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Gábor Korchmáros and Maria Montanucci

Let X be an ordinary (projective, geometrically irreducible, nonsingular) algebraic curve of genus g(X)≥ 2
defined over an algebraically closed field K of odd characteristic p. Let Aut(X) be the group of all
automorphisms of X which fix K elementwise. For any solvable subgroup G of Aut(X) we prove that
|G| ≤ 34(g(X)+ 1)3/2. There are known curves attaining this bound up to the constant 34. For p odd,
our result improves the classical Nakajima bound |G| ≤ 84(g(X)− 1)g(X) and, for solvable groups G,
the Gunby–Smith–Yuan bound |G| ≤ 6(g(X)2 + 12

√
21g(X)3/2) where g(X) > cp2 for some positive

constant c.

1. Introduction

In this paper, X stands for a (projective, geometrically irreducible, nonsingular) algebraic curve of genus
g(X)≥ 2 defined over an algebraically closed field K of odd characteristic p. Let Aut(X) be the group
of all automorphisms of X which fix K elementwise. The assumption g(X)≥ 2 ensures that Aut(X) is
finite. However, the classical Hurwitz bound |Aut(X)| ≤ 84(g(X)−1) for complex curves fails in positive
characteristic, and there exist four families of curves satisfying |Aut(X)| ≥ 8g3(X) [Stichtenoth 1973;
Henn 1978; Hirschfeld et al. 2008, §11.12]. Each of them has p-rank γ (X) (equivalently, its Hasse–Witt
invariant) equal to zero; see for instance [Giulietti and Korchmáros 2014]. On the other hand, if X is
ordinary, i.e., g(X)= γ (X), Guralnick and Zieve announced in 2004, as reported in [Gunby et al. 2015;
Kontogeorgis and Rotger 2008], that for odd p there exists a sharper bound, namely |Aut(X)| ≤ cpg(X)

8/5

with some constant cp depending on p. It should be noticed that no proof of this sharper bound is available
in the literature. In this paper, we concern ourselves with solvable automorphism groups G of an ordinary
curve X, and for odd p we prove the even sharper bound:

Theorem 1.1. Let X be an algebraic curve of genus g(X)≥ 2 defined over an algebraically closed field K

of odd characteristic p. If X is ordinary and G is a solvable subgroup of Aut(X), then

|G| ≤ 34(g(X)+ 1)3/2. (1)

For odd p, our result provides an improvement on the classical Nakajima bound |G|≤84(g(X)−1)g(X)
[1987] and, for solvable groups, on the recent Gunby–Smith–Yuan bound |G| ≤ 6(g(X)2+12

√
21g(X)3/2)

proven in [Gunby et al. 2015] under the hypothesis that g(X) > cp2 for some positive constant c.
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The following example is due to Stichtenoth, and it shows that (1) is the best possible bound apart from
the constant c [Korchmáros et al. 2018]. Let Fq be a finite field of order q = ph , and let K= Fq denote its
algebraic closure. For a positive integer m prime to p, let Y be the irreducible curve with affine equation

yq
+ y = xm

+
1

xm (2)

and F = K(Y) its function field. Let t = xm(q−1). The extension F |K(t) is a non-Galois extension
as the Galois closure of F with respect to H is the function field K(x, y, z) where x, y, z are linked
by (2) and zq

+ z = xm . Furthermore, g(Y)= (q − 1)(qm− 1), γ (Y)= (q − 1)2, and Aut(Y) contains
a subgroup QoU of index 2 where Q is an elementary abelian normal subgroup of order q2 and the
complement U is a cyclic group of order m(q−1). If m = 1, then Y is an ordinary curve, and in this case
2g(Y)3/2 = 2(q−1)3 < 2q2(q−1)= |Aut(X)|, which shows indeed that (1) is sharp up to the constant c.

Lower bounds on the order of solvable automorphism groups of algebraic curves depending on their
genera are due to Neftin and Zieve. Their [2015, Theorem 4.1] states that for every integer ` > 0 there
exists a curve X together with a solvable subgroup of Aut(X) of order d and derived length ` such that

g(X)≤ c`d logo` (d),

where c` is a constant and logo` denotes log iterated ` times. The curve X is constructed as a solvable
cover of a curve with at least one rational point, in which a given set S of rational points splits completely.

2. Background and preliminary results

For a subgroup G of Aut(X), let X denote a nonsingular model of K(X)G , that is, a (projective, nonsingular,
geometrically irreducible) algebraic curve with function field K(X)G , where K(X)G consists of all elements
of K(X) fixed by every element in G. Usually, X is called the quotient curve of X by G and denoted by
X/G. The field extension K(X)|K(X)G is Galois of degree |G|.

Since our approach is mostly group theoretical, we prefer to use notation and terminology from group
theory rather than from function field theory.

Let 8 be the cover of X|X where X=X/G. A point P ∈X is a ramification point of G if the stabilizer
G P of P in G is nontrivial; the ramification index eP is |G P |; a point Q ∈ X is a branch point of G if
there is a ramification point P ∈ X such that 8(P)= Q; the ramification (branch) locus of G is the set of
all ramification (branch) points. The G-orbit of P ∈ X is the subset o = {R | R = g(P), g ∈ G} of X,
and it is long if |o| = |G|; otherwise o is short. For a point Q, the G-orbit o lying over Q consists of all
points P ∈ X such that 8(P)= Q. If P ∈ o, then |o| = |G|/|G P | and hence Q is a branch point if and
only if o is a short G-orbit. It may be that G has no short orbits. This is the case if and only if every
nontrivial element in G is fixed-point-free on X, that is, the cover 8 is unramified. On the other hand, G
has a finite number of short orbits. For a nonnegative integer i , the i-th ramification group of X at P is
denoted by G(i)

P (or Gi (P) as in [Serre 1979, Chapter IV]) and defined to be

G(i)
P = {g | ordP(g(t)− t)≥ i + 1, g ∈ G P},

where t is a uniformizing element (local parameter) at P . Here G(0)
P = G P .
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Let g be the genus of the quotient curve X= X/G. The Riemann–Hurwitz genus formula gives

2g− 2= |G|(2g− 2)+
∑
P∈X

dP , (3)

where the different dP at P is given by

dP =
∑
i≥0

(|G(i)
P | − 1). (4)

If |G P | is prime to p, then dP = |G P | − 1.
Let γ be the p-rank of X, and let γ be the p-rank of the quotient curve X = X/G. The Deuring–

Shafarevich formula (see [Sullivan 1975] or [Hirschfeld et al. 2008, Theorem 11.62]) states that if G is a
p-group then

γ − 1= |G|(γ − 1)+
k∑

i=1

(|G| − `i ) (5)

where `1, . . . , `k are the sizes of the short orbits of G. If X is ordinary (and hence G(2)
P is trivial for every

P ∈ X; see Result 2.5(i)), then dP = |G
(0)
P | − 1+ |G(1)

P | − 1= 2(|G(0)
P | − 1)= 2(|G P | − 1) and hence (5)

follows from (3) and vice versa.
The Nakajima bound (see [1987, Theorem 1] or [Hirschfeld et al. 2008, Theorem 11.84]) states that

the existence of large p-groups of automorphisms implies that γ = 0.

Result 2.1. If X has positive p-rank γ , then every p-subgroup of Aut(X) has order ≤ p(γ − 1)/(p− 2).

A subgroup of Aut(X) is a prime to p group (or a p′-subgroup) if its order is prime to p. A subgroup G
of Aut(X) is tame if the 1-point stabilizer of any point in G is p′-group. Otherwise, G is nontame (or wild).
Obviously, every p′-subgroup of Aut(X) is tame, but the converse is not always true.

Result 2.2. The following claims hold.

(i) If |G|> 84(g(X)− 1), then G is nontame.

(ii) If G is abelian, then |G| ≤ 4g+ 4.

(iii) If G has prime order other than p, then |G| ≤ 2g+ 1.

The first two claims are due to Stichtenoth [1973]; see also [Hirschfeld et al. 2008, Theorems 11.56
and 11.79]. For a proof of claim (iii), see [Homma 1980] or [Hirschfeld et al. 2008, Theorem 11.108].

Henn’s bound [1978] (see also [Hirschfeld et al. 2008, Theorem 11.127]) has the following corollary.

Result 2.3. If |G|> 8g3, then X has zero p-rank, and G is not solvable.

An orbit o of G is tame if G P is a p′-group for P ∈ o. The structure of G P is well known; see for
instance [Serre 1979, Chapter IV, Corollary 4] or [Hirschfeld et al. 2008, Theorem 11.49].

Result 2.4. The stabilizer G P of a point P ∈ X in G is a semidirect product G P = Q P oU where the
normal subgroup Q P is a p-group while the complement U is a cyclic prime to p group.
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If X is ordinary, some more results are available; those used in this paper are collected below.

Result 2.5. If X is an ordinary curve, then

(i) Q(2)
P is trivial,

(ii) Q P is elementary abelian,

(iii) no nontrivial element of U commutes with a nontrivial element of Q P ,

(iv) |U | divides |Q P | − 1, and

(v) the quotient curve X/G for a p-group G of automorphisms is also ordinary.

Claim (i) is due to Nakajima [1987, Theorem 2.1]. Claim (ii) follows from claim (i) by Serre’s result
[1979, Corollary 3, p. 67] stating that the factor groups Q(i)

P /Q(i+1)
P for i ≥ 1 are elementary abelian; see

also [Hirschfeld et al. 2008, Theorem 11.74]. Claim (iii) follows from claim (ii) by Serre’s result [1979,
Corollary 1, p. 69]; see also [Hirschfeld et al. 2008, Theorem 11.75(ii)]. Claim (iv) is a consequence of
claim (iii) since the latter claim together with Result 2.4 imply that U induces an automorphism group of
Q P . Claim (v) follows from comparison of (3) to (5) taking into account claim (i).

For a nontrivial p-subgroup G of Aut(X), divide both sides in (3) by 2 and then subtract the result
from (5). If G(2)

P is trivial for every P ∈ X, then this computation gives

g(X)− γ (X)= |G|(g(X)− γ (X)) (6)

where X= X/Q [Nakajima 1987]. This shows the first two claims of the following result hold. The third
one is due to Stichtenoth [1973]; see also [Hirschfeld et al. 2008, Theorem 11.79].

Result 2.6. Let Q be nontrivial p-subgroup of Aut(X). Assume that Q(2)
P is trivial for every P ∈ X. Then

(i) (6) holds,

(ii) X and its quotient curve X/Q are simultaneously ordinary or not, and

(iii) |Q P | ≤ pg(X)/(p− 1).

The first two claims below on low-genus curves are well known; see for instance [Hirschfeld et al.
2008, Theorems 11.94 and 11.99]. The third one is a corollary of Henn’s bound.

Result 2.7. If G is an automorphism group of an elliptic curve E over K, then for every point P ∈ E the
order of the stabilizer G P of P in G divides 6 when p> 3 and 12 when p= 3. The solvable automorphism
groups of a genus-2 curve over K have order at most 48. For genus-3 curves the latter bound is 216.

We also need a technical result.

Result 2.8. Assume that Aut(X) has a solvable subgroup G of order larger than 34(g(X)+ 1)3/2. If N
is a normal subgroup of G and the quotient curve X = X/N is neither rational nor elliptic, then the
automorphism group G = G/N of X has order larger than 34(g(X)+ 1)3/2, as well.
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Since |N | = |G|/|G|, the claim is a straightforward consequence of (3) except for the cases where
g(X) = 2, or g(X) = 3, g(X) = 5, |N | = 2, and the cover X|X is unramified. Actually, the exceptional
cases do not occur. In fact, |G| ≥ |G|(g(X)− 1)/(g(X)− 1) > 34(g(X)+ 1)3/2(g(X)− 1)/(g(X)− 1) is
bigger than 48 and 8 ·27= 216 for g(X)= 2 and g(X)= 3, contradicting Results 2.7 and 2.3, respectively.

From group theory we use Dickson’s classification of finite subgroups of the projective linear group
PGL(2,K); see [Valentini and Madan 1980] or [Hirschfeld et al. 2008, Theorem A.8].

Result 2.9. The following is a complete list of finite solvable subgroups of PGL(2,K) up to conjugacy:

(i) cyclic groups of order prime to p,

(ii) elementary abelian p-groups,

(iii) dihedral groups with an index-2 cyclic subgroup of order prime to p,

(iv) the alternating group A4,

(v) the symmetric group S4,

(vi) semidirect products of an elementary abelian p-group of order ph by a cyclic group of order n with
n | (ph

− 1).

If PGL(2,K) is viewed as the automorphism group of the line over K, any cyclic subgroup of order
prime to p has exactly two points, while any p-subgroup has a unique fixed point [Valentini and Madan
1980].

We also use the Schur–Zassenhaus theorem; see for instance [Machì 2012, Corollary 7.5].

Result 2.10. Let G be a finite group with a normal subgroup N. If |N | is prime to the index [G : N ]
of N , then N has a complement in G, that is, G = N oM for a subgroup M of G. Such complements are
pairwise conjugate in G.

From representation theory, we need the Maschke theorem; see for instance [Machì 2012, Theorem 6.1].

Result 2.11. Any representation of a finite group over a field whose characteristic is prime to the order of
the group is completely reducible.

The following two lemmas of independent interest play a role in our proof of Theorem 1.1.

Lemma 2.12. Let X be an ordinary algebraic curve of genus g(X) ≥ 2 defined over an algebraically
closed field K of odd characteristic p. Let H be a solvable automorphism group of Aut(X) containing a
normal p-subgroup Q such that |Q| and [H : Q] are coprime. Suppose that a complement U of Q in H
is abelian and that

|H |>
{

18(g− 1) for |U | = 3,
12(g− 1) otherwise.

(7)

Then U is cyclic, and the quotient curve X= X/Q is rational. Furthermore, Q has exactly two (nontame)
short orbits, say �1, �2. They are also the only short orbits of H , and g(X)= |Q| − (|�1| + |�2|)+ 1.
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Proof. From Result 2.10, H = QoU . Set |Q| = pk and |U | = u. Then p - u. Furthermore, if u = 2, then
|H | = 2|Q|> 9g(X) whence |Q|> 4.5g(X). From Result 2.1, X has zero p-rank, which is not possible
as X is assumed to be ordinary of genus at least 2. Therefore, u ≥ 3.

Three cases are treated separately according as the quotient curve X= X/Q has genus g at least 2, or
X is elliptic, or rational.

If g(X)≥ 2, then Aut(X) has a subgroup isomorphic to U , and Result 2.2(ii) yields 4g(X)+ 4≥ |U |.
Furthermore, from (3) applied to Q, g− 1≥ |Q|(g(X)− 1). Let c = 12 or c = 18, according as |U |> 3
or |U | = 3, so that |H |> c(g− 1) from (7). Then

(4g(X)+ 4)|Q| ≥ |U ||Q| = |H | ≥ c(g− 1)≥ c|Q|(g(X)− 1),

whence

c ≤ 4
g(X)+ 1

g(X)− 1
.

As the right-hand side is smaller than 12, a contradiction to the choice of the constant c is obtained.
If X is elliptic, then the cover X|X ramifies; otherwise X itself would be elliptic. Thus, Q has some

short orbits. The group H acts on the set of short orbits of Q. In this action, an orbit of a given short
orbit o of Q with respect to H is a set of short orbits of Q having the same length of o. We will refer
to these short orbits as images of o. Take a short orbit of Q together with its images o1, . . . , ou1 under
the action of H . Since Q is a normal subgroup of H , o = o1 ∪ · · · ∪ ou1 is an H -orbit of size u1 pv

where pv = |o1| = · · · = |ou1 |. Equivalently, the stabilizer of a point P ∈ o has order pk−vu/u1, and by
Result 2.4, it is the semidirect product Q1oU1 where |Q1| = pk−v and |U1| = u/u1 for subgroups Q1

of Q and U1 of U , respectively. The point P lying under P in the cover X|X is fixed by the factor
group U 1 = U1 Q/Q. Since X is elliptic, and p is prime to |U 1|, Result 2.7 yields |U 1| ≤ 4 for p = 3
and |U 1| ≤ 6 for p > 3. As U 1 ∼= U1, this yields the same bound for |U1|, that is, u ≤ 4u1 for p = 3
and u ≤ 6u1 for p > 3. Furthermore, since the p-group Q1 fixes P , and Q1

(0)
= Q(1)

1 = Q1, we have
dP =

∑
i≥0(|Q1

(i)
| − 1)≥ 2(|Q1| − 1)= 2(pk−v

− 1)≥ 4
3 pk−v . From (3) applied to Q, since P ∈ o and

|o| = pvu1, if p = 3, then

2g− 2≥ 3vu1dP ≥ 3vu1
( 4

3 3k−v)
=

4
3 3ku1 ≥

1
3 3ku = 1

3 |Q||U | =
1
3 |H |,

while for p > 3,

2g− 2≥ pvu1dP ≥ pvu1
( 4

3 pk−v)
=

4
3 pku1 ≥

2
9 pku = 2

9 |Q||U | =
2
9 |H |,

but this contradicts (7).
If X is rational, then Q has at least one short orbit. Furthermore, U = U Q/Q is isomorphic to a

subgroup of PGL(2,K)∼= Aut(X). Since U ∼=U and U is abelian, from Result 2.9, U is cyclic, U fixes
two points P0 and P∞, but no nontrivial element in U fixes a point other than P0 or P∞. Let o∞ and o0

be the Q-orbits lying over P0 and P∞, respectively. Obviously, o∞ and o0 are short orbits of H . We
show that Q has at most two short orbits, the candidates being o∞ and o0. By absurd, there is a Q-orbit o
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of size pm with m < k which lies over a point P ∈ X different from both P0 and P∞. Since the orbit of
P in U has length u, then the H -orbit of a point P ∈ o has length upm . If u > 3, (3) applied to Q gives

2g−2≥−2pk
+upm(pk−m

−1)≥−2pk
+upm 2

3 pk−m
=−2pk

+
2
3 upk

=
2
3(u−3)pk > 1

6 upk
=

1
6 |H |,

a contradiction with |H |> 12(g− 1). If u = 3, then p > 3, and hence,

2g− 2≥−2pk
+ 3pm(pk−m

− 1)= pk
− 3pm > 1

3 pk,

whence |H | = 3pk < 18(g− 1), a contradiction with (7). This proves that H has exactly two short orbits.
Since, as we have showed, Q has either one or two short orbits, and they are contained in o∞ ∪ o0, two
cases arise correspondingly. Assume first that Q has two short orbits. They are o∞ and o0. If their lengths
are pa and pb with a, b < k, then (5) (or (3)) applied to Q gives

g(X)− 1= γ (X)− 1=−pk
+ (pk

− pa)+ (pk
− pb)

whence g(X) = pk
− (pa

+ pb)+ 1 > 0. The same argument shows that if Q has just one short orbit,
then γ (X)= 0, a contradiction. �

Lemma 2.13. Let N be an automorphism group of an algebraic curve of even genus such that |N | is even.
Then any 2-subgroup of N has a cyclic subgroup of index 2.

Proof. Let U be a subgroup of N of order d = 2u
≥ 2, and X= X/U the arising quotient curve. From (3)

applied to U ,

2g(X)− 2= 2u(2g(X)− 2)+
m∑

i=1

(2u
− `i )

where `1, . . . , `m are the short orbits of U on X. Since g(X) is even, 2g(X)− 2 ≡ 2 (mod 4). On the
other hand, 2u(2g(X)− 2)≡ 0 (mod 4). Therefore, some `i (1≤ i ≤m) must be either 1 or 2. Therefore,
U or a subgroup of U of index 2 fixes a point of X and hence is cyclic. �

3. The proof of Theorem 1.1

Our proof is by induction on the genus. Theorem 1.1 holds for g(X)= 2, as |G| ≤ 48 for any solvable
automorphism group G of a genus-2 curve; see Result 2.7. For g(X) > 2, X is taken by absurd for
a minimal counterexample with respect the genera so that for any solvable subgroup of Aut(X) of an
ordinary curve X of genus g(X)≥ 2 we have |G| ≤ 34(g+ 1)3/2. Two cases are treated separately.

Case I. G contains a minimal normal p-subgroup.

Proposition 3.1. Let X be an ordinary algebraic curve of genus g defined over an algebraically closed
field K of odd characteristic p > 0. If G is a solvable subgroup of Aut(X) containing a minimal normal
p-subgroup N , then |G| ≤ 34(g+ 1)3/2.
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Proof. Before going through the proof we describe the main steps in it.
Take the largest normal p-subgroup Q of G. Let X be the quotient curve of X with respect to Q,

and let G = G/Q. The first step is to show that X is rational. Then we derive from the classification
in Result 2.9 that G is a semidirect product of Q by cyclic group U of order prime to p. Therefore,
Lemma 2.12 applies to G. This gives us enough information on the action of Q on X: Q has exactly
two (nontame) orbits, say �1 and �2, and they are also the only short orbits of G. Then a subgroup H
of G of index ≤ 2 preserves both �1 and �2, inducing a permutation group on each of them. If both �1

and �2 are nontrivial, that is, |�1|> 1 and |�2|> 1, then two cases are possible, according as Q P with
P ∈�1 is sharply transitive and faithful on �2 or some nontrivial element in Q P fixes �2 pointwise. So
the next step is to rule out both these possibilities using elementary permutation group theory together
with Results 2.2 and 2.4. If �1 = {P} and |�2| > 1, then G fixes P , and the structure of G is given
by Result 2.4 where Q is an elementary abelian group, that is, a vector space over the prime field of K

and G is a linear group so that some appropriate result from representation theory can be used. In fact,
combining Result 2.11 with (5) allows us to rule out this possibility. If �1 = {P} and �2 = {Q}, we
are able to prove a much stronger bound, namely |G| ≤ 2(g(X)+ 1). In this final step, our approach is
function field theory rather than group theory as it uses some ideas from Nakajima’s paper [1987] and the
Riemann–Roch theorem together with some results on linearized polynomials over finite fields.

The quotient group G is a subgroup of Aut(X), and it has no normal p-subgroup; otherwise G would
have a normal p-subgroup properly containing Q. For g= g(X) three cases may occur, namely g≥ 2,
g = 1, or g = 0. If g ≥ 2, then Result 2.8 shows that |G| > 34(g+ 1)3/2. Since X is still ordinary by
Result 2.5(v), this contradicts our choice of X to be a minimal counterexample. If g= 1, then the cover
K(X)|K(X) ramifies. Take a short orbit 1 of Q. Let 0 be the nontame short orbit of G that contains 1.
Since Q is normal in G, the orbit 0 partitions into short orbits of Q whose components have the same
length, which is equal to |1|. Let k be the number of the Q-orbits contained in 0. Then

|G P | =
|G|

k|1|

holds for every P ∈ 0. Moreover, the quotient group G P Q/Q fixes a place on X. Now, from Result 2.7,

|G P Q|
|Q|

=
|G P |

|G P ∩ Q|
=
|G P |

|Q P |
≤ 12.

From this together with (3) and Result 2.5(i),

2g− 2≥ 2k|1|(|Q P | − 1)≥ 2k|1|
|Q P |

2
≥

k|1||G P |

12
=
|G|
12
,

which contradicts our hypothesis |G|> 34(g+ 1)3/2.
It turns out that X is rational. Therefore, G is isomorphic to a subgroup of PGL(2,K) which contains

no normal p-subgroup. From Result 2.9, G is a prime to p subgroup which is either cyclic, or dihedral,
or isomorphic to one of the groups Alt4,Sym4. In all cases, G has a cyclic subgroup U of index ≤ 6 and
of order distinct from 3. We may dismiss all cases but the cyclic one up to replacing G with U , that is, up
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to assuming that G = QoU with |G| ≥ 34
6 (g(X)+1)3/2. Then |G|> 12(g−1). Therefore, Lemma 2.12

applies to G. Thus, Q has exactly two (nontame) orbits, say �1 and �2, and they are also the only short
orbits of G. More precisely,

γ − 1= |Q| − (|�1| + |�2|). (8)

We may also observe that G P with P ∈�1 contains a subgroup V isomorphic to U . In fact, |Q||U | =
|G|= |G P ||�1|= |Q PoV ||�1|= |V ||Q P ||�1|with a prime to p subgroup V fixing P , whence |U |= |V |.
Since V is cyclic the claim follows.

We proceed with the case where both �1 and �2 are nontrivial, that is, their lengths are at least 2.
Assume that Q is nonabelian, and look at the action of its center Z(Q) on X. Since Z(Q) is a nontrivial

normal subgroup of G, we can argue as before to show that quotient curve X/Z(Q) is rational, and hence
that the Galois cover X|(X/Z(Q)) ramifies at some points. Indeed, observe that in the previous arguments
normality of Q was only used to dismiss all cases but the rational one, and hence we may simply replace
Q with Z(Q). In other words, there is a point P ∈�1 (or R ∈�2) such that some nontrivial subgroup T
of Z(Q) fixes P (or R). Suppose that the former case occurs. Since �1 is a Q-orbit, T fixes �1 pointwise.

The group G has an index ≤ 2 subgroup H that induces a permutation group on �1. Let M1 be the
kernel of this permutation representation. Obviously, T is a nontrivial p-subgroup of M1. Therefore, M
contains some but not all elements from Q. Since both M1 and Q are normal subgroups of G, N =M1∩Q
is a nontrivial normal p-subgroup of G. As we have proven before, the quotient curve X̃=X/N is rational,
and hence the factor group G̃ = G/N is isomorphic to a subgroup of PGL(2,K). Since 1� N � Q, the
order of G̃ is divisible by p. From Result 2.9, G̃ = Q̃o Ũ where Q̃ is an elementary abelian p-group of
order q and Ũ ∼=U N/N ∼=U with |Ũ | = |U | is a divisor of q − 1.

This shows that Q acts on �1 as an abelian transitive permutation group. Obviously this holds true
when Q is abelian. Therefore, the action of Q on �1 is sharply transitive. In terms of 1-point stabilizers
of Q on �1, we have Q P = Q P ′ for any P, P ′ ∈ �1. Moreover, Q P = N , and hence Q P is a normal
subgroup of G.

Furthermore, since X is an ordinary curve, Q P is an elementary abelian group by Result 2.5(ii).
The quotient curve X/Q P is rational, and its automorphism group contains the factor group Q/Q P .

Hence, exactly one of the Q P -orbits is preserved by Q. Since �1 is a Q-orbit consisting of fixed
points of Q P , �2 must be a Q P -orbit. Similarly, if Z(Q) 6= Q P , the factor group Z(Q)Q P/Q P is an
automorphism group of X/Q P and hence exactly one of the Q P -orbits is preserved by Z(Q). Either
Z(Q) fixes a point in�1 but then Z(Q)= Q P , or�2 is a Z(Q)-orbit. This shows that either Z(Q)= Q P ,
or Z(G) acts transitively on �2.

Two cases arise according as Q P is sharply transitive and faithful on �2 or some nontrivial element
in Q P fixes �2 pointwise.

If some nontrivial element in Q P fixes �2 pointwise, then the kernel M2 of the permutation represen-
tation of H on �2 contains a nontrivial p-subgroup. Hence, the above results extend from �1 to �2, and
Q R is a normal subgroup of Q.
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If Q P is (sharply) transitive on �2, then the abelian group Z(Q)Q P acts on �2 as a sharply transitive
permutation group, as well. Hence, either Z(Q)= Q P , or as before M2 contains a nontrivial p-subgroup,
and Q R is a normal subgroup of Q. In the former case, Q= Q P Q R with Q R∩Q P ={1}, and Z(Q)= Q P

yields that

Q = Q P × Q R. (9)

This shows that Q is abelian, and hence |Q|≤ 4g+4 by Result 2.2(ii). Also, either |Q P | or |Q R| is at most
√

4g+ 4. From Result 2.5(i), G(2)
P at P ∈�1 is trivial. Furthermore, for G P = Q P o V , Result 2.5(iv)

gives |U | = |V | ≤ |Q P | − 1. Hence, |U |< |Q P | ≤
√
|Q| ≤

√
4g+ 4 whence

|G| = |U ||Q| ≤ 8(g+ 1)3/2. (10)

If Q R is a normal subgroup, take a point R from �2, and look at the subgroup Q P,R of Q P fixing R.
Actually, we prove that either Q P,R = Q P or Q P,R is trivial. Suppose that Q P,R 6= {1}. Since Q P,R =

Q P ∩ Q R and both Q P and Q R are normal subgroups of G; the same holds for Q P,R . By (ii), the
quotient curve X/Q P,R is rational and hence its automorphism group Q/Q P,R fixes exactly one point.
Furthermore, each point in �2 is totally ramified. Therefore, Q R = Q P,R; otherwise Q R/Q P,R would fix
any point lying under a point in �1 in the cover X|(X/Q P,R).

It turns out that either Q P = Q R or Q P ∩ Q R = {1}, whenever P ∈�1 and R ∈�2.
In the former case, from (5) applied to Q P ,

γ − 1=−|Q P | + |�1|(|Q P | − 1)+ |�2|(|Q P | − 1)=−|Q P | + |Q| − |�1| + |Q| − |�2|.

This together with (8) give Q = Q P , a contradiction.
Therefore, the latter case must hold. Thus, Q = Q P × Q R and Q P (and also Q R) is an elementary

abelian group since it is isomorphic to a p-subgroup of PGL(2,K). Also, |Q P | = |Q R| =
√
|Q|. Since

Q is abelian, this yields |Q P | ≤
√

4g+ 4 by Result 2.2(ii). Now, the argument used after (9) can be
employed to prove (10). This ends the proof in the case where both �1 and �2 are nontrivial.

Suppose next �1 = {P} and |�2| ≥ 2. Then G fixes P , and hence G = Q oU with an elementary
abelian p-group Q. Furthermore, G has a permutation representation on �2 with kernel K . As �2 is a
short orbit of Q, the stabilizer Q R of R ∈�2 in Q is nontrivial. Since Q is abelian, this yields that K is
nontrivial, and hence it is a nontrivial elementary abelian normal subgroup of G. In other words, Q is
an r -dimensional vector space V (r, p) over a finite field Fp with |Q| = pr , the action of each nontrivial
element of U by conjugacy is a nontrivial automorphism of V (r, p), and K is a U -invariant subspace.
By Result 2.11, K has a complementary U -invariant subspace. Therefore, Q has a subgroup M such that
Q = K ×M , and M is a normal subgroup of G. Since K ∩M = {1}, and �2 is an orbit of Q, this yields
|M | = |�2|. The factor group G/M is an automorphism group of the quotient curve X/M , and Q/M is
a nontrivial p-subgroup of G/M whereas G/M fixes two points on X/M . Therefore the quotient curve
X/M is not rational since the 2-point stabilizer in the representation of PGL(2,K) as an automorphism
group of the rational function field is a prime to p (cyclic) group. We show that X/M is not elliptic either.
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From (5), g(X)− 1= γ (X)− 1=−|Q| + 1+ |�2|, and so g(X) is even. Since M is a normal subgroup
of odd order, g(X)≡ 0 (mod 2) yields that g(X/M)≡ 0 (mod 2). In particular, g(X/M) 6= 1. Therefore,
g(X/M)≥ 2. At this point we may repeat our previous argument and prove |G/M |> 34(g(X/M)+1)3/2.
Again, we get a contradiction with our choice of X to be a minimal counterexample, which ends the proof
in the case where just one of �1 and �2 is trivial.

We are left with the case where both short orbits of Q are trivial. Our goal is to prove a much stronger
bound for this case, namely |U | ≤ 2 whence

|G| ≤ 2(g(X)+ 1). (11)

We also show that if equality holds then X is a hyperelliptic curve with equation

f (U )= aT + b+ cT−1, a, b, c ∈ K∗, (12)

where f (U ) ∈ K[U ] is an additive polynomial of degree |Q|.
Let �1 = {P1} and �2 = {P2}. Then Q has two fixed points P1 and P2, but no nontrivial element in Q

fixes a point of X other than P1 and P2. From (5),

g(X)+ 1= γ (X)+ 1= |Q|. (13)

Therefore, |U | ≤ g(X). Actually, for our purpose, we need a stronger estimate, namely |U | ≤ 2. To prove
the latter bound, we use some ideas from Nakajima’s paper [1987] regarding the Riemann–Roch spaces
L(D) of certain divisors D of K(X). Our first step is to show

(i) dimK L((|Q| − 1)P1)= 1 and

(ii) dimK L((|Q| − 1)P1+ P2)≥ 2.

Let ` ≥ 1 be the smallest integer such that dimK L(`P1) = 2, and take x ∈ L(`P1) with vP1(x) = −`.
As Q = Q P1 , the Riemann–Roch space L(`P1) contains all cσ = σ(x)− x with σ ∈ Q. This yields
cσ ∈K by vP1(cσ )≥−`+ 1 and our choice of ` to be minimal. Also, Q = Q P2 together with vP2(x)≥ 0
show vP2(cσ )≥ 1. Therefore, cσ = 0 for all σ ∈ Q, that is, x is fixed by Q. From `= [K(X) : K(x)] =
[K : K(X)Q

][K(X)Q
: K(x)] and |Q|=[K :K(X)Q

], it turns out that ` is a multiple of |Q|. Thus `> |Q|−1
whence (i) follows. From the Riemann–Roch theorem, dimK L((|Q| − 1)P1+ P2) ≥ |Q| − g+ 1 = 2,
which proves (ii).

Let d ≥ 1 be the smallest integer such that dimK L(d P1+ P2)= 2. From (ii)

d ≤ |Q| − 1. (14)

Let α be a generator of the cyclic group U . Since α fixes both points P1 and P2, it acts on L(d P1+ P2)

as a K-vector space automorphism α. If α is trivial, then α(u) = u for all u ∈ L(d P1+ P2). Suppose
that α is nontrivial. Since U is a prime to p cyclic group, α has two distinct eigenspaces, so that
L(d P1+ P2)= K⊕Ku where u ∈ L(d P1+ P2) is an eigenvector of α with eigenvalue ξ ∈ K∗ so that
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α(u) = ξu with ξ |U | = 1. Therefore, there is u ∈ L(d P1 + P2) with u 6= 0 such that α(u) = ξu with
ξ |U | = 1. The pole divisor of u is

div(u)∞ = d P1+ P2. (15)

Since Q = Q P1 = Q P2 , the Riemann–Roch space L(d P1+ P2) contains σ(u) and hence contains all

θσ = σ(u)− u, σ ∈ Q.

By our choice of d to be minimal, this yields θσ ∈ K, and then defines the map θ from Q into K that
takes σ to θσ . More precisely, θ is a homomorphism from Q into the additive group (K,+) of K as the
following computation shows:

θσ1◦σ2 = (σ1 ◦ σ2)(u)− u = σ1(σ2(u)− u+ u)− u = σ1(θσ2)+ σ1(u)− u = θσ2 + θσ1 = θσ1 + θσ2 .

Also, θ is injective. In fact, if θσ0 = 0 for some σ0 ∈ Q \ {1}, then u is in the fixed field of σ0, which is
impossible since vP2(u)=−1 whereas P2 is totally ramified in the cover X|(X/〈σp〉). The image θ(Q)
of θ is an additive subgroup of K of order |Q|. The smallest subfield of K containing θ(Q) is a finite
field Fpm and hence θ(Q) can be viewed as a linear subspace of Fpm considered as a vector space over Fp.
Therefore, the polynomial

f (U )=
∏
σ∈Q

(U − θσ ) (16)

is a linearized polynomial over Fp [Lidl and Niederreiter 1983, §4, Theorem 3.52]. In particular, f (U ) is
an additive polynomial of degree |Q|; see also [Serre 1962, Chapter V, §5]. Also, f (U ) is separable as θ
is injective. From (16), the pole divisor of f (u) ∈ K(X) is

div( f (u))∞ = |Q|(d P1+ P2). (17)

For every σ0 ∈ Q,

σ0( f (u))=
∏
σ∈Q

(σ0(u)− θσ )=
∏
σ∈Q

(u+ θσ0 − θσ )=
∏
σ∈Q

(u− θσσ−1
0
)=

∏
σ∈Q

(u− θσ )= f (u).

Thus, f (u)∈K(X)Q . Furthermore, from α ∈ NG(Q), for every σ ∈ Q there is σ ′ ∈ Q such that ασ = σ ′α.
Therefore,

α( f (u))=
∏
σ∈Q

(α(σ (u)−u))=
∏
σ∈Q

(α(σ (u))−ξu)=
∏
σ∈Q

(σ ′(α(u))−ξu)=
∏
σ∈Q

(σ ′(ξu)−ξu)= ξ f (u).

This shows that if R ∈ X is a zero of f (u) then Supp(div( f (u)0)) contains the U -orbit of R of length
|U |. Actually, since σ( f (u))= f (u) for σ ∈ Q, Supp(div( f (u)0)) contains the G-orbit of R of length
|G| = |Q||U |. This together with (17) give

|U ||(d + 1). (18)



Ordinary algebraic curves with many automorphisms in positive characteristic 13

On the other hand, K(X)Q is rational. Let P1 and P2 be the points lying under P1 and P2, respectively, and
let R1, R2, . . . , Rk with k= (d+1)/|U | be the points lying under the zeros of f (u) in the cover X|(X/Q).
We may represent K(X)Q as the projective line K∪{∞} over K so that P1 =∞, P1 = 0, and Ri = ti for
1≤ i ≤ k. Let g(t)= td

+ t−1
+h(t) where h(t) ∈K[t] is a polynomial of degree k = (d+1)/|U | whose

roots are r1, . . . , rk . It turns out that f (u), g(t) ∈ K(X) have the same pole and zero divisors, and hence

c f (u)= td
+ t−1

+ h(t), c ∈ K∗. (19)

We prove that K(X)= K(u, t). From [Sullivan 1975] (see also [Hirschfeld et al. 2008, Remark 12.12]),
the polynomial cT f (X)− T d+1

− 1− h(T )T is irreducible, and the plane curve C has genus g(C) =
1
2(q − 1)(d + 1). Comparison with (13) shows K(X)= C and d = 1 whence |U | ≤ 2. If equality holds,
then deg h(T )= 1 and X is a hyperelliptic curve with Equation (12). �

Case II. G contains no minimal normal p-subgroup.

Proposition 3.2. Let X be an ordinary algebraic curve of genus g defined over a field K of odd char-
acteristic p > 0. If G is a solvable subgroup of Aut(X) with a minimal normal subgroup N , then
|G| ≤ 34(g(X)+ 1)3/2.

Proof. We begin with an outline of the proof.
Since X is chosen to be a (minimal) counterexample, Proposition 3.1 yields that G contains no nontrivial

normal p-subgroup. The factor group G = G/N is a subgroup of Aut(X) where X = X/N . As in the
proof of Proposition 3.1, we begin by showing that X must be rational. This time Result 2.6(ii) does not
apply and some more effort is needed to rule out the possibility of g(X)≥ 2 while the elliptic case does
not require a different approach. If X is rational, the classification in Result 2.9 gives the possibility of
the structure of G and its action on X. A careful analysis shows that G must be of type (vi) in Result 2.9.
From this we obtain the possibilities for the action of G on X. After that, (3) and (5) together with
straightforward computation are sufficient to end the proof although the case where N is an elementary
abelian 2-group requires some additional facts from group theory.

We prove that g(X) ≥ 2. By Result 2.2(ii), |N | ≤ 4g(X)+ 4 as N is abelian. If X is also ordinary,
then the choice of X to have minimal genus implies that |G| ≤ 34(g(X)+ 1)3/2. Comparing this with
Result 2.8 shows a contradiction. Therefore, the possibility for X to be nonordinary is investigated.

From Result 2.5(i), any p-subgroup S of G has trivial second ramification group at any point X. The
latter property remains true when X and S are replaced by X and the factor group S= SN/N , respectively.
To show this claim, take P ∈ X and let S P be the subgroup of S fixing P . Since p - |N | there is a point
P ∈X lying over P which is fixed by S. Hence, the stabilizer SP of P in S is a nontrivial normal subgroup
of G P . Since N is a normal subgroup in G, so is NP in G P . This yields that the product NP SP is actually
a direct product. Therefore, NP is trivial by Result 2.5(iii), that is, the cover X|X is unramified at P .
From this, the claim follows.

Actually, N may be taken to be the largest normal subgroup N1 of G whose order is prime to p. Also,
by our hypothesis, the quotient curve X1 = X/N1 is neither rational, nor elliptic. From Result 2.8, its
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K-automorphism group G1 = G/N1 has order bigger than 34(g(X1)+ 1)3/2. Since G and hence G1 are
solvable, G1 has a minimal normal d-subgroup where d must be equal to p by the choice of N1 to be the
largest normal, prime to p subgroup of G. Take the largest normal p-subgroup N2 of G1. Observe that
N2 6=G1. In fact, if N2=G1, then G1 is p-group of order bigger than 34(g(X1)+1)3/2> pg(X1)/(p−2).
From Result 2.1, X1 has zero p-rank, and hence G1 fixes a point P1 ∈ X1. On the other hand, since G(2)

1

is trivial, Result 2.6(iii) shows |G1| ≤ pg(X1)/(p−1), a contradiction. Now, define X2 to be the quotient
curve X1/N2. Since the second ramification group of N1 at any point of X1 is trivial, Result 2.6(i) gives
g(X1)− γ (X1)= |N2|(g(X2)− γ (X2)). In particular, if X2 is ordinary or rational, then X1 is an ordinary
curve. From the proof of Proposition 3.1, the case g(X2)= 1 cannot occur as |G1|> 34(g(X1)+ 1)3/2.
Therefore, g(X2) ≥ 2 with g(X2) > γ (X2) may be assumed. The factor group G2 = G1/N2 is a K-
automorphism group of the quotient curve X2 = X1/N2, and it has a minimal normal d-subgroup with
d 6= p, by the choice of N2. Define N3 to be the largest normal, prime to p subgroup of G2. Observe that
N3 must be a proper subgroup of G2; otherwise G2 itself would be a prime to p subgroup of Aut(X2)

of order bigger than 34(g(X2)+ 1)3/2, contradicting Result 2.2(i). Therefore, there exists a (maximal)
nontrivial normal p-subgroup N4 in the factor group G3 = G2/N3. Now, the above argument remains
valid whenever G, N1,G1, N2,X1,X2 are replaced by G2, N3,G3, N4,X3,X4 where the quotient curves
are X3 = G2/N3 and X4 = G3/N4. In particular, g(X4) 6= 1 and g(X3)− γ (X3)= |N4|(g(X4)− γ (X4)).
Repeating the above argument, a finite sharply decreasing sequence g(X1)> g(X2)> g(X3)> g(X4)> · · ·

arises. If this sequence has n + 1 members, then g(Xn)− γ (Xn) = |Nn+1|(g(Xn+1)− γ (Xn+1)) with
g(Xn+1)= γ (Xn+1)= 0. Therefore, for some (odd) index m ≤ n, the curve Xm would not be ordinary,
but the successive member Xm+1 would be an ordinary curve. Since Xm+1 is a quotient curve of Xm with
respect to a p-subgroup, this is impossible by Result 2.6(ii).

We continue with the elliptic case. Since g(X)≥ 2, (3) applied to X ensures that N has a short orbit. Let
0 be a short orbit of G containing a short orbit of N . Since N is a normal subgroup of G, 0 is partitioned
into short orbits 61, . . . , 6k of N each of length |61|. Take a point Ri from 6i for i = 1, 2, . . . , k, and
set 6 =61 and S = S1. With this notation, |G| = |GS||0| = |GS|k|6|, and (3) gives

2g(X)− 2≥
k∑

i=1

|6i |(|NSi | − 1)= k|6|(|NS| − 1)≥+ 1
2 k|6||NS| =

1
2 |G|
|NS|

|GS|
. (20)

Also, the factor group GS N/N is a subgroup of Aut(X) fixing the point of X lying under S in the cover
X|X. From Result 2.7,

|GS N |
|N |

=
|GS|

|GS ∩ N |
=
|GS|

|NS|
≤ 12.

This and (20) yield |G| ≤ 48(g(X)− 1), a contradiction with our hypothesis 34(g(X)+ 1)3/2.
Therefore, X is rational. Thus, G is isomorphic to a subgroup of PGL(2,K). Since p divides |G|

but not |N |, G contains a nontrivial p-subgroup. From Result 2.9, either p = 3 and G ∼= Alt4,Sym4, or
G = QoC where Q is a normal p-subgroup and its complement C is a cyclic prime to p subgroup and
|C | divides |Q| − 1.
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If G ∼= Alt4,Sym4, then |G| ≤ 24 whence |G| ≤ 24|N | ≤ 96(g(X)+ 1) as N is abelian. Comparison
with our hypothesis |G| ≥ 34(g(X)+ 1)3/2 shows that g(X) ≤ 6. For small genera we need a little
more. If |N | is prime, then |N | ≤ 2g(X)+ 1 by Result 2.2(iii), and hence |G| ≤ 48(g(X)+ 1), which
is inconsistent with |G| ≥ 34(g(X) + 1)3/2. Otherwise, since p = 3 and |N | has order a power of
prime distinct from p, the bound |N | ≤ 4(g(X)+ 1) with g(X) ≤ 6 is only possible for (g(X), |N |) ∈
{(3, 16), (4, 16), (5, 16), (6, 16), (6, 25)}. Comparison of |G| ≤ 24|N | with |G| ≥ 34(g(X)+ 1)3/2 rule
out the latter three cases. Furthermore, since N is an elementary abelian group of order 16, g(X) must be
odd by Lemma 2.13. Finally, g(X)= 3, |N | = 16, and G/N ∼= Sym4 is impossible as Result 2.3 would
imply that X has zero p-rank.

Therefore, the case G = QoC occurs. Also, G fixes a unique place P ∈ X. Let 1 be the N -orbits
in X that lie over P in the cover X|X. We prove that 1 is a long orbit of N . By absurd, the permutation
representation of G on 1 has a nontrivial 1-point stabilizer containing a nontrivial subgroup M of N .
Since N is abelian, M is in the kernel. In particular, M is a normal subgroup of G contradicting our
choice of N to be minimal.

Take a Sylow p-subgroup Q of G of order |Q| = ph with h ≥ 1, and look at the action of Q on 1.
Since |1| = |N | is prime to p, Q fixes a point P ∈1, that is, Q = Q P . Since X is an ordinary curve,
Result 2.5(ii) shows that Q P and hence Q are elementary abelian. Therefore, G P = QoU where U is a
prime to p cyclic group. Thus,

|Q||C ||N | = |G||N | = |G| = |G P ||1| = |Q||U ||1| = |Q||U ||N |, (21)

whence |Q| = |Q| and |U | = |C |. Consider the subgroup H of G generated by G P and N . Since 1 is a
long N -orbit, G P ∩ N = {1}. As N is normal in H this implies that H = N oG P = N o (QoU ) and
hence |H | = |N ||Q||U |, which proves G = H = N o (QoU ).

Since X is rational and P is the unique fixed point of nontrivial elements of Q, each Q-orbit other
than {P} is long. Furthermore, C fixes a point R other than P and no nontrivial element of C fixes a
point distinct from P and R. This shows that the G-orbit �1 of R has length |Q|. In terms of the action
of G on X, there exist as many as |Q| orbits of N , say 11, . . . ,1|Q|, whose union 3 is a short G-orbit
lying over �1 in the cover X|X. Obviously, if at least one of 1i is a short N -orbit, then so are all.

We show that this actually occurs. Since the cover X|X ramifies, N has some short orbits, and by
absurd there exists a short N -orbit 6 not contained in 3. Then 6 and 3 are disjoint. Let 0 denote the
(short) G-orbit containing 6. Since N is a normal subgroup of G, 0 is partitioned into N -orbits, say
6 = 61, . . . , 6k , each of them of the same length |6|. Here k = |Q||U | since the set of points of X

lying under these k short N -orbits is a long G-orbit. Also, |N | = |6i ||NRi | for ≤ i ≤ k and Ri ∈6i . In
particular, |61| = |6i | and |NR1 | = |BRi |. From (3),

2g(X)− 2≥−2|N | +
k∑

i=1

|6i |(|NRi | − 1)=−2|N | + |Q||U ||61|(|NR1 | − 1).
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Since NR1 is nontrivial, |NR1 | − 1≥ 1
2 |NR1 |. Therefore,

2g(X)−2≥−2|N |+ 1
2 |Q||U ||61||NR1 |=−2|N |+ 1

2 |Q||U ||N |=|N |
( 1

2(|Q||U |−2)
)
=

1
2 |N |(|Q||U |−4).

As |Q||U | − 4≥ 1
2 |Q||U | by |Q||U | ≥ 4, this gives

2g(X)− 2≥ 1
4 |N ||U ||Q| =

1
4 |G|.

But this contradicts our hypothesis |G|> 34(g(X)+ 1)3/2.
Therefore, the short orbits of N are exactly 11, . . . ,1|Q|. Take a point Si from 1i for i = 1, . . . , |Q|.

Then NS1 and NSi are conjugate in G, and hence |NS1 | = |NSi |. From (3) applied to N ,

2g(X)− 2=−2|N | +
|Q|∑
i=1

|1i |(|NSi | − 1)=−2|N | + |Q||11|(|NS1 | − 1)≥−2|N | + 1
2 |Q||11||NS1 |.

Since |N | = |11||NS1 |, this gives 2g(X)−2≥ 1
2 |N |(|Q|−4) whence 2g(X)−2≥ 1

4 |N ||Q| provided that
|Q| ≥ 5. The missing case, |Q| = 3, cannot actually occur since in this case |C | = |U | ≤ |Q| − 1 = 2,
whence |G| = |Q||U ||N | ≤ 6|N | ≤ 24(g(X)+ 1), a contradiction with |G|> 34(g(X)+ 1)3/2. Thus,

|N ||Q| ≤ 8(g(X)− 1). (22)

Since |N ||U |< |N ||Q|, this also shows

|N ||U |< 8(g(X)− 1). (23)

Therefore,

|G||N | = |N |2|U ||Q|< 64(g(X)− 1)2.

Equations (22) and (23) together with our hypothesis |G| ≥ 34(g(X)+ 1)3/2 yield

|N |< 64
34

√
g(X)− 1. (24)

From (24) and |G| = |N ||Q||U | ≥ 34(g(X)+ 1)3/2 we obtain

|Q||U |>
342

64
(g(X)− 1) > 18(g(X)− 1),

which shows that Lemma 2.12 applies to the subgroup QoU of Aut(X). With the notation in Lemma 2.12,
this gives that QoU and Q have the same two short orbits, �1= {P} and �2. In the cover X|X, the point
P ∈ X lying under P is fixed by Q. We prove that �2 is a subset of the N -orbit 1 containing P . For this
purpose, it suffices to show that for any point R ∈�2, the point R ∈ X lying under R in the cover X|X

coincides with P . Since �2 is a Q-short orbit, the stabilizer Q R is nontrivial, and hence Q fixes R. Since
X is rational, this yields P = R. Therefore, �2 ∪ {P} is contained in 1, and either 1=�2 ∪ {P} or 1
contains a long Q-orbit. In the latter case, |U |< |Q|< |N |, and hence

|G|2 = |N ||Q||N ||U ||Q||U |< |N ||Q||N ||U ||N |2 ≤
642

34
(g(X)− 1)3
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whence |G|< 34(g(X)+ 1)3/2, a contradiction with our hypothesis. Otherwise |N | = |1| = 1+ |�2|. In
particular, |N | is even, and hence it is a power of 2. Also, by (5), g(X)−1= γ (X)−1=−|Q|+1+|�2|

where |�2| ≥ 1 is a power of p. This implies that g(X) is also even. Since N is an elementary abelian
2-group, Lemma 2.13 yields that either |N | = 2 or |N | = 4.

If |N | = 2, then �2 consists of a unique point R and Q o U fixes both points P and R. Since
1= {P, R}, and 1 is a G-orbit, the stabilizer G P,R is an index-2 (normal) subgroup of G. On the other
hand, G P,R = QoU and hence Q is the unique Sylow p-subgroup of QoU . Thus, Q is a characteristic
subgroup of the normal subgroup G P,R of G. But then Q is a normal subgroup of G, a contradiction
with our hypothesis.

If |N | = 4, then |1| = 4 and p = 3. The permutation representation of G of degree 4 on 1 contains
a 4-cycle induced by N but also a 3-cycle induced by Q. Hence, if K = ker, then G/K ∼= Sym4. On
the other hand, since both N and Ker are normal subgroups of G, their product N K is normal, as well.
Hence, N K/K is a normal subgroup of G/K , but this contradicts G/K ∼= Sym4. �
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