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MINI-WALLS FOR BRIDGELAND STABILITY CONDITIONS ON

THE DERIVED CATEGORY OF SHEAVES OVER SURFACES∗

JASON LO† AND ZHENBO QIN†‡

Abstract. For the derived category of bounded complexes of sheaves on a smooth projective
surface, Bridgeland [Bri2] and Arcara-Bertram [ABL] constructed Bridgeland stability conditions
(Zm,Pm) parametrized by m ∈ (0,+∞). In this paper, we show that the set of mini-walls in (0,+∞)
of a fixed numerical type is locally finite. In addition, we strengthen a result of Bayer [Bay] by proving
that the moduli of polynomial Bridgeland semistable objects of a fixed numerical type coincides with
the moduli of (Zm,Pm)-semistable objects whenever m is larger than a universal constant depending
only on the numerical type. We further identify the moduli of polynomial Bridgeland semistable
objects with the Gieseker/Simpson moduli spaces and the Uhlenbeck compactification spaces.
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1. Introduction. Since the appearance of Bridgeland’s seminal work [Bri1],
there have been intensive investigations of Bridgeland stability conditions on trian-
gulated categories, which can be viewed as a mathematical approach to understand
Douglas’ work [Dou] on Π-stability for D-branes in string theory. Bridgeland sta-
bility conditions for smooth projective curves were classified by Macri [Mac] and
Okada [Oka]. Bridgeland stability conditions on smooth projective surfaces were con-
structed by Bridgeland [Bri2] and Arcara-Bertram [ABL], and the topology of the
stability manifolds for generic K3 categories was obtained by Huybrechts, Macri and
Stellari [HMS]. Toda [Tod2] studied Bridgeland stability conditions for Calabi-Yau fi-
brations. A gluing procedure for Bridgeland stability conditions was found by Collins
and Polishchuk [CP]. In another direction, Bayer [Bay] (see also Toda [Tod3]) de-
fined polynomial Bridgeland stability for normal projective varieties of any dimension.
The polynomial Bridgeland stability may be viewed as the large volume limit of the
Bridgeland stability. The moduli stacks of Bridgeland semistable objects were investi-
gated in [Ina, Lie, Tod1], while the moduli stacks of polynomial Bridgeland semistable
objects were investigated in [Lo1, Lo2, Lo3, LQ].

The concepts of walls and chambers for Gieseker stability were introduced in [Qin]
and played an important role in understanding Donaldson polynomial invariants of
certain surfaces. Walls and chambers in the space of Bridgeland stability condi-
tions are closely related to the wall-crossing phenomena discussed by Kontsevich and
Soibelman [KS]. Let X be a smooth projective surface, and let Db(X) be the derived
category of bounded complexes of coherent sheaves on X . When X is a K3 or abelian
surface, Bridgeland [Bri2] proved that the set of walls in the space of Bridgeland sta-
bility conditions on Db(X) is locally finite. Whether the same conclusion holds for a
general surface X remains to be open.

In this paper, we analyze the set of mini-walls and mini-chambers in the space
of Bridgeland stability conditions. To state our results, we introduce some notations
and definitions (see Notation 2.5 and Definition 3.2 below for details). The numer-
ical type of an object E ∈ Db(X) is defined to be t(E) = (rk(E), c1(E), c2(E)). Fix

∗Received March 9, 2012; accepted for publication February 1, 2013.
†Department of Mathematics, University of Missouri, Columbia, MO 65211, USA ({locc; qinz}@

missouri.edu).
‡Partially supported by an NSF grant and by a grant from the Simons Foundation.

321



322 J. LO AND Z. QIN

β, ω ∈ Num(X)Q with ω being ample, and fix a numerical type t = (r, c1, c2). Bridge-
land [Bri2] and Arcara-Bertram [ABL] constructed Bridgeland stability conditions
(Zm,Pm) parametrized by m ∈ (0,+∞). Regard (0,+∞) as a subset in the space of
Bridgeland stability conditions. Then walls and chambers in (0,+∞) are referred to
as mini-walls and mini-chambers of type (t, β, ω).

Theorem 1.1. Let β, ω ∈ Num(X)Q with ω being ample, and let t = (r, c1, c2).
(i) The set of mini-walls of type (t, β, ω) in (0,+∞) is locally finite.

(ii) There exists a positive number M̃ , depending only on t, ω and β, such that

there is no mini-wall of type (t, β, ω) in [M̃,+∞).

Theorem 1.1 has been observed in the special case considered in Sect. 4 of [ABL].
Moreover, Theorem 1.1 (ii) strengthens the Proposition 4.1 in [Bay] (see Lemma 2.6

below). In fact, we prove in Theorem 4.4 that wheneverm ≥ M̃ , an object E ∈ Db(X)
with t(E) = t is (Zm,Pm)-semistable if and only if E is (ZΩ,PΩ)-semistable. Here
Ω = (ω, ρ, p, U) is the stability data from Subsect. 2.2, and (ZΩ,PΩ) denotes the
polynomial Bridgeland stability constructed in [Bay].

The main idea in proving Theorem 1.1 (i) is to find an upper bound for rk(A) if
A defines a mini-wall of type (t, β, ω) and if the mini-wall is contained in an interval
I = [a,+∞). This upper bound is universal in the sense that it depends only on
I and (t, β, ω). Combining this idea with an expanded version of the proof of the
Proposition 4.1 in [Bay] also leads to the proof of Theorem 1.1 (ii).

Next, we classify all the polynomial Bridgeland semistable objects in terms of
Gieseker/Simpson semistable sheaves. Let MΩ(t) be the set of all (ZΩ,PΩ)-semistable
objects E ∈ PΩ((0, 1]) with t(E) = t. Let Mω(t) be the moduli space of sheaves
E ∈ Coh(X) which are Simpson-semistable with respect to ω and satisfy t(E) = t.
For r > 0, define Mω(t) be the moduli space of locally free sheaves E which are
µω-stable and satisfy t(E) = t, and define Uω(t) to be the Uhlenbeck compactification
space associated to ω and t. The case when r = 0 is covered by Lemma 2.10 and
Lemma 2.11. For r 6= 0, we have the following.

Theorem 1.2. Let Ω = (ω, ρ, p, U) be from Subsect. 2.2 with ω ∈ Num(X)Z. Fix
a numerical type t = (r, c1, c2) with gcd(r, c1ω) = 1. Let t̃ = (−r, c1, c

2
1 − c2).

(i) If r > 0, then MΩ(t) ∼= Mω(t).
(ii) If r < 0 and c1ω/r < βω, then MΩ(t) ∼= Mω (̃t).
(iii) If r < 0 and c1ω/r = βω, then MΩ(t) ∼= Uω (̃t).

We therefore have a complete description of the moduli spaces of (ZΩ,PΩ)-
semistable objects on every smooth projective surface. In view of Theorem 4.4, we
obtain a complete description of the moduli spaces of semistable objects with respect
to certain Bridgeland stabilities on a smooth projective surface. We remark that
similar results in the context of Bridgeland stability have been observed and stud-
ied by Bridgeland [Bri2], Kawatani [Kaw], Ohkawa [Ohk], Toda [Tod1] and Yoshioka
[Yos1, Yos2, Yos3]. Similar results in the context of polynomial Bridgeland stability
have also appeared in Sect. 4 of [LQ].

This paper is organized as follows. In Sect. 2, we recall the constructions of
Bridgeland, Arcara-Bertram and Bayer. Theorem 1.1 (i) and (ii) are proved in Sect. 3
and Sect. 4 respectively. In Sect. 5, we verify Theorem 1.2.

Conventions. The i-th cohomology of a sheaf E on a variety X is denoted by
Hi(X,E), and its usual dual sheaf Hom(E,OX) is denoted by E∗. The derived
category of bounded complexes of coherent sheaves on X is denoted by Db(X). The
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i-th cohomology sheaf of an object E ∈ Db(X) is denoted by Hi(E), and the derived
dual of E is denoted by E∨ = RHom(E,OX) ∈ Db(X).

Acknowledgment. The authors thank Professors Jun Li and Wei-Ping Li for
valuable helps and stimulating discussions. The authors also thank the referee for
making valuable comments and suggestions.

2. Preliminaries.

2.1. Constructions of Bridgeland and Arcara-Bertram. Let X be a
smooth complex projective surface.

Definition 2.1. Let ω ∈ Num(X)R be ample, and let v ∈ R.
(i) Define T(ω,v) to be the full subcategory of Coh(X) generated by torsion

sheaves and torsion free µω-stable sheaves A with µω(A) > v.
(ii) Define F(ω,v) to be the full subcategory of Coh(X) generated by torsion free

µω-stable sheaves A with µω(A) ≤ v.

(iii) Define A♯
(ω,v) to be the abelian category obtained from Coh(X) by tilting at

the torsion pair
(
T(ω,v),F(ω,v)

)
, i.e., A♯

(ω,v) consists of all the objects E ∈

Db(X) satisfying the conditions:

H−1(E) ∈ F(ω,v), H0(E) ∈ T(ω,v), Hi(E) = 0 for i 6= −1, 0.(2.1)

The following lemma will be used in Case 3 in the proof of Lemma 4.3 below.

Lemma 2.2. Let Q be a 0-dimensional torsion sheaf, and C ∈ T(ω,v). If G sits in
an exact sequence 0 → G → C → Q → 0 of coherent sheaves, then G ∈ T(ω,v).

Proof. Let Tor(C) denote the torsion subsheaf of C. Let

Tor(C) = C0 ⊂ C1 ⊂ . . . ⊂ Cn = C

be the usual HN-filtration of C with respect to µω . Let µi = µω(Ci/Ci−1). Then for
i = 1, . . . , n, the sheaf Ci/Ci−1 is torsion free and µω-semistable. Moreover, µ1 > . . . >
µn. By the definition of T(ω,v), µ1 > . . . > µn > v. For i = 0, 1, . . . , n, let Gi and Qi be
the kernel and image of the induced map Ci → Q respectively. Then Gi−1 = Gi∩Ci−1.
The injection 0 → Gi/Gi−1 → Ci/Ci−1 implies that Gi/Gi−1 is torsion free. Also, we
have commutative diagram of sheaves

0 0 . . . 0 0
↓ ↓ ↓ ↓

Tor(G) = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G
↓ ↓ ↓ ↓

Tor(C) = C0 ⊂ C1 ⊂ . . . ⊂ Cn = C
↓ ↓ ↓ ↓
Q0 ⊂ Q1 ⊂ . . . ⊂ Qn = Q
↓ ↓ ↓ ↓
0 0 . . . 0 0

from which we obtain two exact sequences for each i = 1, . . . , n:

0 → Gi/Gi−1 → Ci/Gi−1 → Qi → 0
‖

0 → Qi−1 → Ci/Gi−1 → Ci/Ci−1 → 0.
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Since Gi/Gi−1 is torsion free and Qi−1 is torsion, we get an exact sequence

0 → Gi/Gi−1 → Ci/Ci−1 → Q̃i → 0

where Q̃i is a 0-dimensional torsion sheaf. Thus, µω(Gi/Gi−1) = µω(Ci/Ci−1) = µi >
v, and Gi/Gi−1 is µω-semistable. Hence

Tor(G) = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

is the usual HN-filtration of G with respect to µω, and G ∈ T(ω,v).

Let u ∈ N (X)⊗Z C. Define the central charge Zu on Db(X) by

Zu(E) = −

∫

X

u · ch(E).(2.2)

The following lemma is due to Bridgeland [Bri2] and Arcara-Bertram [ABL].

Lemma 2.3. Let u = e−(β+i ω) where β, ω ∈ Num(X)R and ω is ample. Then(
Zu,A

♯
(ω,βω)

)
induces a Bridgeland stability condition (Zu,Pu) on Db(X).

2.2. Polynomial stability and large volume limits. Let Ω = (ω, ρ, p, U) be
the stability data defined by the following:

• ω ∈ Num(X)R is ample,
• ρ = (ρ0, ρ1, ρ2) with ρi = −(−i)d/d!,
• p : {0, 1, 2} → Z is the perversity function p(d) = −⌊d/2⌋,
• U = e−β for some β ∈ Num(X)R.

Let ZΩ : K(Db(X)) = K(X) → C[m] be the central charge defined by

ZΩ(E)(m) =

∫

X

2∑

d=0

ρdω
dmd · ch(E) · U = −

∫

X

e−(β+imω) · ch(E).(2.3)

By [Bay], ZΩ(E)(m) induces a polynomial stability condition (ZΩ,PΩ) on Db(X).

Lemma 2.4. (Lemma 4.2 in [Bay]) We have PΩ((0, 1]) = A♯
(ω,βω). In fact, if

E ∈ PΩ((0, 1]) ⊂ Db(X) is (ZΩ,PΩ)-semistable, then E is one of the following:
(i) E is a torsion sheaf;
(ii) E is a torsion free µω-semistable sheaf with µω(E) > βω.
(iii) H−1(E) is a torsion free µω-semistable sheaf with µω(H−1(E)) ≤ βω, H0(E)

is a 0-dimensional torsion, and all other cohomology sheaves of E vanish.

Notation 2.5. Fix u = e−(β+i ω). Put um = e−(β+imω) and

Zm(E) = Zum
(E) = −

∫

X

e−(β+imω) · ch(E) = ZΩ(E)(m).

Let (Zm,Pm) denote the Bridgeland stability condition on Db(X) induced by Zm.

Lemma 2.6. (Proposition 4.1 in [Bay]) Let notations be as above. Assume further
that ω ∈ Num(X)Q. Then, an object E ∈ Db(X) is (ZΩ,PΩ)-semistable if and only if
E is (Zm,Pm)-semistable for m ≫ 0. Moreover, for an arbitrary object E ∈ Db(X),
the HN-filtration of E with respect to (ZΩ,PΩ) is identical to the HN-filtration of E
with respect to (Zm,Pm) for m ≫ 0.
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Definition 2.7. For E ∈ Db(X), define its numerical type t(E) by

t(E) = (rk(E), c1(E), c2(E)).(2.4)

Remark 2.8. A straight-forward computation from (2.3) shows that

ZΩ(E)(m) = rk(E)ω2 ·
m2

2
+ i(c1(E) · ω − rk(E)βω)m+ c(E)(2.5)

where

c(E) = −ch2(E) + c1(E) · β − rk(E) ·
β2

2
∈ R.(2.6)

It follows that if E,B ∈ PΩ((0, 1]) = A♯
(ω,βω) and m > 0, then φ

(
ZΩ(E)(m)

)
>

φ
(
ZΩ(B)(m)

)
is equivalent to Im

(
ZΩ(E)(m) · ZΩ(B)(m)

)
< 0, i.e.,

ω2m2

2

(
rk(E) c1(B)ω − rk(B) c1(E)ω

)

< c(B)
(
c1(E)ω − rk(E)βω

)
− c(E)

(
c1(B)ω − rk(B)βω

)
.(2.7)

2.3. Moduli spaces, walls and chambers.

Definition 2.9. Let notations be as above. Fix a numerical type t = (r, c1, c2).

(i) Let E ∈ PΩ((0, 1]) = A♯
(ω,βω) be (ZΩ,PΩ)-semistable, and let

0 = E0 ⊂ E1 ⊂ . . . ⊂ En−1 ⊂ En = E

be the Jordan-Hölder filtration of E. Define

Gr(E) =
n⊕

i=1

Ei/Ei−1.(2.8)

Two (ZΩ,PΩ)-semistable objects E1, E2 ∈ PΩ((0, 1]) are defined to be S-
equivalent if Gr(E1) ∼= Gr(E2). Define MΩ(t) to be the set of all (ZΩ,PΩ)-
semistable objects E ∈ PΩ((0, 1]) with t(E) = t modulo S-equivalence.

(ii) For m > 0, define the S-equivalence with respect to (Zm,Pm) in a similar
fashion as in (i), and define Mum

(t) be the set of all (Zm,Pm)-semistable

objects E ∈ A♯
(ω,βω) with t(E) = t modulo S-equivalence.

(iii) Let Mω(t) be the moduli space of sheaves E ∈ Coh(X) which are Simpson-
semistable with respect to ω and satisfy t(E) = t.

(iv) For r > 0, define Mω(t) be the moduli space of locally free sheaves E which
are µω-stable and satisfy t(E) = t. Define Uω(t) to be the Uhlenbeck com-
pactification space associated to ω and t.

Lemma 2.10. Let t = (0, 0, n) where n ∈ Z≥0. Then, all the spaces MΩ(t),
Mum

(t) and Mω(t) are identified, as sets, with the symmetric product Symn(X).

Proof. For Mω(t), this follows from the fact that every 0-dimensional torsion
sheaf is generated by the skyscraper sheaves Ox, x ∈ X via extensions. For MΩ(t)
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(respectively, Mum
(t)), note that every skyscraper sheaf Ox ∈ PΩ((0, 1]) has phase 1

and is (ZΩ,PΩ)-stable by [Bay] (respectively, (Zm,Pm)-stable by [Bri2]).

Lemma 2.11. Let Ω = (ω, ρ, p, U) be from Subsect. 2.2 with U = e−KX/2. Let
t = (0, c1, c2) with c1 6= 0. Then, MΩ(t) is identified with Mω(t).

Proof. We may let c1 > 0. By the proof of Lemma 4.2 in [Bay], if E ∈ MΩ(t) is
(ZΩ,PΩ)-semistable, then E ∈ Mω(t) is Simpson-semistable with respect to ω.

Conversely, let E ∈ Mω(t) be Simpson-semistable with respect to ω. Note that

χ(E ⊗OX(mω)) = (c1ω)m+ (ch2 − c1β)(2.9)

ZΩ(E)(m) = i(c1ω)m− (ch2 − c1β)(2.10)

where β = KX/2 and ch2 = c21/2 − c2. Let A be any proper sub-object of E in

PΩ((0, 1]) = A♯
(ω,βω), and let B = E/A. Then we have the exact sequence 0 → A →

E → B → 0 in PΩ((0, 1]). Thus, A is a sheaf in T(ω,βω) sitting in

0 → H−1(B) → A → E → H0(B) → 0.(2.11)

If H−1(B) = 0, then A is a proper subsheaf of E. By (2.9),

(ch2(A)− c1(A)β)/(c1(A)ω) ≤ (ch2 − c1β)/(c1ω)

since E is Simpson-semistable with respect to ω. By (2.10), φ
(
ZΩ(E)(m)

)
≥

φ
(
ZΩ(A)(m)

)
for all m > 0. Assume that H−1(B) 6= 0. By (2.11), we obtain rk(A) =

rk
(
H−1(B)

)
> 0. So we conclude from (2.7) that φ

(
ZΩ(E)(m)

)
> φ

(
ZΩ(A)(m)

)
for

m ≫ 0. Therefore, E ∈ MΩ(t) is (ZΩ,PΩ)-semistable.

Definition 2.12. (see [LQ]) Let CX ⊂ Num(X)R be the ample cone of the
smooth projective surface X . Fix a numerical type t = (r, c1, c2) on X .

(i) For a class ξ ∈ Num(X)⊗ R, we define

W ξ = CX ∩ {α ∈ Num(X)R| α · ξ = 0}.(2.12)

(ii) Let W(t) be the set whose elements are of the form W ξ, where ξ is the
numerical equivalence class (rF − sc1) for some divisor F and some integer s
with 0 < s < |r| satisfying the inequalities:

−
r2

4

(
2rc2 − (r − 1)c21

)
≤ ξ2 < 0.(2.13)

(iii) A wall of type t is an element in W(t), while a chamber of type t is a connected
component in the complement CX −W(t).

It is well-known that the set W(t) of walls of type t is locally finite, i.e., given a
compact subset K of CX , there are only finitely many walls W of type t such that
W ∩K 6= ∅. In addition, ξ defines a wall of type t if and only if it defines a wall of
type (r̃, c̃1, c̃2) where r̃ = −r and 1 + c̃1 + c̃2 = (1 + c1 + c2)

−1 ∈ A∗(X).
Fix t = (r, c1, c2) with r > 0. Then the Simpson-semistability is the same as the

Gieseker-semistability. If ω1 and ω2 are contained in the same chamber of type t,
then Mω1

(t) = Mω2
(t). If ω is contained in a chamber of type t, then E is µω-stable

whenever it is µω-semistable and t(E) = (r, c1, c
′
2) with c′2 ≤ c2. In this case,

Uω(r, c1, c2) =
⊕

c′
2
≤c2

Mω(r, c1, c
′
2)× Symc2−c′

2(X).(2.14)

It was proved in [Li1, Li2, Mor] that Uω(t) is a projective variety.
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3. Locally finiteness of mini-walls of a fixed type. In this section, we define
and study the mini-walls of a fixed type (t, β, ω) for Bridgeland stability conditions.
We will prove that the set of the mini-walls of a fixed type (t, β, ω) is locally finite.

Definition 3.1. Let σ be a Bridgeland stability condition on Db(X). Let

0 = E0 ⊂ E1 ⊂ . . . En−1 ⊂ En = E

be the HN-filtration of E ∈ Db(X) with respect to σ. We define E1 to be the leading
HN-filtration component of E with respect to σ.

Definition 3.2. Let u = e−(β+i ω) with ω being ample. Fix a numerical type
t = (r, c1, c2), and fix a subset I of (0,+∞).

(i) A mini-wall of type (t, β, ω) in I is a number m0 ∈ I such that

φ
(
Zm0

(A)
)
= φ

(
Zm0

(E)
)

where E ∈ Mum1
(t) for some m1 ∈ I, E 6∈ Mum2

(t) for some m2 ∈ I, and A
is the leading HN-filtration component of E with respect to (Zm2

,Pm2
).

(ii) A mini-chamber of type (t, β, ω) in I is a connected component of

I − {m|m is a mini-wall of type (t, β, ω) in I}.

Remark 3.3. (i) Unlike Definition 2.12 (iii), our definitions of mini-walls and
mini-chambers depends on subsets I of (0,+∞). These dependences are consistent
with the Proposition 9.3 in [Bri2] where when X is a K3 surface, walls and chambers
are defined for compact subsets in the space of Bridgeland stability conditions.

(ii) Let I1 ⊂ I2 ⊂ (0,+∞). If m is a mini-wall of type (t, β, ω) in I1, then m is a
mini-wall of type (t, β, ω) in I2. However, the converse may not be true.

(iii) Let t = (0, 0, c2), and let I ⊂ (0,+∞) be connected. By Lemma 2.10, all the
spaces Mum

(t) with m > 0 are identical. Hence no mini-walls of type (t, β, ω) in I
exist, and the only mini-chamber of type (t, β, ω) in I is I itself.

Lemma 3.4. Let C be a mini-chamber of type (t, β, ω) in I. If m1,m2 ∈ C, then

Mum1
(t) = Mum2

(t).

Proof. By symmetry, it suffices to show that if E ∈ Mum1
(t), then E ∈ Mum2

(t).

Assume that E 6∈ Mum2
(t). Let A be the leading HN-filtration component of E with

respect to (Zm2
,Pm2

). Then φ
(
Zm2

(A)
)
> φ

(
Zm2

(E)
)
. Since E ∈ Mum1

(t), we have

φ
(
Zm2

(A)
)
≤ φ

(
Zm2

(E)
)
. Since C is connected, φ

(
Zm0

(A)
)
= φ

(
Zm0

(E)
)
for some

m0 ∈ C. Thus by definition, m0 is a mini-wall of type (t, β, ω) in I. This is impossible
since the mini-chamber C can not contain any mini-wall.

Lemma 3.5. Let ω ∈ Num(X)R be ample, and let v ∈ R. Let E ∈ A♯
(ω,v).

(i) Let f : H0(E) → B be a surjection in Coh(X) with ker(f), B ∈ T(ω,v). Then

in A♯
(ω,v), there exists an exact sequence of the form

0 → A → E → B → 0.(3.1)
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(ii) Let g : A → H−1(E) be an injection in Coh(X) with A, coker(g) ∈ F(ω,v).

Then in A♯
(ω,v), there exists an exact sequence of the form

0 → A[1] → E → B → 0.(3.2)

Proof. Since (ii) can be proved similarly, we will only prove (i) below. To prove (i),

note from Definition 2.1 that T(ω,v) ⊂ A♯
(ω,v). So ker(f),H0(E), B ∈ T(ω,v) ⊂ A♯

(ω,v).

It follows that the exact sequence 0 → ker(f) → H0(E) → B → 0 in Coh(X) is an

exact sequence in A♯
(ω,v). In particular, we have a surjection H0(E) → B in A♯

(ω,v).

Composing with the surjection E → H0(E), we obtain a surjection E → B in A♯
(ω,v).

Letting A be the kernel of E → B in A♯
(ω,v), we obtain (3.1).

Lemma 3.6. Let ω ∈ Num(X)R be ample, and let v ∈ R.

(i) If E ∈ A♯
(ω,v), then c1(E)ω ≥ rk(E)v.

(ii) Fix a numerical type t = (r, c1, c2). Let {En}
+∞
n=1 be a sequence of objects in

A♯
(ω,v). Assume that for each n, there exists an exact sequence

0 → An → En → Bn → 0

in A♯
(ω,v). Then, limn→+∞ c1(An)ω/rk(An) = v if limn→+∞ rk(An) = ∞,

and limn→+∞ c1(Bn)ω/rk(Bn) = v if limn→+∞ rk(Bn) = ∞.

Proof. (i) Note that every E ∈ A♯
(ω,v) sits in the exact sequence

0 → H−1(E)[1] → E → H0(E) → 0(3.3)

in A♯
(ω,v). Since H−1(E) ∈ F(ω,v) and H0(E) ∈ T(ω,v), we have c1

(
H−1(E)

)
ω ≤

rk
(
H−1(E)

)
v and c1

(
H0(E)

)
ω ≥ rk

(
H0(E)

)
v. So c1(E)ω ≥ rk(E)v.

(ii) Since the second statement can be proved similarly, we will only prove the first
statement. Assume that limn→+∞ rk(An) = ∞. By (i), we have c1(An)ω ≥ rk(An)v
and c1(Bn)ω ≥ rk(Bn)v. Therefore, we conclude that

rk(An)v ≤ c1(An)ω = c1ω − c1(Bn)ω ≤ c1ω − rk(Bn)v = (c1ω − rv) + rk(An)v.

Since limn→+∞ rk(An) = ∞, it follows that limn→+∞ c1(An)ω/rk(An) = v.

Lemma 3.7. Let α, ω ∈ Num(X)R with ω being ample.
(i) If c ≤ α · ω ≤ d, then α2 ≤ max{c2, d2}/ω2.
(ii) Let B be a torsion free µω-semistable sheaf. If c ≤ µω(B) ≤ d, then

c(B)/rk(B) is bounded from below by a constant depending only on c, d, ω, β.

Proof. (i) Write α = aω + ρ with ρ · ω = 0. Then, a = (α · ω)/ω2. By the Hodge
Index Theorem, we have ρ2 ≤ 0. It follows that

α2 = a2ω2 + ρ2 ≤ a2ω2 = (α · ω)2/ω2 ≤ max{c2, d2}/ω2.

(ii) Since c ≤ µω(B) ≤ d, we obtain the inequalities

c− β · ω ≤

(
c1(B)

rk(B)
− β

)
· ω ≤ d− β · ω.
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By the Bogomolov Inequality, ch2(B) ≤ c1(B)2/(2 rk(B)). By (2.6),

c(B)

rk(B)
= −

ch2(B)

rk(B)
+

c1(B)

rk(B)
· β −

β2

2
≥ −

1

2

(
c1(B)

rk(B)
− β

)2

.

Now our conclusion about c(B)/rk(B) follows immediately from (i).

Proposition 3.8. Let u = e−(β+i ω) with ω being ample and β, ω ∈ Num(X)R.
Fix a numerical type t = (r, c1, c2) and an interval I = [a,+∞) with a > 0. Then
there exists a positive number N depending only on t, β, ω and I such that rk

(
H0(E)

)
,

rk
(
H−1(E)

)
≤ N whenever E ∈ Mum

(t) for some m ∈ I.

Proof. Since rk
(
H−1(E)

)
= rk

(
H0(E)

)
− r, it suffices to prove the lemma for

rk
(
H0(E)

)
. Assume that such an N does not exist for rk

(
H0(E)

)
. Then there

exists a sequence of objects En ∈ Mumn
(t), n = 1, 2, . . ., with mn ∈ I for all n

and limn→+∞ rk
(
H0(En)

)
= +∞. Replacing by a subsequence if necessary, we may

further assume that limn→+∞ mn = m0 (possibly +∞).
To draw a contradiction, let An,0 = H0(En) and An,1 = H−1(En). Then we have

the exact sequence 0 → An,1[−1] → En → An,0 → 0 in A♯
(ω,βω). By Lemma 3.6 (ii),

limn→+∞ µω(An,0) = βω. Let Fn = An,0/Tor(An,0). Let F
(1)
n , . . . , F

(ℓn)
n be the usual

HN-filtration quotients of Fn with respect to µω, i.e., F
(i)
n = Fi(Fn)/Fi−1(Fn) if the

usual HN-filtration of Fn with respect to µω is given by

0 = F0(Fn) ⊂ F1(Fn) ⊂ F2(Fn) ⊂ · · · ⊂ Fℓn(Fn) = Fn.

Then F
(1)
n , . . . , F

(ℓn)
n are torsion free and µω-semistable, and

µω

(
F (1)
n

)
> . . . > µω

(
F (ℓn)
n

)
.

Moreover, βω < µω

(
F

(ℓn)
n

)
≤ µω(Fn) ≤ µω(An,0). Thus limn→+∞ µω

(
F

(ℓn)
n

)
= βω.

In particular, for n ≫ 0, we have βω < µω

(
F

(ℓn)
n

)
≤ βω + ǫn where {ǫn}n≫0 is a

sequence of positive numbers with limn→+∞ ǫn = 0. By the proof of Lemma 3.7,

c
(
F

(ℓn)
n

)

rk
(
F

(ℓn)
n

) ≥ −
1

2

(
c1
(
F

(ℓn)
n

)

rk
(
F

(ℓn)
n

) − β

)2

≥ −
ǫ2n
2ω2

.(3.4)

On the other hand, by Lemma 3.5 (i), there exists a quotient En → F
(ℓn)
n → 0 in

A♯
(ω,βω). Since En ∈ Mumn

(t), we see from (2.7) that

ω2m2
n

2

(
r c1(F

(ℓn)
n )ω − rk(F (ℓn)

n ) c1ω
)

≥ c(F (ℓn)
n )

(
c1ω − r βω

)
− c(t, β)

(
c1(F

(ℓn)
n )ω − rk(F (ℓn)

n )βω
)

where c(t, β) = c(En) depends only on t and β. By Lemma 3.6 (i), c1ω− r βω ≥ 0. If
c1ω− r βω = 0, then the phase of En with respect to every central charge Zum

,m > 0
is equal to 1. So En ∈ Mum

(t) for all n,m > 0. In view of Lemma 2.6 and Lemma 2.4,
this contradicts to limn→+∞ rk

(
H0(En)

)
= +∞. Thus c1ω − r βω > 0 and

c(F
(ℓn)
n )

rk(F
(ℓn)
n )

≤
ω2m2

n

2
·
r µω(F

(ℓn)
n )− c1ω

c1ω − r βω
+ c(t, β) ·

µω(F
(ℓn)
n )− βω

c1ω − r βω
.
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Combining this with (3.4), we conclude that

ω2m2
n

2
·
r µω(F

(ℓn)
n )− c1ω

c1ω − r βω
+ c(t, β) ·

µω(F
(ℓn)
n )− βω

c1ω − r βω
≥ −

ǫ2n
2ω2

.

Recall that limn→+∞ µω

(
F

(ℓn)
n

)
= βω and limn→+∞ mn = m0 ≥ a > 0. Letting

n → +∞, we see that −ω2m2
0/2 ≥ 0 which is impossible.

Lemma 3.9. Let u = e−(β+i ω) with ω being ample and β, ω ∈ Num(X)R. Fix
a numerical type t = (r, c1, c2) and an interval I = [a,+∞) with a > 0. Then there
exists N depending only on t, β, ω and I such that |rk(A)| ≤ N whenever

• A is (Zm2
,Pm2

)-semistable for some m2 ∈ I;

• A is a proper sub-object of certain object E ∈ A♯
(ω,βω) with t(E) = t;

• A destablizes E with respect to (Zm2
,Pm2

);
• φ

(
Zm0

(A)
)
= φ

(
Zm0

(E)
)
for some m0 ∈ I.

Proof. Assume that our statement is not true. Then there exists a sequence of
sub-objects An ⊂ En(n = 1, 2, . . .) in A♯

(ω,βω) such that limn→+∞ rk(An) = ±∞,

t(En) = t, An is (Zm2,n
,Pm2,n

)-semistable for some m2,n ∈ I, An destablizes En with
respect to (Zm2,n

,Pm2,n
), and φ

(
Zm0,n

(An)
)
= φ

(
Zm0,n

(En)
)
for some m0,n ∈ I. We

may assume that limn→+∞ mi,n = mi (possibly +∞) for i = 0, 2. Define

d(t, β, ω,An) = c(An)
(
c1ω − r βω

)
− c(t, β)

(
c1(An)ω − rk(An)βω

)
(3.5)

where c(t, β) = c(En) depends only on t and β. Since φ
(
Zm0,n

(An)
)
= φ

(
Zm0,n

(En)
)

and φ
(
Zm2,n

(An)
)
> φ

(
Zm2,n

(En)
)
, we see from (2.7) that

ω2m2
0,n

2

(
r c1(An)ω − rk(An) c1ω

)
= d(t, β, ω,An),(3.6)

ω2m2
2,n

2

(
r c1(An)ω − rk(An) c1ω

)
> d(t, β, ω,An).(3.7)

Since En is not (Zm2,n
,Pm2,n

)-semistable, we must have φ
(
Zm2,n

(En)
)

< 1. So

c1ω − r βω > 0. This in turn implies that φ
(
Zm0,n

(An)
)
= φ

(
Zm0,n

(En)
)
< 1.

Therefore, c1(An)ω − rk(An)βω > 0. In summary, we obtain

c1ω − r βω > 0, c1(An)ω − rk(An)βω > 0.(3.8)

By Lemma 3.6 (ii), limn→+∞ µω(An) = βω. Dividing both sides of (3.6) by
rk(An) (c1ω − r βω) and using (3.5), we conclude that

c(An)

rk(An)
=

ω2m2
0,n

2
·
r µω(An)− c1ω

c1ω − r βω
+ c(t, β) ·

µω(An)− βω

c1ω − r βω
.(3.9)

Let An,0 = H0(An), An,1 = H−1(An) and Fn = An,0/Tor(An,0).

Case 1: limn→+∞ rk(An) = +∞. Then limn→+∞ rk
(
An,0

)
= +∞. Since An,1 ∈

F(ω,βω), we get c1(An,1)ω ≤ rk(An,1)βω. Since Fn ∈ T(ω,βω),

βω < µω(Fn) ≤ µω(An,0) =
c1(An)ω + c1(An,1)ω

rk(An,0)

≤
c1(An)ω + rk(An,1)βω

rk(An,0)
=

c1(An)ω + [rk(An,0)− rk(An)]βω

rk(An,0)

= βω +
rk(An)

rk(An,0)
· (µω(An)− βω) ≤ βω + (µω(An)− βω) = µω(An).
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So limn→+∞ µω(Fn) = βω. Let F
(1)
n , . . . , F

(ℓn)
n be the usual HN-filtration quotients

of Fn with respect to µω such that µω

(
F

(1)
n

)
> . . . > µω

(
F

(ℓn)
n

)
. Then F

(1)
n , . . . , F

(ℓn)
n

are torsion free and µω-semistable. Moreover, βω < µω

(
F

(ℓn)
n

)
≤ µω(Fn) ≤ µω(An).

Thus limn→+∞ µω

(
F

(ℓn)
n

)
= βω, and βω < µω

(
F

(ℓn)
n

)
≤ βω + ǫn for n ≫ 0 where

{ǫn}n≫0 is a sequence of positive numbers with limn→+∞ ǫn = 0. As in (3.4),

c
(
F

(ℓn)
n

)

rk
(
F

(ℓn)
n

) ≥ −
ǫ2n
2ω2

.(3.10)

On the other hand, by Lemma 3.5 (i), there exists a quotient An → F
(ℓn)
n → 0 in

A♯
(ω,βω). Since An is (Zm2,n

,Pm2,n
)-semistable, we have

ω2m2
2,n

2

(
rk(An) c1(F

(ℓn)
n )ω − rk(F (ℓn)

n ) c1(An)ω
)

≥ c(F (ℓn)
n )

(
c1(An)ω − rk(An)βω

)
− c(An)

(
c1(F

(ℓn)
n )ω − rk(F (ℓn)

n )βω
)
.

by (2.7). Since c1(An)ω − rk(An)βω > 0, we obtain

c(F
(ℓn)
n )

rk(F
(ℓn)
n )

≤
c(An)

rk(An)
·
µω(F

(ℓn)
n )− βω

µω(An)− βω
+

ω2m2
2,n

2
·
µω(F

(ℓn)
n )− µω(An)

µω(An)− βω

=
ω2m2

0,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(F

(ℓn)
n )− βω

µω(An)− βω

+ c(t, β) ·
µω(F

(ℓn)
n )− βω

c1ω − r βω
+

ω2m2
2,n

2
·
µω(F

(ℓn)
n )− µω(An)

µω(An)− βω

where we have used (3.9) in the second step. Combining with (3.10), we get

−
ǫ2n
2ω2

≤
ω2m2

0,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(F

(ℓn)
n )− βω

µω(An)− βω

+
ω2m2

2,n

2
·
µω(F

(ℓn)
n )− µω(An)

µω(An)− βω
+ c(t, β) ·

µω(F
(ℓn)
n )− βω

c1ω − r βω
.(3.11)

Note that we may assume either m0,n < m2,n for all n or m0,n > m2,n for all n.

If m0,n < m2,n for all n, then since µω(F
(ℓn)
n )− µω(An) ≤ 0, we see from (3.11) that

−
ǫ2n
2ω2

≤
ω2m2

0,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(F

(ℓn)
n )− βω

µω(An)− βω

+
ω2m2

0,n

2
·
µω(F

(ℓn)
n )− µω(An)

µω(An)− βω
+ c(t, β) ·

µω(F
(ℓn)
n )− βω

c1ω − r βω

=
ω2m2

0,n

2
·
rµω(F

(ℓn)
n )− c1ω

c1ω − r βω
+ c(t, β) ·

µω(F
(ℓn)
n )− βω

c1ω − r βω
.

Letting n → +∞, we obtain 0 ≤ −ω2m2
0/2 which is impossible since m0 ≥ a > 0.

Similarly, if m0,n > m2,n for all n, then r µω(An) − c1ω < 0 by (3.6) and (3.7).
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Therefore, we conclude from (3.11) again that

−
ǫ2n
2ω2

<
ω2m2

2,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(F

(ℓn)
n )− βω

µω(An)− βω

+
ω2m2

2,n

2
·
µω(F

(ℓn)
n )− µω(An)

µω(An)− βω
+ c(t, β) ·

µω(F
(ℓn)
n )− βω

c1ω − r βω

=
ω2m2

2,n

2
·
rµω(F

(ℓn)
n )− c1ω

c1ω − r βω
+ c(t, β) ·

µω(F
(ℓn)
n )− βω

c1ω − r βω
.

Letting n → +∞, we obtain 0 ≤ −ω2m2
2/2 which is impossible since m2 ≥ a > 0.

Case 2: limn→+∞ rk(An) = −∞. Then limn→+∞ rk
(
An,1

)
= +∞ and

βω ≥ µω(An,1) =
c1(An,0)ω − c1(An)ω

rk(An,1)
≥

rk(An,0)βω − c1(An)ω

rk(An,1)

=
[rk(An,1) + rk(An)]βω − c1(An)ω

rk(An,1)
= βω −

rk(An)

rk(An,1)
· (µω(An)− βω)

≥ βω + (µω(An)− βω) = µω(An).

So limn→+∞ µω(An,1) = βω. Let G
(1)
n , . . . , G

(kn)
n be the usual HN-filtration quotients

of An,1 with respect to µω such that µω

(
G

(1)
n

)
> . . . > µω

(
G

(kn)
n

)
. Then G

(1)
n is

torsion free and µω-semistable. Moreover, βω ≥ µω

(
G

(1)
n

)
≥ µω(An,1) ≥ µω(An).

Thus limn→+∞ µω

(
G

(1)
n

)
= βω, and βω ≥ µω

(
G

(1)
n

)
≥ βω − ǫn for n ≫ 0 where

{ǫn}n≫0 is a sequence of positive numbers with limn→+∞ ǫn = 0. As in (3.4),

c
(
G

(1)
n

)

rk
(
G

(1)
n

) ≥ −
ǫ2n
2ω2

.(3.12)

On the other hand, by Lemma 3.5 (ii), there exists an injection 0 → G
(1)
n [1] → An in

A♯
(ω,βω). Since An is (Zm2,n

,Pm2,n
)-semistable, we have

−
ω2m2

2,n

2

(
rk(An) c1(G

(1)
n )ω − rk(G(1)

n ) c1(An)ω
)

≤ −c(G(1)
n )

(
c1(An)ω − rk(An)βω

)
+ c(An)

(
c1(G

(1)
n )ω − rk(G(1)

n )βω
)
.

by (2.7). Since c1(An)ω − rk(An)βω > 0, we obtain

c(G
(1)
n )

rk(G
(1)
n )

≤
c(An)

rk(An)
·
µω(G

(1)
n )− βω

µω(An)− βω
+

ω2m2
2,n

2
·
µω(G

(1)
n )− µω(An)

µω(An)− βω

=
ω2m2

0,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(G

(1)
n )− βω

µω(An)− βω

+ c(t, β) ·
µω(G

(1)
n )− βω

c1ω − r βω
+

ω2m2
2,n

2
·
µω(G

(1)
n )− µω(An)

µω(An)− βω

where we have used (3.9) in the second step. Combining with (3.12), we get

−
ǫ2n
2ω2

≤
ω2m2

0,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(G

(1)
n )− βω

µω(An)− βω

+ c(t, β) ·
µω(G

(1)
n )− βω

c1ω − r βω
+

ω2m2
2,n

2
·
µω(G

(1)
n )− µω(An)

µω(An)− βω
.
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If m0,n > m2,n for all n, then since µω(G
(1)
n )− µω(An) ≥ 0, we have

−
ǫ2n
2ω2

≤
ω2m2

0,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(G

(1)
n )− βω

µω(An)− βω

+
ω2m2

0,n

2
·
µω(G

(1)
n )− µω(An)

µω(An)− βω
+ c(t, β) ·

µω(G
(1)
n )− βω

c1ω − r βω

=
ω2m2

0,n

2
·
rµω(G

(1)
n )− c1ω

c1ω − r βω
+ c(t, β) ·

µω(G
(1)
n )− βω

c1ω − r βω
.

Letting n → +∞, we obtain the contradiction 0 ≤ −ω2m2
0/2. Similarly, if m0,n <

m2,n for all n, then r µω(An)− c1ω > 0 by (3.6) and (3.7). Therefore,

−
ǫ2n
2ω2

≤
ω2m2

2,n

2
·
rµω(An)− c1ω

c1ω − r βω
·
µω(G

(1)
n )− βω

µω(An)− βω

+
ω2m2

2,n

2
·
µω(G

(1)
n )− µω(An)

µω(An)− βω
+ c(t, β) ·

µω(G
(1)
n )− βω

c1ω − r βω

=
ω2m2

2,n

2
·
rµω(G

(1)
n )− c1ω

c1ω − r βω
+ c(t, β) ·

µω(G
(1)
n )− βω

c1ω − r βω
.

Again, letting n → +∞, we obtain the contradiction 0 ≤ −ω2m2
2/2.

Proposition 3.10. The set of mini-walls is locally finite. More precisely, fix
β, ω ∈ Num(X)Q with ω being ample, t = (r, c1, c2), and I = [a, b] with 0 < a < b.
Then there exist only finitely many mini-walls of type (t, β, ω) in I.

Proof. We may assume that β, ω ∈ Num(X). Let u = e−(β+i ω), and let m0 be a
mini-wall of type (t, β, ω) in I. Then φ

(
Zm0

(A)
)
= φ

(
Zm0

(E)
)
where E ∈ Mum1

(t)

for some m1 ∈ I, E 6∈ Mum2
(t) for some m2 ∈ I, and A is the leading HN-filtration

component of E with respect to (Zm2
,Pm2

). So A is (Zm2
,Pm2

)-semistable. By
Lemma 3.9, |rk(A)| ≤ N where N depends only on t, β, ω and I.

Since φ
(
Zm0

(A)
)
= φ

(
Zm0

(E)
)
and A destablizes E with respect to (Zm2

,Pm2
),

ω2m2
0

2

(
r c1(A)ω − rk(A) c1ω

)
= d(t, β, ω,A)

ω2m2
2

2

(
r c1(A)ω − rk(A) c1ω

)
> d(t, β, ω,A).

So (r c1(A)ω − rk(A) c1ω) 6= 0, and m2
0 is equal to the rational number

2 d(t, β, ω,A)

ω2 ·
(
r c1(A)ω − rk(A) c1ω

) ∈ [a2, b2].

To prove that there are only finitely many choices for m0, it suffices to show that the
positive integer |r c1(A)ω − rk(A) c1ω| from the denominator is bounded from above
by a number depending only on t, β, ω and I. Since |rk(A)| ≤ N , it remains to prove
that there exist N1 and N2 depending only on t, β, ω and I such that

rN1 ≤ r c1(A)ω ≤ rN2.(3.13)

Put B = E/A. Since A,B ∈ A♯
(ω,βω), we see from Lemma 3.6 (i) that

c1(A)ω ≥ rk(A)βω, c1(B)ω ≥ rk(B)βω.(3.14)
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Note that (3.13) is trivially true if r = 0. If r < 0, then by (3.14),

r c1(A)ω = r c1ω − r c1(B)ω ≥ r c1ω − r rk(B)βω

= r c1ω − r (r − rk(A))βω ≥ r c1ω − |r| (|r| +N) |βω|.

In addition, we have r c1(A)ω ≤ r rk(A)βω ≤ |r|N |βω|. Therefore, (3.13) holds for
r < 0. Similarly, we see that (3.13) holds for r > 0 as well.

We remark that when I = [a,+∞) with a > 0, the proof of Proposition 3.10 does
not go through since it is unclear how to bound |2 d(t, β, ω,A)| from above.

4. Identify MΩ(t) and Mum
(t) for m ≫ 0. In this section, we will strengthen

Lemma 2.6. We show that there exists a constant M depending only on t(E), ω and β
such that E ∈ Db(X) is (ZΩ,PΩ)-semistable if and only if E is (Zm,Pm)-semistable
for some m ≥ M .

Definition 4.1. If E ∈ Db(X) and β, ω ∈ Num(X)R are fixed, then a constant
is universal if it depends only on t(E), ω and β.

Lemma 4.2. Let notations be from Subsect. 2.2, and let ω ∈ Num(X)Q. If E ∈
Db(X) is not (ZΩ,PΩ)-semistable, then there exists a positive number M , depending
only on t(E), ω and β, such that E is not (Zm,Pm)-semistable for all m ≥ M .

Proof. It suffices to prove the statement for E ∈ PΩ((0, 1]) = A♯
(ω,βω). Let

0 → A → E → B → 0(4.1)

be an exact sequence in PΩ((0, 1]) destablizing E such that the object B is (ZΩ,PΩ)-
semistable. Then φ

(
ZΩ(E)(m)

)
> φ

(
ZΩ(B)(m)

)
for m ≫ 0. So (2.7) holds for

m ≫ 0. By Lemma 3.6 (i), c1(E) · ω − rk(E)βω ≥ 0 and c1(B) · ω − rk(B)βω > 0.
If c1(E) · ω − rk(E)βω = 0, then E is (ZΩ,PΩ)-semistable which contradicts our
assumption. So c1(E) · ω − rk(E)βω > 0. Then, we have

c1(E) · ω − rk(E)βω > 0, c1(B) · ω − rk(B)βω > 0.(4.2)

Now our proof is divided into three cases: rk(E) = 0, rk(E) > 0 and rk(E) < 0.

Case 1: rk(E) = 0. Then c1(E) ·ω > 0 by (4.2). Since (2.7) holds for m ≫ 0, we
have rk(B) ≥ 0. If rk(B) = 0, then (2.7) holds for all m > 0. So B destablizes E for
all m > 0, and we can take M = 1. In the following, we assume that rk(B) > 0. By
Lemma 2.4, B is a torsion free µω-semistable sheaf with µω(B) > βω. From (4.1), we
obtain an exact sequence of sheaves 0 → H0(A) → H0(E) → B → 0. So rk(H0(E)) >

0. Going backwards, let B̃ to be the HN-filtration quotient of H0(E) with smallest

µω-slope. Then, µω(H0(E)/Tor(H0(E))) ≥ µω(B̃) and B̃ is µω-semistable. Since

H0(E) ∈ T(ω,βω), we also have µω(B̃) > βω. Therefore,

µω(H
0(E)/Tor(H0(E))) ≥ µω(B̃) > βω.(4.3)

By Lemma 3.5 (i), we have an exact sequence 0 → Ã → E → B̃ → 0 in A♯
(ω,βω) which

destablizes E in view of (2.7) (replace B there by B̃). Hence, replacing B in (4.1) by

B̃, we may assume in (4.1) that B = B[0] satisfies:

µω(H
0(E)/Tor(H0(E))) ≥ µω(B) > βω.(4.4)
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Note that rk(H−1(E)) = rk(H0(E)) > 0. Since H−1(E) ∈ F(ω,βω), µω(H−1(E)) ≤
βω. Since c1(H0(E)) = c1(E) + c1(H−1(E)) and c1(E) · ω > 0, we have

µω(H
0(E)/Tor(H0(E))) ≤ µω(H

0(E)) =
c1(H0(E)) · ω

rk(H0(E))

=
(c1(E) + c1(H−1(E))) · ω

rk(H−1(E))
≤ c1(E) · ω + βω.

Combining with (4.4), (c1(E)·ω+βω) ≥ µω(B) > βω. By Lemma 3.7 (ii), c(B)/rk(B)
is bounded from below by a universal constant. By (2.7), there exists a constant M ,
depending only on t(E), ω and β, such that whenever m ≥ M , φ

(
ZΩ(E)(m)

)
>

φ
(
ZΩ(B)(m)

)
and so E is not (Zm,Pm)-semistable.

Case 2: rk(E) > 0. Then µω(E) > βω by (4.2), and rk(H0(E)) > 0. Let
E = H−1(E). Assume that E 6= 0. Then µω(E) ≤ βω since E ∈ F(ω,βω). As in Case 1,
we can choose the object B in (4.1) to be the HN-filtration quotient of H0(E) with
smallest µω-slope. Then B is semistable and satisfies (4.4). By (4.4),

µω(B)− µω(E) ≤ µω(H
0(E)) − µω(E) =

(c1(E) + c1(E))ω

rk(E) + rk(E)
− µω(E)

=
µω(E)− µω(E)

1 + rk(E)/rk(E)
≤

βω − µω(E)

1 + rk(E)/rk(E)

≤
βω − µω(E)

1 + rk(E)
< 0.(4.5)

So µω(E) > µω(B) > βω. By Lemma 3.7 (ii), c(B)/rk(B) is bounded from below by
a universal constant. Now (2.7) is equivalent to

ω2m2

2

(
µω(B)− µω(E)

)
<

c(B)

rk(B)

(
µω(E) − βω

)
−

c(E)

rk(E)

(
µω(B)− βω

)
.(4.6)

In view of the negative upper bound (βω − µω(E))/(1 + rk(E)) for
(
µω(B)− µω(E)

)

from (4.5), there exists a constant M , depending only on t(E), ω and β, such that
φ
(
ZΩ(E)(m)

)
> φ

(
ZΩ(B)(m)

)
whenever m ≥ M . Hence our lemma holds.

Let E = 0. Then E = H0(E) has positive rank. If Tor(E) contains a 0-dimensional

subsheaf Q, then Q ∈ A♯
(ω,βω) is a proper sub-object of E destablizing E with respect

to (Zm,Pm) for all m > 0 and we are done. If Tor(E) is a 1-dimensional torsion, then
we can choose B in (4.1) to be the HN-filtration quotient of E with smallest µω-slope.
Now B is µω-semistable and satisfies

βω < µω(B) ≤ µω(E/Tor(E)) ≤ µω(E)− 1/rk(E).

So µω(B) − µω(E) ≤ −1/rk(E). Again c(B)/rk(B) is bounded from below by a
universal constant. In view of (4.6), our lemma holds. In the following, assume

that Tor(E) = 0. Let B̃ be the HN-filtration quotient of E with smallest µω-slope.

Then B̃ is µω-semistable and satisfies the inequalities µω(E) ≥ µω(B̃) > βω. If

µω(E) > µω(B̃), then we can choose the object B in (4.1) such that B = B̃. Since
rk(B) < rk(E), the rational number µω(B) − µω(E) is bounded from above by a
negative universal constant. Hence in view of (4.6), our lemma holds. We are left

with the case when µω(E) = µω(B̃), i.e., E = B̃ is µω-semistable with µω(E) > βω.
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We claim that this is impossible. Indeed, we see from (4.1) that A 6= 0 is a torsion
free sheaf and sits in the exact sequence

0 → H−1(B) → A → E → H0(B) → 0.(4.7)

Since φ
(
ZΩ(E)(m)

)
< φ

(
ZΩ(A)(m)

)
for m ≫ 0, we see from Remark 2.8 that

ω2m2

2

(
µω(A)− µω(E)

)
>

c(A)

rk(A)

(
µω(E)− βω

)
−

c(E)

rk(E)

(
µω(A)− βω

)
(4.8)

for m ≫ 0. So µω(A) ≥ µω(E). If µω(A) = µω(E), then (4.8) holds for all m > 0 and
our lemma holds by taking M = 1. In the following, assume that µω(A) > µω(E).
Since E is µω-semistable, B := H−1(B) 6= 0 by (4.7). By Lemma 2.4, B is µω-
semistable with µω(B) ≤ βω, and H0(B) is a 0-dimensional torsion sheaf. Let G
be the image of the map A → E from (4.7). Then we have two exact sequences of
sheaves:

0 → B → A → G → 0,(4.9)

0 → G → E → H0(B) → 0.(4.10)

By (4.10), µω(G) = µω(E) < µω(A). So µω(B) > µω(A) by (4.9). However, this
contradicts µω(B) ≤ βω < µω(E) < µω(A).

Case 3: rk(E) < 0. Let E = H−1(E). Then µω(E) < βω by (4.2), and E 6= 0 is
torsion free. Assume that rk(H0(E)) > 0. As in Case 1, we can choose the object B
in (4.1) to be the HN-filtration quotient of H0(E) with smallest µω-slope. Then B is
µω-semistable and satisfies (4.4), and µω(E) ≤ βω since E ∈ F(ω,βω). By (4.4),

µω(B)− µω(E) ≤ µω(H
0(E))− µω(E)

=
µω(E)− µω(E)

rk(H0(E))/rk(E)

≤ (βω − µω(E)) ·
rk(E)

rk(H0(E))

= (βω − µω(E)) ·

(
1−

rk(E)

rk(H0(E))

)

≤ (βω − µω(E)) · (1− rk(E)).(4.11)

Combining with (4.4), we conclude that

µω(E) + (βω − µω(E)) · (1− rk(E)) ≥ µω(B) > βω.(4.12)

So c(B)/rk(B) is bounded from below by a constant depending only on t(E), ω and
β. Also, µω(B)− µω(E) > βω − µω(E) > 0. Now (2.7) is equivalent to

ω2m2

2

(
µω(B)− µω(E)

)
>

c(B)

rk(B)

(
µω(E) − βω

)
−

c(E)

rk(E)

(
µω(B)− βω

)
.(4.13)

It follows that there exists a constant M , depending only on t(E), ω and β, such that
E is not (Zm,Pm)-semistable whenever m ≥ M .

We are left with the case rk(H0(E)) = 0. Assume that either H−1(E) is µω-
unstable, or the support of H0(E) has dimension 1. Let A be the HN-filtration
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subsheaf of H−1(E) with largest µω-slope. Then A ∈ F(ω,βω) is µω-semistable with
µω(A) ≤ βω. When H−1(E) is µω-unstable, µω(A) > µω(H−1(E)); so µω(A) ≥
µω(H−1(E))+d1 for some positive number d1 depending only on rk(E) and ω. When
the support of H0(E) has dimension 1, we have

µω(A) ≥ µω(H
−1(E)) =

(
c1(H0(E))− c1(E)

)
· ω

rkH−1(E)

≥
1− c1(E) · ω

−rk(E)
= µω(E)−

1

rk(E)
.

In either case, βω ≥ µω(A) ≥ µω(E) + d2 where d2 is a positive number depending
only on rk(E) and ω. In particular, µω(A) − µω(E) ≥ d2. Since µω(E) < βω,
we see from Lemma 3.7 (ii) that c(A)/rk(A) ·

(
µω(E) − βω

)
is bounded from above

by a constant depending only on t(E), ω and β. Hence there exists M depending
only on t(E), ω and β such that (4.8) holds whenever m ≥ M . By Remark 2.8,
φ
(
ZΩ(E)(m)

)
< φ

(
ZΩ(A[1])(m)

)
whenever m ≥ M . By Lemma 3.5 (ii), A[1] is a

proper sub-object of E in A♯
(ω,βω). So A[1] destablizes E whenever m ≥ M .

Finally, assume that H−1(E) is µω-semistable and H0(E) is a 0-dimensional tor-
sion sheaf. By the exact sequence of sheaves

0 → H−1(A) → E → B → H0(A) → H0(E) → H0(B) → 0,(4.14)

H0(B) is a 0-dimensional torsion sheaf. Since B destablizes E with respect to
(ZΩ,PΩ), B can not be a 0-dimensional torsion sheaf. By Lemma 2.4, B := H−1(B)
is a torsion free µω-semistable sheaf with µω(B) ≤ βω. Since µω(E) = µω(E) and
µω(B) = µω(B), (2.7) is equivalent to

ω2m2

2

(
µω(B)− µω(E)

)
<

c(B)

rk(B)

(
µω(E) − βω

)
−

c(E)

rk(E)

(
µω(B)− βω

)
.(4.15)

Since it holds for m ≫ 0, µω(B) ≤ µω(E). If µω(B) = µω(E), then (4.15) holds
for all m ≥ 1; so our lemma is true with M = 1. Let µω(B) < µω(E). Then
µω(B) < µω(E) < βω. Since E and B are µω-semistable, the map E → B in (4.14)
is zero. So we obtain the exact sequence 0 → B → H0(A) → H0(E) → H0(B) → 0.
Since H0(A) ∈ T(ω,βω), we get the contradiction

(4.16) βω < µω(H
0(A)) = µω(B) < βω.

Lemma 4.3. Let notations be from Subsect. 2.2, and let ω ∈ Num(X)Q. If an
object E ∈ Db(X) is (ZΩ,PΩ)-semistable, then there exists a positive M , depending
only on t(E), ω and β, such that E is (Zm,Pm)-semistable for all m ≥ M .

Proof. It suffices to prove the statement for E ∈ PΩ((0, 1]) = A♯
(ω,βω). We begin

with an observation. Consider the set

W = {w ∈ [1,+∞)|E is (Zw,Pw)-unstable}.(4.17)

If W is empty, then we are done by taking M = 1. Assume that W is nonempty.
By Lemma 2.6, E is (Zm,Pm)-semistable for m ≫ 0. So for every w ∈ W , we can

find a maximal destablizing sub-object Aw ∈ A♯
(ω,βω) of E with respect to (Zw,Pw),



338 J. LO AND Z. QIN

satisfying the properties listed in Lemma 3.9. By Lemma 3.9, there exists a universal
constant N (depending only on t(E), β and ω) such that

|rk(Aw)| ≤ N.(4.18)

We need to show that W has a universal upper bound. To show this, it suffices to
prove that, given any exact sequence in A♯

(ω,βω):

0 → Aw → E → Bw → 0(4.19)

where E is (Zw,Pw)-unstable for some w ∈ W and Aw is the maximal destablizing
sub-object with respect to (Zw,Pw), we can find a constant M > 0 depending only
on t(E), ω and β such that φ

(
ZΩ(Aw)(m)

)
≤ φ

(
ZΩ(E)(m)

)
whenever m > M , i.e.,

ω2m2

2

(
rk(E) c1(Aw)ω − rk(Aw) c1(E)ω

)

≤ c(Aw)
(
c1(E)ω − rk(E)βω

)
− c(E)

(
c1(Aw)ω − rk(Aw)βω

)
.(4.20)

whenever m ≥ M , in view of the discussions in Remark 2.8. So fix such an exact
sequence (4.19). Note that E satisfies Lemma 2.4 (i), (ii) or (iii). In the following,
our proof is divided into three cases accordingly.

Case 1: E satisfies Lemma 2.4 (i). If E is a 0-dimensional torsion sheaf, then
it is (Zm,Pm)-semistable for all m > 0, contradicting the nonemptiness of W . So E
must be a 1-dimensional torsion sheaf, and (4.20) is simplified to

(4.21)
ω2m2

2

(
− rk(Aw) c1(E)ω

)
≤ c(Aw) c1(E)ω − c(E)

(
c1(Aw)ω − rk(Aw)βω

)

Note from the long exact sequence of cohomology of (4.19) that Aw is a sheaf and

0 → H−1(Bw) → Aw → E → H0(Bw) → 0(4.22)

is an exact sequence of sheaves. Since (4.21) holds for m ≫ 0 but does not hold for
m = w, rk(Aw) > 0. By (4.18), 0 < rk(Aw) ≤ N . Since rk

(
H−1(Bw)

)
= rk(Aw),

0 < rk
(
H−1(Bw)

)
≤ N . By the definition of A♯

(ω,βω), we have µω(Aw) > βω. So

c1(Aw)ω > rk(Aw) · βω ≥ −N · |βω|.(4.23)

Similarly, we have µω

(
H−1(Bw)

)
≤ βω. It follows that

c1
(
H−1(Bw)

)
ω ≤ rk

(
H−1(Bw)

)
· βω ≤ N · |βω|.

Note that H0(Bw) is a torsion sheaf. Thus c1
(
H0(Bw)

)
≥ 0 and

(4.24) c1(Bw)ω = c1
(
H0(Bw)

)
ω − c1

(
H−1(Bw)

)
ω ≥ −c1

(
H−1(Bw)

)
ω ≥ −N · |βω|.

Since c1(Aw) = c1(E)− c1(Bw), we see from (4.23) and (4.24) that

−N · |βω| ≤ c1(Aw)ω ≤ c1(E)ω +N · |βω|.

So rk(Aw), |c1(Aw)ω| and |µω(Aw)| are bounded from above by universal constants.
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Consider the usual HN-filtration of the sheaf Aw with respect to µω:

Tor(Aw) = A0 ⊂ A1 ⊂ · · · ⊂ An = Aw

where n ≤ rk(Aw) ≤ N . Then µω(Aw) ≥ µω(An/An−1). By the definition of

A♯
(ω,βω), we have µω(An/An−1) > βω. Hence rk(An−1), |c1(An−1)ω|, |µω(An−1)|

and |µω(An/An−1)| are bounded from above by universal constants. Similarly, us-
ing An−1 instead of An = Aw, we see that rk(An−2), |c1(An−2)ω|, |µω(An−2)| and
|µω(An−1/An−2)| are bounded from above by universal constants. Repeating this pro-
cess, we conclude that rk(Ai), |c1(Ai)ω|, |µω(Ai)| and |µω(Ai/Ai−1)|, with 1 ≤ i ≤ n,
are all bounded from above by a universal constant. Applying Lemma 3.7 (ii) to the
torsion free µω-semistable sheaves Ai/Ai−1, we see that all the numbers c(Ai/Ai−1),
1 ≤ i ≤ n, are bounded from below by a universal constant. Suppose Tor(Aw) 6= 0.
To understand c(A0) = c(Tor(Aw)), note from (4.22) that Tor(Aw) does not con-
tain any 0-dimensional subsheaf because E is (ZΩ,PΩ)-semistable, rk(E) = 0 and
c1(E) > 0. So Tor(Aw) is a 1-dimensional torsion sheaf. Since H−1(Bw) is tor-
sion free, the subsheaf Tor(Aw) of Aw is mapped injectively into E. Therefore,
0 < c1

(
Tor(Aw)

)
ω ≤ c1(E)ω. Note that the sheaf injection Tor(Aw) →֒ Aw is also an

injection in A♯
(ω,βω). So Tor(Aw) is a sub-object of E in A♯

(ω,βω). By the (ZΩ,PΩ)-

semistability of E and using (2.7), we see that c
(
Tor(Aw)

)
is bounded from below by

a universal constant. Overall, we have proved that

c(A0), c(Ai/Ai−1),

with 1 ≤ i ≤ n, are bounded from below by a universal constant. Note from (2.6)
that c(Aw) = c(A0) +

∑n
i=1 c(Ai/Ai−1). Since n ≤ N , c(Aw) is bounded from below

by a universal constant. Hence c(Aw)/rk(Aw) is bounded from below by a universal
constant. By (4.21), there exists a universal constant M such that φ

(
ZΩ(Aw)(m)

)
≤

φ
(
ZΩ(E)(m)

)
whenever m ≥ M .

Case 2: E satisfies Lemma 2.4 (ii). We see from the exact sequence (4.19) that
Aw is a torsion free sheaf. So (4.20) is equivalent to

(4.25)
ω2m2

2

(
µω(Aw)− µω(E)

)
≤

c(Aw)

rk(Aw)

(
µω(E)− βω

)
−

c(E)

rk(E)

(
µω(Aw)− βω

)
.

Since (4.25) holds for m ≫ 0 but does not hold for m = w, we must have µω(Aw) <

µω(E). Since Aw ∈ A♯
(ω,βω), we get µω(Aw) > βω. Thus, βω < µω(Aw) < µω(E).

By (4.18), rk(Aw) is bounded from above by a universal number. Hence the negative
rational number

(
µω(Aw) − µω(E)

)
has a universal negative upper bound. Next,

consider the HN-filtration of the torsion free sheaf Aw with respect to µω:

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = Aw.

Since rk(Aw), |c1(Aw)ω| and |µω(Aw)| are bounded from above by universal constants,
the same argument as in the previous paragraph proves that c(Aw)/rk(Aw) is bounded
from below by a universal constant. By (4.25), there exists a universal constant M
such that φ

(
ZΩ(Aw)(m)

)
≤ φ

(
ZΩ(E)(m)

)
whenever m ≥ M .

Case 3: E satisfies Lemma 2.4 (iii). Note that (4.20) is equivalent to

ω2m2

2

(
rk(E) c1(Bw)ω − rk(Bw) c1(E)ω

)

≥ c(Bw)
(
c1(E)ω − rk(E)βω

)
− c(E)

(
c1(Bw)ω − rk(Bw)βω

)
.(4.26)
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Since H0(E) is a 0-dimensional torsion sheaf, so is H0(Bw). Put B = H−1(Bw). Since
(4.26) holds for m ≫ 0 but does not hold for m = w, Bw can not be a 0-dimensional
torsion sheaf. In particular, Bw 6= H0(Bw). So B 6= 0. Note that B is torsion free.
Now the inequality (4.26) is equivalent to

(4.27)
ω2m2

2

(
µω(B)− µω(E)

)
≥

c(Bw)

rk(B)

(
βω − µω(E)

)
−

c(E)

rk(E)

(
µω(B)− βω

)
.

Since (4.27) holds for m ≫ 0 but does not hold for m = w, µω(B) > µω(E). Since

E,Bw ∈ A♯
(ω,βω), we have µω(E), µω(Bw) ≤ βω by Lemma 3.6 (i). Thus,

βω ≥ µω(B) > µω(E).(4.28)

By (4.18), |rk(Aw)| is bounded from above by a universal constant. So

rk(B) = |rk(Bw)| ≤ |rk(E)|+ |rk(Aw)|

is bounded from above by a universal constant. Thus the positive rational number(
µω(B)−µω(E)

)
has a universal positive lower bound. In view of (4.27), to prove our

lemma, it remains to show that there exists a universal constant Ñ such that

c(Bw)

rk(B)
≤ Ñ .(4.29)

Since H0(Bw) is a 0-dimensional torsion sheaf, we have

c(Bw) = −c(B)− ch2(H
0(Bw)) ≤ −c(B) = −

s∑

i=1

c(Bi)

where B1, . . . ,Bs are the usual HN-filtration quotients of B with respect to µω satisfy-
ing µω(B1) > . . . > µω(Bs). To prove (4.29), it suffices to show that each c(Bi)/rk(Bi)
is bounded from below by a universal constant.

Finally, we analyze Bi. Since B = H−1(Bw) ∈ F(ω,βω), we see from the definition
of F(ω,βω) that Bi ∈ F(ω,βω) and µω(Bi) ≤ βω. Let E = H−1(E). Let F (respectively,
G) be the image (respectively, cokernel) of the map E → B induced from (4.19).
Combining the map E → B with the surjection B → Bs, we obtain a map f : E → Bs.
Let F̃ be the image of f . If F̃ = 0, then we get an induced surjection G ∼= B/F → Bs.
Since Hom(T(ω,βω),F(ω,βω)) = 0, this is impossible by Lemma 2.2 (note that there
exists an exact sequence of sheaves 0 → G → H0(Aw) → Q → 0 where Q is a

subsheaf of the 0-dimensional torsion sheaf H0(E)). Thus, F̃ 6= 0. Since E and Bs

are µω-semistable, µω(E) ≤ µω(F̃) ≤ µω(Bs). Therefore, we obtain µω(E) = µω(E) ≤
µω(Bi) ≤ βω for every i = 1, . . . , s. By Lemma 3.7 (ii), each c(Bi)/rk(Bi) is bounded
from below by a universal constant.

Theorem 4.4. Let notations be from Subsect. 2.2, and let ω ∈ Num(X)Q. Fix
a type t = (r, c1, c2). Then there exists a positive number M , depending only on t, ω
and β, such that Mum

(t) = MΩ(t) for all m ≥ M .

Proof. Follows immediately from Lemma 4.2 and Lemma 4.3.

Theorem 4.5. Let β, ω ∈ Num(X)Q with ω being ample, and let t = (r, c1, c2).
(i) The set of mini-walls of type (t, β, ω) in (0,+∞) is locally finite.
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(ii) There exists a positive number M̃ , depending only on t, ω and β, such that

there is no mini-wall of type (t, β, ω) in [M̃,+∞).

Proof. Part (i) is Proposition 3.10. To prove (ii), let u = e−(β+i ω) and M̃ = 1+M
whereM is the positive number from Theorem 4.4. Ifm0 is a mini-wall of type (t, β, ω)

in I = [M̃,+∞), then by definition, φ
(
Zm0

(A)
)
= φ

(
Zm0

(E)
)
where E ∈ Mum1

(t)

for some m1 ∈ I, E 6∈ Mum2
(t) for some m2 ∈ I, and A is the leading HN-filtration

component of E with respect to (Zm2
,Pm2

). In particular, Mum1
(t) 6= Mum2

(t). This

contradicts Theorem 4.4 since m1,m2 ≥ M̃ > M .

Corollary 4.6. Let β, ω ∈ Num(X)Q with ω being ample. Fix a numerical type
t = (r, c1, c2) and an interval I = [a,+∞) with a > 0. Then there exists a finite

subset {m
(1)
0 , . . . ,m

(n)
0 } ⊂ I, possibly empty, such that Mum1

(t) = Mum2
(t) whenever

m1 and m2 are contained in the same connected component of I − {m
(1)
0 , . . . ,m

(n)
0 }.

Proof. Let M̃ be from Theorem 4.5 (ii). If M̃ ≤ a, then the result is true by

Theorem 4.5 (ii) and Lemma 3.4. If M̃ > a, then let {m
(1)
0 , . . . ,m

(n−1)
0 } be the finite

set of mini-walls of type (t, β, ω) in [a, M̃ ]. Letting m
(n)
0 = M̃ , we are done.

5. Identify MΩ(t) with Gieseker and Uhlenbeck moduli spaces. Fix a
numerical type t = (r, c1, c2). In this section, we will compare the spaces MΩ(t) with
the Gieseker/Simpson and Uhlenbeck spaces where Ω comes from Subsect. 2.2. The
results here are similar to those in Sect. 4 of [LQ].

In view of Lemma 2.10 and Lemma 2.11, we will assume that r 6= 0. We will
further assume that ω ∈ Num(X)Z and gcd(r, c1ω) = 1. These conditions ensure that
ω does not lie on any wall of type t and that every µω-semistable sheaf is automatically
µω-stable.

Lemma 5.1. Let Ω = (ω, ρ, p, U) be from Subsect. 2.2 with ω ∈ Num(X)Z. Fix
a numerical type t = (r, c1, c2) with r > 0, c1ω/r > βω and gcd(r, c1ω) = 1. Then,
every object in MΩ(t) is (ZΩ,PΩ)-stable, and MΩ(t) = Mω(t).

Proof. Let E ∈ MΩ(t). By Lemma 2.4, E is a µω-semistable torsion free sheaf.
Since gcd(r, c1ω) = 1, E must be µω-stable. In particular, E ∈ Mω(t).

Conversely, let E ∈ Mω(t). Then E is µω-stable since gcd(r, c1ω) = 1. Since

µω(E) = c1ω/r > βω, E ∈ PΩ((0, 1]) = A♯
(ω,βω). Let A be any proper sub-object of

E in PΩ((0, 1]), and let B = E/A. Then we have the exact sequence 0 → A → E →
B → 0 in PΩ((0, 1]). So A is a sheaf in T(ω,βω) and sits in

0 → H−1(B) → A → E → H0(B) → 0.

It follows that A is torsion free with µω(A) > βω. If H−1(B) 6= 0, then H−1(B) ∈
F(ω,βω). So µω(H−1(B)) ≤ βω < µω(A). Thus the image G of A → E is not
zero. Since E is µω-stable, we conclude that µω(A) < µω(G) ≤ µω(E). By (2.7),
φ
(
ZΩ(E)(m)

)
> φ

(
ZΩ(A)(m)

)
for all m ≫ 0. If H−1(B) = 0, then we have an exact

sequence 0 → A → E → B → 0 of sheaves. Since A is a proper subsheaf of E,
µω(A) < µω(E). So again φ

(
ZΩ(E)(m)

)
> φ

(
ZΩ(A)(m)

)
for all m ≫ 0. Therefore,

E is (ZΩ,PΩ)-stable. In particular, E ∈ MΩ(t).

Lemma 5.2. Let Ω = (ω, ρ, p, U) be from Subsect. 2.2 with ω ∈ Num(X)Z. Fix
a numerical type t = (r, c1, c2) with r < 0, c1ω/r < βω and gcd(r, c1ω) = 1. Let
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t̃ = (−r, c1, c
2
1 − c2). Then, every object in MΩ(t) is (ZΩ,PΩ)-stable, and E ∈ MΩ(t)

if and only if E = (Ẽ)∨[1] for some Ẽ ∈ Mω (̃t).

Proof. Let E ∈ MΩ(t). Then, (c1(E) · ω − rk(E)βω) = c1ω − rβω > 0. By (2.5),
φ
(
ZΩ(E)(m)

)
< 1 for all m > 0. So E does not have any sub-objects in PΩ((0, 1])

which are 0-dimensional torsion sheaves. By Lemma 2.4, H−1(E) is a torsion free
µω-stable sheaf and H0(E) is a 0-dimensional torsion sheaf. Note that H−1(E) must
be locally free (otherwise, the 0-dimensional torsion sheaf

(
H−1(E)

)∗∗
/H−1(E) would

be a sub-object of E in PΩ((0, 1])). By the Lemma 3.4 in [ABL], E = (Ẽ)∨[1] for some

torsion free sheaf Ẽ. A direct computation shows that t(Ẽ) = t̃. Since (Ẽ)∗ = H−1(E)

is µω-stable, so is Ẽ. In particular, Ẽ ∈ Mω (̃t).

Conversely, let E = (Ẽ)∨[1] for some Ẽ ∈ Mω (̃t). Then H0(E) = Ext1(Ẽ,OX)

is a 0-dimensional torsion sheaf, and H−1(E) = (Ẽ)∗ is locally free and µω-stable

with µω

(
(Ẽ)∗

)
= (−c1)ω/(−r) < βω. So E ∈ PΩ((0, 1]). Let A be any proper

sub-object of E in PΩ((0, 1]), and let B = E/A. Then we have the exact sequence
0 → A → E → B → 0 in PΩ((0, 1]) and an exact sequence of sheaves

0 → H−1(A) → (Ẽ)∗ → H−1(B) → H0(A) → H0(E) → H0(B) → 0.(5.1)

Let F and G be the image and cokernel of (Ẽ)∗ → H−1(B) respectively.
We claim that A does not have any sub-object Q in PΩ((0, 1]) which is a 0-

dimensional torsion sheaf. Indeed, if such a Q exists, then Q is a sub-object of
E = (Ẽ)∨[1] in PΩ((0, 1]). In particular, there exists a point x ∈ X such that Ox is a

sub-object of E = (Ẽ)∨[1] in PΩ((0, 1]). This leads to a contradiction:

0 6= HomPΩ((0,1])(Ox, (Ẽ)∨[1]) ∼= HomDb(X)(Ẽ[−1],O∨
x )

= HomDb(X)(Ẽ[−1],Ox[−2]) ∼= Ext−1
Coh(X)(Ẽ,Ox) = 0(5.2)

where we have used the fact that O∨
x , the derived dual of Ox, is equal to Ox[−2].

If H−1(A) = 0, then A is a sheaf in T(ω,βω). If A is a 1-dimensional torsion sheaf,

then we see from (2.7) that φ
(
ZΩ(E)(m)

)
> φ

(
ZΩ(A)(m)

)
for all m ≫ 0. Assume

that A is not a 1-dimensional torsion sheaf. By the preceding paragraph, A can not be
a 0-dimensional torsion sheaf. So rk(A) > 0 and µω(A) > βω > µω

(
(Ẽ)∗

)
= µω(E).

By (2.7), φ
(
ZΩ(E)(m)

)
> φ

(
ZΩ(A)(m)

)
for all m ≫ 0.

If B := H−1(B) = 0, then B is a 0-dimensional torsion sheaf and φ
(
ZΩ(B)(m)

)
=

1 for all m > 0. By (2.5), φ
(
ZΩ(E)(m)

)
< φ

(
ZΩ(B)(m)

)
for all m > 0.

In the following, assume that H−1(A) 6= 0 and B 6= 0. Then B ∈ F(ω,βω) is

torsion free with µω(B) ≤ βω. If F = 0, then βω ≥ µω(B) = µω

(
H0(A)

)
since

H0(A)/B is a subsheaf of the 0-dimensional torsion sheaf H0(E). This contradicts

H0(A) ∈ T(ω,βω). Assume that F 6= 0. Then F is a proper quotient of (Ẽ)∗. Since

(Ẽ)∗ is µω-stable, µω

(
(Ẽ)∗

)
< µω(F). If rk(G) = 0, then we see from the exact

sequence 0 → F → B → G → 0 that µω(B) ≥ µω(F) > µω

(
(Ẽ)∗

)
; if rk(G) > 0, then

µω(G) = µω

(
H0(A)

)
> βω since H0(A)/G is a subsheaf of H0(E). Since µω(B) ≤ βω,

we have µω(G) > µω(B) > µω(F) > µω

(
(Ẽ)∗

)
. In either case, µω(B) > µω

(
(Ẽ)∗

)
.

Hence µω(B) > µω(E). By (2.7), φ
(
ZΩ(E)(m)

)
< φ

(
ZΩ(B)(m)

)
for all m ≫ 0. This

proves that E is (ZΩ,PΩ)-stable.

Lemma 5.3. Let Ω = (ω, ρ, p, U) be from Subsect. 2.2 with ω ∈ Num(X)Z. Fix a
numerical type t = (r, c1, c2) with r < 0, c1ω/r = βω and gcd(r, c1ω) = 1.
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(i) If Ẽ ∈ Mω(−r, c1, c
2
1 − (c2 + i)) for some i ≥ 0 and Q is a length-i 0-

dimensional torsion sheaf, then (Ẽ)∗[1]⊕Q ∈ MΩ(t).

(ii) If E ∈ MΩ(t), then E is S-equivalent to (Ẽ)∗[1] ⊕ Q where Q is a length-i

0-dimensional torsion sheaf and Ẽ ∈ Mω(−r, c1, c
2
1 − (c2 + i)).

Proof. (i) Recall from Definition 2.9 (iv) that Ẽ is locally free. Note that the

numerical type of (Ẽ)∗[1]⊕Q is t, and (Ẽ)∗[1], Q ∈ PΩ((0, 1]) = A♯
(ω,βω) with

φ
(
ZΩ((Ẽ)∗[1])(m)

)
= φ

(
ZΩ(Q)(m)

)
= 1

for all m > 0. Also, Q is (ZΩ,PΩ)-semistable. A slight modification of the proof of

Lemma 5.2 shows that (Ẽ)∗[1] is (ZΩ,PΩ)-stable as well. It follows that (Ẽ)∗[1]⊕Q

is (ZΩ,PΩ)-semistable. Therefore, we have (Ẽ)∗[1]⊕Q ∈ MΩ(t).
(ii) Let E ∈ MΩ(t). Since c1ω/r = βω, φ

(
ZΩ(E)(m)

)
= 1 for all m > 0. By

Lemma 2.4, H0(E) is a 0-dimensional torsion sheaf, and H−1(E) is a torsion free
µω-stable sheaf. From the exact sequence 0 → H−1(E)[1] → E → H0(E) → 0 in
PΩ((0, 1]), we see that E is S-equivalent to H−1(E)[1] ⊕ H0(E). Thus to prove our
result, we may assume that E = A[1] for some torsion free µω-stable sheaf A with
µω(A) = βω. We have the canonical exact sequence 0 → A → A∗∗ → Q → 0 where
Q is a 0-dimensional torsion sheaf. It gives rise to an exact sequence

0 → Q → A[1] → A∗∗[1] → 0

in PΩ((0, 1]). Hence E = A[1] is S-equivalent to A∗∗[1]⊕Q.

Theorem 5.4. Let Ω = (ω, ρ, p, U) be from Subsect. 2.2 with ω ∈ Num(X)Z. Fix
a numerical type t = (r, c1, c2) with gcd(r, c1ω) = 1. Let t̃ = (−r, c1, c

2
1 − c2).

(i) If r > 0, then MΩ(t) ∼= Mω(t).
(ii) If r < 0 and c1ω/r < βω, then MΩ(t) ∼= Mω (̃t).
(iii) If r < 0 and c1ω/r = βω, then MΩ(t) ∼= Uω (̃t).

Proof. Follows from Lemma 5.1, Lemma 5.2 and Lemma 5.3. Note from
Lemma 2.4 that in (i), we automatically have c1ω/r > βω ifMΩ(t) 6= ∅. Note also that

in (iii), if E ∈ MΩ(t) is S-equivalent to (Ẽ)∗[1]⊕Q where Ẽ ∈ Mω(−r, c1, c
2
1−(c2+i))

for some i ≥ 0 and Q is a length-i 0-dimensional torsion sheaf, then we map E to
(
Ẽ,

∑

x∈X

h0(X,Qx) · x

)

in Mω(−r, c1, c
2
1 − (c2 + i))× Symi(X) ⊂ Uω (̃t) (see (2.14)).

REFERENCES

[ABL] D. Arcara, A. Bertram, and M. Lieblich, Bridgeland-stable moduli spaces for K-trivial

surfaces, J. Euro. Math. Soc., 15 (2013), pp. 1–38.
[Bay] A. Bayer, Polynomial Bridgeland stability conditions and the large volume limit, Geom.

Topol., 13 (2009), pp. 2389–2425.
[Bri1] T. Bridgeland, Stability conditions on triangulated categories, Ann. Math., 100 (2007),

pp. 317–346.
[Bri2] T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J., 141 (2008), pp. 241–

291.
[CP] J. Collins and A. Polishchuk, Gluing stability conditions, Adv. Theor. Math. Phys., 14

(2010), pp. 563–607.



344 J. LO AND Z. QIN

[Dou] M. R. Douglas, D-branes, categories and N = 1 supersymmetry. Strings, branes, and

M-theory, J. Math. Phys., 42 (2001), pp. 2818–2843.
[HMS] D. Huybrechts, E. Macri, and P. Stellari, Stability conditions for generic K3 categories,

Compos. Math., 144 (2008), pp. 134–162.
[Ina] M. Inaba, Moduli of stable objects in a triangulated category, J. Math. Soc. Japan, 62

(2010), pp. 395–429.
[Kaw] K. Kawatani, Stability conditions and µ-stable sheaves on K3 surfaces with Picard number

one, preprint. arXiv:1005.3877.
[KS] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas in-

variants and cluster transformations, preprint.
[Li1] J. Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differ.

Geom., 37 (1993), pp. 417–466.
[Li2] J. Li, Hermitian-Yang-Mills connections on Kähler manifolds, in Geometry and Analysis

(Vol II), ALM, 18 (2010), pp. 81–102.
[LQ] W.-P. Li and Z. Qin, Polynomial Bridgeland stability for the derived category of sheaves

on surfaces, Communications in Analysis and Geometry, 19 (2011), pp. 31–52.
[Lie] M. Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom., 15 (2006),

pp. 175–206.
[Lo1] J. Lo, Moduli spaces of PT-stable objects, Ph.D. Thesis, Stanford University, 2010.
[Lo2] J. Lo, Moduli of PT-semistable objects I, J. Algebra, 339 (2011), pp. 203–222.
[Lo3] J. Lo, Moduli of PT-semistable objects II, Trans. Amer. Math. Soc. (to appear).
[Mac] E. Macri, Stability conditions on curves, Math. Res. Lett., 14 (2007), pp. 657–672.
[Mor] J. W. Morgan, Comparison of the Donaldson polynomial invariants with their algebro-

geometric analogues, Topology, 32 (1993), pp. 449–488.
[Ohk] R. Ohkawa, Moduli of Bridgeland semistable objects on P2, Kodai Math. J., 33 (2010),

pp. 329–366.
[Oka] S. Okada, Stability manifold of P1, J. Algebraic Geom., 15 (2006), pp. 487–505.
[Qin] Z. Qin, Equivalence classes of polarizations and moduli spaces of sheaves, J. Differ. Geom.,

37 (1993), pp. 397–415.
[Tod1] Y. Toda, Moduli stacks and invariants of semistable objects on K3 surfaces, Adv. Math.,

217 (2008), pp. 2736–2781.
[Tod2] Y. Toda, Limit stable objects on Calabi-Yau 3-folds, Duke Math. J., 149 (2009), pp. 157–

208.
[Tod3] Y. Toda, Stability conditions and Calabi-Yau fibrations, J. Algebraic Geom., 18 (2009),

pp. 101–133.
[Yos1] K. Yoshioka, Stability and twisted Fourier-Mukai transform, II, Compositio Math., 145

(2009), pp. 112–142.
[Yos2] K. Yoshioka, Perverse coherent sheaves and Fourier-Mukai transforms on surfaces,

preprint. arXiv:1003.2522.
[Yos3] K. Yoshioka, A few remarks on the paper “Perverse coherent sheaves and Fourier-Mukai

transforms on surfaces”, private communications, 2011.


