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The Maillot–Rössler current
and the polylogarithm on abelian schemes

Guido Kings and Danny Scarponi

We give a structural proof of the fact that the realization of the degree-zero part of the polylogarithm on
abelian schemes in analytic Deligne cohomology can be described in terms of the Bismut–Köhler higher
analytic torsion form of the Poincaré bundle. Furthermore, we provide a new axiomatic characterization
of the arithmetic Chern character of the Poincaré bundle using only invariance properties under isogenies.
For this we obtain a decomposition result for the arithmetic Chow group of independent interest.

Introduction

In an important contribution Maillot and Rössler constructed a Green current gA∨ for the zero section
of an abelian scheme A which is norm compatible (i.e., [n]∗gA∨ = gA∨) and is the push-forward of the
arithmetic Chern character of the (canonically metrized) Poincaré bundle. In particular, on the complement
of the zero section the Green current gA∨ is the degree-(g− 1) part of the analytic torsion form of the
Poincaré bundle. Moreover, certain linear combinations of translates of these currents are even motivic in
the sense that their classes in analytic Deligne cohomology are in the image of the regulator from motivic
cohomology.

In the special case of a family of elliptic curves, the current gA∨ is described by a Siegel-function whose
usefulness for many arithmetic problems (in particular for special values of L-functions and Iwasawa
theory) is well known and one could hope that the Maillot–Rössler current plays a similar role for abelian
schemes.

On the other hand the first author has constructed the motivic polylogarithm pol0 ∈ H 2g−1
M (A\A[N ], g)

of the abelian scheme A without its N -torsion points A \A[N ] [Kings and Rössler 2017]. Here g is the
relative dimension of A. The polylogarithm is also norm-compatible [n]∗ pol0 = pol0 for n coprime to N ,
and in the elliptic case it is directly related to Siegel functions and modular units.

It is natural to ask how pol0 is related to gA∨ . This question was answered completely in [Kings
and Rössler 2017], and it turns out that the image of −2 pol0 in analytic Deligne cohomology is the
Maillot–Rössler current [N ]∗gA∨ − N 2ggA∨ . Due to the fact that in analytic Deligne cohomology there is
no residue sequence, the proof of this fact in [Kings and Rössler 2017] was much more complicated than
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it should be and proceeded by a reduction to the case of a product of elliptic curves via the moduli space
of abelian varieties and an explicit computation.

In this paper we give a much simpler and very structural proof of the identity between the polylogarithm
and the Maillot–Rössler current (see Theorem 8). We circumvent the difficulties of the approach in
[Kings and Rössler 2017] by working in Betti cohomology instead of analytic Deligne cohomology. As a
result one only has to compare the residues of the classes. In fact we achieve much more and give an
axiomatic characterization of the Maillot–Rössler current which does not involve the Poincaré bundle
(see Theorem 11). More precisely, we prove that any class ξ̂ ∈ ĈHg

(A)Q in the arithmetic Chow group
which satisfies that its image in the Chow group CHg(A)Q is the zero section and such that

([n]∗− n2g)(ξ̂ )= 0 in ĈHg
(A)Q

holds for some n ≥ 2 is in fact equal to (−1)g p1,∗(ĉh(P))[g]. This characterization of the Maillot–Rössler
current relies on a decomposition into generalized eigenspaces for the action of [n]∗ on the arithmetic
groups ĈHg

(A)Q, which might be of independent interest (see Corollary 10).
Here is a short synopsis of our paper. In Section 1 we give some background on motivic cohomology

and arithmetic Chow groups. In Section 2 we review the polylogarithm and the Maillot–Rössler current.
In Section 3 we carry out the comparison between the Maillot–Rössler current and the polylogarithm. In
Section 4 we prove a decomposition of the arithmetic Chow group, and in Section 5 we give an axiomatic
characterization of the Maillot–Rössler current.

1. Preliminaries on motivic cohomology, Arakelov theory, and Deligne cohomology

Motivic cohomology. Let π :A→ S be an abelian scheme of relative dimension g, let ε : S→A be the
zero section, let N > 1 be an integer, and let A[N ] be the finite group scheme of N -torsion points. Here
S is smooth over a subfield k of the complex numbers. We will write S0 for the image of ε in A. We
denote by A∨ the dual abelian scheme of A and by ε∨ its zero section.

C. Soulé [1985] and A. Beilinson [1985] defined motivic cohomology for any variety V over a field

H i
M(V, j) := Gr j

γ K2 j−i (V )⊗Q.

Remark. In this paper we work with the above rather old-fashioned definition of motivic cohomology
for the compatibility with earlier references. This and the requirement that S is smooth over a base field k
are not necessary. The latter condition does no harm as we are mainly interested in the arithmetic Chow
groups and Deligne cohomology. For a much more general setting we refer to the paper [Huber and
Kings 2018] where also the decomposition of motivic cohomology is considered in an up-to-date fashion.

For any integer a > 1 and any W ⊆A open subscheme such that

j : [a]−1(W ) ↪→W
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is an open immersion (here [a] :A→A is the a-multiplication on A), the trace map with respect to a is
defined as

tr[a] : H ·M(W, ∗ )
j∗
−→ H ·M([a]

−1(W ), ∗ )
[a]∗
−−→ H ·M(W, ∗ ). (1)

For any integer r we let

H ·M(W, ∗ )
(r)
:= {ψ ∈ H ·M(W, ∗ ) | (tr[a]−ar Id)kψ = 0 for some k ≥ 1}

be the generalized eigenspace of tr[a] of degree (or weight) r . One can prove that there is a decomposition
into tr[a]-eigenspaces

H ·M(A, ∗ )∼=
2g⊕

r=0

H ·M(A, ∗ )
(r)

which is independent of a and that
H ·M(A \ S0, ∗ )

(0)
= 0

(see Proposition 2.2.1 in [Kings and Rössler 2017]).

Arithmetic varieties. An arithmetic ring is a triple (R, 6, F∞) where

• R is an excellent regular Noetherian integral domain,

• 6 is a finite nonempty set of monomorphisms σ : R→ C,

• F∞ is an antilinear involution of the C−algebra C6 := C× · · ·×︸ ︷︷ ︸
|6|

C, such that the diagram

R δ
//

Id
��

C6

F∞
��

R δ
// C6

commutes (here by δ we mean the natural map to the product induced by the family of maps 6).

An arithmetic variety X over R is a scheme of finite type over R, which is flat, quasiprojective, and
regular. As usual we write

X (C) :=
∐
σ∈6

(X ×R,σ C)(C).

Note that F∞ induces an involution F∞ : X (C)→ X (C).

Arithmetic Chow groups. Let p ∈ N. We denote by

• E p,p(XR) the R-vector space of smooth real forms ω on X (C) of type (p, p) such that F∗
∞
ζ =

(−1)pω,

• Ẽ p,p(XR) the quotient E p,p(XR)/(Im ∂ + Im ∂),

• D p,p(XR) the R-vector space of real currents ζ on X (C) of type (p, p) such that F∗
∞
ζ = (−1)pζ ,

• D̃ p,p(XR) the quotient D p,p(XR)/(Im ∂ + Im ∂).



504 Guido Kings and Danny Scarponi

If ω or ζ is a form in E p,p(XR) or a current in D p,p(XR), we write ω̃ or ζ̃ for its class in Ẽ p,p(XR) or
D̃ p,p(XR), respectively.

We briefly recall the definition of the arithmetic Chow groups of X , as given in [Gillet and Soulé 1990,
§3.3]. Let Zq(X) denote the group of cycles of codimension q in X and CHq(X) denote the q-th Chow
group of X . We write Ẑq(X) for the subgroup of

Zq(X)⊕ D̃q−1,q−1(XR)

consisting of pairs (z, h̃) where z ∈ Zq(X) and h ∈ Dq−1,q−1(XR) satisfy

ddc h+ δz ∈ Eq,q(XR).

By definition, the class h̃ is then a Green current for z. Note that if h̃ is a Green current for z, the form
ddc h+ δz is closed.

For any codimension-(q − 1) integral subscheme i :W ↪→ X and any f ∈ k(W )∗, one can verify, by
means of the Poincaré–Lelong lemma, that the pair

d̂iv( f ) := (div( f ),−i∗ log| f |2)

is an element in Ẑq(X). Then the q-th arithmetic Chow group of X is the quotient

ĈHq
(X) := Ẑq(X)/R̂q(X)

where R̂q(X) is the subgroup generated by all pairs d̂iv( f ), for any f ∈ k(W )∗ and any W ⊂ X as above.
If Zq,q(XR)⊆ Eq,q(XR) denotes the subspace of closed forms, we have a well defined map

ω : ĈHq
(X)→ Zq,q(XR)

sending the class of (z, h̃) to ddc h+ δz . Finally we have a map

ζ : ĈHq
(X)→ CHq(X)

sending the class of (z, h̃) to the class of z.

Analytic Deligne cohomology of arithmetic varieties. If X is an arithmetic variety over R we write

Hq
Dan(XR,R(p)) := {γ ∈ Hq

Dan(X (C),R(p)) | F∗
∞
γ = (−1)pγ },

where H∗Dan(X (C),R(p)) is the analytic Deligne cohomology of the complex manifold X (C), i.e., the
hypercohomology of the complex

0→ (2π i)pR→ OX (C)
d
−→�1

X (C)→ · · · →�
p−1
X (C)→ 0

(�∗X (C) denotes the de Rham complex of holomorphic forms on X (C)). In the following sections we will
need the characterization [Burgos 1997, §2]

H2p−1
Dan (XR,R(p))= {x̃ ∈ (2π i)p−1 Ẽ p−1,p−1(XR) | ∂∂x = 0}. (2)
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Analytic Deligne cohomology and Betti cohomology. By definition of analytic Deligne cohomology
there is a canonical map to Betti cohomology

φB : H
2g−1
Dan ((A \A[N ])R,R(g))→ H 2g−1

B ((A \A[N ])(C),R(g)).

Later we will need an explicit description of this map: first we compute the group H 2g−1
B ((A\A[N ])(C), g)

with the cohomology of the complex of currents D∗((A \A[N ])(C), g) := (2π i)g D∗((A \A[N ])(C)),
so

H 2g−1
B ((A \A[N ])(C), g)=

{η ∈ D2g−1((A \A[N ])(C), g) | dη = 0}
{dω | ω ∈ D2g−2((A \A[N ])(C), g)}

.

Lemma 1. Using the description (2), the map φB sends the class x̃ of x ∈ (2π i)g−1 Eg−1,g−1((A\A[N ])R)
with ∂∂x = 0 to

φB(x̃)= [4π idcx]. (3)

Proof. This is [Burgos 1997, Theorem 2.6]. �

We also need an explicit description of the connecting homomorphism, which we call the residue
homomorphism

resB : H
2g−1
B ((A \A[N ])(C),R(g))→ H 2g

B,A[N ]\S0
((A \ S0)(C),R(g)).

For this we compute H 2g
B,A[N ]\S0

((A \ S0)(C),R(g)) with the cohomology of the simple complex of the
restriction morphism D∗((A \ S0)(C), g)→ D∗((A \A[N ])(C), g) and get

H 2g
B,A[N ]\S0

((A \ S0)(C),R(g))

=
{(ξ, τ ) ∈ D2g((A \ S0)(C), g)⊕ D2g−1((A \A[N ])(C), g) | dξ = 0 and ξ |A\A[N ] = dτ }
{(dθ, θ |A\A[N ]− dα) | θ ∈ D2g−1((A \ S0)(C), g), α ∈ D2g−2((A \A[N ])(C), g)}

.

Note that we are using the simple complex as in [Burgos 1997, §1] (and not the cone in the sense of
Verdier) of the restriction morphism to compute cohomology with support. From the definitions one gets
immediately:

Lemma 2. The residue resB sends the class of η, which we denote by [η], to

resB([η])= [0,−η],

where [0,−η] denotes the class of (0,−η).

2. Review of the polylog and the Maillot–Rössler current

The axiomatic definition of pol0. G. Kings and D. Rössler [2017] have provided a simple axiomatic
description of the degree-zero part of the polylogarithm on abelian schemes. We briefly recall it here.

The degree-zero part of the motivic polylogarithm is by definition a class in motivic cohomology

pol0 ∈ H 2g−1
M (A \A[N ], g)(0).
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To describe it more precisely, consider the residue map along A[N ]

H 2g−1
M (A \A[N ], g)→ H 0

M(A[N ] \ S0, 0).

This map induces an isomorphism

res : H 2g−1
M (A \A[N ], g)(0) ∼= H 0

M(A[N ] \ S0, 0)(0)

(see Corollary 2.2.2 in [Kings and Rössler 2017]).

Definition 3. The degree-zero part of the polylog pol0 is the unique element of H 2g−1
M (A \A[N ], g)(0)

mapping under res to the fundamental class 1◦N of A[N ] \ S0.

We recall now that we have a map regan defined as the composition

H 2g−1
M (A \A[N ], g)

reg
−→ H2g−1

D ((A \A[N ])R,R(g))
forget
−−−→ H2g−1

Dan ((A \A[N ])R,R(g))

where reg is the regulator map into Deligne–Beilinson cohomology and the second map is the forgetful
map from Deligne–Beilinson cohomology to analytic Deligne cohomology.

The Maillot–Rössler current gA∨ . V. Maillot and D. Rössler [2015] proved the following theorem.

Theorem 4 [Maillot and Rössler 2015, Theorem 1.1]. There exists a unique a class of currents gA∨ ∈

D̃g−1,g−1(AR) which satisfies the following three properties:

(i) gA∨ is a Green current for S0,

(ii) (S0, gA∨)= (−1)g p1,∗(ĉh(P))[g] in the group ĈHg
(A)Q,

(iii) [n]∗gA∨ = gA∨ for all n > 0.

Here we take P to be the Poincaré bundle on A×S A∨ equipped with a canonical hermitian metric,
p1 : A×S A∨→ A is the first projection, and ĈHg

(A) denotes the g-th arithmetic Chow group of A.
The term ĉh(P) ∈

⊕
i ĈHi

(A×S A∨) is the arithmetic Chern character of P, and p1,∗(ĉh(P))[g] denotes
the homogeneous component of degree g of p1,∗(ĉh(P)) in the graded ring

⊕
i ĈHi

(A).
We now consider the arithmetic cycle

(N S0,N gA∨) := ([N ]∗− N 2g)(S0, gA∨).

Thanks to the geometry of the Poincaré bundle, one can show that the class of (N S0,N gA∨) in ĈHg
(A)Q

is zero [Scarponi 2017, Proposition 5.2]. In particular, ddc(NgA∨ |A\A[N ])= 0, and by Theorem 1.2.2(i)
in [Gillet and Soulé 1990], there exists a smooth form in the class of currents NgA∨ |A\A[N ]. Equivalently,

NgA∨ |A\A[N ] lies in the image of the inclusion

Ẽg−1,g−1((A \A[N ])R) ↪→ D̃g−1,g−1((A \A[N ])R).

The group H 2g−1
Dan ((A\A[N ])R,R(g)) can be represented by classes in (2π i)g−1 Ẽg−1,g−1((A\A[N ])R)

with ddc equal to zero by (2), so we get:
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Lemma 5. The Maillot–Rössler current defines a class

(2π i)g−1(NgA∨)|A\A[N ] ∈ H 2g−1
Dan ((A \A[N ])R,R(g)).

The exact sequence (see the theorem and remark in [Gillet and Soulé 1990, §3.3.5])

H 2g−1
M (A \A[N ], g)

regan
−−→ H 2g−1

Dan ((A \A[N ])R,R(g))
r
−→ ĈHg

(A \A[N ])Q

where r sends x̃ to the class of (0, x̃/(2π i)g−1), with the vanishing of (N S0,N gA∨) in ĈHg
(A \A[N ])Q,

then implies that the Maillot–Rössler current is motivic, i.e.,

(2π i)g−1(NgA∨)|A\A[N ] ∈ regan(H
2g−1
M (A \A[N ], g)).

Since the operator tr[a] defined in (1) obviously operates on analytic Deligne cohomology and the map
regan intertwines this operator with tr[a], we deduce from Theorem 4(iii) the fact:

Lemma 6. The Maillot–Rössler current is in the image of the regulator from H 2g−1
M (A \A[N ], g)(0):

(2π i)g−1(NgA∨)|A\A[N ] ∈ regan(H
2g−1
M (A \A[N ], g)(0)).

3. The comparison between pol0 and the class gA∨

In this section we give an easy conceptual proof of the comparison result between pol0 and the class gA∨ .

A commutative diagram. The following lemma, proved by Rössler and Kings, is the key for the proof of
our comparison result.

Lemma 7 [Kings and Rössler 2017, Lemma 4.2.6]. The diagram

H 2g−1
M (A \A[N ], g)(0)

'

res
//

regan
��

H 2g
M,A[N ]\S0

(A \ S0, g)(0)

regB

��

H 2g−1
Dan ((A \A[N ])R,R(g))

φB
��

H 2g−1
B ((A \A[N ])(C),R(g))

resB
// H 2g

B,A[N ]\S0
((A \ S0)(C),R(g))

is commutative, and the map regB is injective.

The comparison result. We are now ready to reprove the comparison result of Kings and Rössler.

Theorem 8 [Kings and Rössler 2017]. We have the equality

−2 · regan(pol0)= (2π i)g−1(NgA∨)|A\A[N ].

Proof. Let ψ ∈ H 2g−1
M (A\A[N ], g)(0) be such that regan(ψ)=−

1
2(2π i)g−1(NgA∨)|A\A[N ]. By Lemma 7,

it is sufficient to show that ψ and pol0 have the same image under regB ◦ res.
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Now, by definition of pol0 we have

regB(res(pol0))= regB(1
◦

N )= [(2π i)gδ1◦N , 0],

and by the description of resB in Lemma 2 we have

regB(res(ψ))= resB(φB(regan(ψ)))= resB([−(2π i)gdc(NgA∨ |A\A[N ])])

= [0, (2π i)gdc(NgA∨)|A\A[N ]].

The difference regB(res((pol0−ψ))) is then represented by the pair

((2π i)gδ1◦N ,−(2π i)gdc(NgA∨)|A\A[N ]),

which is a coboundary, since (by [Scarponi 2017, Proposition 5.2])

(2π i)gδ1◦N + (2π i)g ddc(NgA∨ |A\S0)= 0. �

4. A decomposition of the arithmetic Chow group

Recall the exact sequence (see the theorem and remark in [Gillet and Soulé 1990, §3.3.5])

H 2p−1
M (A, p)→ Ẽ p−1,p−1(AR)→ ĈHp

(A)Q→ CHp(A)Q→ 0. (4)

The endomorphism [n]∗ acts on this sequence, and we want to study the decomposition into generalized
eigenspaces. Denote by E p,q

A the sheaf of p, q-forms on A(C). For the next result observe that we have
an isomorphism of sheaves π∗ε∗E p,q

A
∼= E p,q

A , which identifies the pull-back of sections of ε∗E p,q
A on the

base with the translation invariant differential forms on A. For a C∞ section a : S(C)→A(C), we denote
by τa :A(C)→A(C) the translation by a. A differential form ω is translation invariant, if τ ∗aω = ω for
all sections a.

Theorem 9. Let n ≥ 2 and ω ∈ Ẽ p,q(AR). Assume that ω is a generalized eigenvector for [n]∗ with
eigenvalue λ, i.e., ([n]∗ − λ)kω = 0, for some k ≥ 1. Then the form ω is translation invariant. In
particular, there is a section η ∈ ε∗E p,q

A (SR) with ω = π∗η. Moreover, one has [n]∗ω = n p+qω, i.e., ω is
an eigenvector with eigenvalue n p+q .

Proof. The statement that ω is translation invariant does not depend on the complex structure. We use
that locally on the base the family of complex tori π :A(C)→ S(C) is as a C∞-manifold of the form
U × (S1)2g, where U ⊂ S(C) is open and S1

= R/Z is a real torus. In this situation it suffices to show
that ω is translation invariant under a dense subset of points of (S1)2g.

We start to prove the following claim: if the form η := ([n]∗− λ)ω is translation invariant, then ω is
translation invariant.

First note that λ 6= 0 because [n]∗[n]∗ω = n2gω, which implies that [n]∗ is injective. As the set
{a ∈ (S1)2g

| [nr
](a)= 0 for some r ≥ 0} is dense in (S1)2g, by induction over r it suffices to show that
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τ ∗aω= ω for a with [nr
](a)= 0. The case r = 0 is trivial because then a = 0. Suppose we know that ω is

translation invariant for all b with [nr−1
](b)= 0, and let a be such that [nr

](a)= 0. We compute

λτ ∗aω = τ
∗

a ([n]
∗ω− η)= [n]∗τ ∗

[n]aω− τ
∗

a η = [n]
∗ω− η = λω.

As λ 6= 0, it follows that τ ∗aω = ω. This completes the induction step.
We now show by induction on k that ω with ([n]∗− λ)kω = 0 is translation invariant. For k = 1 this

follows from the claim by setting η = 0. Suppose that all forms η with ([n]∗−λ)k−1η = 0 are translation
invariant. Then η := ([n]∗ − λ)ω is translation invariant, and it follows from the claim that also ω is
translation invariant.

For the final statement we just observe that [n]∗ acts via n p+q-multiplication on the bundle ε∗E p,q
A

whose sections identify with the translation invariant forms on A(C). �

For the next result we have to consider generalized eigenspaces for [n]∗, and to distinguish these from
the generalized eigenspaces for [n]∗, we write

V (a) := {v ∈ V | ([n]∗− na)kv = 0 for some k ≥ 1}.

Corollary 10. For each a = 0, . . . , 2g there is an exact sequence

H 2p−1
M (A, p)(a)→ Ẽ p−1,p−1(AR)(a)→ ĈHp

(A)Q(a)→ CHp(A)Q(a)

of generalized [n]∗-eigenspaces for the eigenvalue na . In particular, for a 6= 2(p−1) one has an injection

ĈHp
(A)Q(a) ↪→ CHp(A)Q(a).

Proof. The sequence (4) is a sequence of modules under the principal ideal domain C[X ], where X acts
as [n]∗. Note that taking the torsion submodule

T M := ker(M→ M ⊗C[X ]Quot C[X ])

is a left exact functor on short exact sequences

0→ M ′→ M→ M ′′→ 0.

If M ′ is torsion, the functor T is even exact. As H 2p−1
M (A, p) is torsion, the exact sequence (4) gives rise

to an exact sequence

0→ T im(H 2p−1
M (A, p))→ T Ẽ p−1,p−1(AR)→ T ĈHp

(A)Q→ T CHp(A)Q.

As a torsion C[X ]-module is the direct sum of its generalized eigenspaces, the first claim follows. The
second statement follows from the first, as Ẽ p−1,p−1(AR)(a)= 0 for a 6= 2(p− 1) by Theorem 9. �
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5. An axiomatic characterization of the Maillot–Rössler current

We want to prove an axiomatic characterization of (−1)g p1,∗(ĉh(P))[g]. The result is the following:

Theorem 11. Let ξ̂ be an element of ĈHg
(A)Q satisfying the following two properties:

• ζ(ξ̂ )= S0 in CHg(A)Q,

• ([n]∗− n2g)k(ξ̂ )= 0 in ĈHg
(A)Q for some n ≥ 2 and some k ≥ 1.

Then ξ̂ = (−1)g p1,∗(ĉh(P))[g] = (S0, gA∨).

Remark. (1) Notice that, even if (−1)g p1,∗(ĉh(P))[g] satisfies the second property for every n [Scarponi
2017, Proposition 6], it is sufficient to ask that this property holds for one integer greater than one to
uniquely characterize it.

(2) Notice also that the condition ([n]∗ − n2g)(ξ̂ ) = 0 implies [n]∗(ξ̂ ) = ξ̂ , thanks to the projection
formula [n]∗[n]∗ = n2g. In the case of an abelian scheme over the ring of integers of a number field,
K. Künnemann [1994] showed that there exists a decomposition of the Arakelov Chow groups as
a direct sum of eigenspaces for the pullback [n]∗. As a consequence, in this particular case the
conditions ([n]∗− n2g)(ξ̂ )= 0 and [n]∗(ξ̂ )= ξ̂ are equivalent, if ξ̂ belongs to the Arakelov Chow
group.

Proof. By definition ξ̂ ∈ ĈHg
(A)Q(2g) and by Corollary 10 one has an injection

ĈHg
(A)Q(2g) ↪→ CHg(A)Q(2g).

This shows that ξ̂ is uniquely determined by its image in CHg(A)Q. As this image is the same as that of
(S0, gA∨), this shows the theorem. �

Theorems 8 and 11 give us the following axiomatic characterization of gA∨ and therefore of pol0.

Theorem 12. The class gA∨ is the unique element g ∈ D̃g−1,g−1(AR) such that

(i) g is a Green current for S0,

(ii) ([n]∗− n2g)k(S0, g)= 0 in ĈHg
(A)Q for some n ≥ 2 and some k ≥ 1,

(iii) [m]∗g= g for some m > 1.

Furthermore, pol0 is the unique element in H 2g−1
M (A \A[N ], g)(0) such that

−2 · regan(pol0)= (2π i)g−1([N ]∗gA∨ − N 2ggA∨)|A\A[N ] ∈ H2g−1
Dan ((A \A[N ])R,R(g)).

Proof. By Theorem 11 we know that the first two conditions of our theorem are equivalent to the
first two conditions in Theorem 4, so that gA∨ satisfies the three properties above. Suppose now that
g ∈ D̃g−1,g−1(AR) is another element satisfying the three properties of our theorem, and let m > 1 be
such that [m]∗g= g. We want to show that gA∨ = g. Since by Theorem 11

(S0, g)= (−1)g p1,∗(ĉh(P))[g] = (S0, gA∨),
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the exact sequence (4) implies that the difference gA∨ − g belongs to the image of the regulator
H 2g−1

M (A, g) → Ẽg−1,g−1(AR). Since H 2g−1
M (A, g) is a torsion module over C[X ] (with X acting

as [m]∗), then gA∨ − g lies in T Ẽg−1,g−1(AR). The projection formula and Theorem 9 give

m2g(gA∨ − g)= [m]∗[m]∗(gA∨ − g)= m2g−2
[m]∗(gA∨ − g),

i.e., [m]∗(gA∨−g)=m2(gA∨−g), but property (iii) in our theorem implies that [m]∗(gA∨−g)= (gA∨−g).
This is possible only if gA∨ − g is zero.

The second statement is a simple consequence of Theorem 8 and the fact that regan is injective when
restricted to H 2g−1

M (A \A[N ], g)(0) [Kings and Rössler 2017, Lemma 4.2.6]. �
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