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Using recent developments in the theory of mixed motives, we prove that the
log Bloch conjecture holds for an open smooth complex surface if the Bloch
conjecture holds for its compactification. This verifies the log Bloch conjecture
for all Q-homology planes and for open smooth surfaces which are not of log
general type.

1. Introduction

Throughout this paper, we work with varieties over the complex numbers.

1A. Statement of the main theorem. Let U be a smooth quasiprojective algebraic
variety. Let

a : h0(U )0→ Alb(U )

be the Albanese morphism from the zeroth Suslin homology of degree zero to the
Albanese variety of U , and let T (U ) := ker(a) be the Albanese kernel. When U is
projective, h0(U ) reduces to the Chow group of zero cycles CH0(U ). Indeed, we
get the classical Albanese map.

In dimension one, the Albanese morphism is well-understood by the classical
work of Abel and Jacobi in the projective case, and by Rosenlicht in the open case.

Theorem 1.1 (Abel–Jacobi; Rosenlicht [1952; 1954]). When dim U = 1, the Al-
banese morphism is an isomorphism.

The higher-dimensional analogue of Theorem 1.1 is much more subtle, although
the torsion part of the Albanese morphism is known.

Theorem 1.2 [Rojtman 1980; Spieß and Szamuely 2003]. In arbitrary dimension,
the Albanese morphism induces an isomorphism on torsion subgroups.

In this paper, we study the two-dimensional case. In one direction, the log
Mumford theorem says that the Albanese morphism fails to be injective as long as
pg(U ) 6= 0.
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Theorem 1.3 [Mumford 1968; Zhu 2018]. Let U be a smooth algebraic surface
with pg(U ) 6= 0. Then T (U ) is infinite-dimensional.

In the other direction, we expect the following conjecture. When U is projective,
it is famously known as the Bloch conjecture [1980].

Conjecture 1.4 (log Bloch conjecture). Let U be a smooth algebraic surface with
pg(U )= 0. Then

T (U )= 0.

Using recent developments in the theory of mixed motives [Ayoub and Barbieri-
Viale 2009; Ayoub 2011; Barbieri-Viale and Kahn 2016; Ayoub 2017], we prove
the following theorem.

Theorem 1.5. Let (X, D) be a log smooth projective surface pair with interior U.
If pg(U )= 0, in particular, pg(X)= 0 as well, then the log Bloch conjecture holds
for U if and only if it holds for X.

Since the Bloch conjecture holds for any smooth projective surface X with
κ(X)≤ 1 [Bloch et al. 1976], our main theorem yields the following corollary.

Corollary 1.6. The log Bloch conjecture holds for U if κ(X)≤ 1. �

Since κ(X) ≤ κ(U ), Corollary 1.6 generalizes the result of Bloch, Kas, and
Lieberman [Bloch et al. 1976] to open surfaces of κ(U ) ≤ 1. It also covers
the second author’s previous result [Zhu 2018] on the log Bloch conjecture for
κ(U )=−∞.

Further, we may apply Theorem 1.5 to the case where X is of general type and
the Bloch conjecture is true. The Bloch conjecture holds in a great number of
cases; see [Bauer et al. 2011; Pedrini and Weibel 2016; Voisin 2014] for recent
developments.

During the preparation of this paper, Binda and Krishna [2018] proved more
general results in the context of Chow groups with modulus using cycle-theoretic
methods.

1B. Applications of Theorem 1.5 and Corollary 1.6. The birational geometry of
open surfaces is developed by Kawamata [1979], while it is almost impossible to
hope for a complete classification even for κ(U )≤ 1. We would like to focus on
three special classes of surfaces whose geometry is extremely complicated.

Example 1.7 (κ(U )=−∞: log del Pezzo surfaces). Let U be the smooth locus
of a singular del Pezzo surface of Picard number one with at worst quotient sin-
gularities. In general, such singular del Pezzos form an unbounded family. Partial
classifications are obtained in [Keel and McKernan 1999] with more than sixty
exceptional collections. A difficult theorem of [Keel and McKernan 1999] states
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that U is log rationally connected. In particular, it implies the log Bloch conjecture
for U [Zhu 2018, Proposition 4.3].

Since Theorem 1.5 and Corollary 1.6 do not depend on Keel and McKernan’s
result, we give a new proof of the following result.

Corollary 1.8. With the notation as above, we have h0(U )= Z.

Example 1.9 (κ(U )= 0: log Enriques surfaces). A projective normal surface Y
is said to be a log Enriques surface if

(1) Y has at worst quotient singularities;

(2) NKY ∼OY for some positive integer N ;

(3) dim H 1(Y,OY )= 0.

Since KY is Q-Cartier, we define the index I of Y to be the smallest positive
integer such that IKY ∼ OY . By [Kawamata 1979; Tsunoda 1983; Zhang 1991],
the index is bounded by 66, while classically (when Y is smooth projective) it is
bounded by 6.

Corollary 1.10. Let U be the smooth locus of a log Enriques surface of index ≥ 2
defined as above. Then h0(U )= Z.

Log Enriques surfaces are partially classified in [Zhang 1991; 1993; Kudryavt-
sev 2002; 2004]. There are more than 1000 examples of log Enriques surfaces with
δ-invariant 2 [Kudryavtsev 2002].

Proof of Corollaries 1.8 and 1.10. Let (X, D) be a minimal log resolution of
U. By Corollary 1.6, the log Bloch conjecture holds in both cases. It suffices
to show q(U ) = 0. Since D is the exceptional set of the resolution of quotient
singularities, we have q(U )= q(X). Now the del Pezzo case follows from [Zhang
1989, Lemma 1.1(3)] and the Enriques case from [Zhang 1991, Lemma 1.2]. �

Example 1.11. Q-homology planes A smooth surface U is a Q-homology plane
if H i (U,Q) = H i (A2,Q) for any i . A Q-homology plane can have log Kodaira
dimension −∞, 0, 1, or 2. Ramanujam [1971] constructed the first homology plane
of log general type which is topologically contractible. They are classified for log
Kodaira dimension ≤ 1, but there is no thorough classification of Q-homology
planes of log general type [Miyanishi 2001, Section 3.4].

As all Q-homology planes are rational [Gurjar and Pradeep 1999], Corollary 1.6
implies the following:

Corollary 1.12. Let U be a Q-homology plane. Then the log Bloch conjecture
holds, that is, h0(U )= Z. �

The Bloch conjecture for fake projective planes remains unknown.
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1C. Ideas of proof. The proof of our main theorem has two major ingredients.
One is the work in [Ayoub and Barbieri-Viale 2009; Ayoub 2011; Barbieri-Viale
and Kahn 2016] on the derived category of 1-motives, especially the construction
of a derived Albanese functor. The use is twofold: first, it gives a motivic interpre-
tation of the Albanese morphism, allowing us to apply results from the theory of
mixed motives. Second, it provides a way to eliminate “easy” pieces of the motive
of U (essentially 1-motives) while keeping track of the homological realization.

The other ingredient is the famous conservativity conjecture; see [Ayoub 2017].
Regarded as a key conjecture in the study of motives, it notably says that a geomet-
ric motive is trivial if and only if its homological realization is trivial. By truncating
the motive of U using the derived Albanese functor, we eventually arrive at a motive
which has trivial homological realization and whose motivic homology controls
the Albanese kernel T (U ). Therefore, the conservativity conjecture implies the
log Bloch conjecture for U. Part of our main theorem then follows from a special
case of the conservativity conjecture proven by Wildeshaus [2015].

1D. Notation. A log pair (X, D)means a variety X with a reduced Weil divisor D.
We say that (X, D) is log smooth if X is smooth and D is a simple normal crossing
divisor on X . A log pair is projective if the ambient variety is projective.

Given any smooth quasiprojective variety U, by the resolution of singulari-
ties, we may choose a log smooth projective compactification (X, D) with inte-
rior U. We use κ(X, D) to denote the log Kodaira dimension. We define the
log geometric genus pg(X, D) := dim H 0(�dim X

X (log D)) and the log irregularity
q(X, D) := dim H 0(�1

X (log D)). Since they do not depend on the compactification,
we may write κ(U ), pg(U ), and q(U ) as well.

2. Preliminaries

By Theorem 1.2, it suffices to consider the Albanese morphism with Q-coefficients.
From now on, all (co)homology, cycle groups, and motives are taken with Q-
coefficients.

2A. Mixed motives and conservativity. We refer to [Voevodsky et al. 2000; Mazza
et al. 2006] for Voevodsky’s theory of mixed motives. With Q-coefficients, the
categories of mixed motives in the Nisnevich and étale topologies are equivalent.

Let DMgm denote the triangulated category of geometric motives, and let DMeff
gm

denote the triangulated category of effective geometric motives. We follow the
homological convention. The unit object of DMgm is denoted by Q(0), or sim-
ply Q, and the Tate object Q(1). Given an object M ∈ DMgm, its dual object
HomDMgm(M,Q) is denoted by M∨. The motive of a smooth variety Y is denoted
by M(Y ) ∈ DMeff

gm.
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The i-th motivic homology of M ∈ DMgm is defined to be

hi (M)= HomDMgm(Q[i],M).

For M = M(Y ), this recovers the i-th Suslin homology hi (Y )= hi (M(Y )).
Further, we refer to [Huber 2000] for the Hodge realization functor

RH
: DMgm→ Db(MHS).

Here we use the covariant version of RH. Composing with the forgetful functor
Db(MHS)→ Db(Q), we obtain the Betti realization

RB
: DMgm→ Db(Q).

Recall the statement of the conservativity conjecture.

Conjecture 2.1 (see [Ayoub 2017, Conjecture 2.1]). The Betti realization functor
RB is conservative. In other words, a morphism f : M → N in DMgm is an
isomorphism if and only if RB( f ) : RB(M)→ RB(N ) is an isomorphism.

Using consequences of the standard conjecture D for abelian varieties [André
and Kahn 2002], Kimura–O’Sullivan finiteness [Kimura 2005], and Bondarko’s
weight structures [2009; 2010], Wildeshaus proved the following special case of
the conservativity conjecture.

Theorem 2.2 [Wildeshaus 2015, Theorem 1.12]. Let DMab
gm ⊂ DMgm denote the

smallest triangulated subcategory containing the motives of smooth curves and
closed under direct summands, tensor products, and duality. Then the restriction
of RB to DMab

gm is conservative.

With the notion of DMab
gm, we now state our main theorem extending Theorem 1.5.

Theorem 2.3. Let (X, D) be a log smooth projective surface pair with interior U.
Then the following four conditions are equivalent:

(1) T (U )= 0;

(2) T (X)= 0;

(3) M(U ) ∈ DMab
gm;

(4) M(X) ∈ DMab
gm.

2B. Derived category of 1-motives. We mainly follow the book [Barbieri-Viale
and Kahn 2016]. Let M1 denote Deligne’s category of 1-motives [Deligne 1974]
with Q-coefficients. By [Orgogozo 2004, Théorème 3.4.1], the bounded derived
category Db(M1) can be naturally identified with the thick triangulated subcate-
gory of DMeff

gm generated by the motives of smooth curves, denoted by d≤1 DMeff
gm.

The identification is compatible with realizations [Vologodsky 2012]. For simplic-
ity we always make this identification.
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One of the main results of [Barbieri-Viale and Kahn 2016] is the construction
of a derived Albanese functor.

Theorem 2.4 [Barbieri-Viale and Kahn 2016, Corollary 6.2.2]. The inclusion

d≤1 DMeff
gm ↪→ DMeff

gm

admits a left adjoint
L Alb : DMeff

gm→ d≤1 DMeff
gm .

We list a number of results and facts about the functor L Alb which will be used
in the proof of our main theorem. To begin with, when Y is a smooth variety, we
write L Alb(Y ) = L Alb(M(Y )). Then the natural morphism M(Y )→ L Alb(Y )
induces a morphism in motivic homology

h0(Y )→ h0(L Alb(Y )). (2.5)

By [Barbieri-Viale and Kahn 2016, Lemma 13.4.2], we have

h0(L Alb(Y ))0 = Alb(Y )⊗Q,

and the degree zero part of (2.5) coincides with the Albanese morphism.
The next statement concerns the Hodge realization of L Alb(M) for M ∈DMeff

gm.
Recall that a mixed Hodge structure H is effective if the (i, j)-th part of the weight-
graded piece GrW

i+ j H vanishes unless i , j ≤ 0. Given an effective mixed Hodge
structure H , let H≤1 denote the maximal quotient of H of weights ≥ −2 and of
types (0, 0), (0,−1), (−1, 0), and (−1,−1).

Theorem 2.6 [Barbieri-Viale and Kahn 2016, Theorem 15.3.1]. For M ∈ DMeff
gm,

the morphism M→ L Alb(M) induces isomorphisms

Hi (RH (M))≤1
∼
−→ Hi

(
RH (L Alb(M))

)
.

The theorem above applies to L Alb(Y ) and also to the Borel–Moore variant
of L Alb(Y ). Let Mc(Y ) ∈ DMeff

gm denote the motive of Y with compact support.
Note that by [Voevodsky et al. 2000, Chapter 5, Theorem 4.3.7], there is an iso-
morphism

Mc(Y )' M(Y )∨(dim Y )[2 dim Y ]. (2.7)

We write L Albc(Y )= L Alb(Mc(Y )).

Corollary 2.8 [Barbieri-Viale and Kahn 2016, Corollary 15.3.2]. By Theorem 2.6,
we have
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Hi
(
RH (L Alb(Y ))

)
=


H0(Y,Q), i = 0,
H1(Y,Q), i = 1,
H2(Y,Q)≤1, i = 2,
0, i < 0 or i > 2,

Hi
(
RH (L Albc(Y ))

)
=


H BM

0 (Y,Q), i = 0,
H BM

1 (Y,Q), i = 1,
H BM

i (Y,Q)≤1, 2≤ i ≤ dim Y + 1,
0, i < 0 or i > dim Y + 1.

Finally, we recall the fact that M1 is of cohomological dimension one [Orgogozo
2004, Proposition 3.2.4]. Hence, all elements in Db(M1) can be represented by
complexes with zero differentials. In particular, we have

L Alb(Y )'
2⊕

i=0

L i Alb(Y )[i] and L Albc(Y )'
dim Y+1⊕

i=0

L i Albc(Y )[i], (2.9)

with L i Alb(Y ), L i Albc(Y ) ∈ M1; see [Barbieri-Viale and Kahn 2016, Corol-
lary 9.2.3 and Proposition 10.6.2]. When dim Y = 1, this gives the “Chow–Künneth”
decomposition of M(Y ) [Barbieri-Viale and Kahn 2016, Corollary 11.1.1]

M(Y )' L Alb(Y )'
2⊕

i=0

L i Alb(Y )[i]. (2.10)

3. Proof of the main theorem

In this section we prove our main theorem, that is, Theorem 2.3.

3A. Proof of (1) ⇒ (2) ⇒ (3) ⇔ (4). For (1)⇒ (2), consider a partial compactifi-
cation U ⊂ Y ⊂ X such that C = Y \U is a smooth curve. By induction, it suffices
to show that T (U )= 0 implies T (Y )= 0.

Recall the Gysin distinguished triangle [Voevodsky et al. 2000, Chapter 5, Propo-
sition 3.5.4]

M(U )→ M(Y )→ M(C)(1)[2] → M(U )[1]. (3.1)

By applying the functor L Alb, we find a morphism of distinguished triangles

M(U ) M(Y ) M(C)(1)[2] M(U )[1]

L Alb(U ) L Alb(Y ) Q(1)[2] L Alb(U )[1]

(3.2)

Here we used the fact that L Alb(M(C)(1))'Q(1) [Barbieri-Viale and Kahn 2016,
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Proposition 8.2.3]. Moreover, the morphism

M(C)(1)→ L Alb(M(C)(1))'Q(1)

coincides with the projection in (2.10),

M(C)→ L0 Alb(C)'Q,

twisted by Q(1).
Now we apply motivic homology to the distinguished triangles in (3.2). Since

h0(U )→ h0(Y ) is surjective [Zhu 2018, Lemma 4.2] and

h0(Q(1)[2])= CH−1(pt)= 0,

we obtain a commutative diagram with exact rows

h1(M(C)(1)[2]) h0(U ) h0(Y ) 0

h1(Q(1)[2]) h0(L Alb(U )) h0(L Alb(Y )) 0

The first vertical arrow is surjective since it comes from a projection. The middle
vertical arrows are given by the Albanese morphisms of U and Y . Our assumption
T (U )= 0 says that the second vertical arrow is injective. Then, by the five lemma,
the third vertical arrow is also injective, and hence T (Y )= 0.

The implication (2)⇒ (4) is essentially due to Guletskiı̆ and Pedrini [2003, The-
orem 7]. The precise statement can be found in [Kahn et al. 2007, Corollary. 4.9],
where it is shown that T (X)= 0 is equivalent to the vanishing of the transcendental
part in the Chow–Künneth decomposition of M(X), and that the remaining parts
belong to DMab

gm. Further, by the distinguished triangle (3.1) and the fact that
M(C) ∈ DMab

gm, we see that M(U ) ∈ DMab
gm if and only if M(Y ) ∈ DMab

gm. The
equivalence (3)⇔ (4) then follows by induction. �

3B. Proof of (3) ⇒ (1). We define the motive M ′(U )∈DMeff
gm by the distinguished

triangle
M ′(U )→ M(U )→ L Alb(U )→ M ′(U )[1]. (3.3)

Our assumption pg(U)=0 says that H2(U,Q)=H2(U,Q)≤1. Then, by Theorem 2.6
and Corollary 2.8, we have

Hi
(
RB(M ′(U ))

)
=


H3(U,Q), i = 3,
H4(U,Q), i = 4,
0, i < 3 or i > 4.

Now consider the motive M ′(U )∨(2)[4]. By the duality

H BM
i (U,Q)= H4−i (U,Q)∨(2),
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we have

Hi
(
RB(M ′(U )∨(2)[4])

)
=


H BM

0 (U,Q), i = 0,
H BM

1 (U,Q), i = 1,
0, i < 0 or i > 1.

(3.4)

There is a dual distinguished triangle to (3.3),

L Alb(U )∨(2)[4] → M(U )∨(2)[4] → M ′(U )∨(2)[4] → L Alb(U )∨(2)[5].

By (2.7), we have M(U )∨(2)[4] ∈ DMeff
gm. Since L Alb(U )∨(2)[4] ∈ DMeff

gm by
Cartier duality [Barbieri-Viale and Kahn 2016, Proposition 4.5.1], we also have
M ′(U )∨(2)[4] ∈DMeff

gm. This allows us to apply the functor L Alb to M ′(U )∨(2)[4].
By Theorem 2.6 and Corollary 2.8, the morphism

M ′(U )∨(2)[4] → L Alb(M ′(U )∨(2)[4]) (3.5)

induces an isomorphism

RB(M ′(U )∨(2)[4]) ∼−→ RB(L Alb(M ′(U )∨(2)[4])
)
.

We are ready to apply conservativity. Our assumption M(U ) ∈ DMab
gm im-

plies M(U )∨(2)[4] ∈ DMab
gm. Furthermore, since d≤1 DMeff

gm ⊂ DMab
gm, we have

L Alb(U )∨(2)[4] ∈ DMab
gm and thus M ′(U )∨(2)[4] ∈ DMab

gm. Then, according to
Theorem 2.2, the morphism (3.5) is itself an isomorphism.

We thus obtain from (3.3) a distinguished triangle

L Alb(M ′(U )∨(2)[4])∨(2)[4] → M(U )→ L Alb(U )

→ L Alb(M ′(U )∨(2)[4])∨(2)[5]. (3.6)

Taking motivic homology, we have an exact sequence

h0
(
L Alb(M ′(U )∨(2)[4])∨(2)[4]

)
→ h0(U )→ h0(L Alb(U )),

where the second arrow is given by the Albanese morphism of U. Hence, to prove
T (U )= 0, it suffices to show that

h0
(
L Alb(M ′(U )∨(2)[4])∨(2)[4]

)
= 0.

By [Deligne 1974, Construction 10.1.3], the Hodge realization gives a full em-
bedding M1 ⊂MHS. A comparison of realizations yields the isomorphisms
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L Alb(M ′(U )∨(2)[4])'
1⊕

i=0

L i Alb(M ′(U )∨(2)[4])[i]

'

1⊕
i=0

L i Alb(M(U )∨(2)[4])[i]

'

1⊕
i=0

L i Albc(U )[i]. (3.7)

More precisely, the first isomorphism is a consequence of (2.9) and (3.4). The last
two isomorphisms follow from the duality (2.7), Corollary 2.8, and (3.4). Alter-
natively, one may also deduce (3.7) from Theorem 2.2 since all motives involved
belong to DMab

gm.
We compute

h0
(
L Alb(M ′(U )∨(2)[4])∨(2)[4]

)
= h0

( 1⊕
i=0

(L i Albc(U )[i])∨(2)[4]
)

= HomDMgm

(
Q,

1⊕
i=0

(L i Albc(U )[i])∨(2)[4]
)

= HomDMgm

( 1⊕
i=0

L i Albc(U )[i],Q(2)[4]
)

= HomDMgm(L0 Albc(U ),Q(2)[4])⊕HomDMgm(L1 Albc(U ),Q(2)[3]).

By [Barbieri-Viale and Kahn 2016, Proposition 10.6.2], we have

L0 Albc(U )'
{

Q if U is projective,
0 if not.

Since
HomDMgm(Q,Q(2)[4])= CH−2(pt)= 0,

we find in both cases HomDMgm(L0 Albc(U ),Q(2)[4])= 0.
Further, by [Barbieri-Viale and Kahn 2016, Corollary 12.11.2], the 1-motive

L1 Albc(U ) is represented by a two-term complex in degrees 0 and 1

Q⊕r
→ A⊗Q,

where A is an abelian variety and r = #{connected components of D}−1. In other
words, there is an extension of 1-motives

0→ (A⊗Q)[−1] → L1 Albc(U )→Q⊕r
→ 0, (3.8)
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which yields an exact sequence

HomDMgm(Q,Q(2)[3])⊕r
→ HomDMgm(L1 Albc(U ),Q(2)[3])

→ HomDMgm((A⊗Q)[−1],Q(2)[3]).

Since
HomDMgm(Q,Q(2)[3])= CH−2(pt, 1)= 0,

it suffices to show that HomDMgm((A⊗Q)[−1],Q(2)[3])= 0.
We may assume A to be the Albanese variety of a smooth projective surface

S. If dim A > 2, the surface S is obtained by taking a sequence of general hy-
perplane sections of A. Then we have Alb(S) ' Alb(A) ' A by the Lefschetz
hyperplane theorem. Recall the Chow–Künneth decomposition of M(S) [Murre
1990, Theorem 3]:

M(S)'
4⊕

i=0

Mi (S)[i].

We have M4−i (S)' Mi (S)∨(2) and M1(S)' (A⊗Q)[−1]. Hence

HomDMgm((A⊗Q)[−1],Q(2)[3])= HomDMgm(M1(S),Q(2)[3])

= HomDMgm(Q,M3(S)[3])

= CH0(M3(S)[3])

= 0, (3.9)

where the last equality follows again from [Murre 1990, Theorem 3]. The proof of
Theorem 2.3 is now complete. �

3C. “Chow–Künneth” decomposition. Our proof of Theorem 2.3 also leads to
the following consequence.

Corollary 3.10. Assume one of the equivalent conditions in Theorem 2.3. Then
M(U ) admits a “Chow–Künneth” decomposition

M(U )'
2⊕

i=0

L i Alb(U )[i]⊕
4⊕

i=3

L4−i Albc(U )∨(2)[i].

In particular, it is Kimura–O’Sullivan finite.

Proof. Consider the distinguished triangle (3.6) obtained under the assumption
M(U ) ∈ DMab

gm. By (2.9) and (3.7), there are isomorphisms

L Alb(U )'
2⊕

i=0

L i Alb(U )[i] and L Alb(M ′(U )∨(2)[4])'
1⊕

i=0

L i Albc(U )[i].
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Hence (3.6) induces a distinguished triangle

4⊕
i=3

L4−i Albc(U )∨(2)[i] → M(U )→
2⊕

i=0

L i Alb(U )[i]

→

4⊕
i=3

L4−i Albc(U )∨(2)[i + 1].

For the distinguished triangle to split, it suffices to show that

HomDMgm

( 2⊕
i=0

L i Alb(U )[i],
4⊕

i=3

(L4−i Albc(U ))∨(2)[i + 1]
)
= 0.

The left-hand side consists of six direct summands, all of which can be computed
explicitly. To keep the paper short we only do the most complicated one, that is,

HomDMgm(L1 Alb(U )[1], L1 Albc(U )∨(2)[4]). (3.11)

By [Barbieri-Viale and Kahn 2016, Corollary 9.2.3], the 1-motive L1 Alb(U ) is
represented by the two-term complex in degrees 0 and 1

0→ Alb(U )⊗Q.

Since the abelian part of the semiabelian variety Alb(U ) is Alb(X), this gives an
extension of 1-motives

0→ (Gm ⊗Q)⊕s
[−1] → L1 Alb(U )→ (Alb(X)⊗Q)[−1] → 0. (3.12)

We have (Gm ⊗Q)[−1] 'Q(1) and (Alb(X)⊗Q)[−1] ' M1(X).
Combining (3.8) and (3.12), we see that (3.11) sits in the middle of several

extensions involving the following four terms:

(1) HomDMgm(M1(X)[1],M3(S)[4]);

(2) HomDMgm(M1(X)[1],Q(2)[4]);

(3) HomDMgm(Q(1)[1],M3(S)[4]);

(4) HomDMgm(Q(1)[1],Q(2)[4]).

The vanishing of the second term is shown in (3.9) (with X replaced by S). The van-
ishing of the three other terms follows from the fact that given two Chow motives
M and M ′, we have HomDMgm(M,M ′[i])=0 for all i >0. This in turn follows from
[Voevodsky et al. 2000, Chapter 5, Corollary 4.2.6] and the cancellation theorem
[Voevodsky et al. 2000, Chapter 5, Theorem 4.3.1]. Hence (3.11) vanishes.

Finally, by [Mazza 2004, Remark 5.11], all elements in d≤1 DMeff
gm are Kimura–

O’Sullivan finite. The last statement follows since Kimura–O’Sullivan finiteness
is closed under direct sums and tensor products. �
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On the other hand, there exist motives of smooth surfaces which are not Kimura–
O’Sullivan finite [Mazza 2004, Theorem 5.18].
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