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We study pushforwards of log pluricanonical bundles on projective log canonical pairs .Y;�/ over
the complex numbers, partially answering a Fujita-type conjecture due to Popa and Schnell in the log
canonical setting. We show two effective global generation results. First, when Y surjects onto a projective
variety, we show a quadratic bound for generic generation for twists by big and nef line bundles. Second,
when Y is fibered over a smooth projective variety, we show a linear bound for twists by ample line
bundles. These results additionally give effective nonvanishing statements. We also prove an effective
weak positivity statement for log pluricanonical bundles in this setting, which may be of independent
interest. In each context we indicate over which loci positivity holds. Finally, using the description of
such loci, we show an effective vanishing theorem for pushforwards of certain log-sheaves under smooth
morphisms.
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1. Introduction

Throughout this paper, all varieties will be over the complex numbers.
Popa and Schnell proposed the following relative version of Fujita’s conjecture:

Conjecture 1.1 [Popa and Schnell 2014, Conjecture 1.3]. Let f W Y ! X be a morphism of smooth
projective varieties, with dimX D n, and let L be an ample line bundle on X. For each k � 1, the sheaf

f�!
˝k
Y ˝L˝`

is globally generated for all `� k.nC 1/.
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Additionally assuming that L is globally generated, Popa and Schnell proved Conjecture 1.1 more
generally for log canonical pairs .Y;�/. Previously, Deng [2017, Theorem C] and the first author
[Dutta 2017, Proposition 1.2] studied this conjecture for klt Q-pairs, and were able to remove the global
generation assumption on L to obtain generic effective generation statements. In this paper, we obtain
similar generic generation results, more generally for log canonical pairs .Y;�/.

First, when X is arbitrarily singular and L is only big and nef, we obtain the following quadratic bound
on `. The case when .Y;�/ is klt and k D 1 is due to de Cataldo [1998, Theorem 2.2].

Theorem A. Let f W Y !X be a surjective morphism of projective varieties, where X is of dimension n.
Let .Y;�/ be a log canonical R-pair and let L be a big and nef line bundle on X. Consider a Cartier
divisor P on Y such that P �R k.KY C�/ for some integer k � 1. Then, the sheaf

f�OY .P /˝OX
L˝`

is generated by global sections on an open set U for every integer `� k.n2C 1/.

On the other hand, we have the following linear bound when X is smooth and L is ample. The
statement in (i) extends [Deng 2017, Theorem C] to log canonical pairs. As we were writing this, we
learned that a statement similar to (ii) was also obtained by Iwai [2017, Theorem 1.5].

Theorem B. Let f W Y !X be a fibration of projective varieties, where X is smooth of dimension n. Let
.Y;�/ be a log canonical R-pair and let L be an ample line bundle on X. Consider a Cartier divisor P
on Y such that P �R k.KY C�/ for some integer k � 1. Then, the sheaf

f�OY .P /˝OX
L˝`

is globally generated on an open set U for

(i) every integer `� k.nC 1/Cn2�n; and

(ii) every integer ` > k.nC 1/C 1
2
.n2�n/ when .Y;�/ is a klt Q-pair.

Here, a fibration is a morphism whose generic fiber is irreducible.
In both Theorems A and B, when Y is smooth and � has simple normal crossing support, we have

explicit descriptions of the open set U. See Remark 5.1. Thus, we have descriptions of the loci where
global generation holds up to a log resolution.

When X is smooth of dimension � 3 and L is ample, the bound on ` can be improved. This gives the
predicted bound in Conjecture 1.1 for surfaces; see Remark 5.2.

Remark 1.2 (effective nonvanishing). Theorems A and B can be interpreted as effective nonvanishing
statements. With notation as in the theorems, it follows that f�OY .P /˝L˝` admits global sections for
all ` � k.n2C 1/ when L is big and nef, and for all ` � k.nC 1/C n2 � n when L is ample and X is
smooth. Moreover, just as in Theorem B(ii), the effective bound of the second nonvanishing statement
can be improved in the case when .Y;�/ is a klt Q-pair.

We now state the technical results used in proving Theorems A and B.
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An extension theorem. Recall that if � W X 0 ! X is the blow-up of a projective variety X at x with
exceptional divisor E, then the Seshadri constant of a nef Cartier divisor L at x is

".LI x/ WD supft 2 R�0 j �
�L� tE is nefg:

The following replaces the role of Deng’s extension theorem [2017, Theorem 2.11] in our proofs.

Theorem C. Let f W Y !X be a surjective morphism of projective varieties, where X is of dimension n
and Y is smooth. Let � be an R-divisor on Y with simple normal crossing support and coefficients
in .0; 1�, and let L be a big and nef Q-Cartier Q-divisor on X. Suppose there exists a closed point
x 2 U.f;�/ and a real number ` > n=".LI x/ such that

P` �R KY C�C f̀ �L

for some Cartier divisor P` on Y . Then, the restriction map

H 0.Y;OY .P`// �!H 0.Yx;OYx
.P`// (1)

is surjective, and the sheaf f�OY .P`/ is globally generated at x.

See Notation 2.1(a) for the definition of the open set U.f;�/.

Remark 1.3 (comments on the proofs). The proofs of Theorems A and B(i) are in a way an algebraization
of Deng’s techniques, exploiting a generic lower bound for Seshadri constants due to Ein, Küchle, and
Lazarsfeld (Theorem 2.20). In the algebraic setting, this lower bound was first used by de Cataldo to
prove a version of Theorem A for klt pairs when k D 1. One of our main challenges was to extend
de Cataldo’s theorem to the log canonical case (see Theorem C above).

To obtain the better bound in Theorem B(ii) for klt Q-pairs, we use [Dutta 2017, Proposition 1.2]
instead of Seshadri constants.

In Theorems A and C, in order to work with line bundles L that are big and nef instead of ample,
we needed to study the augmented base locus BC.L/ of L (see Definition 2.22). We used Birkar’s
generalization of Nakamaye’s theorem [Birkar 2017, Theorem 1.4] and [Küronya 2013, Proposition 2.7],
which capture how L fails to be ample.

The proof of Theorem C relies on a cohomological injectivity theorem due to Fujino [2017a, Theo-
rem 5.4.1]. If .Y;�/ is replaced by an arbitrary log canonical R-pair, then the global generation statement
in Theorem C still holds over some open set (Corollary 3.2).

Remark 1.4 (effective vanishing). With the new input of weak positivity, which is discussed next, we
give some effective vanishing statements for certain cases of such pushforwards under smooth morphisms
(see Theorem 5.3). This improves similar statements in [Dutta 2017] and is in the spirit of [Popa and
Schnell 2014, Proposition 3.1], where they showed a similar statement with the assumption that L is
ample and globally generated.
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Effective twisted weak positivity. In order to prove Theorem B, we also use the following weak positivity
result for log canonical pairs. This may be of independent interest.

In this setting, weak positivity was partially known due to Campana [2004, Theorem 4.13], and later
more generally due to Fujino [2017b, Theorem 1.1], but using a slightly weaker notion of weak positivity
(see [loc. cit., Definition 7.3] and the comments thereafter). Our result extends these results.

Theorem D (twisted weak positivity). Let f W Y !X be a fibration of normal projective varieties such
that X is Gorenstein of dimension n. Let � be an R-Cartier R-divisor on Y such that .Y;�/ is log
canonical and k.KY C�/ is R-linearly equivalent to a Cartier divisor for some integer k � 1. Then, the
sheaf

f�OY .k.KY=X C�//

is weakly positive.

Recall that a torsion-free coherent sheaf F is weakly positive if there exists a nonempty open set U
such that for every integer a, there is an integer b � 1 such that

SymŒab�F ˝H˝b

is generated by global sections on U for all ample line bundles H. Here, � Œs� is the reflexive hull of � s

(see Notation 2.6).
Popa and Schnell [2014, Theorem 4.2] showed that if �D 0, the morphism f has generically reduced

fibers in codimension 1, and H D !X ˝ L˝nC1 with L ample and globally generated, then weak
positivity in Theorem D holds over U.f; 0/ for all b � k. In a similar spirit, we prove the following
“effective” version of twisted weak positivity when Y is smooth and� has simple normal crossing support.
Moreover, Theorem D is deduced from this result and therefore we also obtain an explicit description, up
to a log resolution, of the locus over which weak positivity holds. This extends [Popa and Schnell 2014,
Theorem 4.2] to arbitrary fibrations.

Theorem E (effective weak positivity). Let f W Y ! X be a fibration of projective varieties, where Y
is smooth and X is normal and Gorenstein of dimension n. Let � be an R-divisor on Y with simple
normal crossing support and with coefficients of�h in .0; 1�. Consider a Cartier divisor P on Y such that
P �R k.KY C�/ for some integer k � 1. Let U be the intersection of U.f;�/ with the largest open set
over which f�OY .P / is locally free, and let H D !X ˝L˝nC1 for L an ample and globally generated
line bundle on X. Then, the sheaf

.f�OY .k.KY=X C�///Œs�˝H˝`

is generated by global sections on U for all integers `� k and s � 1.

Here, �h is the horizontal part of �; see Notation 2.1(b).
When b�c D 0, one can, in a way, get rid of the assumption that f�OY .P / is locally free on U using

invariance of log plurigenera [Hacon et al. 2018, Theorem 4.2]; see Remark 4.2.
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The proof of Theorem E relies on Viehweg’s fiber product trick; see [Viehweg 1983, §3], [Popa and
Schnell 2014, Theorem 4.2], or [Höring 2010, §3] for an exposition.

2. Definitions and preliminary results

Throughout this paper, a variety is an integral separated scheme of finite type over the complex numbers.
We will also fix the following notation:

Notation 2.1. Let f W Y !X be a morphism of projective varieties, where Y is smooth, and let � be an
R-divisor with simple normal crossing support on Y .

(a) We denote by U.f;�/ the largest open subset of X such that

� U.f;�/ is contained in the smooth locus Xreg of X ;

� f W f �1.U.f;�//! U.f;�/ is smooth; and

� the fibers Yx WDf �1.x/ intersect each component of� transversely for all closed points x 2U.f;�/.

This open set U.f;�/ is nonempty by generic smoothness; see [Hartshorne 1977, Corollary III.10.7] and
[Lazarsfeld 2004a, Lemma 4.1.11].

(b) We write

�D�vC�h;

where �v and �h do not share any components, such that

� every component of �h is horizontal over X, i.e., surjects onto X ; and

� �v is vertical over X, i.e., f .Supp.�v//¨X.

Note that U.f;�/ satisfies U.f;�/\f .�v/D∅.

Reflexive sheaves and weak positivity. In this section, fix an integral noetherian scheme X. To prove
Theorem E, we need some basic results on reflexive sheaves, which we collect here.

Definition 2.2. A coherent sheaf F onX is reflexive if the natural morphism F!F__ is an isomorphism,
where G_ WDHomOX

.G ;OX /. In particular, locally free sheaves are reflexive.
A coherent sheaf F on X is normal if the restriction map

�.U;F / �! �.U XZ;F /

is bijective for every open set U �X and every closed subset Z of U of codimension at least 2.

Proposition 2.3 (see [Hartshorne 1994, Proposition 1.11]). If X is normal, then every reflexive coherent
sheaf F is normal.

Lemma 2.4 [Stacks 2018, Tag 0AY4]. Let F and G be coherent sheaves on X, and assume that F is
reflexive. Then, HomOX

.G ;F / is also reflexive.

http://stacks.math.columbia.edu/tag/0AY4
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We will often use these facts to extend morphisms from the complement of codimension at least 2, as
recorded in the following:

Corollary 2.5. Suppose X is normal, and let F and G be coherent sheaves on X such that F is reflexive.
If U �X is an open subset such that codim.X XU/� 2, then every morphism ' W G jU !F jU extends
uniquely to a morphism Q' W G !F .

Proof. The morphism ' corresponds to a section of the sheaf HomOX
.G ;F / over U. The sheaf

HomOX
.G ;F / is reflexive by Lemma 2.4; hence the section ' extends uniquely to a section Q' of

HomOX
.G ;F / over X by Proposition 2.3. �

We will use the following notation throughout this paper:

Notation 2.6 [Höring 2010, Notation 3.3]. Let F be a torsion-free coherent sheaf on a normal variety X.
Let i WX� ,!X be the largest open set such that F jX� is locally free. We define

SymŒb�F WD i� Symb.F jX�/ and F Œb�
WD i�..F jX�/

˝b/:

We can also describe these sheaves as follows:

SymŒb�F ' .Symb.F //__ and F Œb�
' .F˝b/__:

Indeed, these pairs of reflexive sheaves coincide in codimension 1 and hence are isomorphic (see
[Hartshorne 1994, Theorem 1.12]).

We can now define the positivity notion appearing in Theorem D.

Definition 2.7 (weak positivity [Viehweg 1983, Definition 1.2]). LetX be a normal variety, and let U �X
be an open set. A torsion-free coherent sheaf F onX is said to be weakly positive onU if for every positive
integer a and every ample line bundle L on X, there exists an integer b � 1 such that SymŒab�F ˝L˝b

is globally generated on U. We say F is weakly positive if F is weakly positive on some open set U.

Dualizing complexes and canonical sheaves. The main reference for this section is [Hartshorne 1966].
We define the following:

Definition 2.8. Let h WX ! Spec k be an equidimensional scheme of finite type over a field k. Then the
normalized dualizing complex for X is !�X WD h

Šk, where hŠ is the exceptional pullback of Grothendieck
duality [loc. cit., Corollary VII.3.4]. One defines the canonical sheaf on X to be the coherent sheaf

!X WDH� dimX!�X :

When X is smooth and equidimensional over a field, the canonical sheaf !X is isomorphic to the
invertible sheaf of volume forms �dimX

X [loc. cit., III.2].
We will need the explicit description of the exceptional pullback functor for finite morphisms. Let

� W Y ! X be a finite morphism of equidimensional schemes of finite type over a field. Consider the
functor

N�� WMod.��OY / �!Mod.OY /
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obtained from the morphism N� W .Y;OY /! .X; ��OY / of ringed spaces. This functor N�� satisfies the
following properties (see [loc. cit., III.6]):

(a) The functor N�� is exact since the morphism N� of ringed spaces is flat. We define the functor

�Š W DC.Mod.OX // �! DC.Mod.OY //;

F 7�! N��RHomOX
.��OY ;F /:

(b) For every OX -module G , we have ��G ' N��.G ˝OX
��OY /.

(c) If !�X is the normalized dualizing complex for X, then �Š!�Y is the normalized dualizing complex
for Y .

Using the above description, we construct the following pluri-trace map for integral schemes over
fields, which we will use in the proof of Theorem E. We presume that this construction is already known
to the experts, but we could not find a reference.

Lemma 2.9. Let d W Y 0! Y be a dominant proper birational morphism of integral schemes of finite type
over a field, where Y 0 is normal and Y is Gorenstein. Then, there is a map of pluricanonical sheaves

d�!
˝k
Y 0 �! !˝kY

which is an isomorphism where d is an isomorphism.

Proof. By the universal property of normalization [Stacks 2018, Tag 035Q], we can factor d as

Y 0 Y Y
d 0

d

�

where � is the normalization. Note that d 0 is proper and birational since d is.
We first construct a similar morphism for �. Let nD dimY . Since Y is Gorenstein, the canonical sheaf

!Y is invertible and the normalized dualizing complex is !Y Œn� [Hartshorne 1966, Proposition V.9.3].
Using property (c) above we have

!Y DH�n.�Š!�Y /' N�
�.R�nHomOY

.��OY ;OY Œn�/˝OY
!Y /

' N��.HomOY
.��OY ;OY /˝OY

!Y /;

where we get the first isomorphism since N�� is exact by (a) and since !Y is invertible.
Now HomOY

.��OY ;OY / admits a morphism to ��OY , which makes it the largest ideal in ��OY that
is also an ideal in OY . It is the so-called conductor ideal of the normalization map [Kollár 2013, (5.2)].
Thus, we get a morphism

!Y ,�! N�
�.��OY ˝!Y /' �

�!Y :

The last isomorphism follows from (b) above. By taking the .k�1/-fold tensor product of the above
morphism we have

!
˝.k�1/

Y
,�! ��!

˝.k�1/
Y : (2)

http://stacks.math.columbia.edu/tag/035Q
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Finally, we use (2) to construct a map

d�!
˝k
Y 0 �! ��!

˝.k�1/
Y ˝OY

!Y :

First, we construct the above morphism over U, where d 0 is an isomorphism. Define V WD d 0�1.U /. The
identity map

id W d 0�!
˝k
V �! !˝kU

composed with map obtained from (2) gives the map

� W d 0�!
˝k
V �! ��!

˝.k�1/
Y jU ˝OU

!U :

Since ��!˝.k�1/Y is invertible and !Y is reflexive, the sheaf ��!˝.k�1/Y ˝!Y is also reflexive. Now
codim.Y XU/ � 2 by Zariski’s main theorem; see [Hartshorne 1977, Theorem V.5.2]. Therefore by
Corollary 2.5 we obtain

Q� W d 0�!
˝k
Y 0 �! ��!

˝.k�1/
Y ˝OY

!Y :

Composing �� Q� with one copy of the trace morphism ��!Y !!Y [Hartshorne 1966, Proposition III.6.5],
we get

d�!
˝k
Y 0

�� Q����! ��.�
�!
˝.k�1/
Y ˝OY

!Y /' !
˝.k�1/
Y ˝OY

��!Y
id˝Tr
���!!˝kY : (3)

The statement about the isomorphism locus of the above morphism holds by construction of the
maps above. Indeed, in (3) the trace morphism is compatible with flat base change [Hartshorne 1966,
Proposition III.6.6(2)], and hence compatible with restriction to the open set where d is an isomorphism. �

Singularities of pairs. We follow the conventions of [Fujino 2017a, §2.3]; see also [Kollár 2013, §1.1,2.1].
Recall that Xreg denotes the regular locus of a scheme X ; see Notation 2.1(a).

Definition 2.10 (canonical divisor). Let X be a normal variety of dimension n. A canonical divisor KX
on X is a Weil divisor such that

OXreg.KX /'�
n
Xreg
:

The choice of a canonical divisor KX is unique up to linear equivalence. Then one defines OX .KX / to be
the reflexive sheaf of rank 1 associated to KX .

The following lemma allows us to freely pass between divisor and sheaf notation on normal varieties:

Lemma 2.11. Let X be a normal variety of dimension n. Then, OX .KX / is isomorphic to !X .

Proof. The sheaf OX .KX / is reflexive by definition and the canonical sheaf !X is S2, by [Stacks 2018,
Tag 0AWE], and hence reflexive, by [Hartshorne 1994, Theorem 1.9]. Since they are both isomorphic to
�nXreg

on Xreg and codim.X XXreg/� 2, we have OX .KX /' !X by [loc. cit., Theorem 1.12]. �

http://stacks.math.columbia.edu/tag/0AWE
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Definition 2.12 (discrepancy). Let .X;�/ be a pair consisting of a normal variety X and an R-divisor �
on X such that KX C� is R-Cartier. Suppose f W Y !X is a proper birational morphism from a normal
variety Y , and choose canonical divisors KY and KX such that f�KY DKX . In this case, we may write

KY D f
�.KX C�/C

X
i

a.Ei ; X;�/Ei ;

where the Ei are irreducible Weil divisors. The real number a.Ei ; X;�/ is called the discrepancy of Ei
with respect to .X;�/, and the discrepancy of .X;�/ is

discrep.X;�/D inf
E
fa.E;X;�/ jE is an exceptional divisor over Xg;

where the infimum runs over all irreducible exceptional divisors of all proper birational morphisms
f W Y !X.

Definition 2.13 (singularities of pairs). Let .X;�/ be a pair consisting of a normal variety X and an
effective R-divisor� onX such thatKXC� is R-Cartier. We say that .X;�/ is klt if discrep.X;�/>�1
and b�c D 0. We say that .X;�/ is log canonical if discrep.X;�/� �1.

We will repeatedly use the following results about log resolutions of log canonical R-pairs.

Lemma 2.14. Let .Y;�/ be a log canonical (resp. klt) R-pair, and consider a Cartier divisor P on Y
such that P �R k.KY C�CH/ for some integer k � 1 and some R-Cartier R-divisor H. Then, for
every proper birational morphism � W zY ! Y such that zY is smooth and ��1.�/C exc.�/ has simple
normal crossing support, there exists a divisor zP on zY and an R-divisor Q� such that

(i) Q� has coefficients in .0; 1� (resp. .0; 1/) and simple normal crossing support;

(ii) the divisor zP ���P is an effective divisor with support in Supp.exc.�//;

(iii) the divisor zP satisfies zP �R k.K zY C
Q�C��H/; and

(iv) there is an isomorphism ��O zY . zP /'OY .P /.

Proof. On zY , we can write
K zY ��

�.KY C�/DQ�N;

where Q and N are effective R-divisors without common components such that Q �N has simple
normal crossing support and Q is �-exceptional. Note that since .Y;�/ is log canonical (resp. klt), all
coefficients in N are less than or equal to 1 (resp. less than 1). Let

Q� WDN CdQe�Q

so that by definition Q� has simple normal crossing support and coefficients in .0; 1� (resp. .0; 1/). Now
setting zP WD ��P C kdQe, we have

zP �R k�
�.KY C�CH/C kdQe

�R kK zY C k.N CdQe�Q/C�
�H D k.K zY C

Q�C��H/:

Since dQe is �-exceptional, we get ��O zY . zP /'OY .P / by using the projection formula. �
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We also use the following stronger notion of log resolution due to Szabó:

Theorem 2.15 [Kollár 2013, Theorem 10.45.2]. Let X be a variety, and let D be a Weil divisor on X.
Then, there is a log resolution � W zX !X of .X;D/ such that � is an isomorphism over the locus where
X is smooth and D has simple normal crossing support.

A few tools from Popa–Schnell. The following result is a slight generalization of [Popa and Schnell
2014, Variant 1.6]. This will be instrumental in proving Theorems D and E.

Theorem 2.16. Let f W Y ! X be a morphism of projective varieties, where Y is normal and X is of
dimension n. Let � be an R-divisor on Y and H a semiample Q-divisor on X such that for some integer
k � 1, there is a Cartier divisor P on Y satisfying

P �R k.KY C�Cf
�H/:

Suppose, moreover, that � can be written as �D�0C�v, where .Y;�0/ is log canonical and �v is an
R-Cartier R-divisor that is vertical over X. Let L be an ample and globally generated line bundle on X.
Then, the sheaf

f�OY .P /˝L˝`

is generated by global sections on some open set U for all `� k.nC 1/. Moreover, when �0 has simple
normal crossing support, we have U DX Xf .Supp.�v//.

Proof. Possibly after a log resolution of .Y;�/, we may assume that � D �h C�v in the sense of
Notation 2.1(b) such that .Y;�h/ is log canonical and � has simple normal crossing support. Indeed, let
� W zY ! Y be a log resolution of .Y;�/. Then, by Lemma 2.14 applied to the pair .Y;�0/ and H D�v,
we obtain a log canonical R-divisor Q� with simple normal crossing support on zY satisfying

K zY C
Q�C���v �R �

�.KY C�/CN;

where N is an effective �-exceptional divisor. We rename zY and Q�C���v as Y and � respectively.
Now � has simple normal crossing support and �h is log canonical. Moreover, since f �H is

semiample, by Bertini’s theorem we can pick a Q-divisor D�Q f
�H with smooth support and satisfying

the conditions that DC� has simple normal crossing support and D does not share any components
with �. Letting �00 WD�v �b�vc, we have

�D�hC�00Cb�vc

and .Y;�hC�00CD/ is log canonical. Since L is ample and globally generated, we therefore obtain that

f�OY .k.KY C�hC�00Cf �H//˝L˝`

is generated by global sections for all `� k.nC 1/ by [Popa and Schnell 2014, Variant 1.6]. But

f�OY .k.KY C�hC�00Cf �H//˝L˝` ,�! f�OY .P /˝L˝`;
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and they have the same stalks at every point x 2 U. Thus, the sheaf on the right-hand side is generated by
global sections at x for all x 2 U and for all `� k.nC 1/. �

We will also need the following result, which is used in the proof of [loc. cit., Variant 1.6]:

Lemma 2.17 (cf. [Popa and Schnell 2014, p. 2280]). Let f WY !X be a morphism of projective varieties,
and let F be a coherent sheaf on Y such that the image of the counit map

f �f�F �!F

of the adjunction f � a f� is of the form F .�E/ for some effective Cartier divisor E on Y . Then, for
every effective Cartier divisor E 0 �E, we have f�.F .�E 0//' f�F .

Proof. We have the factorization

f �f�F F .�E 0/ F

and by applying the adjunction f � a f�, we have a factorization

f�F f�.F .�E
0// f�F

id

of the identity. �

Finally, we record the following numerical argument that will appear in the proofs of Theorems A
and B.

Lemma 2.18 (cf. [Popa and Schnell 2014, Theorem 1.7, Step 2]). Let X be a smooth projective variety.
Let � be an effective R-Cartier divisor and E an effective Z-divisor with simple normal crossing support
such that �CE also has simple normal crossing support and � has coefficients in .0; 1�. Let 0� c < 1
be a real number. Then, there exists an effective Cartier divisor E 0 �E such that �CcE�E 0 has simple
normal crossing support and coefficients in .0; 1�.

Seshadri constants. The effectivity of our results in Theorems A and B relies on Seshadri constants.
These were originally introduced by Demailly to measure local positivity of line bundles and thereby
study Fujita-type conjectures. See [Lazarsfeld 2004a, Chapter 5] for more on these invariants.

Definition 2.19. Let X be a projective variety, and let x 2X be a closed point. Let L be a nef R-Cartier
R-divisor on X. Denote by � WX 0!X the blow-up of X at x with exceptional divisor E. The Seshadri
constant of L at x is

".LI x/ WD supft 2 R�0 j �
�L� tE is nefg:

If L is a nef line bundle, then we denote by ".LI x/ the Seshadri constant of the associated Cartier
divisor L at x.

The following result is crucial in making our results effective.
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Theorem 2.20 [Ein et al. 1995, Theorem 1]. Let X be a projective variety of dimension n. Let L be a big
and nef Cartier divisor on X. Then, for every ı > 0, the locus�

x 2X

ˇ̌̌̌
".LI x/ >

1

nC ı

�
contains an open dense set.

Remark 2.21. If in the notation of Theorem 2.20 we also assume that X is smooth and L is ample, then
better lower bounds are known if nD 2; 3. Under these additional assumptions, the locus�

x 2X

ˇ̌̌̌
".LI x/ >

1

.n� 1/C ı

�
contains an open dense set if nD 2 [Ein and Lazarsfeld 1993, Theorem] or nD 3 [Cascini and Nakamaye
2014, Theorem 1.2]. Here, we use [Ein et al. 1995, Lemma 1.4] to obtain results for general points from
the cited results, which are stated for very general points. In general, it is conjectured that in the situation
of Theorem 2.20, the locus �

x 2X

ˇ̌̌̌
".LI x/ >

1

1C ı

�
contains an open dense set [Lazarsfeld 2004a, Conjecture 5.2.5].

The stable and augmented base locus. In order to deal with big and nef line bundles in Theorems A
and C, we will need some facts about base loci, following [Ein et al. 2009].

Definition 2.22. Let X be a projective variety. If L is a Q-Cartier Q-divisor on X, then the stable base
locus of L is the closed set

B.L/ WD
\
m

BsjmLjred;

wherem runs over all integers such thatmL is Cartier. If L is an R-Cartier R-divisor on X, the augmented
base locus of L is the closed set

BC.L/ WD
\
A

B.L�A/;

where A runs over all ample R-Cartier R-divisors A such that L�A is Q-Cartier. By definition, if L is a
Q-Cartier Q-divisor, then

B.L/�BC.L/:

Note that BC.L/¤X if and only ifL is big by Kodaira’s lemma [Lazarsfeld 2004a, Proposition 2.2.22].

We will also need the following result, which shows how augmented base loci and Seshadri constants
are related. The result follows from [Ein et al. 2009, §6] if the scheme X is a smooth variety, but we will
need it more generally for singular varieties.

Corollary 2.23. Let X be a projective variety, and let x 2X be a closed point. Suppose L is a big and
nef Q-Cartier Q-divisor. If ".LI x/ > 0, then x …BC.L/.
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Proof. If x2BC.L/, then by [Birkar 2017, Theorem 1.4] there exists a closed subvariety V �X containing
x such that LdimV �V D 0, in which case ".LI x/D 0 by [Lazarsfeld 2004a, Proposition 5.1.9]. �

3. An extension theorem

We now turn to the proof of Theorem C. The proof relies on the following application of cohomology
and base change.

Lemma 3.1. Let f W Y ! X be a proper morphism of separated noetherian schemes, and let F be a
coherent sheaf on Y . Let x 2X be a point that has an open neighborhood U �X , where F jf �1.U / is flat
over U. Consider the following cartesian square:

Yx Y

Spec.�.x// X

f

If the restriction map
H 0.Y;F / �!H 0.Yx;F jYx

/

is surjective, then the restriction map

H 0.X; f�F / �! f�F ˝OX
�.x/

is also surjective.

Proof. Let fU WD f jf �1.U / and FU WDF jf �1.U /. We have the commutative diagram

H 0.X; f�F / f�F ˝OX
�.x/

fU�FU ˝OU
�.x/

H 0.Y;F / H 0.Yx;F jYx
/

�

ˇ

˛0.x/

where the bottom arrow is surjective by assumption, ˇ is an isomorphism by computing affine-locally,
and ˛0.x/ is the natural base change map [Illusie 2005, (8.3.2.3)]. By the commutativity of the diagram,
this map ˛0.x/ is surjective, and hence is an isomorphism by cohomology and base change [loc. cit.,
Corollary 8.3.11]. Thus, the top horizontal arrow is also surjective. �

Before proving Theorem C, we first explain how to deduce a generic global generation statement for
arbitrary log canonical R-pairs .Y;�/ from Theorem C by passing to a log resolution.

Corollary 3.2. Let f WY !X be a surjective morphism of projective varieties, whereX is of dimension n.
Let .Y;�/ be a log canonical R-pair, and let L be an big and nef Q-Cartier Q-divisor on X. Let ` be a
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real number for which there exists a Cartier divisor P` on Y such that

P` �R KY C�C f̀ �L:

If ` > n=".LI x/ for general x 2X, then the sheaf f�OY .P`/ is generically globally generated.

Proof. Applying Lemma 2.14 for H D f̀ �L to a log resolution � W zY ! Y of .Y;�/, we have the
following commutative diagram:

H 0.X; .f ı�/�O zY . zP`// .f ı�/�O zY . zP`/˝ �.x/

H 0.X; f�OY .P`// f�OY .P`/˝ �.x/

� �

where zP` is the divisor on zY satisfying the properties in Lemma 2.14. Then, Theorem C for . zY ; Q�/
implies that for some open subset U �X, the top horizontal arrow is surjective for all closed points x 2U
such that ` > n=".LI x/; hence the bottom horizontal arrow is also surjective at these closed points x.
We therefore conclude that f�OY .P`/ is generically globally generated. �

To prove Theorem C, we need the following result on augmented base loci.

Lemma 3.3. Let X be a projective variety of dimension n, and let L be a big and nef R-Cartier R-divisor
on X. Let x 2X be a closed point, and suppose ".LI x/ > 0. Let � WX 0!X be the blow-up of X at x
with exceptional divisor E. For every positive real number ı < ".LI x/, we have

BC.�
�L� ıE/\E D∅:

In particular, if ��L� ıE is a Q-Cartier Q-divisor, then

Bsjm.��L� ıE/j \E D∅

for all sufficiently large and divisible integers m.

Proof. First, the R-Cartier R-divisor ��L� ıE is big and nef since

��L� ıE �R

ı

".LI x/
.��L� ".LI x/E/C

�
1�

ı

".LI x/

�
��L (4)

is the sum of a nef R-Cartier R-divisor and a big and nef R-Cartier R-divisor. Thus, by [Birkar 2017,
Theorem 1.4], we know that BC.�

�L� ıE/ is the union of positive-dimensional closed subvarieties V
of X 0 such that .��L� ıE/dimV �V D 0.

It suffices to show such a V cannot contain any point y 2E. First, if V �E, then

.��L� ıE/dimV
�V D .�ıE/dimV

�V D ıdimV .�EjE /
dimV

�V > 0;
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since OE .�E/'OE .1/ is very ample. On the other hand, if V 6�E, then V is the strict transform of
some closed subvariety V0 �X containing x, and by (4), we have

.��L� ıE/dimV
�V D

�
ı

".LI x/
.��L� ".LI x/E/C

�
1�

ı

".LI x/

�
��L

�dimV

�V

�

�
1�

ı

".LI x/

�dimV

.��L/dimV
�V

D

�
1�

ı

".LI x/

�dimV

LdimV
�V0 > 0;

where the first inequality is by nefness of ��L�".LI x/E, and the last inequality is by [Lazarsfeld 2004a,
Proposition 5.1.9] and the condition ".LI x/ > 0.

The last statement about base loci follows from the fact that

BC.�
�L� ıE/�B.��L� ıE/D Bsjm.��L� ıE/jred

for all sufficiently large and divisible integers m, where the last equality holds by [loc. cit., Proposi-
tion 2.1.21] since ��L� ıE is a Q-Cartier Q-divisor. �

Finally, we need the following cohomological injectivity theorem due to Fujino.

Theorem 3.4 [Fujino 2017a, Theorem 5.4.1]. Let Y be a smooth complete variety and let � be an
R-divisor on Y with coefficients in .0; 1� and simple normal crossing support. Let L be a Cartier divisor
on Y and let D be an effective Weil divisor on Y whose support is contained in Supp�. Assume that
L�R KY C�. Then, the natural homomorphism

H i .Y;OY .L// �!H i .Y;OY .LCD//

induced by the inclusion OY !OY .D/ is injective for every i .

We can now prove Theorem C.

Proof of Theorem C. Fix x 2 U, and consider the cartesian square

Y 0 Y

X 0 X

B

f 0 f

b

where b is the blow-up of X at x. Since f is flat in a neighborhood of x, the morphism B can be
identified with the blow-up of Y along Yx , which is a smooth subvariety of codimension n [Stacks 2018,
Tag 0805]. Moreover, if E is the exceptional divisor of b and D is the exceptional divisor of B , then
f 0�E DD. By Lemma 3.1, the surjectivity of (1) in the statement of Theorem C implies the generic
global generation statement, so it suffices to show that the map in (1) is surjective.

http://stacks.math.columbia.edu/tag/0805
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First, we note that .Y 0; B��/ is log canonical: since Yx intersects every component of � transversely,
the pullback B�� of � is equal to the strict transform �0 of � [Fulton 1984, Corollary 6.7.2], and so in
particular, .Y 0; �0/ is log canonical.

Since ".LI x/ > n=`, we can choose a sufficiently small ı > 0 such that .nC ı/=` 2Q and ".LI x/ >
.nC ı/=`. Thus, using the fact that L is a Q-Cartier Q-divisor, for real numbers m of the form m0=` for
sufficiently large and divisible integers m0, we have that m.`b�L� .nC ı/E/ is Cartier. Lemma 3.3
then implies

S WD Bsjm.`b�L� .nC ı/E/jred

does not intersect E, i.e., m.`b�L� .nC ı/E/ is globally generated away from S , and in particular, is
globally generated on an open set containing E. Thus, the pullback m.`B�f �L� .nC ı/D/ of this
divisor is globally generated away from S 0 WD f 0�1.S/, and in particular is globally generated on an
open set containing D. Choose

Dx 2 jm.`B
�f �L� .nC ı/D/j

which is smooth and irreducible away from f 0�1.S/, and is such that the component of Dx not contained
in S 0 intersects each component of the support of �0 transversely away from S 0. Note that such a choice is
possible by applying Bertini’s theorem [Hartshorne 1977, Corollary III.10.9 and Remark III.10.9.3]. Since
Dx may have singularities along S 0, however, we will need to pass to a log resolution before applying
Theorem 3.4.

By Theorem 2.15, there exists a common log resolution � W zY ! Y 0 for Dx and .Y 0; �0/ that is an
isomorphism away from f 0�1.S/¨ Y 0. We then write

��Dx DD
0
CF; ���0 D ��1� �

0
CF1;

where D0 is a smooth divisor intersecting Yx transversely and F;F1 are supported on ��1.S 0/. Define

F 0 WD
j
1

m
F CF1

k
; Q� WD ���0C

1

m
��Dx �F

0
C ı��D; zP` WD �

�B�P`CK zY =Y 0 :

Note that Q� has simple normal crossing support containing ��D, and has coefficients in .0; 1� by
assumption on the log resolution and by definition of F 0. Note also that

zP`�F
0
�R �

�B�.KY C�C f̀ �L/CK zY =Y 0 �F
0

�R K zY C�
��0�F 0C��.`B�f �L� .n� 1/D/

�R K zY C�
��0C

1

m
��Dx �F

0
C .1C ı/��D

�R K zY C
Q�C��D;

where the second equivalence follows from the fact that B is the blow-up of the smooth subvariety Yx ,
which is of codimension n; hence

K zY D �
�KY 0 CK zY =Y 0 D �

�B�KY C .n� 1/�
�DCK zY =Y 0 :
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We can now apply the injectivity result Theorem 3.4 to zP`�F 0���D �R K zY C
Q� to see that

H 1. zY ;O zY . zP`�F
0
���D// �!H 1. zY ;O zY . zP`�F

0// (5)

is injective. Next, consider the following commutative diagram:

H 0. zY ;O zY . zP`�F
0// H 0.��.D/;O��.D/. zP`�F 0//

H 0. zY ;O zY . zP`// H 0.��.D/;O��.D/. zP`//

H 0.Y 0;OY 0.B�P`// H 0.D;OD.B�P`//

H 0.Y;OY .P`// H 0.Yx;OYx
.P`//

�

� �

� �

The top right vertical arrow is an isomorphism since F 0 is disjoint from ��.D/. The bottom right vertical
arrow is an isomorphism since BjD realizes D as a projective bundle over Yx ; hence .BjD/�OD 'OYx

.
The other vertical isomorphisms follow from the projection formula and the fact that � and B are
birational. Finally, the top horizontal arrow is surjective by the long exact sequence on cohomology and
the injectivity of (5). The commutativity of the diagram implies the bottom row is surjective, which is
exactly the map in (1). �

4. Effective twisted weak positivity

We now prove Theorem E using Viehweg’s fiber product trick. This trick enables us to reduce the global
generation of the reflexivized s-fold tensor product f�OY .k.KY C�//Œs� to s D 1 with Y replaced by
a suitable zY s. The main obstacle is picking a suitable boundary divisor on zY s. We tackle this using
Theorem 2.16. Readers are encouraged to consult [Popa and Schnell 2014, §4], [Viehweg 1983, §3], or
[Höring 2010, §3].

Throughout the proof we use OX .KX / and !X interchangeably whenever X is a normal variety. We
can do so by Lemma 2.11.

Proof of Theorem E. For every positive integer s, let Y s denote the reduction of the unique irreducible
component of

Y �X Y �X � � � �X Y„ ƒ‚ …
s times

that surjects onto X ; note that it is unique since f has irreducible generic fiber. Setting V WD f �1.U /,
we define V s similarly.

Let d W Y .s/! Y s be a desingularization of Y s, and note that d is an isomorphism over V s. We will
also denote by V s the image of V s under any birational modification of Y s which is an isomorphism
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along V s. Define di D �i ı d for i 2 f1; 2; : : : ; sg, where �i W Y s ! Y is the i-th projection. Since
di is a surjective morphism between integral varieties, the pullback d�i �j of the Cartier divisor �j is
well-defined for every component �j of �; see [Stacks 2018, Tag 02OO(1)].

Let � W zY s! Y .s/ be a log resolution as in Theorem 2.15 of the pair
�
Y .s/;

P
i d
�
i �

�
so that � is an

isomorphism over V s. Define
Q�D ��

X
i

d�i �:

Claim 4.1. There exists a map

Qf s�O zY s .k.K zY s=X
C Q�// �! .f�OY .k.KY=X C�///Œs� (6)

which is an isomorphism over U.

Let X0 be the open set in X such that

� the map f is flat over X0;

� the regular locus of X contains X0; and

� the sheaf f�OY .k.KY=X C�// is locally free over X0.

Then, codim.XXX0/�2. Indeed,X is normal and both f�OY and f�OY .k.KY=XC�// are torsion-free.
Now by construction, we have U �X0. Since .f�OY .k.KY=X C�///Œs� is reflexive and is isomorphic
to .f�OY .k.KY=X C�///˝s on X0, a map

Qf s�O zY s .k.K zY s=X
C Q�// �! .f�OY .k.KY=X C�///˝s

over X0 will extend to a map of the form in (6) on X by Corollary 2.5. This, together with flat base
change [Hartshorne 1977, Proposition III.9.3], implies that it suffices to construct a map

Qf s�O zY s
0
.k.K zY s

0 =X0
C Q�j zY s

0
// �! .f�OY0

.k.KY0=X0
C�jY0

///˝s

which is an isomorphism over U.
Define Y0 WD f �1.X0/. In this case, by [Höring 2010, Corollary 5.24] we know that

Y s0 WD Y0 �X Y0 �X � � � �X Y0„ ƒ‚ …
s times

' Y0 �X0
Y0 �X0

� � � �X0
Y0„ ƒ‚ …

s times

and that Y s0 is Gorenstein. We can therefore apply Lemma 2.9 to d ı�, to obtain a morphism

.d ı�/�!
˝k
zY s

0 =X0

�! !˝k
Y s

0 =X0

which is an isomorphism over V s. Here !Y s
0 =X0

WD!Y0
˝f s�!�1X0

and we define ! zY s
0 =X0

similarly. This
induces a map

Qf s�O zY s
0
.k.K zY s

0 =X0
C Q�j zY s

0
// �! f s�

�
!˝k
Y s

0 =X0
˝

O
i

��i M jY s
0

�
(7)

http://stacks.math.columbia.edu/tag/02OO
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which is an isomorphism over U, where M WDOY .P � kKY / is the line bundle associated to the Cartier
divisor P � kKY �R k�.

We will now show that the sheaf on the right-hand side of (7) admits an isomorphism to

.f�OY0
.k.KY0=X0

C�jY0
///˝s:

Note that this would show Claim 4.1, since (7) is an isomorphism over U. We proceed by induction,
adapting the argument in [Höring 2010, Lemma 3.15] to our twisted setting. Note that the case s D 1 is
clear, since in this case Y s D Y and the sheaves in question are equal.

By [loc. cit., Corollary 5.24] we have

!˝k
Y s

0 =X0
˝

O
i

��i .M jY0
/' ��s .!

˝k
Y0=X0

˝M jY0
/˝� 0�.!˝k

Y s�1
0 =X0

˝M s�1
jY s�1

0
/;

where � 0 W Y s! Y s�1 and M s�1 WD
Ns�1
iD1�

�
i M . Since !˝k

Y s�1
0 =X0

˝M s�1jY s�1
0

is locally free, by the
projection formula we obtain

f s�

�
!˝k
Y s

0 =X0
˝

sO
iD1

��i M jY0

�
' f�

�
.!˝k
Y0=X0

˝M jY0
/˝�s��

0�.!˝k
Y s�1

0 =X0
˝M s�1

jY s�1
0

/
�
:

Now by flat base change [Hartshorne 1977, Proposition III.9.3],

�s��
0�.!˝k

Y s�1
0 =X0

˝M s�1
jY s�1

0
/' f �f s�1� .!˝k

Y s�1
0 =X0

˝M s�1
jY s�1

0
/:

By induction the latter is isomorphic to

f �.f�OY0
.k.KY0=X0

C�jY0
//˝s�1/:

Therefore

f s�

�
!˝k
Y s

0 =X0
˝

O
i

��i M jY0

�
' f�

�
!˝k
Y0=X0

˝M jY0
˝f �

�
f�OY0

.k.KY0=X0
C�jY0

//˝s�1
��
:

Since f�OY .k.KY=X C�// is locally free over X0, we can apply the projection formula to obtain

f s�

�
!˝k
Y s

0 =X0
˝

O
i

��i M jY0

�
' .f�OY0

.k.KY0=X0
C�jY0

///˝s:

This concludes the proof of Claim 4.1.
We now use Theorem 2.16 to finish the proof of Theorem E.
We first claim Q� satisfies the hypothesis of Theorem 2.16. To do so, first note that on �i is flat over Y0,

and therefore by flat pullback of cycles we have

��i .�j /jY s
0
D ��1i .�j jY0

/D Y0 �X0
� � � �X0

�j„ƒ‚…
i -th position

�X0
� � � �X0

Y0:

Since Y0 � V and both d and � are isomorphisms over V s, the pullbacks ��.�i ı d/��hj jV s of the
horizontal components of � are smooth above U for all i 2 f1; 2; : : : ; sg. In other words, the components
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of Q� either do not intersect V s, or intersect the fiber over x transversely for all x 2 U. Thus,

Q�jV s D ��1d�1
X
i

��1i .�hjV /:

In particular, using Notation 2.1(b), we have that the horizontal part Q�h equals the closure Q�jV s of Q�jV s

in zY s. We can therefore write
Q�D Q�hC Q�v;

where by construction, the coefficients of Q�h are in .0; 1� and Qf s. Q�v/\U D∅.
Finally, we note from Mori’s cone theorem [Kollár and Mori 1998, Theorem 1.24] thatHD!X˝L˝nC1

is nef and hence semiample by the base point free theorem [loc. cit., Theorem 3.3]. Therefore f �H˝.`�k/

is also semiample for all `� k. Using H again to denote a divisor class of H, we argue that since

Qf s�O zY s .k.K zY s=X
C Q�//˝H˝` ' Qf s�O zY s

�
k.K zY s C Q�C .`� k/ Qf

s�H/
�
˝L˝k.nC1/; (8)

with L ample and globally generated, we can apply Theorem 2.16 to conclude that the sheaf above in
(8) is generated by global sections over U for all ` � k. Now fix a closed point x 2 U. We have the
commutative diagram

H 0
�
X; Qf s�O zY s .k.K zY s=X

C Q�//˝H˝`
� �

Qf s�O zY s .k.K zY s=X
C Q�//˝H˝`

�
˝ �.x/

H 0
�
X; .f�OY .k.KY=X C�///Œs�˝H˝`

� �
.f�OY .k.KY=X C�///Œs�˝H˝`

�
˝ �.x/

�

where the vertical arrows are induced by the map (6) from Claim 4.1, and the top horizontal arrow is
surjective by the global generation of the sheaves in (8) over U. Since (6) is an isomorphism over U, the
right vertical arrow is an isomorphism; hence by the commutativity of the diagram, the bottom horizontal
arrow is surjective. We therefore conclude that

.f�OY .k.KY=X C�///Œs�˝H˝`

is generated by global sections over U for all `� k. �

Remark 4.2. When b�c D 0, if we moreover take U.f;�/ to be an open set over which every stratum
of .Y;�/ is smooth, then applying invariance of log plurigenera [Hacon et al. 2018, Theorem 4.2], we
can assert that f�OY .k.KY=X C�//jU.f;�/ is locally free. In this case we can take X0 to be simply the
locus inside Xreg over which f is flat. Moreover, the isomorphism

.f�OY .k.KY=X C�///˝s ' .f�OY .k.KY=X C�///Œs�

automatically holds over U.f;�/. Thus, Theorem E holds more generally over U.f;�/.

We now deduce Theorem D from Theorem E.
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Proof of Theorem D. Using Lemma 2.14, we assume that Y is smooth and � has simple normal crossing
support. Then, Theorem E implies

.f�OY .k.KY=X C�///Œs�˝H˝`

is generated by global sections for all `� k on an open set U �X. Since f�OY .k.KY=XC// is locally
free over U, the map

.f�OY .k.KY=X C�///Œs� �! SymŒs�.f�OY .k.KY=X C�///

is surjective over U ; hence
SymŒs�.f�OY .k.KY=X C�///˝H˝`

is also generated by global sections for all `� k on U.
Note that for any ample line bundle L, there is an integer b � 1 such that H˝�k ˝L˝b is globally

generated. For such a b, the sheaf

SymŒs�.f�OY .k.KY=X C�///˝L˝b

is also generated by global sections on U. Since b depends only on k and H and is independent of s, we
can set s D ab. This implies weak positivity of f�OY .k.KY=X C�// over U. �

Remark 4.3. The proof of Theorem D shows that when Y is smooth and � has simple normal crossing
support, the sheaf f�OY .k.KY=XC�// is weakly positive over the open set in the statement of Theorem E.

5. Generic generation for pluricanonical sheaves

Proof of Theorem A. We now prove Theorem A, following the strategy in [Popa and Schnell 2014,
Theorem 1.7] and [Dutta 2017, Theorem A]. The idea is to reduce to the case where Y is smooth and �
has simple normal crossing support, and then maneuver into a situation to which Theorem C applies.

Proof of Theorem A. We start with some preliminary reductions.

Step 0: We may assume that the image of the counit morphism

f �f�OY .P / �!OY .P / (9)

for the adjunction f � a f� is nonzero.

Suppose the image of (9) is the zero sheaf. Then, the natural isomorphism

HomOY
.f �f�OY .P /;OY .P //' HomOX

.f�OY .P /; f�OY .P //

from the adjunction f � a f� implies that the identity morphism id W f�OY .P /! f�OY .P / is the zero
morphism. This implies f�OY .P /D 0; hence the conclusion of Theorem A trivially holds.

Step 1 (cf. [Popa and Schnell 2014, Theorem 1.7, Step 1]): We can reduce to the case where

(a) Y is smooth;
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(b) � has simple normal crossing support and coefficients in .0; 1�; and

(c) the image of (9) is of the form OY .P �E/ for a divisor E such that �CE has simple normal
crossing support.

A priori, the image of the counit (9) is of the form b �OY .P /, where b�OY is the relative base ideal
of OY .P /. By Step 0, this ideal is nonzero, and so consider a simultaneous log resolution � W zY ! Y of
b and .Y;�/. The image of the counit morphism

��f �f�OY .P / �! ��OY .P /DOY 0.��P / (10)

is the sheaf OY 0.��P �E 0/ [Lazarsfeld 2004b, Generalization 9.1.17].
We then apply Lemma 2.14 to �. With the notation of the lemma we note that on zY the counit

morphism (10) becomes the surjective morphism

.f ı�/�.f ı�/�O zY . zP / O zY .�
�P �E 0/DO zY . zP � . zP ��

�P /�E 0/:

Setting E WD . zP ���P /CE 0, we see that (c) holds for zP.
Finally, Theorem A for . zY ; Q�/ and zP implies that

.f ı�/�O zY . zP /˝OX
L˝` ' f�OY .P /˝OX

L˝`

is generated by global sections on some open set U for `� k.n2C 1/. This concludes Step 1.

Henceforth, we work in the situation of Step 1. Before moving on to Step 2, we fix some notation. Let
L denote the divisor class of L. Let U be the subset of U.f;�CE/ where

".LI x/ >
1

nC 1
kn

for every x 2 U, which is nonempty by Notation 2.1(a) and Theorem 2.20.
We set m to be the smallest positive integer such that f�OY .P /˝OX

L˝m is globally generated on U.
This integer m exists by [Küronya 2013, Proposition 2.7] since U \BC.L/D∅ by Corollary 2.23.

Finally, we set B WD BsjP �ECmf �Ljred ¨ Y and note that B \f �1.U /D∅.

Step 2: Reducing the problem to k D 1 and a suitable pair.

From now on, fix a closed point x 2 U.
The surjection

f �f�OY .P /˝OY
f �L˝m OY .P �E/˝OY

f �L˝m

implies that OY .P �E/˝OY
f �L˝m is globally generated on f �1.U /. Choose a general member

Dx 2 jP �ECmf
�Lj:

By Bertini’s theorem [Hartshorne 1977, Corollary III.10.9 and Remark III.10.9.3], we may assume that
Dx is smooth away from the base locus B of the linear system jP �ECmf �Lj. We may also assume that



Effective generation and twisted weak positivity of direct images 447

Dx intersects the fiber Yx transversely, and the support of � and E transversely away from B [Lazarsfeld
2004a, Lemma 4.1.11]. We then have

k.KY C�/�R KY C�C
k� 1

k
DxC

k� 1

k
E �

k� 1

k
mf �LI

hence for every integer `,

k.KY C�/C f̀ �L�R KY C�C
k� 1

k
DxC

k� 1

k
EC

�̀
�
k� 1

k
m

�
f �L:

We now adjust the coefficients of� andE so they do not share any components. Applying Lemma 2.18
to c D .k� 1/=k, we see that there exists an effective divisor E 0 �E such that

�0 WD�C
k� 1

k
E �E 0

is effective with simple normal crossing support, with components intersecting Yx transversely, and with
coefficients in .0; 1�. We can then write

P �E 0C f̀ �L�R KY C�
0
C
k� 1

k
DC

�̀
�
k� 1

k
m

�
f �L: (11)

Step 3: Applying Theorem C to obtain global generation.

By Lemma 2.17, we have f�OX .P �E 0/' f�OX .P /. It therefore suffices to show that

f�OY .P �E 0/˝OX
L˝` (12)

is globally generated at x. We first modify Dx to allow us to apply Theorem C. By Theorem 2.15, there
exists a common log resolution � W zY ! Y for Dx and .Y;�/ that is an isomorphism away from B ¨ Y .
We then write

��Dx DDCF; ���0 D ��1� �
0
CF1;

where D is a smooth prime divisor intersecting the fiber over x transversely and F;F1 are supported on
��1.B/. Define

F 0 WD

�
k� 1

k
F CF1

�
; Q� WD ���0C

k� 1

k
��Dx �F

0; zP WD ��P CK zY =Y :

Note that Q� has simple normal crossing support and coefficients in .0; 1� by assumption on the log
resolution and by definition of F 0. Moreover, the support of Q� intersects the fiber over x transversely.
Pulling back the decomposition in (11) and adding K zY =Y �F

0 yields

zP ���E 0�F 0C `.f ı�/�L�R K zY C�
��0C

k� 1

k
��Dx �F

0
C

�̀
�
k� 1

k
m

�
.f ı�/�L

�R K zY C
Q�C

�̀
�
k� 1

k
m

�
.f ı�/�L: (13)
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We now claim that it suffices to show

.f ı�/�O zY . zP ��
�E 0�F 0/˝OX

L˝` (14)

is globally generated at x. Consider the commutative diagram

H 0
�
X; .f ı�/�O zY . zP��

�E 0�F 0/˝OX
L˝`

� �
.f ı�/�O zY . zP��

�E 0�F 0/˝OX
L˝`

�
˝�.x/

H 0
�
X; .f ı�/�O zY . zP��

�E 0/˝OX
L˝`

� �
.f ı�/�O zY . zP��

�E 0/˝OX
L˝`

�
˝�.x/

H 0
�
X; f�.��O zY . zP /˝OY .�E

0//˝OX
L˝`

� �
f�.��O zY . zP /˝OY .�E

0//˝OX
L˝`

�
˝�.x/

H 0
�
X; f�OY .P�E 0/˝OX

L˝`
�

f�OY .P�E 0/˝OX
L˝`˝�.x/

�

� �

� �

where the top right isomorphism holds since F 0 is supported away from .f ı�/�1.U /; hence the stalks of
the two sheaves are isomorphic, and the other isomorphisms follow from the projection formula and the fact
thatK zY =Y is�-exceptional. If the top horizontal arrow is surjective, then the commutativity of the diagram
implies that the bottom horizontal arrow is also surjective, i.e., the sheaf in (12) is globally generated at x.

We now apply Theorem C to the decomposition (13) to see that the sheaf in (14) is globally generated
at x for all

`�
k� 1

k
m >

n

".LI x/
:

By choice of U, we know that

".LI x/ >
1

nC 1
kn

at all x 2 U, and so by applying the same argument used so far to all x 2 U, we see f�OY .P /˝OX
L˝`

is globally generated on U for all

` > n

�
nC

1

kn

�
C
k� 1

k
mD n2C

1

k
C
k� 1

k
m:

By the minimality of m, we know

m�

�
n2C

1

k
C
k� 1

k
m

�
C 1� n2C

k� 1

k
mC 1:

The inequality between the leftmost and rightmost quantities is equivalent to m � k.n2C 1/; that is,
f�OY .P /˝OX

L˝` is globally generated on U for `� k.n2C 1/. �
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Proof of Theorem B. Restricting to X smooth and L ample, we now show a slightly better bound. The
strategy of Theorem B is the same as that for Theorem A: We first reduce to the case when Y is smooth
and � has simple normal crossing support. Then, using twisted weak positivity this time, we maneuver
to a situation in which we can apply Theorem C or [Dutta 2017, Proposition 1.2].

Proof of Theorem B. We begin with Steps 0 and 1 of the proof of Theorem A to reduce to a situation
where Y is smooth and � has simple normal crossing support. Following Step 1, we also assume that
there exists an effective divisor E with simple normal crossing support such that

f �f�OY .P / �!OY .P �E/ (15)

is surjective.

Step 2: Reducing the problem to k D 1 and a suitable pair.

Unless otherwise mentioned, throughout this proof we fix U to denote the intersection of U.f;�CE/
with the open set over which f�OY .P / is locally free.

In the diagram

f �
�
.f�OY .k.KY=X C�///˝b

�
OY .bk.KY=X C�/� bE/

f �
�
.f�OY .k.KY=X C�///Œb�

�
OY .bk.KY=X C�/� bE/

the dashed map exists making the diagram commute. Indeed, the map exists over the locus X1 where
f�OY .k.KY=X C�// is locally free. Since X1 has a complement of codimension � 2, and the bottom
right sheaf is locally free, we can extend the dashed map to all of X (Corollary 2.5).

Now the top arrow is the surjective map obtained by taking the b-th tensor power of (15). Then the
commutativity of the diagram implies that the bottom arrow is also surjective. By Theorem E we know
that over U,

f�OY .k.KY=X C�//Œb�˝L˝b

is generated by global sections for b� 1. Therefore so is OY .bk.KY=X C�/� bE/˝ f �L˝b over
f �1.U /.

We now fix a point x 2 U.
Letting L denote a Cartier divisor class of L, we can apply Bertini’s theorem to choose a divisor

D 2 jbk.KY=X C�/� bEC bf
�Lj

such that on f �1.U /, D is smooth, DC�CE has simple normal crossing support, D is not contained
in the support of �CE, and D intersects the fiber over x transversely. Then write

1

b
D �R k.KY=X C�/�ECf

�L:
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Multiplying both sides by k�1
k

, and then adding KY=X C�C k�1
k
E, we have

KY=X C�C
k� 1

kb
DC

k� 1

k
E �R k.KY=X C�/C

k� 1

k
f �L: (16)

Now applying Lemma 2.18 for c D k�1
k

, there exists an effective divisor E 0 �E such that

�0 WD�C
k� 1

k
E �E 0

has coefficients in .0; 1�. Subtracting E 0C k�1
k
f �L from both sides in (16), we can therefore write

KY=X C
k� 1

kb
DC�0�

k� 1

k
f �L�R k.KY=X C�/�E

0:

Let us now denote by H the line bundle !X ˝L˝nC1 and a divisor class in it at the same time. For a
positive integer `, we add f �KX C .k� 1/f �H C .`� .k� 1/.nC 1//f �L to both sides to obtain

KY C
k� 1

kb
DC�0C .k� 1/f �H C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
f �L�R P �E

0
C f̀ �L: (17)

As noted earlier E 0 �E is an effective Cartier divisor and therefore

f�OY .P �E 0/' f�OY .P /

by Lemma 2.17. Moreover since the right-hand side of (17) is a Cartier divisor, it is enough to tackle the
generation of the left side.

Step 3: Applying Theorem C to obtain global generation.

First, we need to modify D to be able to apply Theorem C.
Let � W Y 0! Y be a log resolution of k�1

kb
DC�0 as in Theorem 2.15. Such a modification is an

isomorphism over f �1.U / by choice of D. Write

��D D zDCF; ���0 D Q�0CF1;

where zD is the strict transform of the components of D that lie above U and Q�0 is the strict transform
of �0. Note that both F and F1 has support outside of f �1.U /.

Define

F 0 WD

�
k� 1

kb
F CF1

�
; Q� WD ��DC���0�F 0; zP WD ��P CKY 0=Y :

By definition Q� has coefficients in .0; 1�. Now pulling back (17) and adding KY 0=Y �F 0 we and rewrite
(17) as

KY 0 C Q�C .k� 1/�
�f �H C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
��f �L�R

zP ���E 0C `��f �L�F 0:
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This can be compared to (13). By the arguments following (13) we can say that it is enough to show
global generation for the pushforward of the left side under f ı� to deduce desired global generation for
f�OY .P /˝L˝` for suitable `.

To do so, we note once again that from Mori theory it follows that H D !X ˝L˝nC1 is semiample.
Therefore .k � 1/��f �H is also semiample. Applying Bertini’s theorem one more time we can pick
an effective fractional Q-divisor D0 �Q .k� 1/�

�f �H with smooth support and its support intersects
components of Q�CD0 and the fiber over x transversely. We can now rewrite the linear equivalence as

KY 0 C Q�CD
0
C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
��f �L�R

zP ���E 0C `��f �L�F 0: (18)

Note that Q�CD0 on the left-hand side of (18) has simple normal crossing support with coefficients in
.0; 1� and Supp. Q�CD0/ intersects the fiber over x transversely. Thus, we can apply Theorem C on the
left-hand side to conclude that

f�OY .P /˝L˝`

is generated by global sections over U for all

` >
n

".LI x/
C k.nC 1/�n�

1

k
:

After possibly shrinking U we assume that

".LI x/ >
1

nC 1
n.kC1/

for all points x 2 U, and hence

` > n

�
nC

1

n.kC 1/

�
C k.nC 1/�n�

1

k
D k.nC 1/Cn2�n�

1

k.kC 1/
:

Therefore, `� k.nC 1/Cn2�n. This proves (i).

Step 4: The case of klt Q-pairs.

When � is a klt Q-pair, we apply [Dutta 2017, Proposition 1.2] on the left-hand side of (18). To do
so, we first trace the construction of Q�CD0 to note that its coefficients lie in .0; 1/. We then apply the
proposition with

H D
1

k
��f �L; AD .`� k.nC 1/Cn/��f �L

to obtain global generation on U for all ` > k.nC 1/C 1
2
.n2�n/. This proves (ii). �

We summarize below the locus of global generation for Theorems A and B:

Remark 5.1. When Y is smooth and the relative base locus of P is an effective divisor E such that
�CE has simple normal crossing support, the open set U for Theorem A contains the largest open
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subset of U.f;�CE/ such that ".LI x/ >
�
nC 1

kn

��1 and for Theorem B(i), U contains the intersection
of U.f;�CE/, the locus where f�OY .P / is locally free, and the open set where

".LI x/ >
�
nC

1

n.kC 1/

��1
:

Finally, for Theorem B(ii), U contains the intersection of U.f;�CE/ and the locus where f�OY .P / is
locally free.

Remark 5.2. Using the better bounds in Remark 2.21 for low dimensions (nD 2; 3), one can show that
the lower bounds `� k.n2�nC1/ in Theorem A and `� k.nC1/Cn2�2n in Theorem B suffice when
X is smooth and L is ample. In particular, Conjecture 1.1 for generic global generation holds for nD 2.
In the klt case, the conjectured lower bound in fact holds when n� 4 as was observed in [Dutta 2017].

If the conjectured lower bound for Seshadri constants in Remark 2.21 holds, then Theorem A would
hold for the lower bound `� k.nC 1/, thereby proving this generic version of Conjecture 1.1 in higher
dimensions for big and nef line bundles.

An effective vanishing theorem. With the help of our effective twisted weak positivity, we improve the
effective vanishing statement in [Dutta 2017, Theorem 3.1]:

Theorem 5.3. Let f W Y !X be a smooth fibration of smooth projective varieties with dimX D n. Let
� be a Q-divisor with simple normal crossing support with coefficients in Œ0; 1/ such that every stratum
of .Y;�/ is smooth and dominant over X, and let L be an ample line bundle on X. Assume also that for
some fixed integer k � 1, k.KY C�/ is Cartier and OY .k.KY C�// is relatively base point free. Then,
for every i > 0 and all `� k.nC 1/�n, we have

H i
�
X; f�OY .k.KY C�//˝L˝`

�
D 0:

Moreover, if KX is semiample, for every i > 0 and every ample line bundle L we have

H i
�
X; f�OY .k.KY C�//˝L

�
D 0:

Proof. The hypothesis on f and � ensures invariance of log plurigenera, as noted in Remark 4.2; hence
f�OY .k.KY=X C�// is locally free. This means U.f;�/DX. Furthermore, by the description of the
open set in the proof of Theorem D, we have that there exists a positive integer b such that

.f�OY .k.KY=X C�///Œb�˝L˝b

is globally generated everywhere on X. Now since OY .k.KY C�// is relatively base point free, we
can choose a divisor 1

b
D �R k.KY=X C�/C f

�L satisfying the Bertini-type properties as in Step 2
of Theorem B. Define H WDKX C .nC 1/L, which is semiample by Mori’s cone theorem and the base
point free theorem. As before, we then write

KY C�C
k� 1

kb
DC .k� 1/f �H C

�̀
�
k� 1

k
� .k� 1/.nC 1/

�
f �L�R k.KY C�/C f̀ �L:
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Since the divisor � C k�1
kb
D is klt and .k � 1/H C

�
` � k�1

k
� .k � 1/.n C 1/

�
L is ample for all

`� k.nC 1/�n, by Kollár’s vanishing theorem [1995, Theorem 10.19] we obtain

H i
�
X; f�OY .k.KY C�//˝L˝`

�
D 0

for all `� k.nC 1/�n and for all i > 0.
Moreover, when KX is already semiample, we take H D KX . In this case, the linear equivalence

above looks as follows:

KY C�C
k� 1

kb
DC .k� 1/f �H C

�̀
�
k� 1

k

�
f �L�R k.KY C�/C f̀ �L:

Then, we obtain the desired vanishing for all `� 1 and i > 0. �
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