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TAME FRECHET STRUCTURES FOR AFFINE KAC-MOODY
GROUPS*

WALTER FREYNT

Abstract. We construct holomorphic loop groups and their associated affine Kac-Moody groups
and prove that they are tame Fréchet manifolds; furthermore we study the adjoint action of these
groups. These results form the functional analytic core for a theory of affine Kac-Moody symmetric
spaces, that will be developed in forthcoming papers. Our construction also solves the problem
of complexification of completed Kac-Moody groups: we obtain a description of complex completed
Kac-Moody groups and, using this description, deduce constructions of their non-compact real forms.
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1. Introduction. In this article we define and investigate a class of tame Fréchet
Lie groups and tame Fréchet Lie algebras, whose members are constructed as certain
functional analytic completions of affine Kac-Moody groups and affine Kac-Moody
algebras respectively. Affine Kac-Moody algebras were introduced and first studied
in the 60’s independently by V. G. Kac [Kac68], R. V. Moody [Moo69] and I. L. Kan-
tor [Kan70]; they were shown to be natural infinite dimensional generalizations of finite
dimensional simple Lie algebras, sharing important aspects of their structure and rep-
resentation theory [Car02, Kac90, MP95]. Originally, affine Kac-Moody algebras are
defined abstractly using a presentation, consisting of a set of generators subject to cer-
tain relations, called the Chevalley-Serre relations, which are derived from some affine
Cartan matriz; this presentation generalizes verbatim similar presentations for finite
dimensional simple Lie algebras. Associated to affine Kac-Moody algebras are affine
Kac-Moody groups; starting from some affine Cartan matrix, they can be defined
either in a functorial way or via a presentation, which is, roughly speaking, a group
theoretical version of the one, used to define Kac-Moody algebras [KP85, Tit87, Tit89].
We call the resulting affine Kac-Moody algebras and affine Kac-Moody groups alge-
braic in contrast to their functional analytic completions, which we call analytic affine
Kac-Moody algebras and affine Kac-Moody groups respectively. Affine Kac-Moody
algebras and their associated (affine) Kac-Moody groups are intensively studied and
by now well understood; especially, a complete classification of complex affine Kac-
Moody algebras and their real forms is known. To a large part the importance of
affine Kac-Moody algebras comes from an alternative second description: they can
be constructed as 2-dimensional extensions of (possibly twisted) loop algebras. The
existence of this second explicit description distinguishes affine Kac-Moody algebras
in the much wider class of Kac-Moody algebras; these loop algebras can be viewed
as spaces of periodic functions from R into some finite dimensional simple Lie al-
gebra, satisfying suitable regularity conditions. More precisely, following E. Heintze
and C. Gross [HG12], for some simple Lie algebra g and some automorphism of finite
order o of g, we define the (twisted) loop algebras

L(g,0) ={f :R— g|f(t +27) = o f(t) and f satisfies some regularity conditions} .

*Received November 22, 2012; accepted for publication August 20, 2013.
TFachbereich Mathematik, Technische Universitit Darmstadt, SchloBgartenstr. 7, 64289 Darm-
stadt, Germany (freyn@mathematik.tu-darmstadt.de).

885



886 W. FREYN

Typically g is a simple Lie algebra and o a diagram automorphism (possibly the
identity), hence of order 1, 2 or 3. Nevertheless remark that in the construction of
affine Kac-Moody symmetric spaces more general choices for g and o appear [Frel3c].
In this language, the algebraic affine Kac-Moody algebras consist of loops whose
Fourier series expansion is finite, when viewed as periodic map from R into a finite
dimensional simple Lie algebra g. Similarly, algebraic Kac-Moody groups consist of
loops into some finite dimensional Lie group, whose Fourier series is finite for some
fixed choice of representation (see for example [PS86], chapter III).

Various completions of affine Kac-Moody algebras and affine Kac-Moody groups
appear naturally in applications to problems in mathematical physics, geometry and
analysis. Examples include solutions of general relativity [BM87], integrable sys-
tems [SW85], moduli spaces of CMC-surfaces [Kob11], isometry groups of symmetric
spaces [Frel3a], isometry groups of isoparametric submanifolds [Ter89] or isometry
groups of (twin) buildings or twin cities [Frel2b.

In these and similar applications, a recurring challenge is, that the original alge-
braic affine Kac-Moody algebras and affine Kac-Moody groups have the disadvantage
of not admitting a manifold structure, excluding the use of strong functional analytic
tools. Hence, to achieve a manifold structure one considers completions of the set of
algebraic loops, whose details most often are specified by the requirements of the ap-
plication. Typical completions are C*-differentiable loops, H*-Sobolev-loops, smooth
loops or sometimes real analytic loops.

In the loop algebra formulation, real forms may be defined explicitly by imposing
special reality condition on the loops. In general one distinguishes two classes of real
forms, called almost-compact real forms or almost-split real forms (for details and
classifications see [Rou89a, Rou89b, HG12]). For example, the compact real form can
be viewed as a 2-dimensional extension of loops into the compact real form g. of g.

These families of different completions are very satisfactory for the the com-
pact real form or more generally for almost compact real forms, as the important
2-dimensional extension which gives the Kac-Moody group then can be defined far a
wide variety of regularity conditions [PS86]; however, the construction of this exten-
sion fails for most completions in the complex case and in consequence for all (almost
split) real forms. This leads to huge technical difficulties in applications, where these
forms are needed.

We solve this basic problem by the introduction of some intermediate comple-
tion, consisting of (possibly twisted) holomorphic loops on C* into complex finite
dimensional simple Lie groups G. If G is semisimple, the resulting complete affine
Kac-Moody groups contain the algebraic affine Kac-Moody groups as dense subgroups
and are themselves contained as dense subgroups in the well-known completions of
C'— or H*-loops. In this setting, the 2-dimensional extensions can be defined for all
forms, the complex forms, the almost compact ones and the almost split ones.

We show, that our completion of affine Kac-Moody groups, using holomorphic
functions, is the largest setting, admitting these central extensions. We will use this
setting in forthcoming work to construct affine Kac-Moody symmetric spaces; this
work answers affirmatively a conjecture, which was originally formulated by C.-L.
Terng in her seminal paper [Ter95] and then broadened by E. Heintze into a wide
research program [Hei08] and lays thus the foundations for affine Kac-Moody geome-
try [Frel2a). Affine Kac-Moody symmetric spaces are the closest infinite dimensional
analogue to finite dimensional Riemannian symmetric spaces. As in the finite dimen-
sional case, there are affine Kac-Moody symmetric spaces of the compact type and of
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the non-compact type. These two types correspond to various forms of finite dimen-
sional (semi-)simple Lie groups and their quotients respectively. Especially, symmetric
spaces of the non-compact type are diffeomorphic to vector spaces. Similar results
hold for affine Kac-Moody symmetric spaces.

We prove, that these new groups admit in the real as in the complex case use-
ful manifold structures as tame Fréchet manifolds in the sense of Hamilton [Ham82].
Let us recall, that Fréchet spaces are close generalizations of Banach spaces. They
are defined as locally convex, Hausdorff, topological vector spaces, whose topology is
generated by a countable family of seminorms, in contrast to Banach spaces, where
only one single seminorm is used. In comparison to Banach spaces, handling Fréchet
spaces poses additional challenges. First, from a purely technical point of view, the
uncountably sequences of norms have to be controlled, then dual spaces of Fréchet
spaces are in general not Fréchet and most importantly, there is no useful inverse
function theorem for maps between Fréchet spaces. To resolve this last issue, one
restricts attention to subclasses of Fréchet spaces, that admit inverse function the-
orems. The most common such class is the one of tame Fréchet spaces, introduced
in [Ham82]. Tame Fréchet spaces are defined using careful estimates of the sequences
of seminorms. We start in section 2 to review the theory of tame Fréchet structures
following the presentation given by Richard Hamilton [Ham82]; the main purpose of
this section is, to collect and restate some basic results, which we will need at several
places in a formulation, which is slightly different from the one, found in the literature.
We explain, that tame Fréchet space are, essentially, spaces of Banach-space valued
holomorphic functions.

Then, in section 3, we study spaces of holomorphic maps on C* with various
target spaces and prove, that they are tame Fréchet spaces; using the loop algebra
representation of affine Kac-Moody algebras, these spaces reappear as the basic build-
ing blocks in our construction of the tame Fréchet structures on affine Kac-Moody
algebras and affine Kac-Moody groups. Hence, these estimates form a crucial ingre-
dient to our theory. In section 4 we then prove, that holomorphic loop algebras are
tame Fréchet Lie algebras; recalling, that a tame Fréchet Lie algebra is a tame Fréchet
vector space V such that the endomorphisms ad(v) : V' — V are tame linear maps for
all v € V, tame Fréchet Lie algebras appear as the natural generalization of Banach
Lie algebras to tame Fréchet spaces. Hence the key challenge is, to find appropriate
estimates for the norms of the Lie brackets ||[v, w]||, in terms of the norms ||v||,+x
and ||wl|n+r for all n € N and some fixed integer & > 0 similar to the estimates, used
in the definition of Banach algebras. Furthermore we prove some central results about
the tameness of Kac-Moody groups, which may be summarized as follows:

THEOREM 1.1. Groups of holomorphic loops and their real forms are tame
Fréchet Lie groups.

The usually used approach to establish the existence of manifold structures on
loop groups is, to check first that the exponential function is a local diffeomorphism,
leading to the definition of a chart in some open set of the identity and then using
(left) translation, to get charts on the whole loop group. This approach, described
in [PS86], is for example used for C*-differentiable loops, H*-Sobolev-loops or smooth
loops. Nevertheless, this approach fails for holomorphic loop groups, essentially due to
Liouvilles-theorem, stating, that bounded holomorphic functions on C are constant;
thus there are no holomorphic functions on C*, whose image is contained in bounded
sets of the identity U C g of the (finite dimensional simple) Lie algebra and V' C G of
the finite dimensional simple Lie group, such that exp : U — V is a diffeomorphism.
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Moreover, we show that for the loop groups of semisimple Lie groups the exponential
map is not a local diffeomorphism; hence there is also no other way, to define charts
in the Lie algebra via the exponential map.

To achieve the desired result, that groups of holomorphic loops are tame Fréchet
Lie groups, we need to establish various technical results about Fréchet manifolds
and tame Fréchet submanifolds. Our proof describes the holomorphic loop groups as
subgroups of certain vector spaces of holomorphic maps, which we prove to carry a
structure as a tame Fréchet space. Using the main result of [Frel2c], we establish
first, that our loop groups are tame Fréchet submanifolds of co-finite type and then,
that they are tame Fréchet manifolds.

In section 5 we extend the theory of polar actions from the classical Hilbert space
setting [Ter95] to our setting of tame Fréchet spaces; recall, that the action of group
G on a vector space V is called polar if there is a subspace ¥ € V|, called a section, in-
tersecting each G-orbit G x z,x € V orthogonally. Polar actions of finite dimensional
Lie groups are classified and it is shown, that they correspond up to orbit equiv-
alence to the isotropy representations of finite dimensional Riemannian symmetric
spaces [BCOO03]. A closely related, but infinite dimensional theory of proper Fred-
holm polar actions on Hilbert spaces was then introduced in [HPTT95] and further
studied in [Ter95, HL99, Gro00], where it was established, that these proper Fred-
holm polar actions on Hilbert spaces are closely related to the adjoint action of certain
Hilbert-space completions of affine Kac-Moody algebras. To extend the result to the
setting of tame Fréchet vector spaces, the key point is, to establish that each orbit
really intersects the section. As in the finite dimensional case these actions are related
to the isotropy representations of affine Kac-Moody symmetric spaces; nevertheless,
the relation is a little more complicated, due to the more complicated structure of the
isotropy representations of affine Kac-Moody symmetric spaces; details will be given
in forthcoming work.

In the final section 7 we turn our attention to the description of the affine Kac-
Moody groups, that are constructed as two-dimensional extensions of our groups of
holomorphic loops and prove that they are tame Fréchet Lie groups. Here we use
a result of B. Popescu [Pop05], stating that certain fiber bundles over tame Fréchet
manifolds are tame Fréchet spaces again. Essentially, we prove, that all complex
forms, real forms and quotient spaces of affine Kac-Moody groups, that we will need
in the construction of affine Kac-Moody symmetric spaces in [Frel3a] are tame Fréchet
manifolds. Furthermore we prove, that the quotient spaces, we will identify with affine
Kac-Moody symmetric spaces of the non-compact type in [Frel3a] are (as in the finite
dimensional case) diffeomorphic to vector spaces (theorem 7.6 and theorem 7.7).

2. Tame Fréchet manifolds.

2.1. Fréchet spaces. In this introductory section we collect some standard re-
sults about Fréchet spaces, Fréchet manifolds and Fréchet Lie groups. Further details
and omitted proofs can be found in Hamilton’s article [Ham82], section 1.1 .

DEFINITION 2.1 (Fréchet space). A Fréchet vector space is a locally convex
topological vector space which is complete, Hausdorff and metrizable.
LEMMA 2.2 (Metrizable topology). A topology on a vector space is metrizable iff

it can be defined by a countable collection of seminorms.

Proof. For the proof see [Ham82]. O
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Let us give some examples:

EXAMPLE 2.3 (Fréchet spaces).
1. Every Banach space is a Fréchet space. The ‘countable collection’ of norms
contains just one element.
2. Let Hol(C, C) denote the space of holomorphic functions f : C — C. Let fur-
thermore K, be a sequence of simply connected compact sets in C, such that

K, C Kpt11 and JK,, = C. Let ||f||» := sup |f(2)|]. Then Hol(C,C;|| ||»)
ze K,
is a Fréchet space.

3. More generally, for every Riemann surface S the sheaf of holomorphic func-
tions carries a Fréchet structure which is defined similarly as in the special
case S = C discussed in the second example.

DEFINITION 2.4. A Fréchet manifold is a (possibly infinite dimensional) manifold
with charts in a Fréchet space such that the chart transition functions are smooth.

While it is possible to define Fréchet manifolds in this way, there are two strong
impediments to the development of analysis and geometry of those spaces:

1. In general there is no inverse function theorem for smooth maps between
Fréchet spaces. For counterexamples and examples showing features special
to Fréchet spaces, see [Ham82].

2. The dual space of a Fréchet space is not a Fréchet space as soon as the Fréchet
space is not Banach.

The solution to the first problem is based on picking some subclass of Fréchet
spaces, called tame Fréchet spaces, that allow for an inverse function theorem. The
key in its construction is a more refined control of the sequences of norms. Using this
control, the famous Nash-Moser inverse function theorem is established. In the next
sections we formalize those concepts.

Let us note that there are other ways to deal with these analytic problems. A
recently proposed method is the concept of bounded Fréchet geometry developed by
Olaf Miiller [Miil06, Miil08].

The solution to the second problem consists in avoiding dual spaces. Let us
remark that the theory could also be formulated by defining dual spaces as direct
limit locally convex topological vector spaces.

2.2. Tame Fréchet spaces. The central problem for all further structure the-
ory of Fréchet spaces is a better control of the collection of seminorms. For a single
Fréchet space this is done by the concept of a grading; much deeper is the question of
comparing collections of seminorms on two different Fréchet spaces: for two Fréchet
spaces F' and G and a map ¢ : FF — G this is done by imposing estimates similar
in spirit to the concept of quasi isometries relating the sequences of norms ||¢(f)|l»
and || f]|m, leading to the concept of “tame” maps. The property of a Fréchet space
to be tame is defined then by “tame equivalence” to some model space ¥(B), which
is essentially a space of holomorphic functions; the standard reference for these con-
siderations is the article [Ham82]. We are slightly sharpening the concept of “tame
equivalence” introduced by Hamilton to define (r, b, C(n))-equivalence and emphasize
the nature of tame spaces as a generalization of spaces of holomorphic functions.

The prerequisite for estimating norms under maps between Fréchet spaces is a
comparison of the norms on the Fréchet space itself:
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DEFINITION 2.5 (grading). Let F be a Fréchet space. A grading on F is a
collection of seminorms {| ||»,n € No} that define the topology and satisfy

[fllo < 1Al < 1Al < W flls < -

LEMMA 2.6 (Constructions of graded Fréchet spaces).
1. A closed subspace of a graded Fréchet space is a graded Fréchet space.
2. Direct sums of graded Fréchet spaces are graded Fréchet spaces.

Proof. For the proof see [Ham82], section II.1. O
Every Fréchet space admits a grading. Let (F, || ||n.nen) be a Fréchet space. Then

(0 e

such that F = F as a set and
(1) =D 0l
i=1

is a graded Fréchet space. The Fréchet topologies of F' and F coincide. Obviously
other gradings my be defined on F, for example by introducing positive coeflicients
in equation 1. The existence of a grading is thus not a property of the Fréchet space
as a metrizable topological space, but an additional structure.

DEFINITION 2.7 (Tame equivalence of gradings). Let F be a graded Fréchet
space, 1, b € N be positive integers and C(n) € RT, n € N a sequence of positive real

numbers. The two gradings {|| ||} and {M} are called (r,b,C(n))-equivalent iff

[flln < COf g and [[f]l,, < CR)[[fllntr for all n>b.

They are called tame equivalent iff they are (r, b, C(n))-equivalent for some (r, b, C'(n)).

The following example is basic; tame Fréchet spaces will be defined as Fréchet spaces,
that are sufficiently close to the spaces of this example.

EXAMPLE 2.8. Let B be a Banach space with norm || ||g. Denote by X(B) the
space of all exponentially decreasing sequences {f;}, k € Ny of elements of B. On
this space, we can define different gradings:

o0
£l =Y ™ fells

k=0

[flliz, == sup ™| fulls -
keNp

LEMMA 2.9. On the space %(B) the two gradings || f|[i» and | f|in, are tame
equivalent.

Proof. For the proof see [Ham82]. O
Let F, G, G; and G denote graded Fréchet spaces.
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DEFINITION 2.10 (Tame linear map). Let 7,0 € N be positive integers and
C(n) € RT, n € N a sequence of positive real numbers. A linear map ¢ : F — G is
called (r, b, C(n))-tame if it satisfies the inequality

le(Nlln < CO| fllnsr  forall feF.
The map ¢ : F — G is called tame iff it is (r, b, C(n))-tame for some (r,b, C(n)).

Tameness of maps depends on the grading. To see this, let us look at the following
variant of an example of [Ham82):

ExaMpPLE 2.11. Let P be the space of entire holomorphic functions periodic
with period 27i and bounded in each left half-plane P, := {z € C|R(z) < n}. Define
L:P— Pby Lf(z) = f(22).

1. Define first the grading on P by:

[flln = sup{|f(2)] : ®(z) = n}.

Then ||Lf|ln < ||f|l2n, hence L is not tame.
2. Define now the grading on P by

[flln = sup{[f(2)] : ®(z) = 2"}.

Then ||Lf|ln < || flln+1, hence L is (1,0, 1)-tame.
Clearly the two gradings are not tame equivalent.

DEFINITION 2.12 (Tame isomorphism). A map ¢ : FF — G is called a tame
isomorphism iff it is a linear isomorphism and ¢ and ¢! are tame maps.

DEFINITION 2.13 (Tame direct summand). F is a tame direct summand of G iff
there exist tame linear maps ¢ : F' — G and ¢ : G — F such that Yoy : FF — F
is the identity.

DEFINITION 2.14 (Tame Fréchet space). F is a tame Fréchet space iff there is a
Banach space B such that F' is a tame direct summand of ¥(B).

LEMMA 2.15 (Constructions of tame Fréchet spaces).
1. A tame direct summand of a tame Fréchet space is tame.
2. A Cartesian product of two tame Fréchet spaces is tame.

Proof. Compare lemmata 1.3.3 and 1.3.4 of [Ham82]. O

ExaMPLE 2.16. This example is used in section 3.
e The space ©(C?, Eucl) of exponentially decreasing sequences of elements in
C? where C? is equipped with the Euclidean norm is a tame Fréchet space.
e The space X(C?, Sup) of exponentially decreasing sequences of elements in C?
where C? is equipped with the supremum-norm ||(c1, ;)| s := sup(|e1],|c]])
is a tame Fréchet space.

Let us remind, that tame Fréchet spaces are essentially spaces of holomorphic func-
tions (see also [Frel2c]).

LEMMA 2.17. Let B be a complex Banach space. The space X(B) of exponen-
tially decreasing sequences in B is isomorphic to the space Hol(C,B) of B-valued
holomorphic functions.
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Proof. Let first f € Hol(C, B) be a holomorphic function and let
fz) =Y fi
k=0

be its Taylor series expansion. The coefficients fj, are elements of B. We have to show
that the sequence (fx), k € N is an exponentially decreasing sequence. To deduce the
necessary estimates, we use the [,-norm and the following three ingredients:
1. As f(z) is an entire function, the expansion || f(2)| = Yoo, fxz" converges
for all z € C - hence sup,¢ (g en) |f(2)] < oo of all n.
2. Differentiation of f yields for the coefficient f; the identity: fr = 2 f ®)(0).
3. The Cauchy inequality [BG91], 2.1.20: Let f be holomorphic on B(0,r).
Then

1 SUPzeB(0,r) | £(2)]

50 0)] < kB0,

Combining these ingredients we get for any n € N

£ (0)
k!

kn
kn €
e <sup —
K

'SupzeB(O,e") |f(Z)|

k k!

sup | fi|e"" = sup
k

sup |f(2)] £ .
z€B(0,e™)

enk
Hence we find, that ||f|l;» < oo and the sequence (fi),k € N is exponentially de-
creasing.

Conversely let (fi)ren, fx € B be an exponentially decreasing sequence. We have
a prove, that the power series

f(2):=> fi2"
k=0

defines an entire B-valued holomorphic function. To do this, we show, that f(z) is
bounded on any compact ball B(0,e™). Let z € B(0,e™) then

S5 < STl < 3 e < oo
k

k
Thus f(z) defines a holomorphic function on B(0,e™). As this is true for all n, the
result follows. O

If(2)| =

ExaMPLE 2.18. Let B := C. Then lemma 2.17 means just

2(C) = {(Gk)keNo € C| Z lag|eF™ < oco¥n € N} .

k
and X(C) = Hol(C, C).
There are many different examples of tame Fréchet spaces (compare example 2.3).

EXAMPLE 2.19 (tame Fréchet spaces).
1. Every Banach space is a tame Fréchet space. The ‘countable collection’ of
norms contains just one element.
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2. Let Hol(C, C) denote the space of holomorphic functions f : C — C. Let
furthermore K,, := B(0,¢e") C C be the sequence of open balls around 0 of

radius n € N. Let ||f|ln := sup |f(2)]. Then Hol(C,C;|| ||,) is a Fréchet
zeK,
space. ©

For proofs and additional examples see [Ham82|, part II. In section 3 we study
in detail the tame Fréchet spaces of holomorphic functions which we need for the
construction of Kac-Moody symmetric spaces.

Let us now introduce the notion of a tame Fréchet Lie algebra:

DEFINITION 2.20 (Tame Fréchet Lie algebra). A Fréchet Lie algebra g is a tame
Lie algebra iff it is a tame vector space and ad(g) is a tame linear map for every g € g.

The condition on ad(X) assures the tame structure to be invariant under the
adjoint action. It may be replaced by the equivalent condition

(2) ILfs gllln < CO) fllntsllgllnsr

for all n > b, k € N and some sequence of real numbers C(n),n € N. We clearly have
the following class of examples:

EXAMPLE 2.21. Any Banach Lie algebra (for a definition see [Chul2], p.79) is
a tame Fréchet Lie algebra. Indeed, if F' is a Banach space with norm || - ||, then
equation 2 simplifies to

IL£, g1l < Cl fIlllgll -

COROLLARY 2.22. Any finite dimensional Lie algebra is a tame Fréchet Lie
algebra.

EXAMPLE 2.23. The realizations of the loop algebras L(g, o) are tame Fréchet
Lie algebras for H°-Sobolev loops, smooth loops and holomorphic loops — compare
section 6.

Up to now all maps, we studied were linear maps. Let us now proceed by a short
review of some nonlinear tame Fréchet objects:

DEFINITION 2.24. A nonlinear map ® : U C F — G is called (r,b, C(n))-tame
iff it satisfies the inequality

[@(H)ln < C)A+ [ fllntr) ¥ >b.
® is called tame iff it is (r, b, C(n))-tame for some (r, b, C(n)).

ExAMPLE 2.25. Suppose F' and G are Banach space (hence the collection of
norms consists of one norm) and ® : F — G is a (r1, b1, C1)-tame isomorphism with
a (re, by, Oz)-tame inverse ®~1. If by > 2 and by > 2 the condition on the norms
vanishes. If by =71 = by =19 =0 we get

12l < CrA+If]) and [@7 (g)]l < Ca(1+ g])-

After some manipulations we find:

Cil\fl\ —1< (Nl <@ +If1)
2
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which is similar to the definition of a quasi isometry [BBI01]

LEMMA 2.26 (Construction of tame maps).
1. Let ®: U C F — G X G be a tame map. Let m;,i = 1,2 be the projections
mi: Gy X Go — G4,i=1,2. The maps

(I)iZ:Wio(I)ZU—>Gi

are tame as well.

2. Let ®; : U C F — Gy,1 € {1,2} be (r4,b;, Ci(n))-tame maps. Then the map
P .= (‘1)1,(1)2) U — G1 x Gy

is (max(r1,72), max(by, b2), C1(n) + Ca(n))-tame.

Proof.
1. Projections onto a direct factor are (0,0, (1)pen)-tame. The composition of
tame maps is tame. Thus ®; is tame.
2. Let feUCF.

12(N)lln = 2N + RN <

< CL()(A A+ [ fllntr) + Co()(A + ([ fllntr,) <

< CL) (A [ fllnsmaxrare) + C2(0) (1 + [ f ln+max(ry ra)) =
< (Cr(n) + Co(n) (L + [[flln+max(rira))

for all n > max(by, bs).

2.3. Tame Fréchet manifolds.

DEFINITION 2.27 (Tame Fréchet manifold). A tame Fréchet manifold is a Fréchet
manifold with charts in a tame Fréchet space such that the chart transition functions
are smooth tame maps.

EXAMPLE 2.28. Every Banach manifold is a tame Fréchet manifold.

DEFINITION 2.29. Let M and N be two tame Fréchet manifolds modeled on F
resp. G. A map f: M — N is tame iff for every pair of charts ¢, : V; C N — V/
and ¢, : Uy C M — U/, the map ¢; o f o gpj_l is tame whenever it is defined.

For the construction of tame structures on Kac-Moody groups we need the fol-
lowing notion, introduced in [Frel3a]:

DEFINITION 2.30 (Tame Fréchet submanifold of co-finite type). Let n € N. A
subset M C F' is a n-codimensional smooth submanifold of F' iff for every m € M
there are open sets U(m) C F, V(m) C G x R" and a tame Fréchet chart ¢, :
U(m) — V(m) C G x R™ such that

MMNUm)=GNV(m).

LEMMA 2.31. A tame submanifold of co-finite type is a tame Fréchet manifold.

This result was proved in [Frel2c].
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LEMMA 2.32. Let M C F be a tame Fréchet submanifold of co-finite type. Let
H be a tame Fréchet space. A map ppr : H — M is tame if it is tame as a map
wr : H— F, where pp is defined via the embedding M C F.

This means, that we chose the tame structure on a tame Fréchet submanifold
of co-finite type compatible with the tame structure on the vector the manifold is
embedded in. We need this result in the proof that affine Kac-Moody groups carry a
tame structure.

Proof. Let ¢ be tame as a map ¢r : H — F. Then the concatenation ; o ¢ is
tame for any chart ¢ of M. Thus ¢ is tame as a map into M. O

The technical reason for working in the category of tame Fréchet spaces and tame
maps is the following Nash-Moser inverse function theorem. We cite the version due
to R. Hamilton (see [Ham82]).

THEOREM 2.33 (Nash-Moser inverse function theorem). Let F' and G be tame
Fréchet spaces and ® : U C F — G a smooth tame map. Suppose that the equation
for the derivative D®(f)h = k has a unique solution h = VO(f)k for all f € U and
all k and that the family of inverses V® : U x G — F' is a smooth tame map. Then
® is locally invertible, and each local inverse ® 1 is a smooth tame map.

A description of this theorem a proof and some of its applications is the subject of the
article [Ham82]. In comparison to the classical Banach inverse function theorem the
important additional assumption is that the invertibility of the differential is assumed
not only in a single point p but in a small neighborhood U around p. This additional
condition is necessary [Ham82] because in contrast to the Banach space situation it is
not true in the Fréchet space case that the existence of an invertible differential in one
point leads to invertibility in a neighborhood. Let us note the following result [Ham82],
theorem 3.1.1. characterizing the family of smooth tame inverses.

THEOREM 2.34. Let L : (U C F) x H — K be a smooth tame family of linear
maps. Suppose that the equation

L(f)h=k

has a unique solution h for all f and k and that the family of inverses V(f)k = h is
continuous and tame as a map from K toH Then V is also a smooth tame map

V:(UCF)x K —s H.

We discuss these construction in more detail in [Frel3b].

3. Tame Fréchet spaces for Kac-Moody symmetric spaces. In this section
we prove the tameness of certain Fréchet spaces of holomorphic functions on C*. We
show first, that the space Hol(C*,C) is a tame Fréchet space; then we extend this
result to the space Hol(C*,V¢), where V¢ denotes a complex vector space. We use
these results in section 4.2 for the construction of tame Fréchet affine Kac-Moody
algebras and their Kac-Moody groups via the loop algebra realization (resp. loop
group realization).

Recall, that X(C) = Hol(C,C) is a tame Fréchet space. As a consequence also
the space F' := Hol(C,C") is a tame Fréchet space.

The proof of R. Hamilton makes strong use of the following observation:
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LEMMA 3.1. Let F := Hol(C,C). The two gradings

1
sy =355 [ Ve

and

[fllLy, := sup [[£(2)]]

z€B,,
are tame equivalent.
Proof. [Hamg&2]. O

Our aim is now to prove that Hol(C*, C) is a tame Fréchet space. Let us introduce
some notation:

NoTAaTION 3.1.
e Let A, denote the annulus A, := {z € C*le™™ < |z] < "} and define the
boundaries of A,, by
0A == {z] |z| =€"} and 04, :={z||z| =e "},
o Let A/, denote the set A :={z € C| —n < R(z) <n,0 < I(2) < 27},
e Let B,, denote the closed disc By, := {z € C| |z] < e"}.

At some points we apply the Cauchy integral formula and the maximum principle
for holomorphic functions.

We start with our version of lemma 3.1. The proof of our result is considerably
more involved because holomorphic functions on C* may be unbounded in the limit
|z| = o0 and |z| — 0.

LEMMA 3.2. Let F := Hol(C*,C). The two gradings
[fllzz, == sup [f(2)]

and

1
Iz = gm0 { [ e [ ol

are tame equivalent.

Proof.
1. We show: [ fllzy < |[fllzy, -

s = gz { [ sz [ 1] <

n

1
o s { |, s 1@z, [ s |f<<>|dz} <

Ssup{ sup [f(2)], sup If(Z)I}S

2€0AF 2€0A,

sup |f(2)] = [Ifllzz, -

z€EA,

IN

IN
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2. We show: ||f||Lgo < %HfHL?

To this end, we identify the space Hol(C*,C) with the space Hola,;(C, C) of
2mi periodic functions. Under this identification A,, is identified with A,.

[fllzn, = sup [f(2)] =

z€EA!,
_ i n+r+2m1 ) —n—r+2m1 & } '
AP WL e [ s
n+r+2mi —n—r+27ri
el {f, el s
1 n+r+2mwi f(C) —n—r+2m1 f(C) -

1 n+r+2mi —n—r+271
= s ?{/+ rorac [T o)k <

21 n+r+2mi —n—r4+2m1
s—ﬂsp{/w ol [ @l | =

= ;”f”Lgo“'

We now prove, that Hol(C*,C) is a tame Fréchet space.
LEMMA 3.3. F := Hol(C*,C) is a tame Fréchet space.

Recall from definition 2.14, that we have to find a Banach space B, such that
Hol(C*, C) is a tame direct summand of ¥(B). We choose B = C?. This
Proof. Expand f into its Laurent series expansion f : Ekez cxz® and set

fi = > keNo ek and f7 =30, cycrz®. Clearly fif(2) and f~ (1) are holomorphic
functions on C. Let
¢ : Hol(C*,C) — %(C?)
= {ertr>o, {entr<o) -

We use the notation ¢ := (cg,c_x) C C? and equip C? with the supremum-norm.
1. We show: ||f[|z= < [[{cx}|-

[fllen, = Sup 1f(2)] <

<Sup{|fo |+ 17} <

zEA

<2 sup {Sup{|f0 s Lf( )|}} =

—2sup{sup @) sup 17 >|}—

zZEA, zEAR

= 2sup {||fg oz I/ llee } <
< 2sup {|[{ex}llzy, He—kllzp}} <
< 2[{erHlzn,
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2. We ShOW: H{C}g}HLgo S HfHL?

I{Ci oy, = supe™” || =
k

= supe™ |sup {c, c_x}| =
k
< sup {supe"’wcu,supe”’wcfu} <
k k
n+2wi
/ e " f(2)dz
n

1 ne2m nk _—kn| —kiS(z)
< sup qsup 3 [e""e™""le I1f(2)|dz ,
k n

sup e™* 1
’ k 2

[ e

—n

b<

1
< sup {sup et —
k 27

sup e [T ke R M) () az | <
kp 2 —n N
1 n+2mi 1 —n+27i
< sup{sup— [ Gz s - |f<z>|dz} <
k2 n k2T —n
1 n-+2mi 1 —n+427i
< sup { sup / sup | £(C)|dz, sup —— / sup | F(C)ldz b =
K 2/, ceaAnt k21 ), ceaar+
ZSUP{ sup |f(2)], sup |f(2)|}<
cepal+ cevAl -
< sup = fllzn,
ceanF (o)l

|

We use the following result in the proof that an affine Kac-Moody algebra is a
tame Fréchet Lie algebra (cf. definition 2.20):

LEMMA 3.4. The differential

di . Hol(C*,C) —» Hol(C*,C), f s f'
Z

is a tame linear map.
For the proof of lemma 3.4 we need the following technical result:

LEMMA 3.5. Let f be analytic on a closed disc D(zo, R), R > 0. Let0 < Ry < R.
Denote by || f||r the supremum norm of f on the circle of radius R. Then for z €
D(z0, R1), we have:

k'R

(k)
|f ¥ (2)| S (R_R1>k+1

1fll7-

Proof. This lemma is an application of Cauchy’s integral formula. For de-
tails [Lan99al, pp. 131. O

Proof of lemma 3.4.
1. dlz is linear.
2. To prove tameness we use lemma 3.5. Let z € A,, and choose R = ¢~ ("1 (¢ —
1). Thus D(z,R) C A,41. Hence ||fl|r < ||f]lnt1-
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In the notation of lemma 3.5 we can use that R = 0 and & = 1 and calculate

in this way:
R en—i—l
17 < 21t = Sl
This description is independent of z. Thus
enJrl
1l < Sl

Thus the differential is (1,0, %)—tame.
d

A further class of spaces that is important for the description of twisted Kac-
Moody algebras (compare definition 4.6) are spaces of holomorphic functions that
satisfy some functional equation. We describe first the general setting and specialize
then to the two most important cases, namely symmetric and antisymmetric holo-
morphic functions.

LEMMA 3.6 (Subspaces of Hol(C*,C)). Let k,l € N and w = e’*". The spaces
Hol"'(C*,C) := {f € Hol(C*,C)|f(wz) = w' f(2)}

are tame Fréchet spaces.
Proof. As usual for f € Hol®'(C*,C), we put ||f|ln = sup [f(z)]. As
z2€EA,

Hol®!(C*,C) is a closed subspace of Hol(C*,C), it is a tame Fréchet space as a con-
sequence of lemma 2.15. O

Twisted affine Kac-Moody algebras arise as fixed point algebras of diagram au-
tomorphisms of non-twisted affine Kac-Moody algebras. The list of possible diagram
automorphisms shows that nontrivial diagram automorphisms have order k = 2 or
k = 3 [Car02]. Thus the values of k£ which are important for us are k = 2 and k = 3.
For k = 2, lemma 3.6 has the corollaries:

COROLLARY 3.7 (symmetric and antisymmetric loops).
o The space Hol*(C*,C) := {f € Hol(C*,C), f(z) = f(—z)} is a tame Fréchet
space.
e The space Hol*(C*,C) := {f € Hol(C*,C), f(z) = —f(—2)} is a tame Fréchet

space.
Lemmata 2.15 and 3.3 and corollary 3.7 include the following result:

COROLLARY 3.8. F := Hol(C*,C"), F* := Hol’(C*,C") and F* := Hol"(C*,C")

are tame Fréchet spaces.

Let V™ be a n-dimensional complex vector space. We want a tame structure
on Hol(C*, V™). Using the corollary 3.8 we get a tame Fréchet structure on the
space F' := Hol(C*,C™). This yields a tame structure on the spaces Hol(C*, V™),
Hol?(C*, V™) and Hol*(C*, V™) only after the choice of an identification of V" with
C™, hence a choice of a basis. As this construction uses this identification of V"™ with
C™ we have to prove that the resulting tame structure is independent of it.

This is the content of the following lemma:
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LEMMA 3.9. Let V™ be a n-dimensional complexr vector space equipped with
two norms | . | and | .|. Study the spaces Hol*'(C*, V™). Define gradings | f|n =
sup |f(2)] and || f||%, :== sup |f(2)|". Those gradings are tame equivalent.

ZEAn, zEAR

Proof. Any two norms on a finite dimensional vector space are equivalent (see any
book about elementary analysis, i.e. [K00]). Thus there exist constants ¢; and ¢z such
that 2] < e[ and |z < esfa]. Then [|f[ln := sup [f(2)] < sup erf ()" = x|l £

z€ zZE€EAR

and || f||}, := sup |f(2)|' < sup c2|f(2)|" = c2|| f]|n- Thus they are tame equivalent. O

z€EA, zEA,

n

COROLLARY 3.10. Any identification of ¢ : C* — V™ yields a 1-norm ||v|| =
> wv; on V™. The tame structures induced on Hol(C*,C) by two different choices are
equivalent. Hence the tame structure on V" is independent of the identification of V™

with C™.

As a consequence we have established the following result:

THEOREM 3.11. Let V™ be a complex vector space and || || any norm on V™.
The space Hol(C*, V™) with the family of norms
[flln = sup [If(2)]
z€EA,

is a tame Fréchet space.

COROLLARY 3.12. Let V™ be a complex vector space and | |2 the Fuclidean norm
on V™. The space Hol(C*, V™) with the family of norms

[flln = sup [f(2)[2

ZE€EAR

is a tame Fréchet space.

4. Tame structures on loop algebras and loop groups. In this chapter
we introduce the functional analytic setting, which we use for the construction of
affine Kac-Moody symmetric spaces in [Frel3al: We define Kac-Moody groups and
Kac-Moody algebras of holomorphic loops and prove that they are tame Fréchet
Lie groups resp. Lie algebras. Via the loop realization Kac-Moody groups (resp.
algebras) can be viewed as 2-dimensional extensions of loop groups. From a functional
analytic point of view, a 2-dimensional extension is unproblematic; the only exception
is, that the action of group elements on the two dimensional extension has to be
well-defined as well. Nevertheless remark that this extension plays a crucial role for
geometric considerations. In consequence we focus our attention on the loop group
(resp. algebra). In subsection 4.2 we describe the loop algebras, in subsection 4.3 we
turn our attention to the loop groups.

4.1. Affine Kac-Moody algebras. In this section we recall some basic facts
about affine Kac-Moody algebras and introduce the more general notion of geometric
affine Kac-Moody algebras. A thorough study of the algebraic properties of geometric
affine Kac-Moody algebras is done in [Frel3c|]. The loop algebra realization of (alge-
braic) affine Kac-Moody algebras is developed in the books [Kac90] and [Car02] from
an algebraic point of view. We follow the more geometric approach to loop algebra
realizations of Kac-Moody algebras, using the notion of [Ter95, HG09].
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Let g be a finite dimensional reductive Lie algebra over F = R or C. Hence by
definition g = gs@g, is a direct product of a semisimple Lie algebra g with an Abelian
Lie algebra g,. Let furthermore ¢ = (0s,0,) be some involution of g, such that
os € Aut(gs) denotes an automorphism of finite order of gs such that the restriction
of o to any simple factor g, of g is an automorphism of g; and o, = oy, = Id. If g,
is a Lie algebra over R we assume g5 to be a Lie algebra of compact type. We define
the loop algebra L(g, o) as follows

L(g,0) :={f:R — g |f(t+ 2m) = o f(t), f satisfies some regularity conditions} .

We use the notation L(g, o) to describe in a unified way constructions that can be
realized explicitly for loop algebras satisfying various regularity conditions. Regularity
conditions used in applications include the following:

e HC-Sobolev loops, denoted L'g,
smooth, denoted L>°g,
real analytic, denoted L,,g,
(after complexification of the domain of definition) holomorphic on C*, de-
noted Mg,
holomorphic on an annulus A,, C C, denoted A, g, or
e algebraic (or equivalently: with a finite Fourier expansion), denoted Lqi4g.

DEFINITION 4.1 (affine Kac-Moody algebra). The indecomposable geometric
affine Kac-Moody algebra associated to a pair (g, o) as described above is the algebra:

L(g,0) == L(g,0) ® Fe ® Fd
equipped with the lie bracket defined by:

(B)] = f'(t),
WE
(t)] :
[£:91(2) == [£(£), 9(®)]o +w (f(2), 9(t)) .

Here f € L(g,0) and w is a certain antisymmetric 2-form on Mg, satisfying
the cocycle condition. If the regularity of L(g, o) is chosen such that L(g, o) contains
non-differentiable functions, then d is defined on the (dense) subspace of differentiable
functions.

d

~

e, =
[e;d] =

E
i

C

~

3

f!
0,
0,
=1f

~—

Explicit realizations using different regularity conditions are common. We use
holomorphic or algebraic loops; for these we can define

w(fv g) = Res((f, g/>) .

Let us reformulate the definition for non twisted affine Kac-Moody algebras in
terms of functions on C*: Assume o = Id. First we develop a function f € L(g,1d) into
its Fourier series f(t) = >_ ane™!. Then this function is naturally defined on a circle
S1; we understand this circle to be embedded as the unit circle {z € C*||z| = 1} C C*;
in this way the parameter ¢ gets replaced by the complex parameter z := e, with
|z| = 1; understanding the Fourier expansion now as a Laurent expansion of F,
we can calculate the annulus, A,, on which this series is defined. For example the
holomorphic realization Mg, is defined by the condition, that for any f € Mg the
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Fourier expansion describes a Laurent series expansion of a holomorphic function on
C*.

DEFINITION 4.2. The complex geometric affine Kac-Moody algebra associated
to a pair (g,o) is the algebra

Mg :=Mg& Cead Cd,

equipped with the lie bracket defined by:

[d, f(2)] :==izf'(2),
[e,c] =[d,d] :=0,
e,d] = [c, f(2)] =0,

f(2)] =
[£:91(2) := [£(2), g(2)lo + w(f(2), 9(2))c.

As %eit” = ine'm = jnz" = izdizz” both definitions coincide.

DEFINITION 4.3 (semisimple geometric affine Kac-Moody algebra).
A geometric affine Kac-Moody algebra i(g, o) is called

e semisimple if g is semisimple,

e simple if g is simple.

4.2. Lie algebras of holomorphic maps. Let g be a complex reductive Lie
algebra that is a direct product of simple Lie algebras with an Abelian Lie algebra.
Simple Lie algebras are completely classified by their root systems; a complete list is
given as follows:

An, Brn>2, Cpn>3, Dnon>a, B, Br, Eg, Fy, Go .

Abelian Lie algebras are classified by their dimension. A complex reductive Lie
algebra gc has an up to conjugation unique compact real form g.. This compact real
form is defined as the real reductive Lie algebra gr such that g is a direct product of
the (up to conjugation) unique compact real forms of the simple factors of g¢ together
with a compact real form of the Abelian factor. A compact real Abelian Lie algebra of
dimension n is just R™ together with the trivial bracket; but we define the exponential
function such that the exponential image is a torus. Hence a compact real Lie algebra
can be identified with the purely imaginary part of a complex Abelian Lie algebra.

DEFINITION 4.4 (complex holomorphic non-twisted Loop algebra). Let gc be a
finite-dimensional reductive complex Lie algebra.
1. The loop algebra A, gc is the vector space

Angc = U {f : U — gc| f is holomorphic} ,
A, CUopen

equipped with the natural Lie bracket:
[f:91L.6(2) == [f, 9lo(2) := [F(2), 9(2)]q -
2. The loop algebra Mgc is the vector space
Mgc :={f : C" — gc| f is holomorphic},
equipped with the natural Lie bracket:
[f:91mq(2) == [, glo(2) == [f(2), 9(2)]g -
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LEMMA 4.5.
1. Mgc is a tame space.
2. Angc is a Banach space.

Proof. The first assertion is a consequence of corollary 3.8. The second assertion
is a consequence of Montel’s theorem stating that absolute convergent sequences of
holomorphic functions converge to a holomorphic function [BG91]. O

The inclusions S' = Ay C ... A, C A1 C --- C C* induce the reversed inclusions
on the associated loop algebras:

Mg. C -+ CAnt19c C Ange C -+ - C Aogc = Lnoigc -

Lyoigc denotes functions holomorphic in a small open neighborhood around S* C
C*.

To describe the twisted loop algebras we recall the graph automorphisms of the
finite dimensional simple Lie algebras: the following list contains the simple algebras
A with a nontrivial diagram automorphism ¢ and the type of the fixed point algebra
(compare [Car02]).

A o Ao, Aogyr Dpyn Dy Es
Order of o : 2 2 2 3 2
Al : Bk Ck Bk G2 F4

DEFINITION 4.6 ((twisted) loop algebra, ord(c) = 2). Let gc be a finite di-
mensional semisimple complex Lie algebra of type Ay, Dy r>5 or Eg, o the diagram
automorphism. Let g¢ := g%: @ gc ! be the decomposition into the +-eigenspaces of
o. Let X € {4,,,C*}. If X = A,, holomorphic functions on X are understood to be
holomorphic on an open set containing X.

Then the loop algebra (Xg)? is the vector space

Xg7 :={f € Xolf(=2) = a(f(2))},

equipped with the natural Lie bracket:

[f: 9lx g7 (2) = ([, glo(2) := [£(2), 9(2)]g -

REMARK 4.7 ((twisted) loop algebra, ord(c) = 3). For the algebra of type Dy
there exists an automorphism o of order 3. In this case we get exactly the same results

as for the other types. The main difference is that we have three eigenspaces, corre-
27

sponding to {w,w? w? =1} forw = ¢ 5", For a function f in the loop algebra Mg,
this results in a twisting condition f(wz) = o f(z) (for details compare again [Car02]).

LEMMA 4.8 (Banach- and Fréchet structures on twisted loop algebras).
1. A,g° equipped with the norm || ||, is a Banach Lie algebra,
2. Mg’ equipped with the norms || || is a tame Fréchet Lie algebra.

Proof. Closed subspaces of Banach spaces are Banach spaces and closed subspaces
of tame Fréchet spaces are tame Fréchet spaces (lemma 2.15). O

Recall the following definitions
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DEFINITION 4.9 (compact-open topology). Let (X,0Ox) and (Y, Oy) be topo-
logical spaces and let C(X,Y") denote the space of continuous functions f : X — Y.
The compact-open topology on C(X,Y) is the topology generated by the subbasis
consisting of all open neighborhoods UK, O defined by

UK, O :={feCX,Y)|f(K)CO}.

DEFINITION 4.10 (topology of compact convergence). Let (X,Ox) be a topo-
logical space and (Y, dy) be a metric space. For any € > 0, any function f € C(X,Y)
and any compact set K C X define the open ball BX(f) by

BE(f) = {9 € C(X,Y)ld(f(2),g(z)) < eVa € K}.

The topology of compact convergence on C(X,Y) is the topology generated by the
subbasis consisting of all open neighborhoods BX (f).

THEOREM 4.11. The following topologies on Mgc are equivalent:
1. the compact-open topology,
2. the topology of compact convergence,
3. the Fréchet topology.

Recall that on a Fréchet space (F, | ||n)

N L =gl
d(f’g)_;2"1+|\f—g||n

defines a metric. The Fréchet topology coincides with the topology generated by the
metric d(f, g) (see [Ham82], chapter 1.1).

Proof. We prove (1) < (2), (3) < (2).

(1) & (2) The equivalence between the compact-open topology and the topology
of compact convergence is well-known for spaces of continuous functions
C(X,Y) for X, Y metric spaces (see for example [Str06], p.96). In our case
X = C* and Y = g are complex spaces. The extension to the setting of
holomorphic functions is a straightforward consequence of Montel’s theorem:
Assuming (f,) € Hol(C*,g) C C(C*,g). Then by Montels theorem, the limit
function f = lim, e fn is in Hol(C*, g) as well.

(3) & (2) Let (fr) C Mg be a sequence converging to fy in the topology of compact
convergence. Then for every ng € N and € > 0 there is a ko such that for all
k > ko the estimate || f — folln < € is satisfied for all n < ng. Hence

R N 5 )
d(fx, fo) = Z 20 1+ || fe — folln

n=0

o 1 s = fol — L fi— foll
— — _WJr JOIn + — _WJr  JOIIm <
7;02" 14+ |fe — folln n:%;rl 27 1+ || fi — folln

Fiite £ i
- 2" 1 +e€ 2n =

n=0 n=no+1

1\
<2 — .
< e+(2>
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Hence (fr) C Mg converges in the Fréchet topology. Conversely let (fi) C
Mg be a sequence converging to fy in the Fréchet topology. Then we have

. L 1 fe=Solln
kl;ngo d(fx, fo) = klggoz 20 1+ [[fr — folln 0

n
As d(fk, fo) > sup,, Q—%J‘rﬂ’};if‘}”& we conclude that
lim supi—”fk — Jolln =
P R T - Al

As for any compact set K C C* there is some n such that K C A,,, this yields
compact convergence.
d
The adjoint action ad(g) : Mg? — Mg° is (0,0, 2||g||»)-tame for each g € Mg°.
Contrast this with the situation for affine Kac-Moody algebras described in section 6.
Having described the holomorphic complex loop algebras which we need, we turn now
to some objects derived from them, namely the compact real forms and spaces of
differential forms.
We start with real forms of compact type:

DEFINITION 4.12 (compact real form of a holomorphic non-twisted loop algebra).
Let gc be a finite-dimensional semisimple complex Lie algebra and g its compact real
form. The loop algebra Xgg is the vector space

Xof = {f € XoZ|f(s") C g},
equipped with the natural Lie bracket:

[/ 9lx6(2) == [f,9lo(2) := [£(2), 9(2)]g -

As a holomorphic function on X can be expanded into its Laurent series, one can
represent every element of a loop algebra by a series

f(z):= Z gn2"

with g, € g.

LEMMA 4.13. The condition f(S') C gr is equivalent to the condition g, =
—gt

Proof. Let z = e € S' € C* and let g, = g% + ig, be the decomposition of g,
into its real and imaginary parts. Then we find

F) =S g = 3 gue™ =

nez ner
= a4+ Zgneitn + ginefitn
neN
=ao+ Z(QZ +igh)(cos(tn) + isin(tn)) + (97n + ig-n) (cos(—tn) + i sin(—tn)) =
neN
=ao+ Z(QZ cos(tn) — gi, sin(tn)) + i(gh cos(tn) + g., sin(tn))+
neN

(g7 cos(—tn) — g* , sin(—tn) +i(g",, cos(—tn) + (9", sin(—tn)) =

= a0+ > (gn + 970 +i(gn + g-0)) cos(tn) + (=g + gL, + i(gn — g7)) sin(tn)
neN
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Now z € gc is in g if x = —Z'. This gives for the coefficients g":

gnt 9, =—(g,)" —(g",)"
gn =970 =(g3)" = (97)"-
Adding both we get g = —(g",,)t. In a similar way we get for the imaginary parts
of the coefficients g, = (¢°,,)" and thus the result. O
LEMMA 4.14. Mgr is a tame Fréchet space.
Proof. Mgr C Mgc is a closed subspace and thus tame according to lemma 2.15.0

DEFINITION 4.15.
1. QY(X,gc) is the space of gc-valued 1-forms on X; elements w € Q(X, gc)
are of the form w(z) = f(z)dz with f(z) € Xgc. We define a family of norms
by [|wl[n = [f(2)]n-
2. QY(X, gc)r is the space of gc-valued 1-forms on X such that f(S1) C gg.

As Mgc and Mgg are tame Fréchet spaces, also Q' (X, gc) and Q(X, gc)r are tame.
Remark, that this is not the topology as a dual space.

REMARK 4.16. Real forms of the algebras XgZ correspond to conjugate-linear
involutions of X gZ: assign to a real form the conjugation with respect to it. In the
other direction, fixed point algebras of conjugate-linear involutions are real forms.
Hence, real forms are closed subalgebras. Thus by an application of lemma 2.15 real
forms of MgZ are tame, real forms of A, gZ are Banach.

4.3. Lie groups of holomorphic maps. Up to now we studied analytic struc-
tures on loop algebras but not on the associated loop groups. In short the main result
is that all loop algebras interesting to us are tame Lie algebras. In this section we
prove similar results for loop groups. Let G be a compact semisimple Lie group and
G its complexification.

4.3.1. Foundations. Let us recall the definition of a smooth tame Lie group
from [Ham82]:

DEFINITION 4.17 (smooth tame Lie group). A smooth tame Lie group is a smooth
tame Fréchet manifold G equipped with a group structure such that the multiplication
map

0:GxG— G, (g,h)— gh

and the inverse map

p:G— G, g|—>g*1

are smooth tame maps.
In this section we show that the following groups are smooth tame Lie groups:

DEFINITION 4.18 (complex loop groups).
1. The loop group A, G is the group

AnGe :={f: A, — G¢| f is holomorphic} .

The multiplication is defined to be fg(z) := f(z)g(z) for f,g € A,G.
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2. The loop group MG is the group
MGc¢ :={f: C* — G| f is holomorphic} .
The multiplication is defined to be (fg)(z) := f(2)g(z) for f,g € MG.

DEFINITION 4.19 (real form of the compact type).
1. The real form of the compact type A,Gr is defined to be

A,Gr = {f € A,Gc|f(S") C Gg}.
2. The real form of the compact type MGy is defined to be

MGy = {f € MGc|f(S*) C Gr}.

There are exponential functions

Apexp: Ang — A,G and
Mexp : Mg — MG,

defined pointwise using the group exponential function exp : g — G:

Let us remark, that for any z € C* resp. z € A, the curve (¢) := [(Mexp)(t -
H](z) resp. y(t) := [(An exp)(t - f)] defines 1-parameter subgroups.

REMARK 4.20. In contrast to algebraic affine Kac-Moody algebras, for holo-
morphic Kac-Moody algebras and their Kac-Moody groups, the exponential map is
defined on the whole Lie algebra Mg.

The next important object needed to describe the connection between the loop
algebras and the loop groups is the definition of the Adjoint action Ad:

As usual it is defined pointwise using the Adjoint action of the Lie group Gk,
K e {R,C}:

(Ad(AnG)K X AngK) — AngKa (fv h) = fhf_l )
(Ad(MG)K X MgK) — Mgk, (f, h) — fhfil ,

where

FRfTH(z) = F(2)h(2) 71 (2) = Ad(f(2))(h(2))

For the Adjoint action of groups of the compact type to be well-defined we have to
check, that the condition f(S') C gg is preserved. This is a consequence of the adjoint
action for finite dimensional compact Lie groups: for all z € S we have f(z) € Gr
and h(z) € gr. Thus the condition Ad(f)h(z) € gr is preserved pointwise.

LEMMA 4.21. The exponential function and the Adjoint action satisfy the iden-
tity:

Adoexp X = e™X for X € {A,,C*}.
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Proof. Applying the well-known identity for finite dimensional Lie algebras (resp.
Lie groups) we get that the identity is valid pointwise. O

We now investigate the functional analytic nature of the groups A,,G and MG: to fix
some notation let X o denote by abuse of notation an involution of Xg resp. of XG.
Let XGp denote a real form of non-compact type of XG, and denote by Fix(X o) the
fixed point group of an involution Xo.

E. Heintze and C. Grofi [HG09] show that real forms of the non-compact type of
a complex simple Kac-Moody algebra are in bijection with involutions of the compact
real form (which is unique up to conjugation). Let Xgg be a compact real form with
involution Xo. We denote by Xgp » the real form of non-compact type associated to
Xo.

Let us focus on a description of the groups A, G: as A, is compact we can follow
the classical strategy to define manifold and Lie group structures. We start by defining
a chart on an open set containing the identity with values in the Lie algebra via the
exponential map; then we use left translation to construct an atlas of the whole group.
This strategy yields the following basic results:

THEOREM 4.22.
1. A,Ggr and A,Gc are Banach-Lie groups.
2. Real forms A,Gp of non-compact type of Ap,Gc are Banach-Lie groups.
3. Quotients A,Gr/Fiz(Ano) and A,Gp ./ Fiz(A,o) are Banach manifolds.

For Banach-Lie groups and Banach manifolds, there exists a huge literature; for
a classical introduction see for example [Pal68, Lan99b].
For the groups MG themselves the theory is considerably more difficult. The crucial
observation is the fact that the exponential map is in general no local diffeomorphism.
Let us give an example of this strange phenomenon:

EXAMPLE 4.23 (MSL(2,C)). We study the Lie group SL(2,C). As is well

known,
exp : 5((2,C) — SL(2,C)

is not surjective. For example elements g € SL(2,C) conjugate to the element

-1 1
0 -1
are not in the image of exp (s((2,C)) (see [DK00]).

We want to show that there exists a sequence of functions f,, € MSL(2,C) which
converges to the identity element

Id(z) == < oY >

of MSL(2,C) in the compact-open-(tame Fréchet) topology but is not contained in
the image of Mexp(Msl(2,C)). To this end, we have to construct the functions f, in
a way that each one contains at least one point z, € C* that are not in the image of
exp (s[(2,C)). Thus let us define

Tz/n

ne=( 7" ).
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Then

fn(in) = ( _01 _11 ) .

In consequence f,, is not contained in $(Mexp(s((2,C))) for any n € N. On the other
hand, for any fixed zy € C* we calculate the limit lim,,,~ fn(20) to be

. 10
Jm fa(z0) = ( 0 1 > =1d.
Hence in the compact-open topology for every neighborhood Uy of the identity
there exist ny € N such that Vn > ny : f,, € Ug; hence, in the compact open topology
lim f, =1d .
n—oo

This observation concludes the proof that Mexp : Msl(2,C) — MSL(2,C) is not
a local diffeomorphism.

A direct consequence is, that the holomorphic loop groups MG for G semisimple
are no locally exponential Lie groups in the sense of K.-H. Neeb [Nee06], that is Lie
groups such that exp is a local diffeomorphism.

Hence, we have to find a way to define manifold structures on MG without
making use of the exponential maps. We start by describing some results about
the relationship between MG and Mg. Then we show that loop groups satisfy the
weaker axioms for pairs of exponential type introduced by Hideki Omori.

DEFINITION 4.24. The tangential space T),(M G) is defined as the space of path-
equivalence classes of smooth paths. For i = 1,2, let ¢;, > 0. Then two smooth
curves

Vit (—€i,€) x C* — G, i=1,2
are equivalent if there is some €y > 0 such that

'-Yl|(—60,60)><(c* = 72|(—60760)><(C* .

By definition, a path depends holomorphically on the second factor and smoothly
on the first factor. Let us remark, that one can consider weaker regularity conditions
on the first factor (i.e. C*-dependence); we will not pursue the study of these weaker
regularity conditions any further. In contrast the holomorphic dependence on the
second factor is derived from the regularity condition imposed on the (holomorphic)
Kac-Moody group.

The relationship between Mg and MG is described by the following three results (for
the convenience of the reader, we first state the three results and postpone the proofs
after the discussion):

THEOREM 4.25 (Tangential space). Let g be the Lie algebra of G. Then
Mg = T.(MG).

Moreover the tangential space T.(M@G) is isomorphic to the Lie algebra of left-
invariant vector fields on MG.
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While the tangential space of a loop group is the corresponding loop algebra, the
exponential map behaves in general badly. More precisely, we have the following
result:

THEOREM 4.26 (Loop groups whose exponential map is no local diffeomorphism).
Let G be a complex semisimple Lie group.

Mexp : Mg — MG

s mot a local diffeomorphism.

This is in sharp contrast to the case of nilpotent Lie groups. For these groups we have
the following result:

PROPOSITION 4.27 (Loop groups whose exponential map is a local diffeomor-
phism). Let G¢ be a complex Lie group such that its universal cover is biholomorphi-
cally equivalent to C™. Then its exponential map Mexp is a local diffeomorphism.

COROLLARY 4.28. Let G be a complex Lie group. If G is nilpotent (i.e. Abelian)
then Mexp is a diffeomorphism.

Corollary 4.28 is a direct consequence of proposition 4.27, as Abelian and nilpotent Lie
groups have C" as their universal cover [Kna96], corollary 1.103 and [Var84], section
3.6.

Theorems 4.25 and 4.26 may seem contradictory at first, as they state, that

Lie group — Lie algebra: Good behavior!

Lie algebra — Lie group: Bad behavior!

Nevertheless, it is a typical for infinite dimensional systems in the following sense:
The step from the Lie group to the Lie algebra is linearization or differentiation;
differentiation exists in very general frameworks; typically no subtle obstacles arise;
in contrast the step from the Lie algebra to the Lie group is integration; integration is
in general frameworks a very subtle procedure [KM97, BGN04, Ber08, Gro97]. This
behavior seems contradictory as the usual intuition, sharpened at finite dimensional
manifolds, tells us there should be a geodesic in every direction. From the point of
view of classical analysis, one can describe the analytic basics of this situation as a
consequence of a change of limits, arising because of the non-compactness of C*:
e On the one hand, theorem 4.25 describes locally uniform convergence on each
compact subset K C C*.
e Theorem 4.26 shows in contrast that globally on C* convergence needs no
longer be uniform.
We now give the proofs that we have omitted:

Proof of theorem 4.25.

1. We prove first the inclusion Mg C T.(MG). Hence we have to show the
following: let y(t) : (—€,¢) = MG be a curve in MG such that v(0) = e €
MG. Then 4(0) is in Mg. Using, that Mg is a loop algebra, we have an
equivalent description of 4(0) as a function 4(0,z) : C* — g, describing
explicitly the loop.

Let zp € C* arbitrary but fixed. Then ~,,(¢), the evaluation of y(t) at zg € C*,
is a curve in G satisfying 7,,(0) = e. Thus, using that the finite dimensional
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exponential map exp : ¢ — G is a local diffeomorphism, we get that %%0 (t)
is an element in g. As zg is arbitrary we have constructed a function w :
C* — g, satisfying

w(z) =5(0,2);

we have now to prove that w is holomorphic.
We use, that (¢, z) depends holomorphically on z. This is equivalent to

d
At 2)=0.
dgw(,Z)

Hence

d d d |d
0= Gt = 5]

where we may switch the derivatives because of smoothness. Hence %”y(t, )
is holomorphic.
This shows: T.(MG) C Mgy.
2. The other direction is straight forward: let v € Mg. Then Mexp(ty) is a
curve in MG with tangential vector v. So Mg C T.(MG).
This completes the proof. O

Proof of theorem 4.26. The proof of theorem 4.26 relies on the fact that Mexp is
no local diffeomorphism for SL(2,C). Let h ~ sl(2,C) C g be a subalgebra of g. Then
there is an H = SL(2,C) subgroup in G, such that § is the Lie algebra of H. See
part VIL5 of the book [Kna96]. Study the subalgebra Mh C Mg and the subgroup
MH C MG. Mb can be identified with T, (M H). Moreover Mexp : Mt C M H. But
as example 4.23 shows, Mexp is no local diffeomorphism. This completes the proof. O

The image of the exponential map consists of those loops whose image is com-
pletely contained in the image of the Lie group exponential map. We give further com-
ments about this situation in the third part, dealing with geometric aspects [Frel3al,
where we study the behavior of geodesics.

Proof of theorem 4.27. Let G be the universal cover of G; the exponential map
exp : g — G is a biholomorphic map. Thus concatenation with exp (resp. exp~ 1)
induces a biholomorphic map between Mg and M G. To get that Mexp : Mg — MG
is a local diffeomorphism, one uses the fact that each loop in MG projects onto a loop
in MG and, conversely, each loop in MG can be lifted to a loop in MG, which is
unique up to Deck transformation and thus locally unique. This proves that Mexp is
a local diffeomorphism. O

4.3.2. Manifold structures on groups of holomorphic maps. In this sec-
tion we prove that the groups M Gr, M Gc, and various quotients are tame Fréchet
manifolds.

THEOREM 4.29. MGc is a tame Fréchet manifold.

The idea of the proof is to use logarithmic derivatives, to get charts is quite com-
mon: for regular Lie groups it is developed in the book [KM97], chapters 38 and 40.
Furthermore it is used by K.-H. Neeb [Nee06] to prove the following theorem [Nee06],
theorem II1.1.9.:
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THEOREM 4.30 (Neeb). Let F € {R,C}, G be a F-Lie group and M a finite
dimensional, connected o-compact F-manifold. We endow the group C2°(M,G) with
the compact open C*°-topology, turning it into a topological group. This topology is
compatible with a Lie group structure if dimp M = 1 and 71 (M) is finitely generated.

The main ingredients for the proof of Neeb’s theorem are the use of logarithmic
derivatives to define charts in Q'(M,g), the space of g-valued 1-forms on M and
Glockners inverse function theorem [G1607], to take care of the monodromy if 71 (M)
is nontrivial.

If F = C we have the equivalence C°(M, G) ~ Hol(M,G). Our situation is the
special case M = C*. Hence, m (M) = Z is a finitely generated group. The compact
open C*°-topology coincides for holomorphic maps with the topology of compact
convergence. Thus Neeb’s theorem tells us that M Gp,F € {R,C} are locally convex
topological Lie groups.

Nevertheless, we do not get tame structures. Hence we have to prove the theorem
completely new. Our presentation follows the proof of K.-H. Neeb for the locally
convex case.

We need some definitions: o € Q'(M,g) is called integrable iff there exists a
function f € Hol(M,G) such that 6(f) := f~'df = a. The uniqueness of solutions
to linear differential equations shows that 6(f1) = 6(f2) iff f1 = gf2 for some g € G.

The first step of the proof is the following lemma, whose statement and proof
can be found in [KM97] and [Nee06]: morally it is a straight forward application
of the monodromy principle for holomorphic Pfaffian systems, as described in the
article [NY02].

LEMMA 4.31. Let M be a 1-dimensional complex manifold, o € Q' (M, g).
1. « is locally integrable
2. If M is connected, My € M, then there exists a homomorphism

pery, : m(M,m,) — G

[e3%

that vanishes iff a is integrable.

Proof. Proof of theorem 4.29 We define the embedding;:

gDZMG(C — Ql(C*,g@)ch,
f = (0(f) = f7Hdf, f(1).

This embedding is injective as (6(f1), f1(1)) = (8(f2), f2(1)) iff 6(f1) = 6(f2) and
f1(1) = f2(1). Using the uniqueness of solutions (up to the starting point) of the
linear differential equation df = fw where w := f; Ydfy, the first condition leads to
the relation f; = gfa for some g € G. Then the second condition gives uniqueness as
gf2(1) = f2(1) leads to g = Id.

Compare this embedding with the description of polar actions on Fréchet spaces
in section 5. Let 7m; and w2 denote the projections:

1 QYC* gc) x Ge = QYC* gc),
Wg:Ql((C*,g(c) XGC — G(c.

We construct charts for MGc C Q1(C*, gc) x Ge as direct product of charts for
71 0 o(MGc) and 73 0 p(MGg).
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e Ty 0 ¢ is surjective; hence a describing of charts for the second factor can
be done by choosing charts for G. Via the exponential mapping and left
translation, we get charts ¢ 4 : U(g) — V(0) defined on an open set U(g)
around g € G taking values in V(0) C gc. To describe the family of norms,
we use the Euclidean metric

H ”n = ” HEucl'

e The first factor is more difficult to deal with as m; o ¢ is not surjective. While
every ge-valued 1-form a € Q(C*, g¢) is locally integrable by lemma 4.31, the
monodromy may prevent global integrability. A form a € Q(C*,gc) is in
the image of m o ¢ iff its monodromy vanishes, that is iff

elste = eeGe.

This is equivalent to the condition [ o = a_1(@) C 5= exp~t(e) where
a_1(a) denotes the (—1)-Laurent coefficient of the Laurent series of o =
f(2)dz. Hence we get the characterization of &(m; o ¢) as the inverse image
of e € G¢ via the monodromy map.

Thus we have to show that this inverse image is a tame Fréchet manifold.
To this end, we use composition with a chart ¢ : U — V fore e U C G
with values in G¢. This gives us a tame map Q(C*, gc) — gc. This map
satisfies the assumptions of the following theorem, whose proof can be found

in [Frel2c].

THEOREM 4.32. Let F' be a tame space and ¢ : F — R"™ a tame map. Let
g € R™ be a regular value for p. Then ¢~ 1(g) is a tame Fréchet submanifold

of co-finite type.

Thus its inverse image is a tame Fréchet submanifold. This proves that m o
is a tame Fréchet submanifold.
Thus M G¢ as a product of a tame Fréchet manifold with a Lie group is a tame Fréchet
manifold. This completes the proof of theorem 4.29. O

THEOREM 4.33. MGc is a tame Fréchet Lie group.

Proof. From theorem 4.29 we know that MGc is tame Fréchet manifold. Hence
we have to check that

Y1: MGe x MGe — MGc, (g,f) = gf,
and
Yo : MGe — MGe, fr f!
are tame Fréchet maps. Using the embedding

p: MGe — Ql(C*,g@)ch,
f — (ftdf, (1))

We get for 1; the description
P11 QY(C*, gc) x Q1(C*, g¢) x Ge x G — Q1(C*, g¢) x Ge
(f~'df, g dg, f(1),9(1) = (gf "'dfg~" + g~ dg, fF(1)g(1)),
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which is smooth as a direct product of smooth tame maps.
Similarly we get for 1s:

Y1 : QN C* gc) x Ge — QY(C*, gc) x Ge
(f7df, ) = (FUFTH N ),
which is again a smooth tame map. O
We now investigate different classes of quotients of loop groups:
PROPOSITION 4.34. MGR is a tame Fréchet Lie group.

Proof. The proof is similar to the proof for MG¢c. We have only to take care
of the reality condition f(S') C Gy for loops f € MGc. Thus the embedding ¢
maps a loop f into Q (C*, gr) X Ggr, which are both tame Fréchet spaces. Now similar
arguments apply. O

PROPOSITION 4.35. The group MGc/MGr is a tame Fréchet manifold.
Proof. Review the embedding

w : MG(C — Ql((C*,gC) X G(c.

A loop f-g is mapped onto ¥(f-g) = (g~ f~tdfg+g~dg,[f - g](1)). This is the
well-known gauge-action of the group M Gg, denoted by G*(MGgr). Thus there is a
well defined embedding

¢ : MGe/MGr — Q'(C*, 9c)/G" (MGRr) x Gc/Gr .

No we study again the projections 71 and 75 on the first and second factor. o is
surjective; G¢/GR is a tame manifold; so this factor is no problem.

The projection on the first factor, 71, needs a more careful analysis: the right
multiplication of M Gr on MGy is surjective: using the decomposition gc = gr + igr,
we get for Q1(C*, gc) := QL (C*, gc) + iQ%L(C*, gc)-

The surjectivity of the right multiplication of M Ggr on MGy translates into the
surjectivity of the MG-gauge action on the imaginary part iQ2%(C*, gc) N S(m o
¥)(MG). Thus we can suppose to have chosen a representative f € f - MG, such
that the imaginary part m o ¥(f) is 0. So all we have to check is the real part.
Here we find that exp~*(e) = 0. Thus a_; = 0. So we can identify the image
7 0 p(MGc/MGR) ~ Q% (C*, gla_; = 0). This is a tame Fréchet space.

Hence proposition 4.35 is proven. [

Having proved that MG¢ and M G¢/MGg are tame Fréchet manifolds we have
to check that the same is true for the quotients M Gg/Fix(p) and M Gp/Fix(p).

To this end, let MG be a loop group and M p the loop part of an involution of
the second kind.

PRrROPOSITION 4.36. Let MGp be a non-compact real form of MGc. MGp is a
tame Fréchet manifold.

Proof. The group MGp is a closed subgroup of MGg¢ as it is the fixed point
group of complex conjugation, hence some conjugate-linear involution O

PROPOSITION 4.37. The quotient spaces M Gr/Fiz(Mp) and MGp,,/Fiz(Mp)
are tame manifolds.
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Proof. The proof is an argument analogous to the proof that MGc/MGrg is a
tame Fréchet space. O

The next class are twisted loop groups:

PROPOSITION 4.38 (Twisted loop groups). Let G be a compact simple Lie group
of type A, D, or Eg and o a diagram automorphism of order m € {2,3}. Let
27mi
w=em.
o The group A,G° :={f € A"Glo o f(z) = f(w=2)} is a Banach-Lie group.
e The group MG? := {f € MG|o o f(z) = f(wz)} is a tame manifold. Charts
can be taken to be in QY(C*,G)?. Furthermore Mg°® ~ T,(MG?).

Proof. To generalize the proofs of the non-twisted setting to the twisted setting
one has to check that the subspaces defined by diagram automorphism are preserved
by the logarithmic derivative.

1. For the exponential map, we use o4 resp. o to denote the realization of the
diagram automorphism o on g resp. G. Any involution of a semisimple Lie
group satisfies the identity: og o exp = exp ooy

[0c o Mexp(f)](2) = exp(og(f(2))) = exp(f(wz)) = [Mexp(f)](w2),

2. For the logarithmic derivative we calculate:
Soof) = (of) oo f) = of Lodf = o(5f).

Thus we get charts in the o-invariant subalgebra of Q'(C*, g¢).

The following definition is due to Omori [Omo97]:

DEFINITION 4.39 (Exponential pair). A pair (G, g) consisting of a Fréchet group
G and a Fréchet space g is called a topological group of exponential type if there is a
continuous mapping;:

exp:g — G.

Such that:
1. For every X € g, exp(sX) is a one-parameter subgroup of G.
2. For X,Y € g, X =Y iff exp(sX) = exp(sY) for every s € R.
3. For a sequence {X,} € g, nh—>Holo X, converges to an element X € g iff

lim (exp sX,,) converges uniformly on each compact interval to the element
n—oo
exp(sX).

4. There is a continuous mapping Ad : G x g — g with hexp(sX)h™! =
exp sAd(h)X for every h € G and X € g.

PROPOSITION 4.40 (Exponential type). The pair (MGg, Mgk) is of exponential
type.

Proof. We proved that MG is a tame Fréchet Lie group, thus a topological
group. To prove that (M Gg, Mgk) is of exponential type, we have to check the four
conditions given in definition 4.39:

1. The first condition can be checked by a pointwise analysis: for f € Mg and
for every z € C*, the curve exp sf(z) is a 1-parameter subgroup in G. This
pieces together for all z € C*, to yield the condition.
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2. The second condition follows analogously: let XY € Mg. X = Y iff
X(z) = Y(z2) for all z € C*. The finite dimensional theory tells us that
this is equivalent to the curves exp(sX(z)) C Gk and exp(sY (z)) C Gk to be
equivalent for all z € C*, but this is equivalent to exp(sX) = exp(sY).

3. Let {X,,(2)} € Mg, z € C be a sequence of elements such that nh_}rrgo Xn(z) =
X € Mg. Let T C R be a compact interval, s € T. As we have on MG the
compact-open topology,

lim (expsXyn) = exp(sX) < VK C C" : exp lim (exp sXn(K)) = exp(sX)(K).
n— o0 n—oo

This assertion is correct as for every z € K : exp lim (expsX,(z)) =
n—oo
exp(sX)(z).
4. The last assertion follows again from pointwise consideration and the validity

of the assertion for finite semisimple Lie groups.
0

We give some remarks about 1-parameter subgroups.

REMARK 4.41. Let g(t) := X exp(tu) for u € X gk be a 1-parameter subgroup in
XGg, X € {A,,C*}, K € {R,C}. Then the following statements hold:
1. X exp(tu),, is a l-parameter group in G¢ for all zg € X.
2. If A, C A, 4, then the embedding A, +1rG — A, G maps l-parameter sub-
groups onto 1-parameter subgroups.

Proof. Direct calculation. O

REMARK 4.42. As we have seen, the fact that the exponential function does not
define a local diffeomorphism is responsible for several difficulties; so it is reasonable to
try to use a setting in which the exponential function defines a local diffeomorphism.
So let us try to take loops f : S — G satisfying some regularity condition. In this
case the exponential map defines always a local diffeomorphism, as a neighborhood
of the identity element of such a loop group is given by loops whose images lie in a
small neighborhood V' of the identity of the subjacent Lie group; this neighborhood
can be chosen in a way such that the group exponential is a diffeomorphism from an
open neighborhood U in the Lie algebra onto it. But now other problems appear:

1. Suppose the functions to be H'-Sobolev loops. In this setting, one can con-
struct weak Hilbert symmetric spaces of compact and non-compact type.
Nevertheless, one cannot define the double extension corresponding to the c-
and d-part of the Kac-Moody algebra. As this extension is responsible for
the structure theory, this setting is not useful for us.

2. To be able to construct the extension corresponding to the derivative d, one
needs loops that are C*°. For C'°°-loops, it is possible to construct compact
type symmetric spaces corresponding to the finite dimensional types I and
111, but for Kac-Moody symmetric spaces of C*°-loops there is no dualiza-
tion: as the complexification of ¢ is not defined, we cannot complexify. As a
consequence there are no symmetric spaces of the non-compact type.

The details of both theories are developed in [Pop05]. Summarizing we have the
following observation:

PROPOSITION 4.43. The setting of holomorphic loops is the biggest setting such
that Kac-Moody symmetric space of the compact type and of the non-compact type of
the same regqularity condition can be defined.
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Let us mention in this context the short summary in [Ber03] about infinite di-
mensional differential geometry, where the conflict between often desirable structure
as a Hilbert space and useful metrics is addressed.

5. Polar actions on tame Fréchet spaces. In this section we study polar
representations of tame Fréchet affine loop groups on tame Fréchet vector spaces.
Our aim is, to establish that the adjoint representation of Kac-Moody groups of
holomorphic maps X G and their associated s-representations induce polar actions on
certain subspaces of Xg; these subspaces are constructed as intersections of certain
horospheres with spheres of constant norm; from the point of view of Kac-Moody
geometry, our results assure, that there is a well-defined connection between the local
linearized classes of objects such as polar actions and their principal orbits (that
is isoparametric submanifolds) on the one hand and the global nonlinear classes of
objects such as affine Kac-Moody symmetric spaces and twin cities on the other hand.

Let us sketch in a few lines the finite dimensional blueprint: Let G be a simple
compact Lie group and K C G the fixed point group of some involution. Then the
quotient space M = G/K is a finite dimensional Riemannian symmetric space. The
group K, called the isotropy group of M, stabilizes the point pg = eK € M. Let
p € M. The linear representation K = K, : T,M — T, M is called the isotropy
representation of M. Recall furthermore that a representation K : V. — V of a Lie
group K on a vector space V is polar, if there is a subspace ¥ C V, called a section,
that intersects each orbit orthogonally. It is an easy calculation, to check that the
isotropy representation of a (finite dimensional) Riemann symmetric space is a polar
representation of the isotropy group on the tangential space. Conversely, a theorem
of J. Dadok states, that any polar representation is orbit equivalent to the isotropy
representation of some symmetric space [Dad85]. For the isotropy representation of
a symmetric space, possible choices of sections correspond to tangential spaces of
maximal flats, that is maximal subspaces F' C M, that are isometric to flat space.
We show in forthcoming work, that affine Kac-Moody symmetric spaces behave in a
similar way. Remark nevertheless a striking difference between the finite dimensional
(spherical) and the infinite dimensional affine situation: while in the finite dimensional
situation all orbits have finite codimensions, ranging from 2 to the rank, in the affine
case there are orbits with (small) finite codimension bounded by 7k(G) and orbits
with infinite codimension. This phenomenon is related to the dichotomy of complex
affine Kac-Moody groups, that can be viewed either as (finite dimensional) (algebraic)
groups over the ring of holomorphic functions or as (infinite dimensional) affine Kac-
Moody group over the base field C (resp. R. Via duality constructions this dichotomy
is also the algebraic structure behind the differences in the geometry of coadjoint
orbits of Kac-Moody groups and loop groups, which is sketched for example in the
book [KWO09]; we gave a building theoretic interpretation in [Frel2b], relating the
finite dimensional orbits to the affine twin city and the infinite dimensional ones to
the spherical building at infinity [Frel3d].

We prove in this section, that the orbits with finite codimension correspond to
the gauge actions of tame loop groups on tame spaces; these actions are restrictions
of the adjoint action of the Kac-Moody group to certain subspaces.

Closely related is the theory of polar actions on Hilbert spaces, which is described
in the article [HPTT95, PT90, Ter95, Gro00).

The fundamental theorem due to C.-L. Terng states:

THEOREM 5.1. Define P(G,H) := {g € H'([0,1],G)|(9(0),9(1)) € H C G x G}
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and V = H°([0,1],9). Suppose the H-action on G is polar with flat sections. Let A
be a torus section through e and let a denote its Lie algebra. Then the gauge action
of P(G,H) on 'V is polar with section a.

Proof. see [Ter95]. O

Important special cases are the following: let A, C G x G denote the o-twisted
diagonal subgroup of G x G, that is: (g,h) € A, iff h = o(g). We use the notation
A = Ayq for the non-twisted subgroup.

1. The gauge action of H!-Sobolev loop groups P(G,G x G) = H*([0,1],G) on
their H%-Sobolev loop algebras H°([0, 1], g) is transitive.

2. The gauge action of P(G,A,) on H'([0,1],G) is polar with flat sections
[HPTT95].

3. The gauge action of P(G, K x K) on H*([0, 1], G) where K is the fixed point
set of some involution of G is polar with flat sections [HPTT95].

4. The gauge action of P(G, K; x Ks) on H'([0,1],G) where K;,i € {1,2} are
the fixed point groups of involutions of G is polar with flat sections [HPTT95].

5. The gauge action of Sobolev-H !-loop groups H'(S*, G) on their Sobolev H°-
loop algebras H°(S*, g)-is polar [PTS8S].

In this section we describe a similar theory for the loop groups XG? on the tame
loop algebras Xg?. Asusual let X € {4,,,C*}. Recall, that holomorphic functions on
A,, are assumed to be holomorphic in an open set containing A,,. From the embedding
XG° — HY([0,1],G) and Xg° — H([0,1],g) it is clear that the algebraic part of
the theory is independent from the actual regularity conditions imposed. This means
for example: sections for a polar action on the subspaces of holomorphic functions Xg
correspond to sections for the polar actions on some Hilbert space of H°-functions
L%g; consequently also further objects, defined from the polar actions such as the
associated affine Weyl groups are the same. Hence the crucial point in establishing
the existence of polar actions on some algebra Xg is, to check that the additional
regularity restrictions fit, hence most importantly, that each orbits intersects a fixed
section. This breaks down to two points:

1. One has to show locally that the additional regularity conditions are satisfied.
2. One has to show globally that monodromy conditions are satisfied.

Leaving the realm of Hilbert spaces, a remark to the definition of orthogonality
is necessary: While there are still scalar products on Fréchet spaces, the space is no
longer complete with respect to the metric defined by the scalar product. Hence to
define orthogonality on Xg we use the H-scalar product induced on Mg by the em-
bedding into H°([0,1],g). Tautologically, the embedding X g < L°g is an embedding.
In consequence we can define polar actions on Banach (resp. tame) spaces like that:

DEFINITION 5.2. An action of a Lie group G on a Fréchet space F' is called polar
iff there is a subspace S, called a section, intersecting each orbit orthogonally with
respect to some scalar product.

THEOREM 5.3. The gauge action of XGg on Xg° is polar; an Abelian subalgebra
a C g interpreted as constant loops is a section.

The proof consists of two parts:
1. We have to show that each orbit intersects the section a.
2. We have to show that the intersection is orthogonal.
The second part follows trivially from the embedding and Terng’s result.
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Thus we are left with proving the first assertion. We do this in a step-by-step way:
first we study the action of C*-loop groups on C*~!-loop algebras (k € {N,oc}).
Then we proceed to the holomorphic setting of theorem 5.3.

LEMMA 5.4. The gauge action of L*G on LF=1g? is polar for k € {N,cc}.

This result is used without proof in [Pop05] in order to show that all finite dimensional
flats are conjugate. We do not know if a proof can be found in the literature. For
completeness we give one:

Proof of lemma 5.4.

1. Orthogonality in L*!g” is defined via the embedding into the space
H°([0,1],9) and the use of the H-scalar product. Hence orthogonality of
the intersection between sections and orbits is covered by Terng’s result.

2. Local regularity
Define the following spaces

P(G, H)" := {g € C*([0,1],G)|(9(0),9(1)) € H C G x G}
Furthermore we use the equivalence [Ter95]

P(Gie x G) ~ H°([0,1],9),
h< —hht.

Terng’s polarity result [Ter95] yields that the action of P(G,A,) on P(G;e x
Q) defined by (g(t), h(t)) = g(t)h(t)g(0)~! is polar with a section of constant
loops exp ta where a is a maximal Abelian subalgebra in g (if o # 0 we restrict
to a, and omit the o in the notation [Kac90]). Thus for every h(t) € P(G; e x
@) there exist g(t) € P(G,A,) and X € a, such that g(t)h(t)g(0)~! =
exp(tX).
Rearranging this equation we deduce for any loop g(t) € P(G, A,) the explicit
description g(t) := exp(tX)g(0)h(t)~!. Hence if h(t) € P*(G;e x G) then
g(t) € P¥(G,A,). Combining this with the orthogonality we obtain that the
actions of P¥(G,A,) on P¥(G;ex G) ~ H*=1(]0,1],g) and of P®(G,A,) on
P>(G;e x G) ~ H*>([0,1],g) are polar.

3. The periodicity relation: We want to show that L*G? acts on L*~1g?
with slice a for k € {N, co}.

(a) Let first g € L*G and uw € L*"'g?. Then g -u = gug™ — ¢g'g~' is in
LF=1g°. Thus L*G° acts on LF~1g°.

(b) We have to show that any L¥G7-orbit intersects the section a. This is
equivalent to: For each u € LF~!g? there is X € g and g € P¥(G, A)
such that exp(tX) = g(t)h(t)g~1(0) with b/ (t) = u(t)h(t) and the deriva-
tives coincide; interpret in this last equation u(t) as a quasi-periodic
function on R (i.e. u(t + 27) = ou(t) and h(t) as a function on R).
Using the first part, we find a function g(t) € P*(G,A,). Hence, what
remains is to check the closing condition of the derivatives: g™ -u(27) =
og™ -u(0). We prove that it is equivalent to the closing condition
gD (2m) = g+ (0).

We start with the case n = 1. For this case, we have to show

exp((t + 2m) X)goh(t + 2m) "t = o(exp(tX)goh(t) ™).



920 W. FREYN

After rearranging, this is equivalent to the identity
o(go ') exp(2mX)go = o(h(t) " )h(t + 2r).
As the left side is a constant we find:
(o(h(t)"1)h(t +27)) = 0.

Hence: —o(h(t)= A/ ()h(t)"1)h(t + 27) + o(h(t) ")/ (t + 2m) = 0. Re-
arranging this equality we get

o(u(t)) = —a(h ())o(h(t)™1) = —=h/(t + 2m)h(t + 27) " = u(t + 27)

which is the desired periodicity condition.
For n # 0 we use induction. If ¢ is k-times differentiable then u is
k — 1-times differentiable. This proves the lemma.

O

Proof of theorem 5.3. To prove the theorem, we have to further strengthen the
used regularity conditions to holomorphic functions. The description in the proof of
lemma 5.4 shows that the group of analytic loops L, (S!, G) acts polarly with section
a on the algebra L,, (S, g) of analytic loops.

1. The case of holomorphic loops on C* For the specialization to holomor-
phic maps we use the description:

He+(Cogo)r :=1{f: C — gc|f(z+1iZ) = f(2), fiR C gr}.
Identifying it <> ¢ in this (resp. the above) description we get an embedding:
H(C* ((Cu gC)R — H> (Sla g)

This shows that there are no problems concerning the monodromy. So we
have only to check the regularity aspect. For ¢ € MG and u € Mg, g -
(u) = gug=t — g’¢g~* € Mu. On the other hand, using the description in
the proof of lemma 5.4, we get for u € Mg a transformation function g(¢t) :=
exp(tX)g(0)h(t)~1. A priory this function is in L(S', G); but exp(tX) can be
continued to a holomorphic function on C, g(0) is a constant and h(t)~! is a
solution of the differential equation: h'(t) = u(t)h(t); if u(t) is defined on C*,
this equation has a solution on the universal cover of C*, that is C. So g(t) is
defined on C, but has perhaps nontrivial monodromy; this is, of course, not
possible, as the embedding tells us that g(t) C LanG.

2. The case of holomorphic loops on A,, This case is exactly similar. C is
replaced by A’ (compare subsection 3.1).

Hence theorem 5.3 is proved. O

Thus we have proven that o-actions and diagonal actions are polar. Those two
cases corresponds to the isotropy representation of Kac-Moody symmetric spaces of
types II and IV: the diagonal action is induced by the isotropy representation of
Kac-Moody symmetric spaces in the non-twisted case, the o-action is induced by the
isotropy representation of o-twisted one.

The isotropy representations of Kac-Moody symmetric spaces of type I and I11
correspond to the Hermann examples. A holomorphic version of the Hermann exam-
ples [HPTT95] can be defined in exactly the same way:
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Let XGg be a simply connected loop group, p an involution such that Xgg =
K @ P is the decomposition into the +1-eigenspaces of the involution induced by p on
Xgg. Let XKr C XGg be the subgroup fixed by p.

THEOREM 5.5. The gauge action of X Kr on P is polar.

Proof. The proof is like the one of theorem 5.3. One starts with a similar result
for polar actions on Hilbert action [Ter95] and checks then step by step that the
introduced higher regularity conditions fit together. O

6. Tame structures on Kac-Moody algebras. In this section we describe
explicit realizations as central extensions of holomorphic loop algebras of the abstract
affine geometric Kac-Moody algebras which we introduced in definition 4.1.

Let X € {A,,C*}. As usual, holomorphic functions on A, are understood to be
holomorphic in an open set containing A,,.

DEFINITION 6.1 (holomorphic affine geometric Kac-Moody algebra). Define )/(\g
to be an explicit realization of E(g, o) with L(g, o) in the category of holomorphic
maps Xg°7.

Thus an element of a Kac-Moody algebra can be represented by a triple
(f(2),rc,7q), where f(z) denotes a gc-valued holomorphic function on X and
{re,ra} € C.

We equip those algebras with the norms || flln = ||(f, 7e, 7q)|ln := SUp,ca, |fz| +
(refe+ rdfd)%. Thus we use the supremum norm on the loop algebra and complete it
with an Euclidean norm on the double extension defined by ¢ and d.

LEMMA 6.2 (Banach- and Fréchet structures on Kac-Moody algebras).
1. For each n, the algebras //ln\gﬂz and Xn\gg equipped with the norm || ||n are
Banach-Lie algebras,
2. ]\//[\gﬂz and ]@g equipped with the sequence of norms || || are tame Fréchet-Lie
algebras.

Proof. Let F € {R,C}.
1. As a consequence of lemma 4.5, A,g° is a Banach space. Thus Zn\gg is
Banach.
To prove that ad(f + r.c+ rqd) is continuous, we use [f + r.c+ rqd, g+ sc.c+
sad] = [f, gl+rald, 9] —sald, f]1 = [f, glo+w(f, g)c+raizg’ —sqiz f'. Continuity
follows from the continuity of diz, which is a consequence of the Cauchy-
inequality and the boundedness of multiplication on compact domains.

2. Mg is a tame Fréchet space as a consequence of lemma 4.5. Thus A/i\ga is
tame as a direct product of tame spaces (lemma 2.15). To prove tameness of
the adjoint action, we need tame estimates for the norms. Those estimates
follow directly from the Banach space situation:

llad(f + rcc 4+ rad)(g + scc + sad)||ln =

= H[f7 g]o + w(f7g)c + TdiZgl - Sdizle" <

< 2| fllnllglln + llw(f, g)clln + lIrazg'lln + lsazf lIn <

< 2| fllnllglln + 117 nllg In + Iralllzlinllg’lIn + Isalllzllnllf In <

entl n+1 n+1
< 2[fllallglln + [ flln

e e
n " n " n <
gl + Prale” S gl + Isale™ S|l <

en+1 62n+1 - R ol B R
< (24 S5 #2520 ) Il o < 56 1Tl Gl
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Thus ad(§) is (1,0, 562"+ 1|| f||n1)-tame.
d

This result shows that the tame structure on the Kac-Moody algebra is preserved
by the adjoint action. For additional analytic details and the Cauchy-inequalities see
for example [BG91].

7. Affine Kac-Moody groups.

7.1. The loop group construction of affine Kac-Moody groups. In this
section we describe the construction of affine Kac-Moody groups as 2-dimensional
extensions of loop groups. Our presentation of the central extensions follows a con-
struction proposed [PS86] for a Hilbert space setting; we use the tame Fréchet setting,
developed in section 4. Furthermore using a technical result of B. Popescu we prove
that Kac-Moody groups of holomorphic loops carry a structure as tame Fréchet man-
ifolds.

Let G¢ denote a complex semisimple Lie group and G its compact real form.
As the constructions are valid in Kac-Moody groups defined with respect to various
different regularity conditions, we use the regularity-independent notation L(Gc, o)
for the complex loop group and L(G, o) for its real form of compact type. To define
groups of polynomial or analytic loops, we use the fact that every compact Lie group
is isomorphic to a subgroup of some unitary group. Hence we can identify it with
a matrix group. Similarly the complexification can be identified with a subgroup of
some general linear group [PS86]. Groups of polynomial loops are then defined with
respect to this representation.

Kac-Moody groups are constructed in two steps.

1. The first step consists in the construction of an S'-bundle in the real case
(resp. a C*-bundle in the complex case) that corresponds via the exponential
map to the central term Re (resp. Cce) of the Kac-Moody algebra.

2. In the second step we construct a semidirect product with St (resp. C*). This
corresponds via the exponential map to the Rd- (resp. Cd-) term

Study first the extension of L(G, o) with the short exact sequence:

1— 8" — L(G,0) — L(G,0) — 1.

There are various groups X that fit into this sequence. We need to define E(G ,0)
in a way that its tangential Lie algebra at the identity e € L(G, o) is isomorphic to
L(g,0).

As described in [PS86] this S'-bundle is best represented by triples: take triples
(9(2),p(z,t),w) where g(z) is an element in the loop group, p(z,t) a path connecting
the identity to g(z) and w € S! (respective w € C*) subject to the relation of
equivalence: (g1(2),p1(2,t),w1) ~ (g2(2),p2(z,t),ws) iff g1(2) = g2(2) and wy =
C.(p2 *pl_l)wg. The term w; = C,(p2 *pl_l)wg defines a twist of the bundle. Here
we put:

Cw(pQ *pl_l) — efs(p2*p;1) «
where S(pa * pl_l) is a surface bounded by the closed curve po * pl_1 and w denotes the

2-form used to define the central extension of L(g, o). Group multiplication is defined
by

(gl(z)vpl(za t)vwl) ' (92(2),[)2(2, t)7w2) = (91(2)92(2), pl(za t) *gl(z) 'pQ(Za t)7w1w2) .
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If G is simply connected it can be shown that this object is a well defined group
independent of arbitrary choices made in the construction iff w is integral. This
condition is satisfied by our definition of w [PS86], theorem 4.4.1. If G is not simply
connected, the situation is a little more complicated: let G = H/Z where H is a simply
connected Lie group and Z = 71(G). Let (LG)o denote the identity component of
LG. We can describe the extension using the short exact sequence:

1—S'— LH/Z — (LG)y — 1

see [PS86], section 4.6. .
In case of complex loop groups, the S'-bundle is replaced by a C*-bundle.
Hence, we can now give the definition of Kac-Moody groups:

DEFINITION 7.1 (Kac-Moody group).
1. The real Kac-Moody group J\/i\GR is the semidirect product of S! with the
St-bundle MGxg. -
2. The complex Kac-Moody group MGc is its complexification: a semidirect
product of C* with M G¢-bundle over MG.
The action of the semidirect S (resp. C*)-factor is in both cases defined by a shift of
the argument:

C*swqg: MG — MG : f(z) — f(zwgq) .

REMARK 7.2. Remark that in the compact case the shift is by elements wy = e*#¢
only. Hence the action preserves the unit circle S'. Thus one can use function spaces
on S thus yielding more general Kac-Moody groups than the groups of holomorphic
loops, we study. Nevertheless those groups have no complexification in the same
regularity class.

The next aim is to prove that Kac-Moody groups are tame Fréchet manifolds. To
this end we use a result of B. Popescu [Pop05] stating that fiber bundles whose fiber
is a Banach space over tame Fréchet manifolds are tame.

We start with the definition of tame fiber bundles:

DEFINITION 7.3 (tame Fréchet fiber bundle). A fiber bundle P over M with
fiber G is a tame Fréchet manifold P together with a projection map 7w : P — M
satisfying the following condition:

For each point x € M there is a chart ¢ : U — V C F with values in a tame
Fréchet space F' such that there is a chart ¢ : 7= 5(U) — G x U C G x F such that
the projection 7 corresponds to a projection of U x F onto U in each fiber.

The following lemma is proved in [Pop05].

LEMMA 7.4. Let P be a fiber bundle over M whose fiber is a Banach manifold;
then P is a tame Fréchet manifold.

This result contains the important corollary:

COROLLARY 7.5. The Kac-Moody groups MGR, MGC, the quotient spaces
MGC/MGR MGp and the quotient spaces MGRr/ Fiz(p) and MGD/FZI( ) are tame
Fréchet manifolds.

Next we prove:
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THEOREM 7.6. mc/]\//[-b]g 18 diffeomorphic to a vector space.

Proof. By theorem 4.35, we know that M G¢ /MGy is diffeomorphic to a vector
space. As MGy is a subgroup of MG, the quotient is well defined. To prove the
theorem we check the decomposition

MGe/MGr ~ MGe/MGg x (RT)?.

To this end we use the description of the elements in 1\’4?;@ / MG as 4-tuples. Two
4-tuples (g(2),p(2,t),7c,7a) and (¢'(2),p'(z,t), ., 7)) describe the same element of
MGc/MG iff there exists an element (h(z),q(z,t), sc, $4) € M Gg such that

(g(z),p(z, t),?‘c, rd) = (g/(z) + h(z),p’(z, t) + Q(th)v T‘é + Sey 7'21 + Sd) .

Hence the equivalence classes for g(z) are elements of M G¢ /M Gg. The extension
of MGg lies in S'. Thus r. and ry4 are defined up to an element in S*. So we obtain
a description of MG¢/MGg as a (RT)%-bundle over M G¢/MGg.

As MGc/MGy is diffeomorphic to a vector space (and hence simply con-
nected), this bundle is trivial. The diffeomorphism can be described by mapping
(9(2),p(z,t), e, mq) onto (g(z),7¢,7q), hence by forgetting the path p(z,t). O

Now we investigate the quotients MG / F&(?)

The group m) consists of elements (g,p,7¢,74) € MG such that {g,p €
Fix(o),r. € £1,7q € £1}. As {re,rq} € =£1, this is a covering with four leaves.
The details of the argument follow the description found in [Pop05] for the smooth
C>-setting.

Let H C MG¢ be a real form of non-compact type.
The description of the space H/Fix(o) C MGc/Fix(o) follows similarly. This yields
a proof of the following theorem:

THEOREM 7.7. The space H/Fix(o) is diffeomorphic to a vector space.

___In section 4.3 we introduced the pointwise exponential function Mexp : ]\/J\g —
MG. This exponential function can be extended to an exponential function on the
Kac-Moody algebra Mg.

Mexp : Mg — MG.

Via ﬁex\p the central extension Cc corresponds to the fiber of the C*-bundle and the
Cd-term corresponds to the C*-factor of the semidirect product.

To study more precisely the properties of the exponential function, we introduce
the notion of curves in a Kac-Moody group. As a Kac-Moody group M Gg is locally a
(topologically) direct product of the loop group MG with R?, a path: 7 : (—¢,€) —
MG is locally described by three components: F(t) = (v(¢),vc(t), va(t)), with ~(t)
taking values in MG and ~.(t), va(t) taking values in R. For every z € C*, y defines
a path 7.(t) : (—e,€) = G by setting v, (t) := [v(¢)](z). A path v : (—€,¢) = MG,
t — ~(¢) is differentiable (respective smooth) iff the map 6 : (—¢,e) x C* = Gg,
(t,z) — d(t, z) such that §(t, z) = 7,(t) is differentiable (respective smooth).

For the group MG we can describe the exponential function as follows:

PROPOSITION 7.8. The exponential function Mexp : ]\A/[E; — MG is defined by

M(f +rec) = (N[exp(f)7 (t — 6$ptu)|é,ri”) _
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For the straightforward proof one has to check that this defines a 1-parameter
subgroup whose differential at the identity is f + r.c.

7.2. The Adjoint action. Similarly to finite dimensional simple Lie groups a
Kac-Moody group admits an adjoint action on its Lie algebra:

EXAMPLE 7.9 (Adjoint action). With z = {w, (g,p, 2)}, the Adjoint action of
MG’ on M g is described by the following formulae

Ad(z)u = gw(u)g~" + (gw(u)g~,g'g e
Ad(z)c:=¢

Ad(z)d:=d—g'g7 +5(g'97" 9’97 )e.
Here w(u) denotes the shift of the argument by w.

For the proof compare [HPTT95], [PS86], and [Kac90].

Proof.
e c generates the center, thus Ad(z)c := c.
e Ad(z)u follows by integrating the Ad-action.

e To calculate Ad(g)(d), we use the Ad-invariance of the Lie bracket. As [d,v] =
v' we get for all v € Lq;497:

gv'g~! + <gv’g‘1, g'g e =
=Ad(g)(v') = Ad(g)[d,v] = [Ad(g)(d), Ad(g)(v)] =
=[h+ pc+vd, gvg~" + (gug~", 9’9" " )e] =
=[h, gug~ '] + v[d, gvg~'] =
=hgvg~" — gug~'h+w(h, (gug™") e +vg'vg™! +vgv'g !t +vgu(gTl),

with h € Lagg” and {u, v} € R.
To get equality we have to choose v =1, h = —g’g~'. This gives us

hgvgfl - gvgflh + w(h, (gvgfl)')c + l/glvu(f1 + l/gv'u(f1 + ng(g,l), =
:_grvg—l _’_gvg—lg/g—l +w(—g/gfl7(gvgfl)')c—&—g'vg*l _’_gv/g—l _’_gv(gfl)/ —
r -1 —1\/ /7 -1
=w(—gg ", (gvg” ) )c+gvg .

Thus we are left with the calculation of y. To this end we use the property
that Ad acts by isometries. This results in = 3(¢'g~',g'g7").

O
More details can be found in [PS86, HPTT95, Pop05, Pop06].

THEOREM 7.10 (Polarity of the Adjoint action). Let H;, C )/(\gg, {l,r} €
R x R\{0} denote the intersection of the sphere with radius —I* with the horosphere
rq = 1. The restriction of the Adjoint action to H;, is polar.

Proof. The restriction of the Adjoint action to H;, coincides with the gauge
action on Xg. Hence, theorem 7.10 is a direct consequence of theorem 5.3. 00

C.-L. Terng describes how to associate an affine Weyl group to this gauge ac-
tion [Ter95]. This is exactly the affine Weyl group of the Kac-Moody group MG.
This theorem gives a complete description of the Adjoint action iff r4 # 0.
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Surprisingly in the remaining case ry = 0 the situation is different: now the Adjoint
action is reduced to the equations:

Ad(z)u = gw(u)g™! + (gw(u)g~', g'g"Y)e,
Ad(z)c:=c.

Calculate the orbit of the constant function v = 0. w is fixed by the Adjoint action
as Ad(x)u := g0g—* + (g0g~!,¢'g !)c = 0. Hence iff we can describe the restriction
of the Adjoint action to Xg? as some kind of polar action then the associated Weyl
group has to be necessarily of spherical type. Furthermore the action is clearly not
proper Fredholm. Hence the Hilbert-space version is not covered by Terng’s results.
We use the regularity independent notation:

We define a flat of finite type to be a flat t C L(g, o) such that t is the restriction
of a flat in L(g, o). Hence all flats of finite type are conjugate in L(G, o) and as
the orbits of L(G, o) and L(G, o) coincide on L(g,o) also in L(G,0). Hence any
flat of finite type in L(g, o) is isomorphic to ty C g, where we choose g to denote the
subalgebra of constant loops. Using the usual notion for regular and singular elements
we find that the associated Weyl group is the spherical Weyl group of g.

REMARK 7.11. From a geometric point of view this different behavior is related
to the fact that the hyperplane defined by r4 = 0 corresponds to the spherical building
at infinity while the space r4 # 0 corresponds to the spherical building at infinity. For
further details confer [Fre09], [Frel2a], [Frel2b].
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