli spaces). For every integers g ≥ 1 and n ≥ 1:

(a) The Satake compactification Ag(n)S
C

has an integral model Ag(n)S on Z[ζn, 1/n] which contains as a
dense open subscheme the (coarse, if n ≤ 2) moduli space Ag(n) over Z[ζn, 1/n] of principally polarized
abelian schemes of dimension g with a symplectic structure of level n. This scheme Ag(n)S is normal,
proper and of finite type over Z[ζn, 1/n] [Faltings and Chai 1990, Theorem V.2.5].

(b) For every divisor m of n, we have canonical degeneracy morphisms Ag(n)S
→Ag(m)S extending

the morphisms of Definition-Proposition 6.3.

Before tackling our own problem, let us give some context on the divisors on Ag(n)S
C

to give a taste of
the difficulties to overcome.

Definition 6.7 (rational Picard group). For every normal algebraic variety X over a field K , the rational
Picard group of X is the Q-vector space

Pic(X)Q := Pic(X)⊗Z Q.

Proposition 6.8 (rational Picard groups of Siegel modular varieties). Let g ≥ 2 and n ≥ 1.

(a) Every Weil divisor on Ag(n)C or Ag(n)S
C

is up to some multiple a Cartier divisor, hence their rational
Picard group is also their Weil class divisor group tensored by Q.

(b) For g = 3, the Picard rational groups of A3(n)S
C

and A3(n)C are equal to Q · L for every n ≥ 1.

(c) For g = 2, one has PicQ(A2(1)S
C
)=Q · L.

This result has the following immediate corollary, because L is ample on Ag(n)S
C

for every g ≥ 2 and
every n ≥ 1 (Definition-Proposition 6.4(c)).
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Corollary 6.9 (ample and big divisors on Siegel modular varieties). A Q-divisor on Ag(n)C or Ag(n)S
C

with g=3 (or g=2 and n=1) is ample if and only if it is big if and only if it is equivalent to a · L with a > 0.

Remark 6.10. We did not mention the case of modular curves (also difficult, but treated by different
methods): the point here is that the cases g ≥ 3 are surprisingly much more uniform because then
Pic(Ag(n)S

C
) = Pic(Ag(1)S

C
). The reason is that some rigidity appears from g ≥ 3 (essentially by the

general arguments of [Borel 1981]), whereas for g = 2, the situation seems very complex already for the
small levels (see for example n = 3 in [Hoffman and Weintraub 2001]).

This is why the ampleness (or bigness) is in general hard to figure out for given divisors of A2(n), n> 1.
We consider specific divisors in the following (namely, divisors of zeroes of theta functions), whose
ampleness will not be hard to prove.

Proof of Proposition 6.8.

(a) This is true for the Ag(n)S
C

by [Artal Bartolo et al. 2014] as they only have finite quotient singularities
(this result actually seems to have been generally assumed a long time ago). Now, as ∂Ag(n)S

C
is of

codimension at least 2, the two varieties Ag(n)S
C

and Ag(n)C have the same Weil and Cartier divisors,
hence the same rational Picard groups.

(b) This is a consequence of general results of [Borel 1981] further refined in [Weissauer 1992] (it can
even be generalized to every g ≥ 3).

(c) This comes from the computations of Section III.9 of [Mumford 1983] (for another compactification,
called toroidal), from which we extract the result for A2(1)C by a classical restriction theorem [Hartshorne
1977, Proposition II.6.5] because the boundary for this compactification is irreducible of codimension 1.
The result for A2(1)S

C
is then the same because the boundary is of codimension 2. �

6C. Theta divisors on abelian varieties and moduli spaces. We will now define the useful notions for
our integral points problem.

Definition 6.11 (theta divisor on an abelian variety). Let k be an algebraically closed field and A an
abelian variety over k.

Let L be an ample symmetric line bundle on A inducing a principal polarization λ on A. A theta
function associated to (A, L) is a nonzero global section ϑA,L of L . The theta divisor associated to
(A, L), denoted by 2A,L , is the divisor of zeroes of ϑA,L , well-defined and independent of our choice
because dim H 0(A, L)= deg(λ)2 = 1.

The theta divisor is in fact determined by the polarization λ itself up to a finite ambiguity, as the result
below makes precise.

Proposition 6.12. Let k be an algebraically closed field and A an abelian variety over k.
Two ample symmetric line bundles L and L ′ on A inducing a principal polarization induce the same

one if and only if L ′ ∼= T ∗x L for some x ∈ A|2], and then

2A,L ′ =2A,L + x .
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Proof. This is a well-known result relying on the properties of the map

L 7→ (φL : x 7→ T ∗x L ⊗ L−1)

from Pic(A) to Hom(A, Â) [Mumford 1970, Corollary 4 p. 60 and Theorem 1 p. 77], and of ample
symmetric line bundles. �

When char(k) 6= 2, adding to a principally polarized abelian variety (A, λ) of dimension g the datum
α2 of a symplectic structure of level 2, we can determine an unique ample symmetric line bundle L with
the following process called the Igusa correspondence, devised in [Igusa 1967]. To any ample symmetric
Weil divisor D defining a principal polarization, one can associate bijectively a quadratic form qD from
A[2] to {±1} called even, which means that the sum of its values on A[2] is 2g [loc. cit., Theorem 2 and
the previous arguments]. On the other hand, the datum α2 also determines an even quadratic form qα2 , by
associating to a x ∈ A[2] with coordinates (a, b) ∈ (Z/2Z)2g in the basis α2 of A[2] the value

qα2(x)= (−1)a
t b. (6-9)

We now only have to choose the unique ample symmetric divisor D such that qD = qα2 and the line
bundle L associated to D.

By construction of this correspondence [loc. cit., p. 823], a point x ∈ A[2] of coordinates (a, b) ∈
(Z/2Z)2g in α2 automatically belongs to 2A,L (with L associated to (A, λ, α2)) if at b = 1 mod 2. A
point of A[2] with coordinates (a, b) such that at b = 0 mod 2 can also belong to 2A,L but with even
multiplicity.

This allows us to get rid of the ambiguity of choice of an ample symmetric L in the following, as
soon as we have a symplectic level 2 structure (or finer) (this result is a reformulation of Theorem 2 of
[loc. cit.]).

Definition-Proposition 6.13 (theta divisor canonically associated to a symplectic even level structure).
Let n ≥ 2 even and k algebraically closed such that char(k) does not divide n.

For (A, λ, αn) a principally polarized abelian variety of dimension g with symplectic structure of
level n (Definition 6.2), there is up to isomorphism an unique ample symmetric line bundle L inducing λ
and associated by the Igusa correspondence to the symplectic basis of A[2] induced by αn . The theta
divisor associated to (A, λ, αn), denoted by 2A,λ,αn , is then the theta divisor associated to (A, L).

The Runge-type theorem we give in Section 7 (Theorem 7.12) focuses on principally polarized abelian
surfaces (A, λ) on a number field K whose theta divisor does not contain any n-torsion point of A (except
2-torsion points, as we will see it is automatic). This will imply (Proposition 7.5) that A is not a product of
elliptic curves, but this is not a sufficient condition, as pointed out for example in [Boxall and Grant 2000].

We will once again start with the complex case to figure out how such a condition can be formulated
on the moduli spaces, using complex theta functions [Mumford 2007, Chapter II].
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Definition-Proposition 6.14 (complex theta functions). Let g ≥ 1.
The holomorphic function2 on Cg

×Hg is defined by the series (uniformly convergent on any compact
subset)

2(z, τ )=
∑
n∈Zg

eiπnτ t n+2iπnt z. (6-10)

For any a, b ∈ Rg, we also define the holomorphic function 2a,b by

2a,b(z, τ )=
∑
n∈Zg

eiπ(n+a)τ t (n+a)+2iπ(n+a)t (z+b). (6-11)

For a fixed τ ∈Hg, one defines 2τ : z 7→2(z, τ ) and similarly for 2a,b,τ . These functions have the
following properties.

(a) For every a, b ∈ Zg,

2a,b,τ (z)= eiπaτ t a+2iπat (z+b)2τ (z+ aτ + b). (6-12)

(b) For every p, q ∈ Zg,

2a,b,τ (z+ pτ + q)= e−iπpτ t p−2iπpt z+2iπ(at q−bt p)2a,b,τ (z). (6-13)

(c) Let us denote by ϑ and ϑa,b the normalized theta-constants, which are the holomorphic functions on
Hg defined by

ϑ(τ) :=2(0, τ ) and ϑa,b(τ ) := e−iπat b2a,b(0, τ ). (6-14)

These theta functions satisfy the following modularity property: with the notations of Definition 6.2
and ∀γ ∈ 0g(2),

ϑa,b(γ · τ)= ζ8(γ )eiπ(a,b)t Vγ
√

jγ (τ )ϑ(a,b)γ (τ ), (6-15)

where ζ8(γ ) (an 8-th root of unity) and Vγ ∈ Zg only depend on γ and the determination of the square
root of jγ (τ ).

In particular, for every even n ≥ 2, if (na, nb) ∈ Z2g, the function ϑ8n
a,b is a Siegel modular form of

degree g, level n and weight 4n, which only depends on (a, b) mod Z2g.

Proof. The convergence of these series as well as their functional equations (6-12) and (6-13) are classical
and can be found in Section II.1 of [Mumford 2007].

The modularity property (6-15) (also classical) is a particular case of the computations of Section II.5
of [Mumford 2007] (we do not need here the general formula for γ ∈ Sp2g(Z)).

Finally, by natural computations of the series defining 2a,b, one readily obtains that

ϑa+p,b+q = e2iπ(at q−bt p)ϑa,b.

Therefore, if (na, nb) ∈ Z2g, the function ϑn
a,b only depends on (a, b) mod Z2g. Now, putting the

modularity formula (6-15) to the power 8n, one eliminates the eight root of unity and if γ ∈ 0g(n), one
has (a, b)γ = (a, b) mod Zg hence ϑ8n

a,b is a Siegel modular form of weight 4n for 0g(n). �
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There is of course an explicit link between the theta functions and the notion of theta divisor, which
we explain now with the notations of Definition 6.2.

Proposition 6.15 (theta divisor and theta functions). Let τ ∈Hg.
The line bundle Lτ is ample and symmetric on Aτ , and defines a principal polarization on Aτ . It

is also the line bundle canonically associated to the 2-structure ατ,2 and its polarization by the Igusa
correspondence (Definition-Proposition 6.13).

Furthermore, the global sections of Lτ canonically identify to the multiples of 2τ , hence the theta
divisor associated to (Aτ , λτ , ατ,2) is exactly the divisor of zeroes of 2τ modulo 3τ .

Thus, for every a, b ∈ Rg, the projection of πτ (aτ + b) belongs to 2Aτ ,λτ ,ατ,2 if and only if ϑa,b(τ )= 0.

Remark 6.16. The proof below that the Lτ is the line bundle associated to (Aτ , λτ , ατ,2) is a bit technical,
but one has to suspect that Igusa normalized its correspondence by (6-9) exactly to make it work.

Proof. One can easily see that Lτ is symmetric by writing [−1]∗Lτ as a quotient of Cg
×C by an action

of 3τ , then figuring out it is the same as (6-3). Then, by simple connectedness, the global sections of Lτ
lift by the quotient morphism Cg

×C→ Lτ into functions z 7→ (z, f (z)), and the holomorphic functions
f thus obtained are exactly the functions satisfying functional equation (6-13) for a = b = 0 because of

(6-3), hence the same functional equation as 2τ . This identification is also compatible with the associated
divisors, hence 2Aτ ,Lτ is the divisor of zeroes of 2τ modulo 3τ . For more details on the theta functions
and line bundles, see [Debarre 1999, Chapters IV, V and Section VI.2].

We now have to check that the Igusa correspondence indeed associates Lτ to (Aτ , λτ , ατ,2). With the
notations of the construction of this correspondence [Igusa 1967, pp. 822, 823 and 833], one sees that the
meromorphic function ψx on Aτ (depending on Lτ ) associated to x ∈ Aτ [2] has divisor [2]∗T ∗x 2Aτ ,Lτ −

[2]∗2Aτ ,Lτ , hence it is (up to a constant) the meromorphic function induced on Aτ by

fx(z)=
2a,b,τ (2z)
2τ (2z)

,

where x = aτ + b mod3τ . Now, the quadratic form q associated to Lτ is defined by the identity

fx(−z)= q(x) fx(z)

for every z ∈ Cg, but 2τ is even hence

fx(−z)= e4iπat b fx(z)

by (6-12). Now, the coordinates of x in ατ,2 are exactly (2b, 2a) mod Z2g by definition, hence q = qατ,2 .
Let us finally make the explicit link between zeroes of theta-constants and theta divisors; using the

argument above, the divisor of zeroes of 2τ modulo 3τ is exactly 2Aτ ,Lτ , hence 2Aτ ,λτ ,ατ,2 by what we
just proved for the Igusa correspondence. This implies that for every z ∈ Cg, 2τ (z)= 0 if and only if
πτ (z) belongs to 2Aτ ,λτ ,ατ,2 , and as ϑa,b(τ ) is a nonzero multiple of 2(aτ + b, τ ), we finally have that
ϑa,b(τ )= 0 if and only if πτ (aτ + b) belongs to 2Aτ ,λτ ,ατ,2 . �
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7. Applications of the main result on a family of Siegel modular varieties

We now have almost enough definitions to state the problem which we will consider for our Runge-type
result (Theorem 7.12). We consider theta divisors on abelian surfaces, and their torsion points.

To make their indexation easier, we use the following notation.

Notation. Until the end of this article, the expression “a couple (a, b) ∈ (Z/nZ)4 (resp. Z4,Q4 )” is a
shorthand to designate the row vector with four coefficients where a ∈ (Z/nZ)2 (resp. Z2, Q2 ) make up
the first two coefficients and b the last two coefficients.

7A. The specific situation for theta divisors on abelian surfaces. As an introduction and a preliminary
result, let us treat first the case of theta divisors on elliptic curves.

Lemma 7.1 (theta divisor on an elliptic curve). Let E be an elliptic curve on an algebraically closed field
k with char(k) 6= 2 and L an ample symmetric line bundle defining the principal polarization on E.

The effective divisor 2E,L is a 2-torsion point of E with multiplicity one. More precisely, if (e1, e2) is
the basis of E[2] associated by Igusa correspondence to L (Definition-Proposition 6.13),

2E,L = [e1+ e2]. (7-1)

Remark 7.2. In the complex case, this can simply be obtained by proving that 21/2,1/2,τ is odd for
every τ ∈H1 hence cancels at 0, and has no other zeroes (by a residue theorem for example), then using
Proposition 6.15.

Proof. By the Riemann–Roch theorem on E , the divisor 2E,L is of degree 1 because h0(E, L)= 1 (and
effective). Now, as explained before when discussing the Igusa correspondence, for a, b ∈ Z, ae1+ be2

automatically belongs to 2E,L if ab = 1 mod 2Z, hence 2E,L = [e1+ e2]. �

This allows one to describe the theta divisor of a product of two elliptic curves.

Proposition 7.3 (theta divisor on a product of two elliptic curves). Let k be an algebraically closed field
with char(k) 6= 2.

Let (A, L) with A= E1× E2 a product of elliptic curves over k and L an ample symmetric line bundle
on A inducing the product principal polarization on A. The divisor 2A,L is then of the shape

2A,L = {x1}× E2+ E1×{x2}, (7-2)

with xi ∈ Ei [2] for i = 1, 2. In particular, this divisor has a (unique) singular point of multiplicity two at
(x1, x2), and:

(a) There are exactly seven 2-torsion points of A belonging to 2A,L : the six points given by the
coordinates (a, b) ∈ (Z/2Z)4 such that at b = 1 in a basis giving 2A,L by the Igusa correspondence,
and the seventh point (x1, x2).

(b) For every even n ≥ 2 which is nonzero in k, the number of n-torsion (but not 2-torsion) points of A
belonging to 2A,L is exactly 2(n2

− 4).
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Proof. By construction of (A, L), a global section of (A, L) corresponds to a tensor product of global
sections of E1 and E2 (with their principal polarizations), hence the shape of 2A,L is a consequence of
Lemma 7.1.

We readily deduce (a) and (b) from this shape, using that the intersection of the two components of2A,L

is a 2-torsion point of even multiplicity for the quadratic form hence different from the six other ones. �

Regarding abelian surfaces which are not products of elliptic curves, we recall below a fundamental
result (proven in [Oort and Ueno 1973]).

Proposition 7.4 (shapes of principally polarized abelian surfaces). Let k be any field.
A principally polarized abelian surface (A, λ) over k is, after a finite extension of scalars, either the

product of two elliptic curves (with its natural product polarization), or the jacobian J of an hyperelliptic
curve C of genus 2 (with its canonical principal polarization). In the second case, for the Albanese
embedding φx : C→ J with base-point x and an ample symmetric line bundle L over K inducing λ, the
divisor 2J,L is irreducible, and it is actually a translation of φx(C) by some point of J (k).

Let us now fix an algebraically closed field k with char(k) 6= 2.
Let C be an hyperelliptic curve of genus 2, and ι its hyperelliptic involution. This curve has exactly six

Weierstrass points (the fixed points of ι, by definition), and we fix one of them, denoted by∞. For the
Albanese morphism φ∞, the divisor φ∞(C) is stable by [−1] because the divisor [x] + [ι(x)] − 2[∞]
is principal for every x ∈ C . As 2J,L is also symmetric and a translation of φ∞(C), we know that
2J,L = T ∗x (φ∞(C)) for some x ∈ J [2].

This tells us that understanding the points of 2J,L amounts to understanding how the curve C behaves
when embedded in its jacobian (in particular, how its points add). It is a difficult problem to know which
torsion points of J belong to the theta divisor (see [Boxall and Grant 2000] for example), but we will
only need to bound their quantity here, with the following result.

Proposition 7.5. Let k an algebraically closed field with char(k) 6= 2.
Let C be an hyperelliptic curve of genus 2 over k with jacobian J , and∞ a fixed Weierstrass point

of C. We denote by C̃ the image of C in J by the associated embedding φ∞ : x 7→ [x] − [∞].

(a) The set C̃ is stable by [−1], and the application

Sym2(C̃)→ J

{P, Q} 7→ P + Q

is the blow-up of J at the origin, in particular it is injective outside the fiber above 0.

(b) There are exactly six 2-torsion points of J belonging to C̃ , and they are equivalently the images of
the Weierstrass points and the points of coordinates (a, b) ∈ ((Z/2Z)2)2 such that at b = 1 in a basis
giving C̃ by the Igusa correspondence.

(c) For any n ≥ 2 which is nonzero in k, the number of n-torsion points of J belonging to C̃ is bounded
by
√

2n2
+

1
2 .
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Remark 7.6. This proposition is not exactly a new result, and its principle can be found (with slightly
different formulations) in Theorem 1.3 of [Boxall and Grant 2000] or in Lemma 5.1 of [Pazuki 2013].
The problem of counting (or bounding) torsion points on the theta divisor has interested many people,
e.g., [Boxall and Grant 2000] and very recently [Auffarth et al. 2017] in general dimension. Notice that
the results above give the expected bound in the case g = 2, but we do not know how much we can lower
the bound

√
2n2 in the case of jacobians.

Proof. (a) is a well-known consequence of the Riemann–Roch theorem in genus 2. (b) comes from the
construction of the Igusa correspondence, and the definition of Weierstrass points as points P such that
2[P] is a canonical divisor. Now, for any n ≥ 2, let us denote C̃[n] := C̃ ∩ J [n]. The summing map from
C̃[n]2 to J [n] has a fiber of cardinal |C̃[n]| above 0 and at most 2 above any other point of J [n] by (a),
hence the inequality of degree two

|C̃[n]|2 ≤ |C̃[n]| + 2(n4
− 1),

from which we directly obtain (c). �

We can now define the divisors we will consider for our Runge-type theorem.

Definition-Proposition 7.7 (theta divisors on A2(n)S
C

). Let n ∈ N≥2 even.

(a) A couple (a, b) ∈ (Z/nZ)4 is called regular if it is not of the shape ((n/2)a′, (n/2)b′) with (a′, b′) ∈
((Z/2Z)2)2 such that a′t b′ = 1 mod 2. There are exactly 6 couples (a, b) not satisfying this condition,
which we call singular.

(b) If (a, b) ∈ (Z/nZ)4 is regular, for every lift (ã, b̃) ∈ Z4 of (a, b), the function ϑ8n
ã/n,b̃/n

is a nonzero
Siegel modular form of degree 2, weight 4n and level n, independent of the choice of lifts. The theta
divisor associated to (a, b), denoted by (Dn,a,b)C, is the Weil divisor of zeroes of this Siegel modular
form on A2(n)S

C
.

Remark 7.8. The singular couples correspond to what are called odd characteristics by Igusa.
The proof below uses Fourier expansions to figure out which theta functions are nontrivial. One can

also prove through Fourier expansions that the Weil divisors (Dn,a,b)C and (Dn,a′,b′)C are distinct (unless
(a, b)=±(a′, b′) of course) and it is likely true that they are even set-theoretically pairwise distinct (i.e.,
even without counting the multiplicities). This is not very important for us since Proposition 7.3 and 7.5
are not modified if some of the divisors taken into account are equal.

Proof of Definition-Proposition 7.7. (a) By construction, for any even n ≥ 2, the number of singular
couples (a, b) ∈ (Z/nZ)4 is the number of couples (a′, b′) ∈ (Z/2Z)4 such that a′t b′ = 1 mod 2, and we
readily see there are exactly six of them, namely

(0101), (1010), (1101), (1110), (1011) and (0111).

For (b) and (c), the modularity of the function comes from Definition-Proposition 6.14(c) hence we only
have to prove that it is nonzero when (a, b) is regular. To do this, we will use the Fourier expansion of
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this modular form (for more details on Fourier expansions of Siegel modular forms, see chapter 4 of
[Klingen 1990]), and simply prove that it has nonzero coefficients. This is also how we will prove the
ϑa,b are distinct.

To shorten the notations, given (a, b) ∈ (Z/nZ)4, we consider instead (ã/n, b̃/n) ∈Q4 for some lift
(ã, b̃) of (a, b) in Z4) and by abuse of notation we denote it (a, b) for simplicity. Regularity of the couple
translates into the fact that (a, b) is different from six possibles values modulo Z4, namely(

0, 1
2 , 0, 1

2

)
,
( 1

2 , 0, 1
2 , 0

)
,
( 1

2 ,
1
2 , 0, 1

2

)
,
( 1

2 ,
1
2 ,

1
2 , 0

)
,
( 1

2 , 0, 1
2 ,

1
2

)
,
(
0, 1

2 ,
1
2 ,

1
2

)
by (a), which we will assume now. We also fix n ∈ N even such that (na, nb) ∈ Z4.

Recall that

ϑa,b(τ )= eiπat b
∑
k∈Z2

eiπ(k+a)τ t (k+a)+2iπkt b (7-3)

by (6-12) and (6-14). Therefore, for any symmetric matrix S ∈ M2(Z) such that S/(2n2) is half-integral
(i.e., with integer coefficients on the diagonal, and half-integers otherwise), we have ∀τ ∈H2,

ϑa,b(τ + S)= ϑa,b(τ ),

because for every k ∈ Z2,

(k+ a)St(k+ a) ∈ 2Z.

Hence, the function ϑa,b admits a Fourier expansion of the form

ϑa,b(τ )=
∑

T

aT e2iπ Tr(T τ),

where T runs through all the matrices of S2(Q) such that (2n2)T is half-integral. This Fourier expansion
is unique, because for any τ ∈H2 and any T , we have

(2n2)aT =

∫
[0,1]4

ϑa,b(τ + x)e−2iπ Tr(T (τ+x)) dx .

In particular, the function ϑa,b is zero if and only if all its Fourier coefficients aT are zero, hence
we will directly compute those, which are almost directly given by (7-3). For a = (a1, a2) ∈ Q2 and
k = (k1, k2) ∈ Z2, let us define

Ta,k =

(
(k1+ a1)

2 (k1+ a1)(k2+ a2)

(k1+ a1)(k2+ a2) (k2+ a2)
2

)
,

so that

ϑa,b(τ )= eiπat b
∑
k∈Z2

e2iπkt beiπ Tr(Ta,kτ) (7-4)
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by construction. It is not yet exactly the Fourier expansion, because we have to gather the Ta,k giving the
same matrix T (and this is where we will use regularity). Clearly,

Ta,k = Ta′,k′ ⇐⇒ (k+ a)=±(k ′+ a′).

If 2a /∈ Z2, the function k 7→ Ta,k is injective, so (7-4) is the Fourier expansion of ϑa,b, with clearly
nonzero coefficients, hence ϑa,b is nonzero.

If 2a = A ∈ Z2, for every k, k ′ ∈ Z2, we have (k+ a)=±(k ′+ a) if and only if k = k ′ or k+ k ′ = A,
so the Fourier expansion of ϑa,b is

ϑa,b(τ )=
eiπat b

2

∑
T

∑
k,k′∈Z2

Tk,a=Tk′,a=T

(e2iπkt b
+ e2iπ(−A−k)t b)eiπ Tr(T τ). (7-5)

Therefore, the coefficients of this Fourier expansion are all zero if and only if, for every k ∈ Z2,

e2iπ(2k+A)t b
=−1,

i.e., if and only if b ∈ (1/2)Z and (−1)4at b
=−1, and this is exactly singularity of the couple (a, b) which

proves (b). �

These divisors have the following properties.

Proposition 7.9 (properties of the (Dn,a,b)C). Let n ∈ N≥2 even.

(a) For every regular (a, b) ∈ (Z/nZ)4, the divisor (Dn,a,b)C is ample.

(b) For n = 2, the ten divisors (D2,a,b)C are set-theoretically pairwise disjoint outside the boundary
∂A2(2)C := A2(2)S

C
\A2(2)C, and their union is exactly the set of moduli of products of elliptic curves

(with any symplectic basis of the 2-torsion).

(c) For (A, λ, αn) a principally polarized complex abelian surface with symplectic structure of level n:

– If (A, λ) is a product of elliptic curves, the moduli of (A, λ, αn) belongs to exactly n2
−3 divisors

(Dn,a,b)C.
– Otherwise, the point (A, λ, αn) belongs to at most (

√
2/2)n2

+ 1/4 divisors (Dn,a,b)C.

Proof. (a) The divisor (Dn,a,b)C is by definition the Weil divisor of zeroes of a Siegel modular form
of order 2, weight 4n and level n, hence of a section of L⊗4n on A2(n)S

C
. As L is ample on A2(n)S

C

(Definition-Proposition 6.4(c)), the divisor (Dn,a,b)C is ample.
Now, we know that every complex pair (A, λ) is isomorphic to some (Aτ , λτ ) with τ ∈H2 (Definition-

Proposition 6.3). If (A, λ) is a product of elliptic curves, the theta divisor of (A, λ, α2) contains exactly
seven 2-torsion points (Proposition 7.3), only one of comes from a regular pair, i.e., (A, λ, α2) is
contained in exactly one of the ten divisors. If (A, λ) is not a product of elliptic curves, it is a jacobian
(Proposition 7.4) and the theta divisor of (A, λ, α2) only contains the six points coming from singular
pairs (Proposition 7.5) i.e., (A, λ, α2) does not belong to any of the ten divisors, which proves (b).
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To prove (c), we use the same propositions for general n, keeping in mind that we only count as one the
divisors coming from opposite values of (a, b): for products of elliptic curves, this gives 2(n2

− 4)/2+ 1
divisors (the 1 coming from the even 2-torsion), and for jacobians, this gives (

√
2/2)n2

+
1
4 (there are no

nontrivial 2-torsion points to consider here). �

We will now give the natural divisors extending (Dn,a,b)C on the integral models A2(n) (Definition-
Proposition 6.6).

Definition 7.10. Let n ∈ N≥2 even.
For every regular (a, b) ∈ (Z/nZ)4, the divisor (Dn,a,b)C is the geometric fiber at C of an effective

Weil divisor Dn,a,b on A2(n), such that the moduli of a triple (A, λ, αn) (on a field k of characteristic
prime to n) belongs to Dn,a,b(k) if and only if the point of A[n](k) of coordinates (a, b) for αn belongs
to the theta divisor 2A,λ,αn (Definition-Proposition 6.13).

Proof. This amounts to giving an algebraic construction of the Dn,a,b satisfying the wanted properties.
The following arguments are extracted from Remark I.5.2 of [Faltings and Chai 1990]. Let π : A→ S an
abelian scheme and L a symmetric invertible sheaf on A, relatively ample over S and inducing a principal
polarization on A. If s : S → A is a section of A over S, the evaluation at s induces an OS-module
isomorphism between π∗L and s∗L. Now, if s is of n-torsion in A, for e : S→ A the zero section, the sheaf
(s∗L)⊗2n is isomorphic to (e∗L)⊗2n , i.e., trivial. We denote by ωA/S the invertible sheaf on S obtained as
the determinant of the sheaf of invariant differential forms on A, and the computations of Theorem I.5.1
and Remark I.5.2 of [Faltings and Chai 1990] give 8π∗L = −4ωA/S in Pic(A/S). Consequently, the
evaluation at s defines (after a choice of trivialization of (e∗L)⊗2n and putting to the power 8n) a section
of ω⊗4n

A/S . Applying this result on the universal abelian scheme (stack if n ≤ 2) X2(n) on A2(n), for
every (a, b) ∈ (Z/nZ)4, the section defined by the point of coordinate (a, b) for the n-structure on X2(n)
induces a global section sa,b of ω⊗4n

X2(n)/A2(n), and we define Dn,a,b as the Weil divisor of zeroes of this
section. It remains to check that it satisfies the correct properties.

Let (A, λ, αn) be a triple over a field k of characteristic prime to n, and L the ample line bundle
associated to it by Definition-Proposition 6.13. By construction, its moduli belongs to Dn,a,b if and only
if the unique (up to constant) nonzero section vanishes at the point of A[n] of coordinates (a, b) in αn ,
hence if and only if this point belongs to 2A,λ,αn .

Finally, we see that the process described above applied to the universal abelian variety X2(n)C
of A2(n)C (by means of explicit description of the line bundles as quotients) gives (up to invertible
holomorphic functions) the functions ϑ8n

ã/n,b̃/n
, which proves that (Dn,a,b)C is indeed the geometric fiber

of Dn,a,b (it is easier to see that their complex points are the same, by Proposition 7.9(c) and the above
characterization applied to the field C).

If one does not want to use stacks for n = 2, one can consider for (a, b) ∈ (Z/2Z)4 the divisor D4,2a,2b

which is the pullback of D2,a,b by the degeneracy morphism A2(4)→ A2(2). �

7B. Tubular Runge theorems for abelian surfaces and their theta divisors. We can now prove a family
of tubular Runge theorems for the theta divisors Dn,a,b (for even n ≥ 2).
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We will state the case n = 2 first because its moduli interpretation is easier but the proofs are the same,
as we explain below.

In the following results, the boundary of A2(n)S
C

is defined as ∂A2(n)S
C
:= A2(n)S

C
\A2(n)C.

Theorem 7.11 (tubular Runge for products of elliptic curves on A2(2)S). Let U be an open neighborhood
of ∂A2(2)S

C
in A2(2)S

C
for the natural complex topology.

For any such U , we define E(U ) the set of moduli P of triples (A, λ, α2) in A2(2)(Q) such that
(choosing L a number field of definition of the moduli):

– The abelian surface A has potentially good reduction at every finite placew ∈ML (tubular condition
for finite places).

– For any embedding σ : L→ C, the image Pσ of P in A2(2)C is outside of U (tubular condition for
archimedean places).

– The number sL of nonintegrality places of P , i.e., places w ∈ ML such that

– either w is above M∞L or 2,
– or the semistable reduction modulo w of (A, λ) is a product of elliptic curves

satisfies the tubular Runge condition

sL < 10.

Then, for every choice of U , the set E(U ) is finite.

Theorem 7.12 (tubular Runge for theta divisors on A2(n)S). Let n ≥ 4 even.
Let U be an open neighborhood of ∂A2(n)S

C
in A2(n)S

C
for the natural complex topology.

For any such U , we define E(U ) the set of moduli P of triples (A, λ, αn) in A2(n)(Q) such that
(choosing L ⊃Q(ζn) a number field of definition of the triple):

– The abelian surface A has potentially good reduction at every place w ∈ M∞L (tubular condition for
finite places).

– For any embedding σ : L→ C, the image Pσ of P in A2(n)C is outside of U (tubular condition for
archimedean places).

– The number sL of nonintegrality places of P , i.e., places w ∈ ML such that

– either w is above M∞L or a prime factor of n,
– or the theta divisor of the semistable reduction modulo w of (A, λ, αn) contains an n-torsion

point which is not one of the six points coming from odd characteristics,

satisfies the tubular Runge condition

(n2
− 3)sL <

n4

2
+ 2.

Then, for every choice of U , the set of points E(U ) is finite.
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Remark 7.13. We put an emphasis on the conditions given in the theorem to make it easier to identify
how it is an application of our main result, Theorem 5.1. The tubular conditions (archimedean and
finite) mean that our points P do not belong to some tubular neighborhood V of the boundary. We of
course chose the boundary as our closed subset to exclude because of its modular interpretation for
finite places. The places above M∞L or a prime factor of n are automatically of nonintegrality for our
divisors because the model A2(n) is not defined at these places. Finally, the second possibility to be
a place of nonintegrality straightforwardly comes from the moduli interpretation of the divisors Dn,a,b

(Definition 7.10). All this is detailed in the proof below.
To give an example of how we can obtain an explicit result in practice, we prove in Section 8 an

explicit (and even theoretically better) version of Theorem 7.11.
It would be more satisfying (and easier to express) to give a tubular Runge theorem for which the

divisors considered are exactly the irreducible components parametrizing the products of elliptic curves.
Unfortunately, except for n = 2, there is a serious obstruction because those divisors are not ample, and
there are even reasons to suspect they are not big. We have explained in Remark 6.10 why proving the
ampleness for general divisors on A2(n)S

C
is difficult.

It would also be morally satisfying to give a better interpretation of the moduli of the union of all the
Dn,a,b (for a fixed n > 2), i.e., not in terms of the theta divisor, but maybe of the structure of the abelian
surface if possible (nontrivial endomorphisms? isogenous to products of elliptic curves?). As far as the
author knows, the understanding of abelian surfaces admitting some nontrivial torsion points on their
theta divisor is still very limited.

Finally, to give an idea of the margin the tubular Runge condition gives for n > 2 (in terms of the
number of places which are not “taken” by the automatic bad places), we can easily see that the number
of places of Q(ζn) which are archimedean or above a prime factor of n is less than n/2. Hence, we can
find examples of extensions L of Q(ζn) of degree n such that some points defined on it still can satisfy the
tubular Runge condition. This is also where using the full strength of tubular Runge theorem is crucial:
for n = 2, one can compute that some points of the boundary are contained in 6 different divisors D2,a,b,
and for general even n, a similar analysis gives that the intersection number m∅ is quartic in n, which
leaves a lot less margin for the places of nonintegrality (or even none at all).

Proof of Theorems 7.11 and 7.12. As announced, this result is an application of the tubular Runge theorem
(Theorem 5.1) to A2(n)S

Q(ζn)
(Definition-Proposition 6.6) and the divisors Dn,a,b (Definition 7.10), whose

properties will be used without specific mention. We reuse the notations of the hypotheses of Theorem 5.1
to explain carefully how it is applied.

(H0) The field of definition of A2(n)S
C

is Q(ζn), and the ring over which our model A2(n)S is built is
Z[ζn, 1/n], hence S0 is made up with all the archimedean places and the places above prime factors of n.
There is no need for a finite extension here as all the Dn,a,b are divisors on A2(n)S .

(H1) The model A2(n)S
C

is indeed normal projective, and we know that the Dn,a,b are effective Weil
divisors hence Cartier divisors up to multiplication by some constant by Proposition 6.8. For any finite
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extension L of Q(ζn), the number of orbits rL is the number of divisors Dn,a,b (as they are divisors on
the base model), i.e., n4/2+ 2 (Proposition 7.9(c)).

(H2) The chosen closed subset Y of A2(n)S
Q
(ζn) is the boundary, namely

∂A2(n)S
Q(ζn)
=A2(n)S

Q(ζn)
\A2(n)Q(ζn).

We have to prove that the tubular conditions given above correspond to a tubular neighborhood. To do this,
let Y be the boundary A2(n)S

\A2(n) and g1, . . . , gs homogeneous generators of the ideal of definition of
Y after having fixed a projective embedding of A2(n). Let us find an MQ(ζn)-constant such that E(U ) is
included in the tubular neighborhood of ∂A2(n)S

Q
(ζn) in A2(n)S

Q(ζn)
associated to C and g1, . . . , gk . For

the places w not above M∞L or a prime factor of n, the fact that P = (A, λ, αn) does not reduce in Y
modulo w is exactly equivalent to A having potentially good reduction at w hence we can choose cv = 0
for the places v of Q(ζn) not archimedean and not dividing n. For archimedean places, belonging to U
for an embedding σ : L→ C implies that g1, . . . , gn are small, and we just have to choose cv strictly
larger than the maximum of the norms of the gi (U ∩ V j ) (in the natural affine covering (V j ) j of the
projective space), independent of the choice of v ∈ M∞

Q(ζn)
. Finally, we have to consider the case of places

above a prime factor of n. To do this, we only have to recall that having potentially good reduction can
be given by integrality of some quotients of the Igusa invariants at finite places, and these invariants are
modular forms on 02(1). We can add those who vanish on the boundary to the homogeneous generators
g1, . . . , gn and consider cv = 0 for these places as well. This is explicitly done in Section 8C for A2(2).

(TRC) As said before, there are n4/2+ 2 divisors considered, and their generic fibers are ample by
Proposition 7.9. Furthermore, by Propositions 7.3 and 7.5, outside the boundary, at most (n2

−3) can have
nonempty common intersection, and this exact number is attained only for products of elliptic curves.

This gives the tubular Runge condition

(n2
− 3)sL <

n4

2
+ 2,

which concludes the proof.
For n = 2, the union of the ten D2,a,b is made up with the moduli of products of elliptic curves, and

they are pairwise disjoint outside ∂A2(2) (Proposition 7.9(b)), hence the simply expressed condition
sL < 10 in this case. �

8. The explicit Runge result for level two

To finish this paper, we improve and make explicit the finiteness result of Theorem 7.11, as a proof of
principle of the method.

Before stating Theorem 8.2, we need some notations. In level two, the auxiliary functions are deduced
from the ten even theta constants of characteristic two, namely the functions 2m/2(τ ) (notation (6-11)),
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with the quadruples m going through

E = {(0000), (0001), (0010), (0011), (0100), (0110), (1000), (1001), (1100), (1111)} (8-1)

(see Sections 6C and 7A for details). We recall [van der Geer 1982, Theorem 5.2] that these functions
define an embedding

ψ : A2(2)→ P9

τ 7→ (24
m/2(τ ))m∈E

(8-2)

which induces an isomorphism between A2(2)S
C

and the subvariety of P9 (with coordinates indexed by
m ∈ E) defined by the linear equations

x1000− x1100+ x1111− x1001 = 0 (8-3)

x0000− x0001− x0110− x1100 = 0 (8-4)

x0110− x0010− x1111+ x0011 = 0 (8-5)

x0100− x0000+ x1001+ x0011 = 0 (8-6)

x0100− x1000+ x0001− x0010 = 0 (8-7)

(which makes it a subvariety of P4) together with the quartic equation(∑
m∈E

x2
m

)2

− 4
∑
m∈E

x4
m = 0. (8-8)

Remark 8.1. For the attentive reader, the first linear equation has sign (+1) in x1111 whereas it is (−1) in
[van der Geer 1982], as there seems to be a typographic mistake there: we found the mistake during our
computations in Sage in Section 8C and found the correct sign using Igusa’s relations [1964, Lemma 1
combined with the proof of Theorem 1].

There is a natural definition for a tubular neighborhood of Y = ∂A2(2): for a finite place v, as in
Theorem 7.11, we choose Vv as the set of triples P = (A, λ, α2) where A has potentially bad reduction
modulo v. To complete it with archimedean places, we use the classical fundamental domain for the
action of Sp4(Z) on H2 denoted by F2 (see [Klingen 1990, §I.2], for details). Given some parameter
t ≥
√

3/2, the neighborhood V (t) of ∂A2(2)S
C

in A2(2)S
C

is made up with the points P whose lift τ in
F2 (for the usual quotient morphism H2 → A2(1)C) satisfies Im(τ4) ≥ t , where τ4 is the lower-right
coefficient of τ . We choose V (t) as the archimedean component of the tubular neighborhood for every
archimedean place. The reader knowledgeable with the construction of Satake compactification will have
already seen such neighborhoods of the boundary.

Notice that for a point P = (A, λ, α2) ∈ A2(2)(K ), the abelian surface A is only defined over a finite
extension L of K , but for prime ideals P1 and P2 of OL above the same prime ideal P of OK , the
reductions of A modulo P1 and P2 are of the same type because P ∈ A2(2)(K ). This justifies what we
mean by “semistable reduction of A modulo P” below.
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Theorem 8.2. Let K be a number field and P = (A, λ, α2) ∈ A2(2)(K ) where A has potentially good
reduction at every finite place.

Let sP be the number of prime ideals P of OK such that the semistable reduction of A modulo P is a
product of elliptic curves. We denote by hF the stable Faltings height of A.

(a) If K =Q or an imaginary quadratic field and

|sP |< 4

then

h(ψ(P))≤ 10.75, hF (A)≤ 828.

(b) Let t ≥
√

3/2 be a real number. If for every embedding σ : K → C, the point Pσ ∈ A2(2)C does not
belong to V (t), and

|sP | + |M∞K |< 10

then

h(ψ(P))≤ 4π t + 8.44, hF (A)≤ 2π t + 5+ 533 log(π t + 5)

Remark 8.3. Previous versions gave a bound hF (A) ≤ 1070. This was actually due to an error in
comparing the height of ψ(P) and the Faltings height, and this error worsened the bounds, hence the
slightly better new bound.

The Runge condition for (b) is a straightforward application of our tubular Runge theorem. For (a), we
did not assume anything on the point P at the (unique) archimedean place, which eliminates six divisors
when applying Runge’s method here, hence the different Runge condition here (see Remark 5.2(b)).

The principle of proof is very simple: we apply Runge’s method to bound the height of ψ(P) when P
satisfies the conditions of Theorem 7.11, and using the link between this height and Faltings height given
in [Pazuki 2012, Corollary 1.3], we know we will obtain a bound of the shape

hF (P)≤ f (t)

where f is an explicit function of t , for every point P satisfying the conditions of Theorem 7.11.
At the places of good reduction not dividing 2, the contribution to the height is easy to compute thanks

to the theory of algebraic theta functions devised in [Mumford 1966; 1967]. The theory will be sketched
in Section 8A, resulting in Proposition 8.4.

For the archimedean places, preexisting estimates due to Streng for Fourier expansions on each of the
ten theta functions allow us to make explicit how only one of them can be too small compared to the
others, when we are outside of V (t). This is the topic of Section 8B.

For the places above 2, the theory of algebraic theta functions cannot be applied. To bypass the problem,
we use Igusa invariants (which behave in a well-known fashion for reduction in any characteristic) and
prove that the theta functions are algebraic and “almost integral” on the ring of these Igusa invariants,
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with explicit coefficients. Combining these two facts in Section 8C, we will obtain Proposition 8.7, a
less-sharp avatar of Proposition 8.4, but explicit nonetheless.

Finally, we put together these estimates in Section 8D and obtain the stated bounds on h ◦ψ and the
Faltings height.

8A. Algebraic theta functions and the places of potentially good reduction outside of 2. The goal of
this part is the following result.

Proposition 8.4. Let K be a number field and P a maximal ideal of OK , of residue field k(P) with
characteristic different from 2. Let P = (A, λ, α2) ∈ A2(2)(K ). Then, ψ(P) ∈ P9(K ) and:

(a) If the semistable reduction of A modulo P is a product of elliptic curves, the reduction of ψ(P)
modulo P has exactly one zero coordinate, in other words every coordinate of ψ(P) has the same
P-adic norm except one which is strictly smaller.

(b) If the semistable reduction of A modulo P is a jacobian of hyperelliptic curve, the reduction of ψ(P)
modulo P has no zero coordinate, in other words every coordinate of ψ(P) has the same P-adic
norm.

To link ψ(P) with the intrinsic behavior of A, we use the theory of algebraic theta functions, devised
in [Mumford 1966; 1967] (see also [David and Philippon 2002; Pazuki 2012]). As it is not very useful
nor enlightening to go into detail or repeat known results, we only mention them briefly here. In the
following, A is an abelian variety of dimension g over a field k and L an ample symmetric line bundle on
A inducing a principal polarization λ. We also fix n ≥ 2 even, assuming that all the points of 2n-torsion
of A are defined over k and char(k) does not divide n (in particular, we always assume char(k) 6= 2). Let
us denote formally the Heisenberg group G(n) as the set

G(n) := k∗× (Z/nZ)g × (Z/nZ)g

equipped with the group law

(α, a, b) · (α′, a′, b′) := (αα′e(2iπ/n)at b′, a+ a′, b+ b′)

(contrary to the convention of [Mumford 1966, p. 294], we identified the dual of (Z/nZ)g with itself).
Recall that A[n] is exactly the group of elements of A(k) such that T ∗x (L

⊗n) ∼= L⊗n; indeed, it is by
definition the kernel of the morphism φL⊗n = nφL from A to Â (see the references mentioned in the proof
of Proposition 6.12).

Proof. Given the datum of a theta structure on L⊗n , i.e., an isomorphism β : G(L⊗n) ∼= G(n) which is
the identity on k∗ (see [Mumford 1966, p. 289] for the definition of G(L⊗n)), one has a natural action
of G(n) on 0(A, L⊗n) (a consequence of Proposition 3 and Theorem 2 of [Mumford 1966]), hence for
n ≥ 4 the following projective embedding of A:

ψβ : A→ Pn2g
−1

k

x 7→ (((1, a, b) · (s⊗n
0 ))(x))a,b∈(Z/nZ)g ,

(8-9)



A tubular variant of Runge’s method in all dimensions 199

where s0 is a nonzero section of 0(A, L), hence unique up to multiplicative scalar (therefore ψβ only
depends on β). This embedding is not exactly the same as the one defined in [Mumford 1966, p. 298 ] (it
has more coordinates), but the principle does not change at all. One calls Mumford coordinates of (A, L)
associated to β the projective point ψβ(0) ∈ Pn2g

−1(k).
Now, one has the following commutative diagram whose rows are canonical exact sequences [Mumford

1966, Corollary of Theorem 1],

0 // k∗

=

��

// G(L⊗n) //

β

��

A[n]

αn
��

// 0

0 // k∗ // G(n) // (Z/nZ)2g // 0,

where αn is a symplectic level n structure on A[n] (Definition 6.1), called the symplectic level n structure
induced by β. Moreover, for every x ∈ A(k), the coordinates of ψβ(x) are (up to constant values for each
coordinate, only depending on β) the ϑA,L([n]x +α−1

n (a, b)) (see Definition 6.11). In particular, for any
a, b ∈ (Z/nZ)g,

ψβ(0)a,b = 0⇔ α−1
n (a, b) ∈2A,L . (8-10)

Furthermore, for two theta structures β and β ′ on [n]∗L inducing αn , one sees that β ′ ◦ β−1 is of the
shape (α, a, b) 7→ (α · f (a, b), a, b), where f has values in n-th roots of unity, hence ψβ and ψβ ′ only
differ multiplicatively by n-th roots of unity.

Conversely, given the datum of a symplectic structure α2n on A[2n], there exists an unique symmetric
theta structure on [n]∗L which is compatible with some symmetric theta structure on [2n]∗L inducing α2n

[Mumford 1966, p. 317 and Remark 3 p. 319]. We call it the theta structure on [n]∗L induced by α2n .
Thus, we just proved that the datum of a symmetric theta structure on [n]∗L is intermediary between a
level 2n symplectic structure and a level n symplectic structure (the exact congruence group is easily
identified as 0g(n, 2n) with the notations of [Igusa 1966]).

Now, for a triple (A, L , α2n) (notations of Section 6A), when A is a complex abelian variety, there
exists τ ∈ Hg such that this triple is isomorphic to (Aτ , Lτ , ατ,2n) (Definition-Proposition 6.3). By
definition of Lτ as a quotient (6-3), the sections of L⊗n

τ canonically identify to holomorphic functions ϑ
on Cg such that, ∀p, q ∈ Zg and ∀z ∈ Cg,

ϑ(z+ pτ + q)= e−iπnτ t n−2iπnt zϑ(z), (8-11)

and through this identification one sees (after some tedious computations) that the symmetric theta
structure βτ on L⊗n

τ induced by ατ,2n acts by

((α, a, b) ·ϑ)(z)= α exp
(

iπ
n

ãτ ã+ 2iπ
n

ãt(z+ b̃)
)
ϑ

(
z+ ã

n
τ +

b̃
n

)
,

where ã and b̃ are lifts of a and b in Zg (the result does not depend on this choice by (8-11)). Therefore, by
ψβ and the theta functions with characteristic (formula (6-12)), the Mumford coordinates of (A, L , α2n)
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(with the induced theta structure β on L⊗n) are exactly the projective coordinates

(2n
ã/n,b̃/n(τ )

(τ ))a,b∈ 1
n Z2g/Z2g ∈ Pn2g

−1(C),

where the choices of lifts ã and b̃ for a and b still do not matter.
In particular, for every τ ∈H2, the point ψ(τ) can be intrinsically given as the squares of Mumford

coordinates for βτ , where the six odd characteristics (whose coordinates vanish everywhere) are taken
out. The result only depends on the isomorphism class of (Aτ , Lτ , ατ,2), as expected.

Finally, as demonstrated in paragraph 6 of [Mumford 1967] (especially the theorem on page 83), the
theory of theta structures (and the associated Mumford coordinates) can be extended to abelian schemes
(Definition 6.5) (still outside characteristics dividing 2n), and the Mumford coordinates in this context
lead to an embedding of the associated moduli space in a projective space as long as the type of the sheaf
is a multiple of 8 (which for us amounts to 8 | n). Here, fixing a principally polarized abelian variety A
over a number field K and P a prime ideal of OK not above 2, this theory means that given a symmetric
theta structure on (A, L) for L⊗n where 8 | n, if A has good reduction modulo P, this theta structure has a
natural reduction to a theta structure on the reduction (AP, LP) for L⊗n

P , and this reduction is compatible
with the reduction of Mumford coordinates modulo P. To link this with the reduction of coordinates
of ψ , one just has to extend the number field K of definition of A so that all 8-torsion points of A are
defined over K (in particular, the reduction of A modulo P is semistable), and consider a symmetric theta
structure on L⊗8. The associated Mumford coordinates then reduce modulo P, and making use of (8-10)
and Propositions 7.3 and 7.5 over the residue field, one of the Mumford coordinates coming from the
2-torsion does not vanish. We can now consider only the coordinates coming from the 2-torsion and it
yields Proposition 8.4 (not forgetting the six ever-implicit odd characteristics). �

8B. Evaluating the theta functions at archimedean places. We denote by H2 the Siegel half-space of
degree 2, and by F2 the usual fundamental domain of this half-space for the action of Sp4(Z) (see [Klingen
1990, §I.2] for details). For τ ∈H2, we denote by y4 the imaginary part of the lower-right coefficient of τ .

Proposition 8.5. For every τ ∈H2 and a fixed real parameter t ≥
√

3/2, one has:

(a) Amongst the ten even characteristics m of E , at most six of them can satisfy

|2m/2(τ )|< 0.42 max
m′∈E
|2m′/2(τ )|.

(b) If the representative of the orbit of τ in the fundamental domain F2 satisfies y4 ≤ t , at most one of
the ten even characteristics m of E can satisfy

|2m/2(τ )|< 0.747e−π t max
m′∈E
|2m′/2(τ )|.

Proof. First, we can assume that τ ∈F2 as the inequalities (a) and (b) are invariant by the action of Sp4(Z),
given the complete transformation formula of these theta functions [Mumford 2007, §II.5]. Now, using the
Fourier expansions of the ten theta constants (mentioned in the proof of Definition-Proposition 7.7) and
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isolating their respective dominant terms (such as in [Klingen 1990], proof of Proposition IV.2), we obtain
explicit estimates. More precisely, Proposition 7.7 of [Streng 2010] states that, for every τ =

(
τ1
τ2

τ2
τ4

)
∈ B2

(which is a domain containing F2), one has

|2m/2(τ )− 1|< 0.405, m∈{(0000)(0001),(0010),(0011)}.∣∣∣∣2m/2(τ )

2eiπτ1/2
− 1

∣∣∣∣< 0.348, m∈{(0100),(0110)}.∣∣∣∣2m/2(τ )

2eiπτ4/2
− 1

∣∣∣∣< 0.348, m∈{(1000),(1001)}.∣∣∣∣ 2m/2(τ )

2(εm + e2iπτ2)eiπ(τ1+τ4−2τ2)/2
− 1

∣∣∣∣< 0.438, m∈{(1100),(1111)},

with εm = 1 if m = (1100) and −1 if m = (1111).
Under the assumption that y4 ≤ t (which induces the same bound for Im τ1 and 2 Im τ2), we obtain

0.595< |2m/2(τ )|< 1.405, m∈{(0000)(0001),(0010),(0011)}.

1.304e−π t/2 < |2m/2(τ )|< 0.692, m∈{(0100),(0110),(1000),(1001)}.

1.05e−π t < |2m/2(τ )|< 0.855, m=(1100).

|2m/2(τ )|< 0.855, m=(1111)

Thus, we get (a) with 0.595
1.405 > 0.42, and (b) with 1.05

1.405 e−π t > 0.747e−π t . �

8C. Computations with Igusa invariants for the places above 2 case. In this case, as emphasized before,
it is not possible to use Proposition 8.4, as the algebraic theory of theta functions does not work.

We have substituted it in the following way.

Definition 8.6 (auxiliary polynomials). For every i ∈ {1, . . . , 10}, let6i be the i-th symmetric polynomial
in the ten modular forms 28

m/2, m ∈ E (notation (8-1)). This is a modular form of level 4i for the whole
modular group Sp4(Z).

Indeed, each 28
m/2 is a modular form for the congruence subgroup 02(2) of weight 4, and they are

permuted by the modular action of 02(1) [Mumford 2007, §II.5]. The important point is that the 6i are
then polynomials in the four Igusa modular forms ψ4, ψ6, χ10 and χ12 [Igusa 1967, pp. 848–849]. We can
now explain the principle of this paragraph: these four modular forms are linked explicitly with the Igusa
invariants (for a given jacobian of an hyperelliptic curve C over a number field K ), and the semistable
reduction of the jacobian at some place v | 2 is determined by the integrality (or not) of some quotients of
these invariants, hence rational fractions of the modular forms. Now, with the explicit expressions of the
6i in terms of ψ4, ψ6, χ10 and χ12, we can bound these 6i by one of the Igusa invariants, and as every
28

m/2 is a root of the polynomial

P(X)= X10
−61 X9

+62 X8
−63 X7

+64 X6
−65 X5

+66 X4
−67 X4

+68 X2
−69 X +610,
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we can infer an explicit bound above on the 28
m/2/λ, with a well-chosen normalizing factor λ such that

these quotients belong to K . Actually, we will even give an approximate shape of the Newton polygon of
the polynomial λ10 P(X/λ), implying that its slopes (except maybe the first one) are bounded above and
below, thus giving us a lower bound for each of the |2m/2|v/maxm′∈E |2m′/2|v , except maybe for one m.
The explicit result is the following.

Proposition 8.7. Let K be a number field, (A, L) a principally polarized jacobian of dimension 2 over
K and τ ∈H2 such that (Aτ , Lτ )∼= (A, L).

Let P be a prime ideal of K above 2 such that A has potentially good reduction at P, and the reduced
(principally polarized abelian surface) is denoted by (AP, LP). By abuse of notation, we forget the
normalizing factor ensuring that the coordinates 2m/2(τ )

8 belong to K .

(a) If (AP, LP) is the jacobian of a smooth hyperelliptic curve, all the m ∈ E satisfy

|2m/2(τ )
8
|P

maxm′∈E |2m′/2(τ )8|P
≥ |2|12

P .

(b) If (AP, LP) is a product of elliptic curves, all the m ∈ E except at most one satisfy

|2m/2(τ )
8
|P

maxm′∈E |2m′/2(τ )8|P
≥ |2|21

P .

Proof. The most technical part is computing the 6i as polynomials in the four Igusa modular forms.
To do this, we worked with Sage in the formal algebra generated by some sums of 24

m/2 with explicit
relations (namely, y0, . . . , y4 in the notations of [Igusa 1964, pp. 396–397]). The total computation time,
done on a laptop PC, was approximately twelve hours (including the verification of the results). The
algorithms and details of their construction is available on a Sage worksheet (in Jupyter format).1 An
approach based on Fourier expansions might be more efficient, but as there is no clear closed formula for
the involved modular forms, we privileged computations in this formal algebra. For easier reading, we
slightly modified the Igusa modular forms into h4, h6, h10, h12 defined as

h4 = 2 ·ψ4 =
1
2

∑
m∈E

28
m/2

h6 = 22
·ψ6 =

∑
{m1,m2,m3}⊂E

syzygous

±(2m1/22m2/22m3/2)
4

h10 = 215
·χ10 = 2

∏
m∈E

22
m/2

h12 = 216
· 3 ·χ12 =

1
2

∑
C⊂E

C Göpel

∏
m∈E\C

24
m/2

(8-12)

([Igusa 1967, p. 848] for details on these definitions, notably syzygous triples and Göpel quadruples).
The third expression is not explicitly a polynomial in y0, . . . , y4, but there is such an expression, given

1This worksheet can be found at http://msp.org/ant/2019/13-1/ant-v13-n1-x01-Igusainvariants.ipynb.

http://msp.org/ant/2019/13-1/ant-v13-n1-x01-Igusainvariants.ipynb
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on page 397 of [Igusa 1964]. We also used to great benefit (both for understanding and computations)
Section I.7.1 of [Streng 2010].

Now, the computations in Sage gave us the following formulas (the first and last one being trivial given
(8-12), were not computed by the algorithm)

61 = 2h4 (8-13)

62 =
3
2

h2
4 (8-14)

63 =
29

2·33 h3
4−

1
2·33 h2

6+
1

2·3
h12 (8-15)

64 =
43

24 ·33 h4
4−

1
2·33 h4h2

6+
23
2·3

h4h12+
2
3

h6h10 (8-16)

65 =
1

22 ·33 h5
4−

1
23 ·33 h2

4h2
6+

25
23 ·3

h2
4h12−

1
2·3

h4h6h10+
123
22 h2

10 (8-17)

66 =
1

22 ·36 h6
4−

1
22 ·36 h3

4h2
6+

7
2·33 h3

4h12−
1

22 ·3
h2

4h6h10

+
47
2·3

h4h2
10+

1
24 ·36 h4

6−
5

23 ·33 h2
6h12+

43
24 ·3

h2
12 (8-18)

67 =
1

2·34 h2
4h12−

1
2·34 h3

4h6h10+
41

2332 h2
4h2

10−
1

22 ·34 h4h2
6h12

+
11

22 ·32 h4h2
12+

1
22 ·34 h3

6h10−
19

22 ·32 h6h10h12 (8-19)

68 =
1

22 ·33 h3
4h2

10+
1

22 ·32 h2
4h2

12−
1

2·32 h4h6h10h12+
5

23 ·33 h2
6h2

10−
11
23 h2

10h12 (8-20)

69 =
−5

22 ·32 h4h2
10h12+

7
22 ·33 h6h3

10+
1
33 h3

12 (8-21)

610 =
1
24 h4

10. (8-22)

Remark 8.8. The denominators are always products of powers of 2 and 3. This was predicted by Ichikawa
[2009], as all Fourier expansions of 2m/2 (therefore of the 6i ) have integral coefficients. Surprisingly,
the result of [Ichikawa 2009] would actually be false for a Z[1/3]-algebra instead of a Z[1/6]-algebra,
as the expression of 63 (converted as a polynomial in ψ4, ψ6, χ12) shows, but this does not provide a
counterexample for a Z[1/2]-algebra.

Now, let C be a hyperelliptic curve of genus 2 on a number field K and P a prime ideal of OK

above 2. We will denote by |·| the norm associated to P to lighten the notation. Let A be the jacobian
of C and J2, J4, J6, J8, J10 the homogeneous Igusa invariants of the curve C , defined as in [Igusa 1960,
pp. 621–622] up to a choice of hyperelliptic equation for C . We fix τ ∈H2 such that Aτ is isomorphic
to A, which will be implicit in the following (i.e., h4 denotes h4(τ ) for example). By [Igusa 1967, p. 848]
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applied with our normalization, there is an hyperelliptic equation for C (and we fix it) such that

J2 =
1
2

h12

h10
(8-23)

J4 =
1

25 · 3

(
h2

12

h2
10
− 2h4

)
(8-24)

J6 =
1

27 · 33

(
h3

12

h3
10

− 6
h4h12

h10
+ 4h6

)
(8-25)

J8 =
1

212 · 33

(
h4

12

h4
10
− 12

h4h2
12

h2
10
+ 16

h6h12

h10
− 12h2

4

)
(8-26)

J10 =
1

213 h10. (8-27)

Let us now figure out the Newton polygons allowing us to bound our theta constants.

(a) If A has potentially good reduction at P, and this reduction is also a jacobian, by Proposition 3 of
[Igusa 1960], the quotients J 5

2 /J10, J 5
4 /J 2

10, J 5
6 /J 3

10 and J 5
8 /J 4

10 are all integral at P. Translating it into
quotients of modular forms, this gives∣∣∣∣ J 5

2

J10

∣∣∣∣= |2|8∣∣∣∣h5
12

h6
10

∣∣∣∣≤ 1∣∣∣∣ J 5
4

J 2
10

∣∣∣∣= |2|3∣∣∣∣ h2
12

h12/5
10

− 2
h4

h2/5
10

∣∣∣∣5 ≤ 1

∣∣∣∣ J 5
6

J 3
10

∣∣∣∣= |2|4∣∣∣∣ h3
12

h18/5
10

− 6
h4h12

h8/5
10

+ 4
h6

h3/5
10

∣∣∣∣5 ≤ 1

∣∣∣∣ J 5
8

J 4
10

∣∣∣∣= |2|−8
∣∣∣∣ h4

12

h24/5
10

− 12
h4h2

12

h14/5
10

+ 16
h6h12

h9/5
10

− 12
h2

4

h4/5
10

∣∣∣∣5 ≤ 1.

By successive bounds on the three first lines, we obtain∣∣∣∣ h4

h2/5
10

∣∣∣∣≤ |2|−21/5,

∣∣∣∣ h6

h3/5
10

∣∣∣∣≤ |2|−34/5,

∣∣∣∣ h12

h6/5
10

∣∣∣∣≤ |2|−8/5. (8-28)

Using the expressions of the 6i ((8-13)–(8-22)), we compute that for every i ∈ {1, . . . , 10}, one has∣∣6i/h2i/5
10

∣∣≤ |2|λi with the following values of λi :

i 10 9 8 7 6 5 4 3 2 1

λi −
20
5 −

44
5 −

83
5 −

112
5 −

156
5 −

125
5 −

104
5 −

73
5 −

47
5 −

16
5

and for i = 10, it is an equality. Therefore, the highest slope of the Newton polygon is at most 26
5 · vP(2),

whereas the lowest one is at least −34
5 · vP(2), which gives part (a) of Proposition 8.7 by the theory of

Newton polygons.
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(b) If A has potentially good reduction at P and the semistable reduction is a product of elliptic curves,
defining

I4 = J 3
2 − 25J4 =

h4
2

(8-29)

I12 =−8J 3
4 + 9J2 J4 J6− 27J 2

6 − J 2
2 J8 =

1
210 · 33 (2h3

4− h2
6), (8-30)

P48 = 212
· 33h4

10 J8 = h4
12− 12h4h2

12h2
10+ 16h6h12h3

10− 12h2
4h4

10 (8-31)

(which as modular forms are of respective weights 4, 12 and 48), by Theorem 1 (parts (V∗) and (V )) of
[Liu 1993], we obtain in the same fashion that∣∣∣∣ h4

P1/12
48

∣∣∣∣≤ |2|−13/3,

∣∣∣∣ h6

P1/8
48

∣∣∣∣≤ |2|−3,

∣∣∣∣ h10

P5/24
48

∣∣∣∣≤ |2|−4/3. (8-32)

Using the Newton polygon for the polynomial of (8-31) defining P48, one deduces quickly that∣∣∣∣ h12

P1/4
48

∣∣∣∣≤ |2|−7/2. (8-33)

As before, with the explicit expression of the 6i , one obtains that the |6i/P i/12
48 | are bounded by |2|λi

with the following values of λ:

i 10 9 8 7 6 5 4 3 2 1

λi −
28
3 −

71
6
−53

3
−55

3
−84

3
−71

3
−64

3 −14 −29
3
−10

3

(8-34)

This implies directly that the highest slope of the Newton polygon is at most 16
3 · vP(2). Now, for the

lowest slope, there is no immediate bound which was expected; in this situation, 610 = 2−4h4
10 can be

relatively very small compared to P5/6
48 .

As P48 is in the ideal generated by h10, h12 (in other words, is cuspidal) and dominates all modular
forms h4, h6, h10, h12, one of h10 and h12 has to be relatively large enough compared to P48. In practice,
we get (with (8-32), (8-33) and (8-31))∣∣∣∣ h12

P1/4
48

∣∣∣∣≥ 1 or
∣∣∣∣ h10

P5/24
48

∣∣∣∣≥ |2|13/6.

Now, if h10 is relatively very small (for example, |h10/P5/24
48 | ≤ |2|

19/6
|h12/P1/4

48 |), we immediately get
|h12/P1/4

48 | = 1 and |69/P3/4
48 | = 1. Computing again with these estimates for h10 and h12, we obtain that

the |6i/P i/12
48 | are bounded by |2|λi with the following slightly improved values of λ,

i 9 8 7 6 5 4 3 2 1

λi 0 − 32
3 −

51
3
−84

3
−71

3
−64

3 −14 −29
3
−10

3

The value at i = 9 is exact, hence the second lowest slope is then at least − 32
3 · vP(2).
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vP

610−i/h2(10−i)/5
10

•
(0, 0)

•
(10, 0)

Figure 4. When the reduction of A is a jacobian.

If it is not so small, we have a bound on vP(610/P6/5
48 ), hence the Newton polygon itself is bounded

(and looks like the first situation). In practice, one finds that the lowest slope is at least − 47
3 ·vP(2), hence

all others slopes are at least this value, and this concludes the proof of Proposition 8.7(b). �

Remark 8.9. In characteristics 6= 2, 3, Theorem 1 of [Liu 1993] and its precise computations on pages 4
and 5 give the following exact shapes of Newton polygons (notice the different normalization factors).

In particular, when A reduces to a jacobian, the theta coordinates all have the same P-adic norm and
when A reduces to a product of elliptic curves, exactly one of them has smaller norm; in other words, we
reproved Proposition 8.4, and the Newton polygons have a very characteristic shape.

The idea behind the computations above is that in cases (a) and (b) (with other normalization factors),
the Newton polygons have a shape close to these ones, therefore estimates can be made. It would be
interesting to see what the exact shape of the Newton polygons is, to maybe obtain sharper results.

8D. Wrapping up the estimates and end of the proof. We can now prove the explicit refined version of
Theorem 7.11, namely Theorem 8.2.

Proof of Theorem 8.2. In case (a), one can avoid the tubular assumption for the archimedean place
of K ; indeed, amongst the ten theta coordinates, there remain 4 which are large enough with no further
assumption. As |sP |< 4, there remains one theta coordinate which is never too small (at any place). In
practice, normalizing the projective point ψ(P) by this coordinate, one obtains with Propositions 8.5(a)
(archimedean places) 8.4 (finite places not above 2) and 8.7 (finite places above 2)

h(ψ(P))≤−4 log(0.42)+
21/2
[K :Q]

∑
v | 2

nv log(2)≤ 10.75

after approximation.

610−i/h(10−i)/3
12

vP
•

• •

Figure 5. When the reduction of A is a product of elliptic curves.
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In case (b), one has to use the tubular neighborhood implicitly given by the parameter t , namely
Proposition 8.5(b) for archimedean places, again with Propositions 8.4 and 8.7 for the finite places, hence
we get

h(ψ(P))≤ 4 log(eπ t/0.747)+
21/2
[K :Q]

∑
v | 2

nv log(2)≤ 4π t + 8.44

after approximation.
Finally, we deduce from there the bounds on the stable Faltings height by Corollary 1.3 of [Pazuki

2012] (with its notations, h2(A, L)= h(ψ(P))/4). �

It would be interesting to give an analogous result for Theorem 7.12, and the estimates for archimedean
and finite places not above 2 should not give any particular problem. For finite places above 2, the method
outlined above can only be applied if, taking the symmetric polynomials 61, . . . , 6 f (n) in well-chosen
powers 2ã/n,b̃/n(τ ) for ã, b̃ ∈ Zg, we can figure out by other arguments the largest rank k0 for which 6k0

is cuspidal but not in the ideal generated by h10. Doing so, we could roughly get back the pictured shape
of the Newton polygon when h10 is relatively very small (because then 6k is relatively very small for
k > k0 by construction). Notice that for this process, one needs some way to theoretically bound the
denominators appearing in the expressions of the 6i in h4, h6, h10, h12, but if this works, the method can
again be applied.
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