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On derived categories of arithmetic toric varieties

Matthew Ballard, Alexander Duncan and Patrick McFaddin

We begin a systematic investigation of derived categories of smooth projective
toric varieties defined over an arbitrary base field. We show that, in many cases,
toric varieties admit full exceptional collections, making it possible to give con-
crete descriptions of their derived categories. Examples include all toric sur-
faces, all toric Fano 3-folds, some toric Fano 4-folds, the generalized del Pezzo
varieties of Voskresenskiı̆ and Klyachko, and toric varieties associated to Weyl
fans of type A. Our main technical tool is a completely general Galois descent
result for exceptional collections of objects on (possibly nontoric) varieties over
nonclosed fields.

1. Introduction

Recently, several intriguing threads relating derived categories and arithmetic ge-
ometry have emerged and motivated general structure questions for k-linear tri-
angulated categories for arbitrary fields k. Such exploration has yielded many
nice applications as well as further enticing problems; see as a sampling [Antieau
et al. 2017; Ananyevskiy et al. 2013; Ascher et al. 2017; Hassett and Tschinkel
2017; Honigs 2015; Lieblich et al. 2014]. Meanwhile, over C, structural results
for derived categories seem to have deep implications for the underlying birational
geometry, e.g., [Addington and Thomas 2014; Auel et al. 2014; Bernardara and
Bolognesi 2013; Bernardara et al. 2012; Kuznetsov 2010; Vial 2017]. Taking these
together, derived categories become an important invariant for studying birational
geometry over a general field [Auel and Bernardara 2018]. A further benefit of
this noncommutative approach is direct utility for solving problems in algebraic
K-theory, for example [Merkurjev and Panin 1997].

With such tantalizing ties, one would like a fertile testing ground for questions.
In this paper, we begin a systematic study of one such area: derived categories
of arithmetic toric varieties. Recall that if k is an arbitrary field with separable
closure ks , a k-torus is an algebraic group T over k such that extending scalars to
ks gives Tks ' Gn

m . An arithmetic toric variety is a normal k-variety with a faithful
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action of a k-torus which has a dense open orbit. This area has the following nice
features:
• rationality issues are deep in general but tractable in examples,

• robust tools already exist to investigate derived categories over the separable
closure, and

• specific questions are often amenable to computational experimentation.

One of the best tools for understanding the structure of a derived category is an
exceptional collection consisting of exceptional objects. As originally conceived
in [Beı̆linson 1978], an exceptional object of a k-linear triangulated category (e.g.,
Db(X)) is one whose endomorphism algebra is isomorphic to the base field k.
When k is not algebraically closed, this definition is too restrictive and instead
we use the existing notion: an object of Db(X) is exceptional if its endomorphism
algebra is a division algebra (concentrated in homological degree zero). An ex-
ceptional collection is then given by a totally ordered set E = {E1, . . . , Es} of
exceptional objects in Db(X) satisfying Extn(Ei , E j )= 0 for all integers n when-
ever i > j . An exceptional collection is full if it generates Db(X), i.e., the smallest
thick subcategory of Db(X) containing E is all of Db(X). Details are discussed in
Section 2 below.

We illustrate this more general notion for two arithmetic toric varieties. The real
conic X = {x2

+ y2
+ z2
= 0} ⊂ P2

R has an exceptional collection {O,F}, where
End(F) is isomorphic to the quaternion algebra H. Over C, we have XC ' P1

C

and F ⊗R C'O(1)⊕2. As another example, consider the Weil restriction Y of P1
C

over R (“P1(C) viewed as an R-variety”). Here Y has an exceptional collection
{O,G,H}, where End(G)'C and End(H)'R. Over C, we have Y⊗R C'P1

×P1

with G⊗R C'O(1, 0)⊕O(0, 1) and H⊗R C'O(1, 1), where

O(i, j)= π∗1O(i)⊗π
∗

2O( j).

A central question for derived categories of arithmetic toric varieties is the fol-
lowing:

Question 1.1. Let X be a smooth projective toric variety over an arbitrary field.
Does X admit a full exceptional collection? If so, does X possess a full exceptional
collection of sheaves?

Over an algebraically closed field of characteristic zero, there is always a full
exceptional collection of objects [Kawamata 2006; 2013] while the question of
a full exceptional collection of sheaves is due to Orlov. Making allowances for
different language, the question is also known to have a positive answer for Severi–
Brauer varieties [Auel and Bernardara 2018; Bernardara 2009], minimal toric sur-
faces [Blunk et al. 2011], and smooth projective toric varieties with absolute Picard
rank at most 2 [Yan 2014].
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In this article, we provide further evidence for a positive answer to Question 1.1,
treating cases with low dimension or a high degree of symmetry.

Theorem 1.2. The following possess full exceptional collections of sheaves:

• smooth toric surfaces (Proposition 4.7),

• smooth toric Fano 3-folds (Proposition 4.11),

• all forms of 43 of the 124 smooth split toric Fano 4-folds (Section 4C),

• all forms of centrally symmetric toric Fano varieties (Corollary 4.13), and

• all forms in characteristic zero of toric varieties corresponding to Weyl fans
of root systems of type A (Proposition 4.21).

Our results leverage extant work in the algebraically closed case such as [Ue-
hara 2014] for 3-folds and[Prabhu-Naik 2017] for 4-folds. We use Castravet and
Tevelev’s recently discovered exceptional collection for X (An) [2017]. For the
centrally symmetric toric Fano varieties (which are products of “generalized del
Pezzo varieties” and projective lines [Voskresenskiı̆ and Klyachko 1984]), we use
an explicit exceptional collection (see also [Ballard et al. 2018]) closely related
to the one found in [Castravet and Tevelev 2017]. Up to a twist by a line bundle,
the authors had independently discovered the exact same collection! This suggests
that symmetry imposes strong conditions on the possible exceptional collections,
which paradoxically makes them easier to find.

To study arithmetic exceptional collections, we establish an effective Galois
descent result for general exceptional collections. This applies to general varieties,
not just toric ones.

Theorem 1.3 (Theorem 2.17, Lemma 2.20). Let X be a k-scheme and L/k a G-
Galois extension. Then X L admits a full (resp. strong) G-stable exceptional collec-
tion of objects of Db(X L) (resp. sheaves, vector bundles) if and only if X admits a
full (resp. strong) exceptional collection of objects of Db(X) (resp. sheaves, vector
bundles).

We highlight one corollary of a positive answer to Question 1.1. Arithmetic
toric varieties are also studied in [Merkurjev and Panin 1997], which focused on
computing their algebraic K-groups via decompositions in a certain noncommuta-
tive motivic category of K0-correspondences. They showed that for an arithmetic
toric k-variety X with G = Gal(ks/k), the group K0(Xks ) is a direct summand of
a permutation G-module (there exists a Z-basis permuted by G).

Question 1.4 [Merkurjev and Panin 1997]. Let X be an arithmetic toric variety
over k and G = Gal(ks/k). Is K0(Xks ) always a permutation G-module?

Question 1.1 can be viewed as a categorification of Question 1.4 as any such
exceptional collection over k immediately gives a permutation basis.
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In order to show that every toric variety has a full exceptional collection over
C, the main tool used in [Kawamata 2006; 2013] was the minimal model program
(MMP) in birational geometry. The basic building blocks are toric stacks with
Picard rank one, which always have full strong exceptional collections of line bun-
dles. Indeed, runs of the MMP can be leveraged to effectively produce exceptional
collections [Ballard et al. 2019].

Over a nonclosed field, one hopes to use the Galois-equivariant MMP, but the
situation is more complicated. The most basic building blocks in this framework
are those varieties X which have ρG

= rank(Pic(X)G) = 1. Based on the results
above and the hope of using the MMP in the arithmetic situation, we ask the fol-
lowing question in the vein of [King 1997; Borisov and Hua 2009; Costa and
Miró-Roig 2010]:

Question 1.5. Let X be a smooth toric k-variety and L/k a G-Galois splitting
field. If Pic(X L)

G is of rank 1, does X L possess a full strong G-stable exceptional
collection consisting of line bundles?

Organization. Section 2 treats Galois descent of exceptional collections consisting
of objects on (possibly nontoric) varieties. In Section 3, we recall appropriate def-
initions of arithmetic toric varieties and establish additional descent results which
are specific to toric varieties. In Section 4, we consider a range of examples. We
begin by treating toric surfaces, followed by toric Fano 3-folds. For toric Fano
4-folds, we give partial results. We conclude by investigating the class of centrally
symmetric toric Fano varieties, including the generalized del Pezzo varieties, and
handling toric varieties associated to root systems of type A.

Notation. Throughout, k denotes an arbitrary field and ks a separable closure. A
variety is a geometrically integral separated scheme of finite type over k. All
our schemes are quasicompact and quasiseparated. For a k-scheme X and field
extension L/k, we write X L := X ×Spec k Spec L . If A is a k-algebra, we write
AL = A⊗k L . We use Db(X) to denote the bounded derived category Db(Coh(X)).
For an OX -algebra A, we write Db(A) for the bounded derived category of com-
plexes of A-modules which are coherent OX -modules.

2. Galois descent and exceptional collections

In this section we develop Galois descent for exceptional collections (in a gener-
alized sense). We begin by recalling some definitions and conventions concerning
structure theory of derived categories of schemes. We then give our main descent
results for G-stable exceptional collections (Theorem 2.17). We complete the sec-
tion by collecting a few useful consequences to be used in the sequel.
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2A. Exceptional collections. We give some conventions for semiorthogonal de-
compositions of derived categories and in particular exceptional collections. Such
collections have been widely studied over algebraically closed fields but have re-
cently been treated in more generality [Ananyevskiy et al. 2013; Auel and Bernar-
dara 2018; Auel et al. 2014; Bernardara 2009; Blunk et al. 2011; Elagin 2009; Xie
2017; Yan 2014]. We refer the reader to Remarks 2.15 and 2.19 for added details
on some of these results.

For a triangulated category T, we use the standard notation

ExtnT(A, B)= HomT(A, B[n]).

For objects A, B of Db(X), we use EndX (A) and ExtnX (A, B) to denote EndDb(X)(A)
and Extn

Db(X)(A, B), respectively.

Definition 2.1 (see [Bondal and Kapranov 1989]). Let T be a triangulated category.
A full triangulated subcategory of T is admissible if its inclusion functor admits
left and right adjoints. A semiorthogonal decomposition of T is a sequence of
admissible subcategories C1, . . . ,Cs such that

(1) HomT(Ai , A j )= 0 for all Ai ∈ Ob(Ci ), A j ∈ Ob(C j ) whenever i > j ;

(2) for each object T of T, there is a sequence of morphisms

0= Ts→ · · · → T0 = T

such that the cone of Ti → Ti−1 is an object of Ci for all i = 1, . . . , s.

We use T= 〈C1, . . . ,Cs〉 to denote such a decomposition.

Particularly nice examples of semiorthogonal decompositions are given by ex-
ceptional collections, the study of which goes back to [Beı̆linson 1978].

Definition 2.2. Let T be a k-linear triangulated category. An object E in T is
exceptional if the following conditions hold:

(1) EndT(E) is a division k-algebra.

(2) ExtnT(E, E)= 0 for n 6= 0.

A totally ordered set E = {E1, . . . , Es} of exceptional objects is an exceptional
collection if ExtnT(Ei , E j )= 0 for all integers n whenever i > j . An exceptional
collection is full if it generates T, i.e., the smallest thick subcategory of T containing
E is all of T. An exceptional collection is strong if ExtnT(Ei , E j ) = 0 whenever
n 6= 0. An exceptional block is an exceptional collection E = {E1, . . . , Es} such
that ExtnT(Ei , E j )= 0 for every n whenever i 6= j . Given an exceptional collection
E= {E1, . . . , Es}, we denote by 〈E〉 the category generated by the objects Ei .
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Remark 2.3. Our notion of exceptional object generalizes the classical one, where
Definition 2.2(1) is replaced by EndT(E)= k [Bondal 1989, §2]. Over algebraically
or separably closed fields, these definitions agree. Over nonclosed fields, the clas-
sical definition is too restrictive to allow for the use of interesting arithmetic invari-
ants in the study of exceptional collections on twisted forms, e.g., Brauer classes.

Proposition 2.4 [Bondal 1989, Theorem 3.2]. Let X be a k-scheme with excep-
tional collection {E1, . . . , Es}. If Ei is the category generated by Ei , there is a
semiorthogonal decomposition Db(X) = 〈E1, . . . , Es,A〉, where A is the full sub-
category with objects A such that HomX (A, Ei )= 0 for all i .

Remark 2.5. Bondal assumes smoothness and projectivity but the conclusion is
independent of this. Note further that if X admits a full exceptional collection then
it is automatically smooth and proper by [Orlov 2016, Propositions 3.30 and 3.31].

The existence of an exceptional collection on a scheme X provides a means
of studying derived geometry of X in purely algebraic terms. Indeed, in such a
situation, one may identify an “underlying” k-algebra which is derived equivalent
to X . For exceptional blocks, one obtains a similar but slightly stronger fact.

Proposition 2.6 [Bondal 1989, Theorem 6.2]. Let X be a smooth projective k-
scheme and let {E1, . . . , En} be a full strong exceptional collection on Db(X). Let
E =

⊕
Ei and A=End(E). Then RHomDb(X)(E, – ) :Db(X)→Db(A) is a k-linear

equivalence.

Proposition 2.7. If E= {E1, . . . , Es} is an exceptional block with End(Ei )= Di ,
there is a k-algebra isomorphism End

(⊕
Ei
)
' D1×· · ·×Ds , and hence a k-linear

equivalence 〈E〉 ' Db(D1× · · ·× Dn).

The object E =
⊕

Ei of Proposition 2.6 is usually called a tilting object. If each
Ei is a sheaf (resp. vector bundle), then E is called a tilting sheaf (resp. tilting
bundle). Until recently, the theory of tilting objects has served as the main tool
for extending the study of exceptional collections to nonclosed fields. The results
above show that any exceptional collection gives rise to both a tilting object and
a semiorthogonal decomposition, and thus the admission of such a collection is a
particularly special property of a given triangulated category. Our aim in the fol-
lowing subsection is to extend descent results for semiorthogonal decompositions
and tilting objects to (our more general notion of) exceptional collections. We give
a formal definition of tilting object for completeness.

Definition 2.8. A tilting object for a k-scheme X is an object E of Db(X) which
satisfies the following conditions:

(1) ExtnX (E, E)= 0 for n > 0.

(2) E generates Db(X).
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Remark 2.9 (K-theory and motivic decompositions). Exceptional collections have
a particularly interesting manifestation in the realm of noncommutative motives.
Indeed, an exceptional collection {E1, . . . , Es} on a smooth projective variety X
yields a decomposition U (X) '

⊕
i U (Di ) of its corresponding universal addi-

tive invariant [Tabuada 2015, §2.3], where Di = End(Ei ). This defines a motivic
decomposition by viewing X as an object in the Merkurjev–Panin category of K-
motives [Merkurjev and Panin 1997] or Kontsevich’s category of noncommutative
Chow motives [Tabuada 2014, Theorem 6.10] via its associated dg-category of
perfect complexes.

One nice consequence is that this decomposition is detected by algebraic K-
groups [Auel and Bernardara 2018, Proposition 1.10] in addition to a slew of
other additive invariants in the sense of [Tabuada 2015, §2.2]. Such invariants
include algebraic K-theory with coefficients, homotopy K-theory, étale K-theory,
(topological) Hochschild homology, and (topological) cyclic homology.

2B. Galois descent. We develop Galois descent for exceptional collections con-
sisting of objects in the derived category Db(X) of a (smooth projective) vari-
ety X . Throughout this section, pushforward and pullback functors are understood
to be derived. For a k-scheme X and finite Galois extension L/k, any element
g ∈ Gal(L/k) defines a morphism of k-schemes g : X L → X L which in turn
defines the functor g∗ : Db(X L)→ Db(X L).

Definition 2.10. Let X be a scheme with an action of a group G. A G-stable
exceptional collection on X is an exceptional collection E={E1, . . . , Es} of objects
in Db(X) such that for all g ∈G and 1≤ i ≤ s there exists E ∈E such that g∗Ei ' E .
We say a G-stable exceptional collection E is a G-orbit if, for every pair of objects
E, E ′ ∈ E, there exists a g ∈ G such that g∗E ' E ′.

Remark 2.11. A simple example of a G-stable exceptional collection is a G-
invariant exceptional collection, i.e., an exceptional collection {E1, . . . , Es} such
that g∗Ei ' Ei for all 1 ≤ i ≤ s. It is often the case that toric varieties admit
exceptional collections consisting of line bundles. If it is also the case that a group
G acts trivially on Pic(X), such a collection is automatically G-invariant, and hence
G-stable (see Lemma 2.21).

Lemma 2.12. Any G-stable exceptional collection may be written as a collection
of G-stable exceptional blocks (possibly after reordering).

Proof. The decomposition of a G-stable exceptional collection into its G-orbits
gives the desired exceptional blocks. Let E be a G-stable exceptional collection
and for elements E, E ′ ∈ E, we write E  E ′ if Extn(E, E ′) 6= 0 for some n.

Let A ⊂ E be a G-orbit. To see that A is an exceptional block, suppose that
E  E ′ for E, E ′ ∈ A. Since A is a G-orbit, E ′ ' g∗E for some g ∈ G. Thus,
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E  g∗E , and acting again by g, we have g∗E  (g2)∗E . Since A is finite, we
have E  g∗E  · · · (gs)∗E  E for some positive integer s. Thus, there is
no ordering of the elements of A such that they form a subset of an exceptional
collection — a contradiction.

If B is another G-orbit (distinct from A), we would like to see that these blocks
can be ordered to form an exceptional collection. We claim that for any E ∈ A and
F ∈B, one has E F only if A precedes B in the collection E (i.e., Extn(B, A)= 0
for all n and all A ∈ A, B ∈ B). To see this, assume that E  F and F  E ′ for
some E ′ ∈ A. As A is a G-orbit, E ′ ' g∗E for some g ∈ G. Hence, just as above,
we have a sequence E  F  g∗E  g∗F  · · · (gs)∗F  E . Thus, there
is no ordering of the elements of A and B which forms an exceptional collection,
contradicting the exceptionality of E. �

Lemma 2.13. Let X be a Noetherian k-scheme, L/k a finite Galois extension with
group G, and π : X L→ X the natural projection map. For any object M in Db(X L)

there is a natural isomorphism π∗π∗(M)'
⊕

g∈G g∗M.

Proof. As π is flat and affine, every coherent sheaf on X is acyclic for π∗ and
every coherent sheaf on X L is acyclic for π∗. Hence, the derived functors coincide
with the application of π∗ or π∗ componentwise to a complex. Thus, it suffices to
establish a natural isomorphism at the level of coherent sheaves.

For any object M of Coh(X L), we have π∗M ' π∗g∗M , and adjunction yields
a natural transformation π∗π∗→ g∗. Summing over all g ∈ G provides the trans-
formation α : π∗π∗→

⊕
g∗. We show this is an isomorphism.

It suffices to check that α is an isomorphism on any affine patch Spec R of X .
Passing to modules, we abuse notation and let M be a finitely generated module
over RL = R⊗k L . Choose a presentation

R⊕m
L → R⊕n

L → M→ 0

of M and evaluate α on the sequence to get the commutative diagram

R⊕m
⊗k (L ⊗k L)

R⊕m
⊗k
(⊕

g 0g(L)
)

R⊕n
⊗k (L ⊗k L)

R⊕m
⊗k
(⊕

g 0g(L)
)

M ⊗R RL

⊕
g g∗M

0

0

αR⊕m αR⊕n αM

where 0g(L) denotes the graph of g in L ⊗k L . The left and middle maps are
isomorphisms, so the right map must also be an isomorphism. �

Proposition 2.14 (descent for orbits). Let X be a k-scheme, L/k a finite G-Galois
extension, and π : X L → X the natural projection map. If E = {E1, . . . , Es} is
a G-orbit forming an exceptional collection on X L , and if E is any element of E,
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then there is an exceptional object F in Db(X) such that π∗E ' F⊕m and π∗F
generates the category 〈E〉.

Proof. By Lemma 2.12, exceptional G-orbits are completely orthogonal (and by
definition carry a transitive action of G), which is used throughout the proof. Fix
an element E ∈ E, so that E = Ei for some i . Lemma 2.13 gives

π∗π∗E '
⊕
g∈G

g∗E .

We claim that End(π∗E) is a matrix algebra over a division algebra, and prove this
by first showing that it is semisimple. Indeed, using EndX (M)⊗k L'EndX L (π

∗M)
for any M ∈ Db(X) [Auel and Bernardara 2018, Remark 2.1], we have

EndX (π∗E)⊗k L ' EndX L (π
∗π∗E)' EndX L

(⊕
g∈G

g∗E
)
.

Each g∗E is exceptional, so that EndX L (g
∗E) =: Dg is a division algebra for

each element g ∈ G. Let H ≤ G be the subgroup consisting of elements h sat-
isfying h∗E ' E . For any system of coset representatives g ∈ G/H , we have
EndX (π∗E)L '

∏
g∈G/H Mm(Dg), where m= |H |. This product of matrix algebras

over division algebras is semisimple, i.e., the Jacobson radical rad(EndX (π∗E)L)=0.
We then have 0= rad(EndX (π∗E)L)= rad(EndX (π∗E))L by [Amitsur 1957, The-
orem 1], and hence rad(EndX (π∗E)) = 0. Thus, EndX (π∗E) is semisimple and
so must also be a product of matrix algebras over division algebras by the Artin–
Wedderburn theorem.

Let Z be the center of EndX (π∗E) and ZL the center of EndX (π∗E)L . Note that
Z is an étale k-algebra, and to show that End(π∗E) is a matrix algebra, it suffices
to show that Z has no zero divisors, and is thus a field. There is an embedding
Z ↪→ ZL =

∏
g∈G/H Lg, where Lg is the center of the division algebra Dg. The

transitive action of G on {E1, . . . , Es} implies that G acts transitively on a basis
of ZL , so that Z = (ZL)

G has no zero divisors.
We produce the object F using the identification EndX (π∗E)' Mn(D), where

D is a division algebra. Let ei = ei i denote the usual idempotent matrices, so that
{ei } is a complete set of primitive orthogonal idempotents. Notice that Fi := Im(ei )

is a simple EndX (π∗E)-submodule of π∗E for each i , and hence Fi ' F j for each
i, j , and EndX (Fi )' D. Define F = Im(e1)⊂ π∗E , included as a direct summand.
We note that π∗E '

⊕
Fi ' F⊕n .

We now show that F is an exceptional object on X . As stated above, EndX (F)
is a division algebra, so it suffices to show that ExtnX (F, F)= 0 for n 6= 0. Using
Lemma 2.13 and (π∗, π∗)-adjunction, we have

ExtnX (π∗E, π∗E)=
⊕
g∈G

ExtnX L
(g∗E, E).
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For n 6= 0, each summand of the right-hand side is 0, which follows from the mutual
orthogonality of the exceptional block E (when g∗E 6' E) and from exceptionality
of E (when g∗E ' E). Since F is a direct summand of π∗E , it follows that
ExtnX (F, F) is a summand of ExtnX (π∗E, π∗E)= 0.

Lastly, we show that π∗F generates the category 〈E〉. Since F⊕m
' π∗E , ex-

tending scalars to L gives (π∗F)⊕m
= π∗(F⊕m)' π∗π∗E '

⊕
g∗E . Thus,

〈π∗F〉 = 〈(π∗F)⊕m
〉 =

〈⊕
g∗E

〉
= 〈g∗E〉g∈G = 〈E〉. �

Remark 2.15. Proposition 2.14 provides a very specific case of descent for trian-
gulated categories, the main advantage of which is that it allows one to identify
a specific exceptional object that base extends to the given orbit. Moreover, a G-
orbit which forms an exceptional collection consisting of vector bundles or (resp.
sheaves) descends to an exceptional collection consisting of vector bundles (resp.
sheaves). Compare to the following descent result for semiorthogonal decomposi-
tions, which generalizes [Toën 2012, Corollary 2.15]. Although this result is useful
for descending semiorthogonal decompositions, it does not identify exceptional
objects.

Proposition 2.16 [Auel and Bernardara 2018, Proposition 2.12]. Let T be a k-
linear triangulated category such that Tks is ks-equivalent to Db(ks, (ks)n). Then
there exists an étale algebra K of degree n over k, an Azumaya algebra A over K ,
and a k-linear equivalence T' Db(K/k, A).

Let X , E, and F be as in Proposition 2.14, and note that taking T = 〈F〉, we
have Tks = 〈π∗F〉ks = 〈E〉ks . Since E= {g∗E}g∈G is a full exceptional collection
for 〈E〉, the bundle E :=

⊕
(g∗E)ks is a tilting object for 〈E〉ks . This defines an

equivalence
Tks ' 〈E〉ks ' Db(ks,End(E))= Db(ks, (ks)n).

Proposition 2.16 yields an étale extension K/k, an Azumaya K-algebra A, and an
equivalence T'Db(K/k, A). In this case, since T=〈F〉, we see that A=EndX (F)
is an Azumaya algebra over its center Z (using the notation found in the proof of
Proposition 2.14), which is simply a field extension of k.

Theorem 2.17 (descent for stable collections). Let X be a k-scheme, L/k a finite
G-Galois extension, and π : X L → X the natural projection map. If X L admits a
full G-stable exceptional collection E of objects of Db(X L), then X admits a full
exceptional collection F of objects of Db(X). If E is strong, so is F. If the elements
of E are vector bundles (resp. sheaves), the elements of F are vector bundles (resp.
sheaves).

Proof. By Lemma 2.12, we may write E= {E1, . . . ,Es
} as a collection of G-stable

blocks, where each block is given by a G-orbit. Proposition 2.14 then associates to
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each block Ei an exceptional object Fi on X , and we show that F= {F1, . . . , Fs}

is a full exceptional collection on X . We first show that ExtnX (Fi , F j ) = 0 for
all n whenever i > j . Let E i and E j be elements of the collections Ei and E j ,
respectively. We then have

ExtnX (π∗E
i , π∗E j )'

⊕
g∈G

ExtnX L
(g∗E i , E j ). (2.18)

Since E i and E j are elements of the exceptional collection E and i < j , each
summand is 0 for all n, so that

ExtnX (π∗E
i , π∗E j )= 0 for all n.

The objects Fi and F j are direct summands of π∗E i and π∗E j , respectively, and
it follows that ExtnX (Fi , F j )= 0 for all n.

By Proposition 2.4, the exceptional collection {F1, . . . , Fs} yields a semiorthog-
onal decomposition

Db(X)= 〈F1, . . . ,Fs,A〉,

where Fi=〈Fi 〉 and A is the full subcategory of objects A with HomDb(X)(A, Fi )=0
for all i . In particular, the subcategories Fi are admissible. Extending scalars to L ,
we have (Fi )L = 〈E

i
〉, as both categories are generated by π∗F by Proposition 2.14.

The exceptional collection E={E1, . . . ,Es
} is full, and hence we have a semiorthog-

onal decomposition
Db(X L)= 〈(F1)L , . . . , (Fs)L〉.

Since our admissible subcategories Fi base extend to a semiorthogonal decom-
position, [Auel et al. 2014, Lemma 2.9] gives a semiorthogonal decomposition
Db(X)= 〈F1, . . . ,Fs〉. In particular, the collection {F1, . . . , Fs} generates Db(X),
so this collection is full.

If E is strong, the right side of (2.18) vanishes for i 6= j (and any n). It follows
exactly as above that ExtnX (Fi , F j )= 0 for all n when i 6= j , so that F is strong. �

Remark 2.19. Similar descent results for collections of sheaves are given by Ela-
gin [2009] in the algebraically closed case (i.e., k = k̄) using the framework of
equivariant exceptional collections in equivariant derived categories. Indeed, for a
variety X with an action of a finite group G and a G-invariant exceptional collection
(see Remark 2.11) consisting of sheaves, this descent result is given in terms of α-
twisted representations of G; see [Elagin 2009, Theorem 2.2]. For a G-stable ex-
ceptional collection consisting of sheaves, results are in terms of coinduced twisted
representations of G; see [loc. cit., Theorem 2.3].

Lemma 2.20. Let X be a k-scheme and L/k a finite G-Galois extension. If X
admits an exceptional collection, then X L admits a G-stable exceptional collection.
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Proof. Let E1, . . . , Es be the given exceptional collection on X , and consider
π∗E1, . . . , π

∗Es on X L . To compute morphisms, we note that

HomX L (π
∗Ei , π

∗E j )= HomX (Ei , π∗π
∗E j )

= HomX (Ei , E j ⊗k L)= HomX (Ei , E j )⊗k L .

This vanishes if j > i . Let Ai =HomX (Ei , Ei ). We can split Ai ⊗k L as a product
of matrix algebras over division algebras Ai, j = MNi, j (Di, j ) and correspondingly
decompose

π∗Ei =
⊕

F Ni, j
i, j

with
HomX L (Fi, j , Fi, j )= Di, j .

Note that Fi, j and Fi, j ′ are orthogonal for j 6= j ′. Thus, we have an exceptional
collection. �

Lemma 2.21. Let X be a k-scheme and L/k a finite extension with Galois group G.
If G acts trivially on Pic(X L) and X L admits an exceptional collection of line
bundles, then X admits an exceptional collection of vector bundles.

Proof. The collection on X L is automatically G-stable pointwise. Hence we can
apply Theorem 2.17. �

Remark 2.22. Note that while we may start with a collection of line bundles, the
descended collection may not consist only of line bundles. An example of this is
the real conic discussed in the introduction.

Lemma 2.23. Let X be a smooth k-variety and L/k a G-Galois extension. Let
Y1, . . . , Ys be a G-orbit of smooth transversal subvarieties of X L . Let YI =

⋂
i∈I Yi

and let HI be the normalizer of YI . If each YI admits a full HI -stable excep-
tional collection, then X̃ admits an exceptional collection, where X̃ L is the iterated
blowup of X L at the Yi (in any order).

Proof. This is an iterated application of Orlov’s theorem; see [Castravet and Tevelev
2017, Lemma 7.2]. �

3. Arithmetic toric varieties

We introduce toric varieties over arbitrary fields. Such varieties, also known as
arithmetic toric varieties, have been treated in [Duncan 2016; Elizondo et al. 2014;
Merkurjev and Panin 1997; Voskresenskiı̆ and Klyachko 1984].

Definition 3.1. A torus (over k) is an algebraic group T (over k) such that Tks 'Gn
m .

A torus is split if T ' Gn
m . A field extension L/k satisfying TL ' Gn

m is called a
splitting field of the torus T . Any torus admits a finite Galois splitting field.



ON DERIVED CATEGORIES OF ARITHMETIC TORIC VARIETIES 223

Definition 3.2. Given a torus T , a toric T-variety is a normal variety with a faithful
T-action and a dense open T-orbit. A toric T-variety is split if T is a split torus.
A splitting field of a toric T-variety is a splitting field of T . A variety is a toric
variety if it is a toric T-variety for some torus T .

Definition 3.3. Let X be a toric T-variety whose dense open T-orbit contains a
k-rational point. Then we say X is neutral [Duncan 2016] (or a toric T-model
[Merkurjev and Panin 1997]). An orbit of a split torus always has a k-point, so a
split toric variety is neutral, but the converse is not true in general.

Remark 3.4. In what follows, we use the term toric variety to mean toric T-variety
for some fixed torus T , even though such a variety may have a toric structure
for various tori. In fact, the choice of torus does not affect our analysis of toric
varieties given below, and we refer interested readers to [Duncan 2016] for such
considerations.

Recall that a k-form of a k-variety X is a k-variety X ′ such that X L ' X ′L for some
field extension L/k. Any k-form of a toric variety is a toric variety [Duncan 2016].

3A. The split case. Let us begin by recalling some facts concerning toric varieties
with T ' Gn

m (e.g., when k = C or k = ks), which are studied in terms of combi-
natorial data, e.g., lattices, cones, fans. Good references for toric varieties over C

include [Fulton 1993; Cox et al. 2011], and many results hold generally in the split
case.

Let N be a finitely generated free abelian group of rank n and M = Hom(N ,Z).
A subsemigroup σ ⊂ NR is a cone if (σ∨)∨ = σ , where

σ∨ = {u ∈ M | u(v)≥ 0 for all v ∈ σ }.

A subsemigroup τ is a face of σ if it is of the form τ ={v∈σ |u(v)=0 for all u∈ S}
for some S ⊆ σ∨. A cone σ is pointed if 0 is a face of σ , and in this case σ∨ gener-
ates MR. Given a pointed cone σ , we associate the affine k-scheme Uσ=Speck[σ∨],
and for any face τ ⊂ σ the induced map Uτ ↪→Uσ is an open embedding.

A fan 6 ⊂ NR is a finite collection of pointed cones such that

(1) any face of a cone in 6 is a cone in 6 and

(2) the intersection of any two cones in 6 is a face of each.

To any fan 6 we associate a k-variety X6 which is obtained by gluing the affine
schemes Uσ along common subschemes Uτ corresponding to faces.

On the other hand, beginning with a split torus T ' Gn
m and toric T-variety X

with fixed embedding T ↪→ X , we recover M as the character lattice Hom(T,Gm)

of T and N as the cocharacter lattice Hom(Gm, T ). The association 6 7→ X6
defines a bijective correspondence between fans 6 ⊂ NR and toric T-varieties X
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(we remind the reader that here we assume T is a split torus; in general, fans 6
admitting an action by Gal(ks/k) are in bijection with neutral toric T-varieties).

Let 6(`) denote the collection of cones in 6 of dimension `. Let DivT (X)
denote the free abelian group generated by the rays of 6, i.e., elements of 6(1).
By the orbit-cone correspondence [Cox et al. 2011, Theorem 3.2.6], DivT (X) is
isomorphic to the group of T-invariant Weil divisors of X . For X a (split) smooth
projective toric variety, we have natural identifications

Pic(X)= Pic(Xks )= Cl(Xks )= Cl(X),

which yield an exact sequence

0→ M→ DivT (X)→ Pic(X)→ 0.

In particular, if X is of dimension n and m is the number of rays in 6, the Picard
rank of X is ρ = m− n.

Definition 3.5. A variety X is Fano (resp. weak Fano) if its anticanonical class
−K X is ample (resp. nef and big). If X is a normal variety, a Cartier D divisor on
X is nef (“numerically effective” or “numerically eventually free”) if D ·C ≥ 0 for
every irreducible curve C ⊂ X . A divisor D is very ample if D is base point free
and ϕD : X→ P(0(X,OX (D))∨) is an embedding. A divisor D is ample if `D is
very ample for some ` ∈ Z+. A line bundle OX (D) is nef or (very) ample if the
corresponding divisor D is nef or (very) ample. A Cartier divisor is numerically
trivial if D ·C = 0 for every irreducible complete curve C ⊂ X . Let N 1(X) be the
quotient group of Cartier divisors by the subgroup of numerically trivial divisors.
The nef cone Nef(X) is the cone in N 1(X) generated by the nef divisors, and the
anti-nef cone is the cone −Nef(X)⊂ N 1(X). A line bundle OX (D) is nef (ample)
if D is nef (ample).

Proposition 3.6. A Cartier divisor D on a split proper toric variety X is nef (resp.
ample) if and only if D ·C ≥ 0 (resp. D ·C > 0) for all torus-invariant integral
curves C ⊂ X.

Proof. When k is algebraically closed, this is [Mustaţă 2002, Theorems 3.1 and 3.2].
One can see that the arguments remain valid in the split case more generally. �

3B. The not necessarily split case. Here we provide a “black box” for producing
exceptional collections on arbitrary forms of toric varieties by identifying certain
special exceptional collections on a split toric variety. This reduces an arithmetic
question to a completely geometric question.

We begin by reviewing how to obtain arbitrary forms of toric varieties from the
split case; see, for example, [Voskresenskiı̆ 1982; Elizondo et al. 2014]. Let T be
the split torus of a split smooth projective toric variety X with fan 6 in the space
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N ⊗R associated to the lattice N . Let Aut(6) denote the subgroup of elements
g ∈ GL(N ) such that g(σ ) ∈6 for every cone σ ∈6. There is a natural inclusion
of T oAut(6) into Aut(X) as the subgroup leaving the open orbit T-invariant.

Let ks be the separable closure of k. The Galois cohomology set

H 1(ks/k,Aut(X)(ks))

is in bijective correspondence with the k-forms of X . The natural map

H 1(ks/k, T (ks)oAut(6))→ H 1(ks/k,Aut(X)(L))

in Galois cohomology is surjective; the failure of this map to be a bijection amounts
to the fact that there may be several nonisomorphic toric variety structures on the
same variety; see [Duncan 2016] for more details.

Suppose that X ′ = γX is a twisted form of a split toric variety for a cocycle
γ representing a class in H 1(ks/k, T (ks)o Aut(6)). There is a “factorization”
X ′ = α(βX), where β represents a class in H 1(ks/k,Aut(6)) and α represents a
class in H 1(ks/k, (βT )(ks)). Informally, β changes the torus that acts on X , while
α changes the torsor of the open orbit in X .

Suppose X is a toric T-variety. We say that an object E ∈Db(X) is T-equivariant
if E is in the image of the forgetful functor from Db(CohT (X)); see [Ballard et al.
2014, §2]. In particular, this implies that t∗E ' E for all t ∈ T (k).

Proposition 3.7. Let X be a split toric T-variety over a field k and let 6 be the
associated fan. Suppose that X admits an Aut(6)-stable full exceptional collection
E such that each object is T-equivariant. Then any k-form X ′ of X admits a full
exceptional collection E′. Moreover, E′ is strong (resp. consists of vector bundles,
consists of sheaves) as soon as E is strong (resp. consists of vector bundles, consists
of sheaves).

Proof. By Lemma 2.20, there exists a G-stable exceptional collection F on X L .
From the proof of that lemma, the objects F of F are direct summands of π∗E
for each object E ∈ E, where each isomorphism class of a simple direct summand
is represented by exactly one F . Since E is Aut(6)-stable and each object is T-
equivariant, we may conclude that F is (T (L)oAut(6))oG-stable.

Let X ′ be a k-form of X ; there exists a finite Galois extension L/k with Galois
group G such that X ′L ' X L . From Theorem 5.1 of [Duncan 2016], the natural
map

H 1(L/k, T (L)oAut(6))→ H 1(L/k,Aut(X)(L))

in Galois cohomology is surjective. Thus, we may assume that X ′ = cX is the twist
by a cocycle c : G → T (L)o Aut(6). Recall that the cocycle condition is that
c(gh) = c(g)gc(h) for all g, h ∈ G, where gc(h) denotes the Galois action of g
on T (L)oAut(6).



226 MATTHEW BALLARD, ALEXANDER DUNCAN AND PATRICK MCFADDIN

Identifying X L = X ′L , twisting gives σ ′(g) = c(g)σ (g), where σ is the action
of G induced from X and σ ′ is induced from X ′. The punchline is that the action
σ ′ factors through the image of (T (L)oAut(6))oG described above. Thus the
exceptional collection F is G-stable for the X ′ action as well. The proposition now
follows by Theorem 2.17. �

Corollary 3.8. Let X be a split toric T-variety over a field k and let 6 be the
associated fan. If X admits an Aut(6)-stable full (strong) exceptional collection
of line bundles, then every k-form of X admits a full (strong) exceptional collection
of vector bundles.

Proof. Recall that every line bundle is isomorphic to a T-equivariant line bundle by
standard results on toric varieties. The claim now follows by Proposition 3.7. �

Lemma 3.9. Let X and Y be smooth projective toric varieties over k, and let
G = Gal(ks/k). Assume we have a K-positive toric flip X 99K Y such that over ks

the flipping loci Fi are disjoint and permuted by G. Let Hi be the normalizer of Fi .
If X L admits a full G-stable exceptional collection and Yi admits a full Hi -stable
exceptional collection, then Y admits a full exceptional collection.

Proof. Passing to ks , we are free to use [Ballard et al. 2019] giving semiorthogonal
decompositions for the flip over each Yi . Since the Yi are disjoint, we can concate-
nate these collections to get a G-stable collection. �

3C. Products of toric varieties. Recall that, given groups G, H along with a homo-
morphism ρ : H ↪→ Sn , the wreath product G o H is the group Gn o H , where
H acts on Gn by permuting the copies of G. We say a toric variety X is inde-
composable if it cannot be written as a product X1 × X2, where X1 and X2 are
positive-dimensional toric varieties.

Lemma 3.10. Suppose Z = Xn1
1 × · · · × Xnr

r is a product of proper split toric
varieties X1, . . . , Xr , where X i 6' X j for i 6= j and each X i is indecomposable.
Then

Aut(6)' (Aut(61) o Sn1)× · · ·× (Aut(6r ) o Snr ),

where 6 is the fan of Z and 61, . . . , 6r are the fans of X1, . . . , Xr .

Proof. First, consider Z = X1× X2, where X1, X2 are proper split toric varieties.
Let N (resp. N1, N2) be the cocharacter lattice and 6 (resp. 61, 62) be the fan of
Z (resp. X1, X2). Here N = N1⊕ N2 and 6 is the set of cones of the form σ1×σ2,
where σ1 ∈61 and σ2 ∈62. The faces of a cone σ1× σ2 are precisely the cones of
the form σ ′1× σ

′

2, where σ ′1 is a face of σ1 and σ ′2 is a face of σ2. The fan 61 can
be canonically identified with the subfan of 6 via the bijection σ 7→ σ ×{0}.

Now, suppose also that Z = Y ×W is a product of proper split toric varieties
with Y indecomposable. Let 6Y be the fan of Y , which we can canonically identify
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with a subfan of 6Z . Every cone of Y is of the form σ1× σ2, where σ1 ∈61 and
σ2 ∈62. Since fans are closed under taking faces, σ1×{0} and {0}× σ2 are also
cones in 6Y . Thus every cone in 6Y is a product of cones in the intersections
6Y ∩61 and 6Y ∩62.

In particular, since X is proper, we have that the space NY ⊗ R is the direct
sum of (NY ⊗R)∩ (N1 ⊗R) and (NY ⊗R)∩ (N2 ⊗R), and 6Y is a product of
the fans 6Y ∩61 and 6Y ∩62. Since Y is indecomposable, one of these fans is
indecomposable and 6Y must be a subfan of either 61 or 62.

Returning to the general case, we conclude that the decomposition of 6 as
6

n1
1 × · · · ×6

nr
r is unique up to ordering. The description of the automorphism

group is immediate. �

Lemma 3.11. Let Z be a proper toric k-variety with splitting field L/k. Suppose
ZL =

∏n
i=1 X i , where each X i is an indecomposable split proper toric L-variety ad-

mitting a full (strong) Aut(6i )-stable exceptional collection of line bundles, where
6i is the fan of X i . Then Z has a full (strong) exceptional collection of vector
bundles.

Proof. It is well known that the exterior product collection is an exceptional collec-
tion. For each isomorphism class among the X i , fix a full (strong) Aut(6X i )-stable
exceptional collection of line bundles. This ensures that the exterior product col-
lection is stable under the action of (Aut(6X1) o Sa1)×· · ·× (Aut(6Xr ) o Sar ). Since
this group is Aut(6) by Lemma 3.10, the exterior product collection descends by
Corollary 3.8. �

4. Low dimension or high symmetry

We provide exceptional collections for smooth toric surfaces, Fano 3-folds, some
Fano 4-folds, centrally symmetric toric varieties, and toric varieties corresponding
to root systems of type A.

4A. Surfaces. Here we prove that every toric surface has a full exceptional col-
lection. We begin by recalling the (classical) minimal model program for surfaces
over nonclosed fields.

Suppose f : X → X ′ is a birational morphism of smooth projective surfaces
over a field k. If k is separably closed, then by Proposition 5 of [Coombes 1988]
the morphism factors into a sequence

X = X0→ X1→ · · · → Xr = X ′,

where each morphism X i → X i+1 is the blowup of a point on X i+1. Over a non-
closed field k, we can factor f : X → X ′ into a sequence where each morphism
X i → X i+1 is defined over k and is a blowup of a (necessarily finite) Galois orbit
of ks-points on X i+1.
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Blowing up a point produces an exceptional curve: a smooth rational curve with
self-intersection −1. By Castelnuovo’s contractibility criterion, such a curve can
always be obtained as the result of a blow-up. If one finds a skew Galois orbit of
such curves on X , then there exists a birational morphism f : X→ X ′ contracting
these curves. Repetition of this procedure eventually terminates.

Definition 4.1. A minimal surface X is a smooth projective surface over a field k
such that every birational morphism X→ X ′ to a smooth projective surface X ′ is
an isomorphism.

Any smooth projective surface can be obtained by iteratively blowing up Ga-
lois orbits of separable points starting from a minimal model. A toric variety is
geometrically rational. Minimal geometrically rational surfaces were classified by
Manin [1966] and Iskovskikh [1979]. One checks that the toric surfaces in their
collection are the following (see also a direct proof in [Xie 2017]):

Lemma 4.2. A minimal smooth projective toric surface is a ks/k-form of one of
the following:

(1) P2, Aut(6)= S3.

(2) P1
×P1, Aut(6)= D8.

(3) Fa = Proj(OP1 ⊕OP1(a)), a ≥ 2, Aut(6)= C2.

(4) dP6 = del Pezzo surface of degree 6, Aut(6)= D12.

Proof. A minimal geometrically rational surface is either a del Pezzo surface or
has a conic bundle structure [Manin 1966; Iskovskikh 1979]. Over the separable
closure, a del Pezzo surface is either P1

×P1 or a blowup of P2 at up to 8 points
in general position. Blowing up only one or two points never results in a minimal
surface, and no more than three points can be simultaneously torus invariant and
in general position. Thus every del Pezzo surface is a ks/k-form of P2, P1

×P1,
or dP6. Over the separable closure, a conic bundle structure has at most 2 singular
fibers since their images must be torus invariant points on the base P1. A minimal
conic bundle with at most two singular fibers over the separable closure must be
either a del Pezzo surface or a minimal ruled surface. �

Here we exhibit full strong exceptional collections consisting of G-stable blocks
for each minimal toric surface exhibited above (none of these collections are orig-
inal). The fans associated to the split forms of these surfaces are given in Figure 1.
In each case, we fix a torus T which gives X the structure of a toric T-surface. As
remarked above, this gives a homomorphism G → Aut(6) as well as an action
of G on Pic(X L), where L is a splitting field of T , G = Gal(L/k), and 6 is the
fan corresponding to the split toric surface X L . We produce G-stable exceptional
collections in each case by exhibiting Aut(6)-stable collections.
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P2 P1
×P1

Fa dP6

Figure 1. Fans for minimal toric surfaces.

Example 4.3. Let X be a toric T-surface whose split form is P2 with Aut(6)= S3.
The S3-action on Pic(P2)= Z is clearly trivial, so that the exceptional collection
{O,O(1),O(2)} given in [Beı̆linson 1978] yields a full strong Aut(6)-stable excep-
tional collection. By Corollary 3.8, X admits a full strong exceptional collection.

Example 4.4. Let X be a toric surface whose split form is P1
×P1 with Aut(6)=D8,

and consider the natural projections p1, p2 : P
1
×P1

→ P1. Let

O(p, q)= p∗1O(p)⊗ p∗2O(q).

By [Kvichansky and Nogin 1990], the collection {O,O(1, 0),O(0, 1),O(1, 1)}
on P1

× P1 is exceptional since {O,O(1)} is an exceptional collection for P1.
The D8-action preserves this collection, with orbits given by the blocks E0

= {O},
E1
={O(1, 0),O(0, 1)}, and E2

={O(1, 1)}. In particular, this collection is Aut(6)-
stable, and Corollary 3.8 yields an exceptional collection on X .

Example 4.5. Let X be a toric surface whose split form is the Hirzebruch surface
Fa; here Aut(6)=C2. Let e1, e2 be the standard basis for Z2. As in [Cox et al. 2011,
Example 4.1.8], let u1=−e1+ae2, u2= e2, u3= e1, and u4=−e2 be the generators
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of 6(1) with corresponding toric divisors Di . The Picard group of Fa is freely
generated by {D1, D2} and D1 is linearly equivalent to D3. The only nontrivial fan
automorphism σ takes e1 7→−e1+ae2 and e2 7→ e2. Thus σ leaves D2, D4 fixed and
interchanges D1 and D3. We conclude that the action of C2 on Pic(Fa) is trivial, and
thus, any exceptional collection is necessarily G-stable (see Lemma 2.21). An ex-
ceptional collection for Fa is given by {O,O(D3),O(D4),O(D3+ D4)} [Kvichan-
sky and Nogin 1990]. Corollary 3.8 then gives an exceptional collection on X .

Example 4.6. Let X be a toric surface whose split form is dP6; here Aut(6)= D12.
Viewing dP6 as the blowup of P2 at 3 noncolinear points, let H be the pullback
of the hyperplane divisor on P2 and Ei the exceptional divisors, i = 1, 2, 3. As
shown in [King 1997, Proposition 6.2(ii)], the collection

{O,O(H − E1),O(H − E2),O(H − E3),O(H),O(2H − (E1+ E2+ E3))}

gives an exceptional collection for dP6 which is Aut(6)-stable.
Let us rephrase this in the notation of [Blunk et al. 2011]. There are two mor-

phisms dP6→ P2 realizing dP2 as a blowup of P2, and we denote the collection of
all six exceptional divisors by L i and Mi , with i = 1, 2, 3. Let H and H ′ denote the
pullbacks of the hyperplane divisors on P2 under the maps contracting Mi and L i ,
respectively, where we identify H with the divisor given in King’s collection above
(and thus we also identify Ei with Mi ). Then H = L1+M2+M3, and using the
relation L i +M j = L j +Mi it follows that

2H − (E1+ E2+ E3)= L1+ L2+M3 = H ′.

Furthermore, one checks that H − E1 = L2 + M3, H − E2 = L1 + M3, and
H − E3 = L1 + M2. As described in [Blunk et al. 2011, §2], the element σ
in S3 × C2 = D12 which cyclically permutes the six lines L i ,Mi also satisfies
σ(H) = H ′ and σ 2(H) = H . We arrange the exceptional collection above into
blocks

E0
= {O},

E1
= {O(H − E1),O(H − E2),O(H − E3)},

E2
= {O(H),O(2H − (E1+ E2+ E3))}.

In particular, the exceptional collection given above is Aut(6)-stable, and so by
Corollary 3.8 we have an exceptional collection on X .

Proposition 4.7. Every toric surface admits a full exceptional collection of sheaves.

Proof. There is a sequence of blowups X = X0→ · · · → Xs = X ′, where X ′ is
minimal and so must be one of the varieties given in Lemma 4.2. By Examples 4.3–
4.6, X ′ admits a full strong exceptional collection of vector bundles, and thus X ′L
admits a G-stable exceptional collection. By Lemma 2.23, X L admits a G-stable
exceptional collection. �



ON DERIVED CATEGORIES OF ARITHMETIC TORIC VARIETIES 231

Remark 4.8. We would like to thank F. Xie for pointing out a mistake in the
statement of a previous version of Proposition 4.7. Xie also discusses exceptional
collections of toric surfaces in [Xie 2017], although her definition of exceptional
object is not the same as ours. In the second arXiv version of that paper, Xie
sketched in Remark 8.8 how one might construct an exceptional collection for toric
surfaces. After the authors posted a preliminary version of this paper to the arXiv,
Xie updated her preprint with Corollary 8.8, which proves the analog of the above
proposition for collections of vector bundles but using her notion of exceptional
collection.

4B. The toric Frobenius and toric Fano 3-folds. In Table 1 we present the clas-
sification of smooth toric Fano 3-folds given in [Batyrev 1999; Watanabe and
Watanabe 1982], adopting Batyrev’s enumeration. For each X = X6 , we record
the following invariants:

• σ(1)= |6(1)| is the number of rays of 6 [Bernardi and Tirabassi 2009].

• k0 is the rank of the Grothendieck group K0(X), which coincides with the
number of maximal cones in the fan 6 [Bernardi and Tirabassi 2009].

• Aut(6) is the automorphism group of the (lattice N which preserves the) fan
6 corresponding to X .

• ρ is the Picard rank of X [Watanabe and Watanabe 1982].

• ρG is the Aut(6)-invariant Picard rank of X , i.e., the rank of Pic(X)Aut(6).

• fr= |Frob(X)| is the number of isomorphism classes of line bundles produced
by the push forward of the structure sheaf under the Frobenius morphism
[Bernardi and Tirabassi 2009; Uehara 2014].

• fr− = |Frob(X) ∩ −Nef(X)| is the number of isomorphism classes of line
bundles in Frob(X) which lie in the anti-nef cone of X [Uehara 2014].

Toric Frobenius. Let X be a split toric variety of dimension n with fixed torus
embedding T ↪→ X and take ` ∈ Z+. Define the `-th Frobenius map on T = Gn

m
to be (x1, . . . , xn) 7→ (x`1, . . . , x`n). The unique extension to X is denoted F` and
called the `-th Frobenius morphism. Alternatively, if 6 ⊂ N is the fan associated
to X , define a lattice N ′= 1

`
N . The inclusion N ⊂ N ′, which sends a cone in NR to

the cone with the same support in N ′R, induces a finite surjective morphism which
is precisely the `-th Frobenius morphism F` : X→ X .

The sheaf (F`)∗(OX ) splits into line bundles and [Thomsen 2000] provides an
algorithm for computing its direct summands. We let Frob(X) denote the union of
all isomorphism classes of line bundles arising as direct summands of (F`)∗(OX )

as ` varies over Z+. Note that Frob(X) is a finite set.



232 MATTHEW BALLARD, ALEXANDER DUNCAN AND PATRICK MCFADDIN

Toric Fano 3-fold X σ(1) k0 Aut(6) ρ ρG fr fr−

1. P3 4 4 S4 1 1 4 4
2. PP2(O⊕O(2)) 5 6 S3 2 2 7 6
3. PP2(O⊕O(1)) 5 6 S3 2 2 6 6
4. PP1(O⊕O⊕O(1)) 5 6 C2×C2 2 2 6 6
5. P2

×P1 5 6 D12 2 2 6 6
6. PP1×P1(O⊕O(1, 1)) 6 8 D8 3 2 8 8
7. PdP8(O⊕O(l)), l2

= 1 on dP8 6 8 D8 3 3 8 8
8. P1

×P1
×P1 6 8 C2×S4 3 1 8 8

9. dP8×P1 6 8 C2×C2 3 3 8 8
10. PP1×P1(O⊗O(1,−1)) 6 8 D8 3 2 8 8
11. BlP1(PP2(O⊕O(1))) 6 8 C2 3 3 9 8
12. BlP1(P2

×P1) 6 8 C2 3 3 8 8
13. dP7-bundle over P1 7 10 C2 4 4 10 10
14. dP7-bundle over P1 7 10 C2×C2 4 3 10 10
15. dP7×P1 7 10 C2×C2 4 3 10 10
16. dP7-bundle over P1 7 10 C2 4 4 10 10
17. dP6×P1 8 12 C2×C2×S3 5 2 12 12
18. dP6-bundle over P1 8 12 C2×C2 5 4 12 12

Table 1. Toric Fano 3-folds.

Conjecture 4.9 [Bondal 2006]. If X is a smooth proper toric variety then the col-
lection Frob(X) generates Db(X).

For a toric variety X in which Bondal’s Conjecture is true, we say that the
Frobenius generates the derived category of X . In [loc. cit.], Bondal proves that
if all summands of Frob(X) are nef, one actually gets a full strong exceptional
collection, so that Conjecture 4.9 is true in this case. He also notes his arguments
work for all but two (isomorphism classes of) toric Fano threefolds. To cover all
toric Fano threefolds, Uehara noticed that discarding line bundles which do not lie
in the set −Nef(X) yields a full strong exceptional collection [Uehara 2014].

Lemma 4.10. Let X be a toric variety over k with splitting field L. Suppose E

is a full (strong) exceptional collection for Db(X L) where either E= Frob(X L) or
E= Frob(X L)∩−Nef(X L). Then there exists a full (strong) exceptional collection
for Db(X).

Proof. Both Frob(X L) and Nef(X L) are canonical constructions and thus are
Aut(X L)-stable. In particular, E is Aut(6)-stable and so Corollary 3.8 applies. �

Proposition 4.11. Let X be a smooth projective toric Fano 3-fold over a field k.
Then X admits a full strong exceptional collection consisting of vector bundles.
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Proof. Let X L be the associated split toric Fano 3-fold. The main result of [Ue-
hara 2014] guarantees that the set E= Frob(X L)∩−Nef(X L) defines a full strong
exceptional collection on X . Lemma 4.10 completes the proof. �

4C. Toric Fano 4-folds. There are 124 split smooth toric Fano 4-folds, which
were first classified in [Batyrev 1999] (a missing case was added in [Sato 2000]).
Full strong exceptional collections for all 124 of these 4-folds were exhibited in
[Prabhu-Naik 2017]. However, it is not clear that these collections are Aut(6)-
stable, so they do not necessarily lead to full strong exceptional collections in the
arithmetic case.

All collections obtained using Method 1 of [Prabhu-Naik 2017] produce Aut(6)-
stable collections (note that this is precisely the method used in [Uehara 2014] for
toric Fano 3-folds, and we refer to this as the Bondal–Uehara method). Together
with Lemmas 3.11 and 4.10, this gives stable exceptional collections for 43 of the
124 smooth toric Fano 4-folds. However, there are examples where the Bondal–
Uehara method fails to produce an exceptional collection. In this case, all is not
lost (see Section 4D).

More precisely, the varieties (61), (62), (63), (64), (77), (105), (107), (108),
(110), (122), and (123) of [Prabhu-Naik 2017] are shown to have exceptional collec-
tions using the Bondal–Uehara method. Hence, they admit exceptional collections
which are Aut(6)-stable and thus provide exceptional collections for the arithmetic
forms. Secondly, for the varieties (109), (114), and (115), the set Frob(X) is a full
exceptional collection, which is G-stable by Lemma 4.10. Lastly, Lemma 3.11
guarantees the existence of exceptional collections on products. Hence, the follow-
ing varieties also admit stable exceptional collections: (0), (4), (9), (17), (24), (25),
(26), (27), (45), (52), (53), (54), (55), (56), (58), (67), (73), (88), (90), (92), (93),
(97), (103), (111), (112), (113), (118), (119), (120).

4D. Centrally symmetric toric Fano varieties. Polytopes with the highest degree
of symmetry are the centrally symmetric polytopes, i.e., −P = P . The smooth split
toric varieties X whose anticanonical polytope is full-dimensional and centrally
symmetric were classified in [Voskresenskiı̆ and Klyachko 1984]. It was shown
that any such variety (which we refer to as a centrally symmetric toric Fano variety)
is isomorphic to a product of projective lines and generalized del Pezzo varieties
Vn of dimension n = 2m. Note that V2 = dP6 and V4 is the missing (116) from the
list in Section 4C (this is (118) in the enumeration found in [Batyrev 1999]). The
goal of this section is to exhibit full stable exceptional collections on Vn , which
in turn yields stable exceptional collections for any centrally symmetric toric Fano
variety, in light of Lemma 3.11.

Castravet and Tevelev [2017, Theorem 6.6] found Aut(6)-stable full strong ex-
ceptional collections for the varieties Vn . The present authors had independently



234 MATTHEW BALLARD, ALEXANDER DUNCAN AND PATRICK MCFADDIN

discovered the same exceptional collection (up to a twist by a line bundle). Nev-
ertheless, the perspective here may be of independent interest, so we sketch the
argument. A more detailed analysis is given in [Ballard et al. 2018].

The variety Vn with n = 2m has rays given by

e1 = (1, 0, . . . , 0), ē1 = (−1, 0, . . . , 0),

e2 = (0, 1, . . . , 0), ē2 = (0,−1, . . . , 0)
...

...

en = (0, 0, . . . , 1), ēn = (0, 0, . . . ,−1),

en+1 = (−1,−1, . . . ,−1), ēn+1 = (1, 1, . . . , 1),

and maximal cones given as follows. From the rays e1, . . . , en+1, omit a single ei .
From the remaining n= 2m rays, choose n

2 of them and take their antipodes [Voskre-
senskiı̆ and Klyachko 1984, proof of Theorem 5]. Note that V2 = dP6 (whose fan
is given in Figure 1). The number of maximal cones c(n) of Vn is given by

c(n)=
(n+ 1)!( n

2

)
!2
=
(2m+ 1)!

m!2
.

There’s a natural action of Sn+1 × C2, where Sn+1 permutes e1, . . . , en+1 and
ē1, . . . , ēn+1 in the obvious way. The C2-action is simply the antipodal map on
the cocharacter lattice — we refer to it as “the involution”. Clearly, the involution
interchanges ei and ēi .

The variety Vn is of importance in birational geometry due to its appearance in
the factorization of the standard Cremona transformation of Pn . In fact, as is well
known, Vn can be explicitly obtained from Pn as follows. First blow up the torus
fixed points, then flip the (strict transforms) of the lines through these points, then
flip the (strict transforms) of planes through these points, . . . , up until, and not
including, the half-dimensional linear subspaces. The resulting variety is Vn . For
more, see [Casagrande 2003].

Since Vn and the blowup of Pn at its torus fixed points are isomorphic in codi-
mension 1, they have isomorphic Picard groups. We use a basis

{H, E1, . . . , En+1}

for Pic(Vn), which corresponds to the hyperplane section and the exceptional divi-
sors of the blown up Pn . We have

[ei ] = Ei , [ēi ] =

(
H −

n+1∑
j=1

E j

)
+ E j ,

where Sn+1 permutes the Ei leaving H fixed, and the involution is represented by
the following matrix:
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n 1 1 · · · 1

1− n 0 −1 · · · −1
1− n −1 0 · · · −1
...

...
...
. . .

...

1− n −1 −1 · · · 0

 .
For each c ∈ Z and J ⊂ {1, . . . , n+ 1}, define

Fc,J := c
( n+1∑

i=1

Ei − H
)
−

∑
j∈J

E j .

Note that the involution takes Fc,J to F|J |−c,J .

Proposition 4.12. The set of Fc,J with

(1) |J | − n
4
≤ c ≤ n

4
or

(2) n+2
4
≤ c ≤ |J | − n+2

4
forms a full strong (Sn+1×C2)-stable exceptional collection on Vn under any or-
dering of the blocks such that |J | is (nonstrictly) decreasing.

Proof sketch. This collection is the same as that of [Castravet and Tevelev 2017,
Theorem 6.6] up to a twist by a line bundle. Thus, we only sketch an argument here,
expanded in [Ballard et al. 2018]. One checks that the description of “forbidden
cones” given in [Borisov and Hua 2009] shows that relevant cohomology groups
vanish — this shows that it is a strong exceptional collection. To prove generation,
one considers the series of flips required to reach Pn blown up at n+1 points. Using
the description of the semiorthogonal decompositions in [Ballard et al. 2019], the
line bundles can be shown to generate the necessary admissible subcategories of
each intermediate birational model. �

Since any centrally symmetric toric Fano variety is a product of projective lines
and the varieties Vn , Lemma 3.11 yields the following:

Corollary 4.13. Any form of a centrally symmetric toric Fano variety admits a full
strong exceptional collection consisting of vector bundles.

4E. Toric varieties from the Weyl fans of type A. One method for identifying toric
varieties with large symmetry groups is to start with root systems. Let R be a root
system in a Euclidean space E . The Z-lattice generated by R is denoted M(R),
while its dual in E∨ is denoted by N (R). For every set S of simple roots in E , we
have the dual cone corresponding to a closed Weyl chamber

σS := { f ∈ E∨ | 〈 f, α〉 ≥ 0, ∀α ∈ S}.
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The cones σS are the maximal cones for a fan 6R in E∨. We denote the associated
toric variety by X (R). Recall that an automorphism of R is an element of GL(E)
preserving R. Let W (R) be the Weyl group and 0(R) the symmetry group of the
Dynkin diagram of R. It is well known that

Aut(R)'W (R)o0(R).

Any automorphism of R induces an action on the fan 6(R), which yields a homo-
morphism φ : Aut(R)→ Aut(6(R)).

Lemma 4.14. The map φ : Aut(R)→ Aut(6(R)) is an isomorphism.

Proof. First note that the set R can be reconstructed from 6(R) by taking the union
of the extremal rays generating the dual cones σ∨S for all σS . Thus any symmetry
of the fan induces a symmetry of R. This gives the inverse map to φ. �

Here we focus on the case R = An . In [Losev and Manin 2000], the authors
showed that X (An) is a moduli space of rational curves with (n+1) marked points
and 2 poles. Another useful proof appeared in [Batyrev and Blume 2011].

Using this perspective, [Castravet and Tevelev 2017] exhibited an exceptional
collection on X (An) that is stable under the action of permuting the marked points
and flipping the poles, i.e., an (Sn+1 o C2)-stable collection. Here we demon-
strate that Castravet and Tevelev’s exceptional collection satisfies the conditions of
Proposition 3.7 and hence descends to an exceptional collection on any form of
X (An) (in characteristic 0).

To do this requires a bit of translating divisors and actions from the moduli-
theoretic language to the toric language. We recall the moduli-theoretic language.

Definition 4.15. Let N be a set of order n. A chain of polar P1’s is a ({0,∞}∪N )-
marked linear nodal chain of P1’s with 0 on the left tail and∞ on the right tail. A
chain of polar P1’s is stable if

(1) marked points do not coincide with nodes,

(2) only N -marked points are allowed to coincide,

(3) each component of the chain has at least three special points (nodes or marked
points).

We write LMN for the corresponding moduli space. We also use LMn depending
on the context. Note that the universal curve over LMn is isomorphic to LMn+1.

Theorem 4.16. The toric variety X (An−1) is isomorphic to LMn . Moreover, if we
fix an embedding An−1→ An , the corresponding map X (An)→ X (An−1) is the
universal curve. Moreover, X (An)→ X (An−1) is a toric morphism.
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Proof. This is [Losev and Manin 2000, Theorem 2.6.3]. See also [Batyrev and
Blume 2011, Theorem 3.19]. The map is consequently toric by [Batyrev and Blume
2011, Proposition 1.4]. �

Under this isomorphism, the closures of the torus orbits on X (An) have the
following moduli-theoretic description. Fix a partition N1 t N2 = N and let δN1

denote the divisor parametrizing polar chains of length exactly 2 having the first
marked by N1 and the last marked by N2. For a partition with more parts

N1 t N2 t · · · t Nt = N ,

one has the locus Z N1,...,Nt parametrizing polar chains of length exactly t , where
the i-th P1 is marked by Ni . These loci are precisely the proper torus orbit closures
on X (An).

Note that each locus is a complete intersection

Z N1,...,Nt := δN1 ∩ δN1∪N2 ∩ · · · ∩ δN1∪···∪Nt−1 .

Moreover, we have an isomorphism

Z N1,...,Nt ' LMN1 × LMN2 × · · ·× LMNt ,

where the left node of each P1 is marked with 0 and the right node is marked
with∞. Thus, we have toric morphisms

iN1,...,Nt : LMN1 × LMN2 × · · ·× LMNt → LMN .

Also, for each subset K ⊂ N , we get a forgetful map πK : LMN → LMK , which
is a toric morphism since it is a composition of maps from Theorem 4.16.

Recall there is a set of line bundles GN on LMN [Castravet and Tevelev 2017,
Definition 1.5], and one generates a larger set HN of sheaves via

HN :=
{
(iN1,...,Nt )∗(Gl1 � · · ·�Glt ) | ∀N1 ∪ · · · ∪ Nt = N , Gl j ∈ GN j

}
,

where iN1,...,Nt : Z N1,...,Nt ↪→ LMN is the inclusion.

Theorem 4.17. There is an ordering on the set

CTN := HN ∪

( ⋃
K(N

{π∗K E | E ∈ HK }

)
∪ {O}

making it into an (SN oC2)-stable exceptional collection under permutations of
the two sets of markings.

Proof. This is [Castravet and Tevelev 2017, Proposition 1.5]. �

Proposition 4.18. The action of Sn+1 o C2 given by permuting the two sets of
marked points corresponds to the action of Aut(An) on X (An).



238 MATTHEW BALLARD, ALEXANDER DUNCAN AND PATRICK MCFADDIN

Proof. We use the standard presentation of the root system for An as ei − e j

for 1 ≤ i < j ≤ n + 1 and follow [Batyrev and Blume 2011, Construction 3.6].
The embedding An ↪→ An+1 gives the universal curve X (An+1)→ X (An). For
i ∈ {1, . . . , n}, we take the (n + 1) projections An+1 → An , whose kernels are
generated by ei−en+1 for 1≤ i ≤ n+1. These give sections si : X (An)→ X (An+1).
Finally, for the polar sections, we have the dual vector vn+2. The vectors vn+2 and
−vn+2 give toric invariant divisors which are isomorphic to X (An) [Batyrev and
Blume 2011, Proposition 1.9]. The isomorphisms give the other sections s0 and s∞.

The Weyl group is the permutation group of the ei , and hence of the ei − en+2.
In particular, it permutes the si . The outer involution acts on the fan by negation
and thus exchanges the cone corresponding to vn+2 with the cone corresponding
to −vn+2. �

Corollary 4.19. The set CTN is Aut(6(An))-stable.

Proof. This is an immediate corollary of Lemma 4.14 and Proposition 4.18. �

Proposition 4.20. Each object in the collection CTN is torus-equivariant.

Proof. Line bundles are always isomorphic to torus-equivariant line bundles, so
all objects in GN are torus-equivariant. There is a canonical equivariant structure
on tensor products and on pullbacks by equivariant morphisms (see [Ballard et al.
2014, §2]); thus each object G1� · · ·�Gn is torus-equivariant for Gl j ∈ GN j . Let
i : Z→ X be shorthand for some map iN1,...,Nt . There is a splitting of tori T = S×S′

where Z is an S-toric variety and S′ acts trivially on i(Z). Let ψ : T → S denote
the projection. We have a composition of functors

Db(CohS Z)→ Db(CohT Z)→ Db(CohT X),

where the first map is the functor Resψ [Ballard et al. 2014, §2.9] and the second
map is the T-equivariant pushforward [Ballard et al. 2014, §2.5]. This composition
reduces to the ordinary pushforward i∗ : Db(Z)→ Db(X) when the equivariant
structure is forgotten. We conclude that each object of HK is torus-equivariant,
and the result follows. �

We now prove the main result of this section.

Proposition 4.21. Let k be a field of characteristic zero and X a form of X (An)

over k. Then X admits a full exceptional collection of sheaves.

Proof. Combining Theorem 4.17, Corollary 4.19, and Proposition 4.20 allows us
to appeal to Proposition 3.7 and conclude that CTN descends to an exceptional
collection of sheaves on X . �

Remark 4.22. To remove the characteristic zero assumption one needs to extend
generation results of [Castravet and Tevelev 2017] to nonzero characteristic. This
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could conceivably be done by reversing the flow of reasoning in [Castravet and
Tevelev 2017], using the fact that we know the collections for Vn in any character-
istic. We do not pursue this.
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