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SU(3)-HOLONOMY METRICS FROM NILPOTENT LIE GROUPS∗

DIEGO CONTI†

Abstract. One way of producing explicit Riemannian 6-manifolds with holonomy SU(3) is by
integrating a flow of SU(2)-structures on a 5-manifold, called the hypo evolution flow. In this paper
we classify invariant hypo SU(2)-structures on nilpotent 5-dimensional Lie groups. We characterize
the hypo evolution flow in terms of gauge transformations, and study the flow induced on the variety
of frames on a Lie algebra taken up to automorphisms. We classify the orbits of this flow for all
hypo nilpotent structures, obtaining several families of cohomogeneity one metrics with holonomy
contained in SU(3). We prove that these metrics cannot be extended to a complete metric, unless
they are flat.
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This paper uses the language of hypo geometry to construct 6-manifolds with
holonomy contained in SU(3).

Consider such a six-manifold (M, g), and fix an oriented hypersurface N in M .
Under suitable assumptions, the exponential map allows one to identify a neigh-
bourhood of N in M with N × (a, b), and put the metric g into the “generalized
cylinder form” g2t + dt2 (see [7, 1]); here t parametrizes the interval (a, b), and gt is
a one-parameter family of Riemannian metrics on N , identified with N × {t}. More
precisely, the holonomy reduction determines an integrable SU(3)-structure onM , in-
ducing in turn a hypo SU(2)-structure on eachN×{t}, or equivalently a one-parameter
family of hypo SU(2)-structures on N . Integrability implies that this one-parameter
family satisfies the hypo evolution equations [7], and vice versa. From this point of
view, the SU(3) holonomy metric is determined by a one-parameter family of hypo
SU(2)-structures satisfying these equations.

In the case that a group acts on M with cohomogeneity one, a generic orbit is
a hypersurface N with a homogeneous hypo structure. The evolution equations are
then reduced to an ODE. We are interested in solving explicitly these ODE’s in the
special case where the homogeneous orbit is a nilpotent Lie group, or equivalently a
nilmanifold. It is known by [7] that 6 out of the 9 simply connected real nilpotent
Lie groups of dimension 5 admit an invariant hypo structure. In this paper we refine
this result, and classify the space of invariant hypo structures on each of the six Lie
groups; moreover, we solve the evolution equations in each case, in a sense explained
later in this introduction.

Thus, we obtain several families of metrics with holonomy contained in SU(3) on
products G× I, with G a nilpotent Lie group and I a real interval. Such a metric is
complete if and only if I = R and the evolution is trivial; otherwise, one might hope to
obtain a complete metric by adding one or two special orbits. Using the classification
of orbits, we prove this cannot be done. In other words, we prove that every complete
six-manifolds with an integrable SU(3)-structure preserved by the cohomogeneity one
action of a nilpotent five-dimensional Lie group is flat.

Throughout this paper, an SU(2)-structure on a 5-manifold is a reduction to
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SU(2) of the frame bundle, relative to the chain of inclusions

SU(2) ⊂ SO(4) ⊂ SO(5) ⊂ GL(5,R).

Such a structure can be characterized in terms of a 1-form α and three 2-forms ω1,
ω2, ω3, or equivalently by the choice of an orientation and three differential forms
(ω1, ψ2, ψ3), related to the others by ψk = ωk ∧ α. In this paper we give an intrinsic
characterization of triples of differential forms (ω1, ψ2, ψ3) that actually determine an
SU(2)-structure.

Using this language, we give an alternative description of the hypo evolution
equations in terms of a Hamiltonian flow inside the product of cohomology classes

[ω1]× [ψ2]× [ψ3]×
[

1

2
ω1 ∧ ω1

]

,

in analogy with Hitchin’s results concerning half-flat evolution [9]. Similar arguments
lead us to restate the hypo evolution equations in terms of gauge transformations, in
the same vein as [13].

In the special context of invariant structures on Lie groups — which we view as
structures on the associated Lie algebra g — the language of gauge transformations
makes hypo evolution into a flow on the space of frames Iso(R5, g). This flow is
invariant under both the structure group SU(2), acting on the right, and the group
of automorphisms Aut(g), acting on the left. In fact the quotient Iso(R5, g)/Aut(g)
can be immersed naturally in the affine variety

D = {d ∈ Hom(R5,Λ2
R

5), d2 ◦ d = 0},

where d2 : Λ
2R5 → Λ3R5 is the linear map induced by d via the Leibniz rule; one can

think of D as the space of five-dimensional Lie algebras with a fixed frame taken up
to automorphisms. The variety D is the natural setting to study geometric structures
on Lie algebras; see for example [10], or [8], where hypo-contact structures on solvable
Lie groups are classified in terms of a frame adapted to the structure. It is therefore
inside D that we carry out the classification of hypo structures and integral lines of
the evolution flow.

In fact, we are only studying nilpotent Lie algebras, which correspond to a sub-
variety of D. Hypo nilpotent Lie algebras give rise to three families in D, closed
under U(2)-action. These families can be identified by selecting a slice with respect
to this action: the resulting sets we obtain are semi-algebraic in D. What is more
surprising is that the integral lines of the evolution flow turn out to be semi-algebraic
sets themselves. The classification of hypo structures is based on both the methods
of [12, 7] and the more recent methods of [6]. The classification of orbits is a long but
standard computation, relying on the determination of first integrals.

Computing the integral lines in D is not quite the same as solving the hypo
evolution equations on each Lie algebra, but it is sufficient to determine many inter-
esting properties of the resulting SU(3)-holonomy metrics, like their curvature. This
is explained in Section 7, where we illustrate with examples how one can use the clas-
sification of the integral lines to determine whether the corresponding 6-dimensional
metric is irreducible.

In the final section of this paper, we prove that the cohomogeneity one metrics
we have obtained cannot be extended by adding a special orbit. In particular, this
means that they cannot be extended to a complete metric, unless they are complete
to begin with, in which case they are flat.
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1. SU(2)-structures revisited. We are interested in SU(2)-structures on 5-
manifolds, where SU(2) acts on R5 as C2 ⊕ R. In this section, we shall work at a
point, that is to say on a real vector space T = R5. Thus, an SU(2)-structure on
T consists in the choice of an adapted frame u : R5 → T , determined uniquely up to
right SU(2) action.

Another convenient description introduced in [7] arises from viewing SU(2) as the
intersection of the stabilizers in GL(5,R) of four specific elements of Λ(R5)∗, namely

e5, e12 + e34, e13 + e42, e14 + e23.

Here e1, . . . , e5 denotes the standard basis of (R5)∗ and, say, e12 stands for e1 ∧ e2.
Thus, an SU(2)-structure on T can be identified with a quadruple (α, ω1, ω2, ω3) of
elements in ΛT ∗, that are mapped respectively to the above elements, by the transpose
ut : T ∗ → (R5)∗ of an adapted frame. Of course the forms (α, ωi) must satisfy certain
conditions (see [7]) for such a frame to exist. In this case, we say that (α, ωi) defines
an SU(2)-structure.

On the other hand, SU(2) is also the intersection of the stabilizers in GL+(5,R)
of

e12 + e34, e135 + e425, e145 + e235.

Thus, an SU(2)-structure can be given alternatively by the choice of an orientation
and a triple (ω1, ψ2, ψ3) in ΛT ∗.

It is straightforward to determine (ω1, ψ2, ψ3) given either an adapted frame or
the quadruplet (α, ω1, ω2, ω3), the correspondence being given by

ψ2 = ω2 ∧ α, ψ3 = ω3 ∧ α.

In this section we determine intrinsic conditions for a triple (ω1, ψ2, ψ3) to determine
an SU(2)-structure, and explicit formulae for recovering α, ω2, ω3.

As a first step, we construct maps

Λ2T ∗ → T ⊗ Λ5T ∗ Λ3T ∗ → T ∗ ⊗ Λ5T ∗ Λ2T ∗ × Λ3T ∗ → Λ5T ∗

ω → Xω ψ → αψ (ω, ψ) → V 2(ω, ψ).

To this end, fix an orientation on T and consider the isomorphisms

A : ΛkT ∗ → Λ5−kT ⊗ Λ5T ∗, A∗ : ΛkT → Λ5−kT ∗ ⊗ Λ5T,

k!〈γ, η〉 = η ∧ Aγ = γ ∧A∗η, γ ∈ ΛkT ∗, η ∈ ΛkT.

In the definition of A (and similarly for A∗) we are thinking of elements of Λ5−kT ⊗
Λ5T ∗ as multivectors whose length depends on the choice of a volume form. The
pairing 〈, 〉 is the usual pairing between ΛkT ∗ and ΛkT , i.e.

〈η1 ∧ · · · ∧ ηk, v1 ∧ · · · ∧ vk〉 =
1

k!
det(ηi(vj))ij .

Moreover, we are silently performing the identification

Λ5T ∗ ⊗ Λ5T ∼= R, (η, v) → 5!〈η, v〉.
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The coefficients k! guarantee that if we fix a metric on T and identify T = T ∗,
Λ5T ∗ = R accordingly, then A is just the Hodge star. Indeed, using the fact that T
is odd-dimensional, we have the usual properties:

(1)

k!〈γ,Aβ〉 = β ∧ γ, γ ∈ ΛkT ∗, β ∈ Λ5−kT ∗;

(5− k)!〈Aγ, β〉 = k!〈γ,Aβ〉, γ ∈ ΛkT ∗, β ∈ Λ5−kT ∗;

Y ∧ (Aψ) = A(Y yψ), ψ ∈ ΛkT ∗, Y ∈ T.

Similar properties hold for A∗.
We can now set

Xω = A(ω2), αψ = A∗((Aψ)2), V 2(ω, ψ) = αψ(Xω).

Notice that ω and ψ play a symmetric rôle, as one can make explicit by interchanging
T with T ∗ and composing with A. If V 2(ω, ψ) admits a “square root” in Λ5T ∗,
we write V 2(ω, ψ) > 0; having fixed an orientation on T , we define V (ω, ψ) as the
positively oriented square root of V 2(ω, ψ). The condition

ω2(Aψ ∧Aψ) = V 2(ω, ψ) > 0

implies that both ω and ψ are stable in the sense of Hitchin ([9]), i.e. their GL(5,R)-
orbits are open. It also implies that

kerαψ ⊕ Span {Xω}

is a direct sum. Finally, it contains an orientation condition, as shown by the example

V 2(e12 + e34, e125 − e345) < 0.

We can now state and prove a condition for (ω1, ψ2, ψ3) to define an SU(2)-
structure.

Proposition 1. Given ω1 in Λ2T ∗ and ψ2, ψ3 in Λ3T ∗, then (ω1, ψ2, ψ3) deter-
mines an SU(2)-structure, in the sense that

ω1 = e12 + e34, ψ2 = e135 + e425, ψ3 = e145 + e235

for some coframe e1, . . . , e5, if and only if

(2) αψ2
= αψ3

, ω1 ∧ ψ2 = 0 = ω1 ∧ ψ3, (Xω1
yψ2) ∧ ψ3 = 0, V 2(ω1, ψ2) > 0,

and ω1(Y, Z) ≥ 0 whenever Y, Z in T satisfy Y yψ2 = Zyψ3.

Proof. The “only if” part is straightforward. Conversely, suppose (2) holds. In
particular

V 2(ω1, ψ2) = V 2(ω1, ψ3) > 0,

so we may define α ∈ T ∗ and X ∈ T by

α = V (ω1, ψ2)
−1αψ2

, X = V (ω1, ψ2)
−1Xω1

.

Then

T = Span {X} ⊕ kerα, α(X) = 1.
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This splitting reduces the structure group to GL(4,R); in order to further reduce to
SU(2), set

ω2 = Xyψ2, ω3 = Xyψ3.

By construction ω is a non-degenerate form on kerα and Xyω2
1 = 0, so Xyω1 is zero

as well. By duality,

α ∧ ψ2 = 0 = α ∧ ψ3,

thus

ψ2 = α ∧ ω2, ψ3 = α ∧ ω3.

It follows easily from (1) that

(3) V (ω1, ψ2) = 〈α,Xω1
〉 = 〈α,A(ω2

1)〉 = ω2
1 ∧ α.

Similarly

V (ω1, ψ2) = 〈αψ2
, X〉 = 〈A∗(Aψ2)

2, X〉 = 4!〈(Aψ2)
2, A∗X〉 = X ∧ (Aψ2)

2

= (X ∧Aψ2) ∧Aψ2 = 3!〈X ∧ Aψ2, ψ2〉 = 〈A(Xyψ2), ψ2〉 = ω2 ∧ ψ2.
(4)

In the same way, V (ω1, ψ3) = ω3 ∧ ψ3. Therefore, using (2) again, we find

ωi ∧ ωj = Xy (ωi ∧ ψj) = δij(ω1)
2.

Thus there is a metric on kerα such that (ω1, ω2, ω3) is an orthonormal basis of
Λ2
+(kerα). It is also positively oriented by the last condition in the hypothesis.

Remark. The last condition in the hypothesis of Proposition 1 is an open con-
dition.

Since Xω only depends on ω2, it also makes sense to define Xυ for υ ∈ Λ4T ∗. In
order to make subsequent formulae simpler, we introduce a coefficient and set

Xυ = 2A(υ).

Given also ψ in Λ3T ∗, we set

V 2(ψ, υ) = αψ(Xυ),

and, as usual, if V 2(ψ, υ) > 0 we denote by V (ψ, υ) its positive square root.

2. Hypo evolution revisited. The definition of an SU(2)-structure on a vec-
tor space can be extended immediately to a definition on a 5-manifold: thus, we can
identify an SU(2)-structure on an oriented 5-manifold with a triple (ω1, ψ2, ψ3) of dif-
ferential forms, satisfying at each point the conditions of Proposition 1. Equivalently,
we can use the quadruple (α, ω1, ω2, ω3).

An SU(2)-structure is called hypo if the forms ω1, ψ2, ψ3 are closed. Hypo
structures (see [7]) arise naturally on hypersurfaces inside 6 manifolds with holonomy
contained in SU(3); a partial converse holds, in the sense that given a compact real
analytic 5-manifold M and a real analytic hypo structure, there always exists a one-
parameter family of hypo structures (α(t), ωi(t)), coinciding with the original hypo
structure at time zero, inducing an integrable SU(3)-structure on the “generalized
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cylinder” M × (a, b); explicitly, the Kähler form and complex volume on M × (a, b)
are given by

ω1(t) + α(t) ∧ dt, Ψ(t) = (ω2(t) + iω3(t)) ∧ (α(t) + idt).

This one-parameter family satisfies the hypo evolution equations

(5)



























∂

∂t
ω1 = −dα

∂

∂t
(ω2 ∧ α) = −dω3

∂

∂t
(ω3 ∧ α) = dω2.

It will be understood that a solution (α(t), ωi(t)) of (5) is required to define an SU(2)-
structure for all t.

In this section we will show that the solutions of this evolution equations, that
we know exist, can be viewed as integral lines of a certain Hamiltonian vector field,
in analogy with half-flat evolution (see [9]).

Fix a compact 5-dimensional manifold M ; let Bp be the space of exact p-forms
on M . The evolution equations (5) can be viewed as a flow of

(ω1(t), ψ2(t), ψ3(t)) ∈ Ω2(M)× Ω3(M)× Ω3(M);

however, the cohomology class of ω1(t), ψ2(t) and ψ3(t) is independent of t, so the
flow stays inside the product of the three cohomology classes.

In order to obtain a symplectic structure, we need to add a fourth cohomology
class. Let (ω̃1, ψ̃2, ψ̃3) define a hypo SU(2)-structure on M , and set

H̃ = (ω̃1 +B2)× (ψ̃2 +B3)× (ψ̃3 +B3)×
(

1

2
ω̃2 +B4

)

.

This is a Fréchet space with the C∞ topology; it contains an open set

H = {(ω1, ψ2, ψ3, υ) ∈ H̃ | V 2(ω1, ψ2) > 0, V 2(ψ3, υ) > 0}.

The skew-symmetric form on B2 ×B3 ×B3 ×B4 defined by

〈

(ω̇, ψ̇2, ψ̇3, υ̇), (dβ, dτ2, dτ3, dγ)
〉

=

∫

M

(

ω̇ ∧ γ − υ̇ ∧ β − ψ̇2 ∧ τ3 − ψ̇3 ∧ τ2
)

makes H into a symplectic manifold.
We will say that a point (ω1, ψ2, ψ3, υ) of H defines an SU(2)-structure if υ = 1

2ω
2
1

and the forms ω1, ψ2, ψ3 satisfy the conditions of Proposition 1.

Remark. Symplectic interpretation aside, the presence of the redundant differ-
ential form υ can be motivated by the fact that an SU(3)-structure on a 6-manifold
is determined by a 3-form and a 4-form, i.e. a section of Λ3 ⊕Λ4, and the pullback of
this vector bundle to a hypersurface splits up as Λ2 ⊕ Λ3 ⊕ Λ3 ⊕ Λ4.

We can now state the main result of this section.

Theorem 2. Solutions of the hypo evolution equations (5) are integral lines of

the Hamiltonian flow of the functional

(6) H : H → R, H(ω1, ψ2, ψ3, υ) =

∫

M

(V (ω1, ψ2)− V (ψ3, υ)) .
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Before proving the theorem we need a few lemmas. The first lemma makes use of
the fact that V 2(ω, ψ2) and V

2(ψ3, υ) are positive on H in order to define additional
differential forms.

Lemma 3. Let (ω1, ψ2, ψ3, υ) be a point of H, and let

α2 = V −1(ω1, ψ2)αψ2
, α3 = V −1(ψ3, υ)αψ3

,

ω2 =
(

V −1(ω1, ψ2)Xω1

)

yψ2, ω3 =
(

V −1(ψ3, υ)Xυ

)

yψ3.

If (ω1, ψ2, ψ3, υ) defines an SU(2)-structure, then α2 = α3 and (α2, ω1, ω2, ω3) defines
the same structure.

Proof. By construction Xω1
= Xυ, so V (ω1, ψ2) = V (ψ3, υ). Proposition 1

concludes the proof.
In the next lemma we work at a point, and compute the differential of

V : Ω1 → Λ5T ∗, Ω1 = {(ω, ψ) ∈ Λ2T ∗ × Λ3T ∗ | V 2(ω, ψ) > 0}.

The differential of this map at a point is an element of

(Λ2T ∗ ⊕ Λ3T ∗)∗ ⊗ Λ5T ∗ ∼= (Λ2T ⊕ Λ3T )⊗ Λ5T ∗ ∼= Λ3T ∗ ⊕ Λ2T ∗.

Similarly, the differential at a point of

V : Ω2 → Λ5T ∗, Ω2 = {(ψ, υ) ∈ Λ3T ∗ × Λ4T ∗ | V 2(ψ, υ) > 0}

is an element of Λ2T ∗ ⊕ T ∗.

Lemma 4. Given ω, ψ and υ such that (ω, ψ) is in Ω1 and (ψ, υ) is in Ω2, set

ω̂ =
(

V −1(ω, ψ)αψ
)

∧ ω, ψ̂ =
(

V −1(ω, ψ)Xω

)

yψ, ψ̌ =
(

V −1(ψ, υ)Xυ

)

yψ;

then

dV(ω,ψ)(σ, φ) = ω̂ ∧ σ + ψ̂ ∧ φ, dV(ψ,υ)(φ, σ) = ψ̌ ∧ φ+
(

V −1(ψ, υ)αψ
)

∧ σ.

Proof. Multiplying (3) by V (ω, ψ) and differentiating with respect to ω, we find

2V (ω, ψ)dV(ω,ψ)(σ, 0) = 2ω ∧ σ ∧ αψ,

so

dV(ω,ψ)(σ, 0) = ω ∧ σ ∧
(

V −1(ω, ψ)αψ
)

.

Similarly, (4) gives V 2(ω, ψ) = (Xωyψ) ∧ ψ, and therefore

dV(ω,ψ)(0, φ) =
(

V −1(ω, ψ)Xωyψ
)

∧ φ.

Summing the two equations determines the first formula for the differential of V ; the
second is completely analogous.

Lemma 5. The skew gradient of the functional H defined in (6) is

(7) (XH)(ω1,ψ2,ψ3,υ) = (−dα3,−dω3, dω2,−ω1 ∧ dα2) .
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Proof. By Lemma 4,

dH(ω1,ψ2,ψ3,υ)(dβ, dτ2, dτ3, dγ)

=

∫

M

(α2 ∧ ω1 ∧ dβ + ω2 ∧ dτ2 − ω3 ∧ dτ3 − α3 ∧ dγ)

=

∫

M

(dα2 ∧ ω1 ∧ β − dω2 ∧ τ2 + dω3 ∧ τ3 − dα3 ∧ γ) by Stokes’ theorem.

The vector field XH given in (7) clearly satisfies 〈XH , ·〉 = dH .

Proof of Theorem 2. Given a one-parameter family of SU(2)-structures that
evolves according to (5), we must verify that the corresponding curve in H is an
integral line of the skew gradient (7). It is sufficient to prove it at a point.

Let (ω1, ψ2, ψ3, υ) be a point of H that defines an SU(2)-structure. By Lemma 4,
the curve is an integral line of the Hamiltonian flow if

∂

∂t
ω1 = −dα, ∂

∂t
(ω2 ∧ α) = −dω3,

∂

∂t
υ = −ω1 ∧ dα,

∂

∂t
(ω3 ∧ α) = dω2.

These equations are equivalent to the evolution equations (5) together with υ = 1
2ω

2
1 .

Remark. The conditions of Proposition 1 can be used to characterize the points
of H that define an SU(2)-structure. These points constitute what may be considered
the space of deformations of the starting hypo structure. One can show directly that
the vector field XH is tangent to this space of deformations (see [5]). In light of
Theorem 2, this can also be viewed as a consequence of the existence of solutions of
(5).

3. Evolution by gauge transformations. By definition, a solution of the
hypo evolution equations is a one-parameter family of hypo structures satisfying (5).
On the other hand, a one-parameter family (α(t), ωi(t)) could satisfy (5) without
defining an SU(2)-structure for all t. The condition of defining an SU(2)-structure
is only preserved infinitesimally by the evolution flow; by the non-uniqueness of the
solutions of ODE’s in a Fréchet space, this means that the condition of defining an
SU(2)-structure for all t is not automatic. On the other hand, closedness of ω1, ψ2,
and ψ3 is preserved in time by the evolution equations.

In this section we give an alternative description of the hypo evolution flow,
which has the “dual“ property that the condition of defining an SU(2)-structure is
automatically preserved in time, but the closedness of ω1, ψ2, and ψ3 is only preserved
infinitesimally. This description will play a key rôle in the explicit calculations of
Section 6.

The idea, borrowed from [13], is to restate the evolution equations in terms of
gauge transformations. A gauge transformation on a 5-manifold M is by definition
a GL(5,R)-equivariant map s : F → GL(5,R), where F is the bundle of frames and
GL(5,R) acts on itself by the adjoint action. A gauge transformation s defines a
GL(5,R)-equivariant map from F to itself by

u→ us(u).
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Accordingly, a gauge transformation acts on every associated bundle F ×GL(5,R) V by

s · [u, v] = [us(u), v].

Given an SU(2)-structure P ⊂ F , one can define its intrinsic torsion as a map P →
su(2)⊥ ⊗ R5; the hypo condition implies that the intrinsic torsion takes values in a
submodule isomorphic to Sym(R5). It is not surprising that the intrinsic torsion as a
map

P → Sym(R5) ⊂ gl(5,R)

defines an “infinitesimal gauge transformation” that determines the evolution flow.
The aim of this section is to define explicitly the infinitesimal gauge transformation,
in the guise of an equivariant map

QP : F → gl(5,R),

and prove the following:

Theorem 6. Let F be the bundle of frames on a 5-manifold, and let Pt ⊂ F be a

one-parameter family of hypo SU(2)-structures. Then Pt satisfies the hypo evolution

equations (5) if and only if Pt is obtained from a one-parameter family of gauge

transformation

st : F → GL(5,R), s0 ≡ Id,

by

Pt = {ust(u) | u ∈ P0},

and

s′ts
−1
t = −QPt

,

where juxtaposition represents matrix multiplication.

The minus sign appearing in the statement is a consequence of an arbitrary choice
in the definition of QP , motivated by the fact that in later sections we shall work with
coframes rather than frames.

As a first step, we use the language of Section 2 to express the time derivative
of the defining forms in terms of the intrinsic torsion. Recall from [7] that an hypo
structure (α, ωi) satisfies the following “structure equations”:

(8)











dα = α ∧ β + fω1 + ω−,

dω2 = β ∧ ω2 + gα ∧ ω3 + α ∧ σ−
2 ,

dω3 = β ∧ ω3 − gα ∧ ω2 + α ∧ σ−
3 .

Here, β is a 1-form, f , g are functions and ω−, σ−
2 , σ

−
3 are 2-forms in Λ2

−(kerα).
These functions and forms define the intrinsic torsion of the hypo SU(2)-structure.
These components can be defined for generic SU(2)-structures (α, ωi) as follows:

dα = α ∧ β + fω1 + f2ω2 + f3ω3 + ω−,

dω1 = γ1 ∧ ω1 + α ∧ (λω1 − g2ω3 + g3ω2 + σ−
1 ),

dω2 = γ2 ∧ ω2 + α ∧ (λω2 − g3ω1 + gω3 + σ−
2 ),

dω3 = γ3 ∧ ω3 + α ∧ (λω3 − gω2 + g2ω1 + σ−
3 ).
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An SU(2)-structure also defines almost-complex structures J1, J2, J3 on the distribu-
tion kerα, given explicitly by

γ ∧ ωj = (Jiγ) ∧ ωk, Y yωj = (JiY )yωk,

where γ is a 1-form orthogonal to α, Y is a vector in kerα, and {i, j, k} is an even
permutation of {1, 2, 3}.

We can now prove:

Lemma 7. Let (ω1(t), ψ2(t), ψ3(t), υ(t)) be an integral curve of the skew gradient

XH , and suppose it defines a hypo structure (α, ωi) at time zero. If α2(t), α3(t),
ω2(t), ω3(t) are defined as in Lemma 3, their derivatives depend on (α, ωi) and its

intrinsic torsion as follows:

d

dt
α2|t=0 =

d

dt
α3|t=0 = (f + g)α+ J1β,

d

dt
ω2|t=0 = −fω2 + J3β ∧ α− σ−

3 ,
d

dt
ω3|t=0 = −fω3 − J2β ∧ α+ σ−

2 .

Proof. We work at t = 0; hence, we can fix the metric underlying the hypo
structure (α, ωi), whose volume form is 1

2α∧ω2
1 . Then under the identification TM =

T ∗M the operators A, A∗ have the form

Aγ = ∗γ ⊗ 1

2
α ∧ ω2

1 , A∗γ = ∗γ ⊗ (
1

2
α ∧ ω2

1)
−1.

Note that V (ω1, ψ2) is twice our fixed volume form.
By (7), the time derivative of αψ3

is

α′
ψ3

= 2A∗(Aψ3 ∧Aψ′
3) = 2A∗(Aψ3 ∧ Adω2).

On the other hand

∗dω2 = J2β ∧ α+ gω3 − σ−
2 , ∗ψ3 = ω3,

hence

α′
ψ3

= ∗2(ω3 ∧ J2β ∧ α+ gω2
3)⊗

(

1

2
α ∧ ω2

1

)

= (J1β + 2gα)⊗ (α ∧ ω2
1).

It follows from Lemma 4 and (7) that

V (ψ3, υ)
′ = ω3 ∧ ψ′

3 + α3 ∧ υ′ = ω3 ∧ dω2 − α3 ∧ ω1 ∧ dα2 = (−f + g)V (ψ3, υ).

By definition

α3(t) = V (ψ3, υ)
−1αψ3

,

so

α′
3 = − 1

V 2(ψ3, υ)
V (ψ3, υ)

′αψ3
+ V −1(ψ3, υ)α

′
ψ3

= (f − g)α3 + J1β + 2gα3.

Similarly, we obtain

α′
ψ2

= − ∗ 2(ω2 ∧ J3β ∧ α− gω2
2) = 2J1β + 4gα.
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Notice also that

V (ω1, ψ2)
′ = V (ψ3, υ)

′,

because the Hamiltonian H is constant along integral lines. Thus α′
2 = α′

3.

Now set

X(t) = V −1(ω1, ψ2)Xω1
;

we claim that

(9) X ′ = (−f − g)X − (J1β)
♯.

Indeed, working again at t = 0,

X ′
ω1

= 2A(ω1 ∧ ω′
1) = −2A(ω1 ∧ dα3) = −2A(ω1 ∧ α ∧ β + fω2

1)

= (−J1β − 2fα)♯ ⊗ (α ∧ ω2
1),

whence

X ′ = − 1

V (ω1, ψ2)2
V (ψ3, υ)

′Xω1
+ V (ω1, ψ2)

−1X ′
ω1

= (−f − g)X − (J1β)
♯,

proving (9).
We can now compute ω′

2 by

(Xyψ2)
′ = (−f − g)ω2 − J1βyψ2 + gω2 − σ−

3 = −fω2 + J3β ∧ α− σ−
3 .

By definition, to compute ω3 we should take the interior product with V −1(ψ3, υ)Xυ

rather than X(t); however, it is easy to verify that the vector fields coincide up to
first order at time 0. Thus

(Xyψ3)
′ = (−f − g)ω3 − J1βyψ3 + gω3 + σ−

2 = −fω3 − J2β ∧ α+ σ−
2 .

The second step is to define QP . Let P be an SU(2)-structure and π : P → M
the projection. The intrinsic torsion defines global differential forms on M , which can
be pulled back to basic forms on P ; such forms belong to the algebra generated by
the components θ1, . . . , θ5 of the tautological form. Thus, we obtain functions on P
determined by

π∗ω− = 2ω−
a (θ

12 − θ34) + 2ω−
b (θ

13 − θ42) + 2ω−
c (θ

14 − θ23);

in a similar way, we define functions

(σ−
k )a, (σ

−
k )b, (σ

−
k )c : P → R, k = 2, 3.

Likewise a one-form orthogonal to α, such as β, determines a function P → R4 by

π∗β = β1θ
1 + . . .+ β4θ

4.

We can now define QP in terms of the “hypo” part of the intrinsic torsion, i.e. the
components appearing in (8).
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Proposition 8. Given an SU(2)-structure P on M , at each u ∈ P let Q̃P (u) be
the symmetric matrix whose upper triangular part is








(σ−
2 )c − (σ−

3 )b − ω
−
a (σ−

2 )b + (σ−
3 )c −(σ−

2 )a − ω
−
c −(σ−

3 )a + ω
−
b

−(σ−
2 )c + (σ−

3 )b − ω
−
a −(σ−

3 )a − ω
−
b

(σ−
2 )a − ω

−
c

−(σ−
2 )c − (σ−

3 )b + ω
−
a (σ−

2 )b − (σ−
3 )c

(σ−
2 )c + (σ−

3 )b + ω
−
a









.

Define QP : P → gl(5,R) by

QP (u) =

(

− f
2 Id + Q̃P J1β
(J1β)

T f + g

)

.

Then QP is SU(2)-equivariant, and therefore defines a section of

P ×SU(2) gl(5,R) ∼= End(TM).

Proof. From the general theory, the intrinsic torsion map P → R5 ⊗ su(2)⊥ is
SU(2)-equivariant. The definition of Q amounts to composing the intrinsic torsion
with a map R

5 ⊗ su(2)⊥ → gl(5, R), which must be checked to be equivariant.
The non-trivial submodules of R5 ⊗ su(2)⊥ are isomorphic to the space Λ2

−R
4

spanned by

(10) e12 − e34, e13 − e42, e14 − e23.

Denote by ek ⊙ eh the element eh ⊗ ek + ek ⊗ eh of gl(5,R) ∼= R5 ⊗ R5. It is easy to
check that SU(2) acts on the bases

−e1 ⊗ e1 − e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4, e1 ⊙ e4 − e2 ⊙ e3, −e1 ⊙ e3 − e2 ⊙ e4,

e2 ⊙ e4 − e1 ⊙ e3, e1 ⊙ e2 + e3 ⊙ e4, e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4,

e2 ⊙ e3 + e1 ⊙ e4, e1 ⊗ e1 − e2 ⊗ e2 + e3 ⊗ e3 − e4 ⊗ e4, −e1 ⊙ e2 + e3 ⊙ e4,

as it acts on the basis (10).
Similarly, e5 ⊗ e5 is invariant under SU(2), and the map

Span
{

e1, . . . e4
}

→ gl(5,R), ei → ei ⊙ e5

is SU(2)-equivariant.

The map QP will be extended equivariantly to a map QP : F → gl(5,R).

Proof of Theorem 6. We work at a point x ∈M . Let u ∈ Px. The map QP0
was

constructed in such a way that

[u,QP0
(u)e5] = −(f + g)α− J1β,

[u,QP0
(u)(e12 + e34)] = α ∧ β + fω1 + ω−,

[u,QP0
(u)(e13 + e42)] = fω2 − J3β ∧ α+ σ−

3 ,

[u,QP0
(u)(e14 + e23)] = fω3 + J2β ∧ α− σ−

2 .

At generic t, these equations take the form

−(f + g)α− J1β = [ust(u), QPt
(ust(u))e

5] = [u,QPt
(u)(st(u)e

5)],
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and so on.
Now suppose that Pt is defined by st as in the statement; we must show that the

hypo evolution equations are satisfied. By construction

α(t) = st · α(0), ωi(t) = st · ωi(0).

Thus

α′(t)x = [u, st(u)
′e5)] = [u,−QPt

(u)st(u)e
5];

this holds for all u, hence

α′ = (f + g)α+ J1β.

Similarly, we find

d

dt
ω1 = −α ∧ β − fω1 − ω−,

d

dt
ω2 = −fω2 + J3β ∧ α− σ−

3 ,

d

dt
ω3 = −fω3 − J2β ∧ α+ σ−

2 .

These equations are consistent with Lemma 7, and they imply the hypo evolution
equations.

Remark. By construction the metric gt varies accordingly to

g′t(X,Y ) = gt(QPt
X,Y ) + gt(X,QPt

Y ) = 2gt(QPt
X,Y );

on the other hand it follows easily from the Koszul formula that with respect to the
generalized cylinder metric gt + dt2,

g′t(X,Y ) = −2gt(W (X), Y ).

where W is the Weingarten tensor of the hypersurface N × {t}, with orientations
chosen so that ∂

∂t is the positively oriented normal. Thus, QPt
equals minus this

Weingarten tensor.

4. A model for evolving Lie algebras. Given a hypo Lie algebra g, one way
of expressing a solution of the evolution equations is by giving a one-parameter family
of coframes on g. The natural setting to study this problem is therefore the category
of Lie algebras with a fixed coframe. In this section we introduce this category,
and also a model for it, in the guise of a discrete category over a real affine variety.
Computations are considerably easier on this model category D, since the group of
automorphisms is effectively factored out; for this reason, the classification results of
this paper will be formulated in terms of D. We shall fix the dimension to five for
definiteness, and in view of the applications to follow.

Let (D) be the category whose objects are pairs (g, u), with g a 5-dimensional Lie
algebra and u : R5 → g∗ a linear isomorphism; u induces naturally another isomor-
phism

u : Λ2
R

5 → Λ2g∗, u(α ∧ β) = u(α) ∧ u(β).

We define

Hom(D)((g, u), (h, v)) = {f ∈ Hom(g, h) | u = f t ◦ v},
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where Hom(g, h) is the space of Lie algebra homomorphisms (though f is forced to
be an isomorphism). There is a natural right action of GL(5,R) on (D). This means
that each g ∈ GL(5, R) defines a functor

Jg(g, u) = (g, u ◦ g), Jg(f) = f,

and Jg ◦ Jh = Jhg.
A model for (D) is given by the set

D = {d ∈ Hom(R5,Λ2
R

5) | d̂ ◦ d = 0},

where d̂ is the derivation ΛR5 → ΛR5 induced by d. There is a natural right action
of GL(5,R) on D, namely

(µ(g)d)(β) = g−1d(gβ), g ∈ GL(5,R), d ∈ D.

We shall also denote by D the discrete category on D; this means that the objects
are the points of D, and the only morphisms are the identity morphisms. There is a
GL(5,R)-equivariant functor

F : (D) → D, F (g, u) = u−1 ◦ dg ◦ u, F (f) = Id,

where dg : g
∗ → Λ2g∗ is the Chevalley-Eilenberg differential.

We claim that F is an equivalence, meaning that F maps isomorphically mor-
phisms onto morphisms, and every object of D is isomorphic to some F (g, u).

Lemma 9. The functor F : (D) → D is a GL(5,R)-equivariant equivalence.

Proof. First, we must prove that F is well defined. This is because if f is in
Hom(g, u), (h, v)), then u = f t ◦ v, so

F (g, u) = u−1dgu = v−1 ◦ (f t)−1 ◦ dgf t ◦ v = v−1dh ◦ v = F (h, v).

Equivariance is proved similarly. The condition on morphisms is trivial. Finally, given
d in D, R5 has an induced Lie algebra structure such that F (R5, Id) is d itself.

The space D, whilst not mysterious in itself, is endowed with additional structure
by the functor F , as becomes clear in the following lemma.

Lemma 10. Let A(t) be a one-parameter family in gl(5,R), and let (g, u(t)) be a

one-parameter family in (D) satisfying the differential equation

u′(t) = u(t) ◦AT (t).

Then the basis ei(t) = u(t)(ei) satisfies the differential equation

(11)





(e1)′

. . .
(e5)′



 = A(t)





e1

. . .
e5





and the curve in D given by d(t) = F (g, u(t)) satisfies

d′(t) = µ∗e(A
T (t))d(t).
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Proof. Equation (11) follows from the fact that




e1

. . .
e5





can be identified with uT .
For the second part of the statement, let u(t) = u(0)g(t), with g(t) a curve in

GL(5,R). Then

F (g, u(t)) = g−1(t)F (g, u(0))g(t) = µ(g(t))F (g, u(0)),

i.e. d(t) = µ(g(t))d(0). By construction u′(t) = u(0)g′(t) so

g′(t) = g(t)AT (t).

In order to compute d′(t) at t = t0, set g = g(t0). Then

d(t) = µ(g−1g(t))d(t0),

so

d′(t0) = µ∗e(A
T (t0))d(t0).

In the following definition, we give gl(5,R) the structure of a discrete category.

Definition 11. An infinitesimal gauge transformation on (D) is a functor
X : (D) → gl(5,R) such that the functor X̂ induced by the diagram

(D)

X

##G
G
G
G
G
G
G
G
G

F

��
D X̂ // gl(5,R)

is a smooth map.

The functoriality guarantees that X(g,u) = X(g,ft◦u) whenever f : g → g is an
isomorphism. This means that X(g,u) is unaffected when u is acted upon by an

automorphism of g. This invariance is factored out when we pass to X̂.

Proposition 12. An infinitesimal gauge transformation X on (D) induces a

vector field X̃ on D by

X̃d = µ∗e(X̂
T
d )d.

If (g, u(t)) is a one-parameter family in (D) satisfying the differential equation

u′(t) = u(t) ◦XT
u(t),

then d(t) = F (g, u(t)) is an orbit of X̃.

Proof. It suffices to set A(t) = Xu(t) in Lemma 10.

Replacing X with X̂ behaves well with respect to equivariance. Indeed, consider
the natural action of GL(5,R) on vector fields on D

(g · Y )x = µ(g)Yµ(g−1)x.
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Lemma 13. Let X be an infinitesimal gauge transformation on (D). Suppose

that X̂ : D → gl(5,R) is equivariant under some G ⊂ GL(5,R), i.e.

X̂µ(g)x = Ad(g−1)X̂x, g ∈ G.

Then X̃ is G-invariant.

Proof. By hypothesis,

X̃µ(g)d = µ∗e(X̂
T
µ(g)d)µ(g)d = µ∗e(Ad(g

−1)(X̂T
d ))d

= (Ad(µ(g))µ∗eX̂
T
d )µ(g)d

= µ(g)µ∗eX̂
T
d µ(g

−1)µ(g)d

= µ(g)µ∗eX̂
T
d d = (g · X̃)µ(g)d.

We can now restate Theorem 6 in the language of this section, introducing the
infinitesimal gauge transformation on (D) given by

X(g, u) = QP (v),

where P = vSU(2) is the SU(2)-structure on g defined by v = (uT )−1.

Proposition 14. X is an infinitesimal gauge transformation on (D), and the

vector field X̃ induced on D is U(2)-invariant. Given a Lie algebra g and a one-

parameter family of hypo structures (α(t), ωi(t)) on g that satisfies the hypo evolution

equations, there exists a one-parameter family of coframes u(t) : R5 → g∗ such that

• u(t) is adapted to (α(t), ωi(t));
• the curve d(t) = F (g, u(t)) is an orbit of X̃ in D;

• u′(t) = u(t) ◦ X̂d(t).

Proof. The intrinsic torsion is invariant under automorphisms of g, so X is indeed
an infinitesimal gauge transformation. Invariance follows from Lemma 13 and the fact
that X̂ factors through the intrinsic torsion map, which is linear and equivariant.

Let v(0) = (u(0)−1)T . Theorem 6 gives a one-parameter family of adapted frames

v(t) = v(0)st, s′ts
−1
t = −QPt

(v(0)),

which in turn determines a one-parameter family of coframes

u(t) = u(0)(s−1
t )T ;

then

QPt
(v(0)) = QPt

(v(t)s−1
t ) = Adst(QPt

(v(t))) = −Adst X(g, u(t)),

so s−1
t s′t = X(g, u(t)) and

u′(t) = u(t) ◦XT (g, u(t)).

Now, by Proposition 12, d(t) is an orbit of the induced vector field X̃ . Finally,
XT (g, u(t)) = X̂d(t) holds by definition and because X is symmetric.
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5. Hypo nilmanifolds. There are exactly nine real nilpotent Lie algebras of
dimension five, classified in [11]. It was proved in [7] that only six out of the nine
carry a hypo structure. In this section, we classify the hypo structures on these six
Lie algebras in terms of the space D introduced in Section 4.

First we need a definition. We say d in D is hypo if

d(e12 + e34) = 0, d(e135 + e425) = 0, d(e145 + e235) = 0.

This means that if d = F (g, u), the SU(2)-structure on g determined by the coframe
u (see Section 1) is hypo in the sense that the defining forms ω1, ψ2 and ψ3 are closed
under the Chevalley-Eilenberg operator dg. Then any Lie group G with Lie algebra
g has an induced left-invariant hypo structure. Moreover, if Γ is a discrete uniform
subgroup, a hypo structure is induced on the compact quotient Γ\G. In the case that
g is nilpotent, such a subgroup always exists.

Now the coframe u determines the same SU(2)-structures as the other coframes
in its SU(2)-orbit; so, isomorphism classes of hypo Lie algebras are elements of

{d ∈ D | d is hypo}/SU(2).

On the other hand, the space of SU(2)-structures on an isomorphism class of Lie
algebras can be expressed as the biquotient

(GL(5,R)d)/SU(2) ∼= Aut(g)\ Iso(R5, g∗)/SU(2),

where d = F (g, u) for some representative g and some coframe u.
The hypo equations are actually invariant under a larger group than SU(2),

namely U(2) × R∗ × R∗ × Z2. From the point of view of the evolution equations,
it is more natural to consider the quotient by U(2), which is the largest subgroup that
leaves the flow invariant (although the diagonal R∗ acting by scalar multiplication
only affects the flow by a change of time scale). Thus, for all d in D we define

Hd = {gd | g ∈ GL(5,R), gd is hypo}/U(2).

In this section we compute Hd for all five-dimensional nilpotent Lie algebras. In fact,
we show that these Lie algebras come in a hierarchy, with exactly three Lie algebras
lying at its top level. It will follow that the study of hypo nilpotent Lie algebras is
reduced to the study of three families of hypo Lie algebras.

The first family corresponds generically to (0, 0, 12, 13, 14); it is defined as

M1 = {dλ,µ,h,k | h, k, λ, µ ∈ R} ,
dλ,µ,h,k =

(

λe35, he35 + ke15, 0, (−λe2 + he1 + µe3) ∧ e5, 0
)

.

The second family, corresponding generically to (0, 0, 0, 12, 13 + 24), consists of ele-
ments of the form

dx,y,h,k,λ,µ =
(

0, xe34 + λe35, 0, x(e14 − e23)− ye34 + λe15 − µe35,

− h(e14 − e23) + ke34 − xe15 + ye35
)

.
(12)

More precisely, this family is an algebraic subvariety of D given by

M2 =

{

dx,y,h,k,λ,µ | rk
(

x y λ µ
h k x y

)

< 2

}

.
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The third family has some U(2)-orbits in common with M2; it is defined as

M3 = {dλ,µ | λ, µ ∈ R} , dλ,µ =
(

0, 0, 0, 0, (λ+ µ)e12 + (λ− µ)e34)
)

.

Theorem 15. If g is a nilpotent five dimensional Lie algebra, then d = F (g, u) is
hypo if and only if its U(2) orbit intersects M1, M2 or M3. The isomorphism classes

of non-abelian nilpotent Lie algebras of dimension five that admit a hypo structure can

be arranged in the diagram

(0, 0, 0, 12, 13+ 24)
(( ((

//

))SSS
SS

SS
SS

SS
SS

SS

(0, 0, 0, 0, 12 + 34) // (0, 0, 0, 0, 12)

(0, 0, 12, 13, 14) // //

@@

(0, 0, 0, 12, 13)

66lllllllllllll

,

where d1 is connected by an arrow to d2 if the closure of the GL(5,R)-orbit of d1
contains d2, and the arrow has a double head if Hd1 contains Hd2 .

We already know from [7] that the isomorphism classes for which Hd is nonempty
are exactly those appearing in the diagram. In order to prove the theorem, we must
compute the space Hd for d in each of these isomorphism classes. The rest of this
section consists in this computation, broken up into several lemmas. We use the fol-
lowing notation: if V ⊂ D, then V/U(2) denotes the image of V under the projection
D → D/U(2), regardless of whether V is the union of orbits.

Lemma 16. Let d be in the GL(5,R)-orbit of (0, 0, 12, 13, 14). Then

Hd = {dλ,µ,h,k ∈ M1 | λ > 0, k 6= 0}/U(2);

in particular, the closure of Hd is M1/U(2).

Proof. As usual, we denote by e1, . . . , e5 the standard coframe on R
5. By con-

struction there is another coframe η1, . . . , η5 on R5 such that

dη1 = 0, dηk = η1 ∧ ηk−1, k = 2, . . . , 5.

If we set V k = Span
{

η1, . . . , ηk
}

, it is not hard to check that the V i are independent
of the choice of the coframe; for instance,

V 1 = {β ∈ (R5)∗ | β ∧ dγ = 0, γ ∈ (R5)∗}.

The space of closed 3-forms is given by

Z3 = Span
{

η123, η124, η125, η134, η135, η145, η234
}

.

Now assume d is hypo; we must determine d up to U(2) action. Arguing like in
Proposition 7 of [6], we can see that e5 is in V 1. Indeed the space Z3 ∧ V 1 is one-
dimensional, so ψ2 ∧ V 1 and ψ3 ∧ V 1 are linearly dependent, which is only possible if
e5 is in V 1.
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In particular, e5 is in V 4. Therefore, the span of e1, e2, e3, e4 intersects V 4 in a
three-dimensional space; up to an action of SU(2), we can assume that e1, e2, e3 are
in V 4 and e4 is not. Thus de4 = γ ∧ e5 and γ is not in V 3. Then

0 = dω1 = de3 ∧ e4 mod Λ3V 4,

so de3 = 0. Up to the action of U(2), we can rotate e1 and e2 and obtain that e1 is
in V 3 and e2 is not. Then

de1 = λe35, de2 = he35 + ke15, k, λ 6= 0.

Moreover

0 = dω1 = de12 + e35 ∧ γ

implies that

γ = −λe2 + he1 + µe3.

Thus d has the form

(λe35, he35 + ke15, 0, (−λe2 + he1 + µe3) ∧ e5, 0), λ, k 6= 0.

The matrices in U(2) that map one element of the above family to another element
of the family constitute a group generated by

(13)





−Id2
Id2

1



 ,





Id2
−Id2

1



 .

The first two elements have the effect of changing the signs of λ, h, and the third
element has no effect.

Lemma 17. If d is in the GL(5,R)-orbit of (0, 0, 0, 12, 13+ 24), then

Hd = {dx,y,h,k,λ,µ ∈ M2 | h, λ > 0}/U(2);

in particular, the closure of Hd is M2/U(2).

Proof. Suppose d is hypo. We define k-dimensional subspaces V k ⊂ (R5)∗ by

V 4 = {β ∈ (R5)∗ | (dβ)2 = 0}, V 3 = ker d, V 2 = {β ∈ (R5)∗ | β ∧ d(V 4) = 0}.

If e1, e2, e3, e4 are in V 4, then all the ωi are closed, and their restrictions to the
non-abelian subalgebra ker e5 determine a hyperkähler structure, which is absurd.

So up to U(2) action we can assume that V 4 contains e1, e2, e3 but not e4. Then

dω1 = de3 ∧ e4 mod Λ3V 4,

so e3 is closed. Moreover up to U(2) action we can assume that e1 is in V 3. There
are two cases.

a) Suppose e5 is in V 4. Then

dψ2 = de25 ∧ e4 mod Λ4V 4, dψ3 = −de15 ∧ e4 mod Λ4V 4,
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so e15 and e25 are closed; since e3 is also closed,

de4 ∧ e25 = 0 = de4 ∧ e15,

hence

(14) de4 ∈ Span
{

e12, e15, e25, e35
}

.

Moreover

0 = dω1 = e1 ∧ de2 + e3 ∧ de4.

It follows that e5 is in V 3: otherwise some linear combination e2+ae5 is in V 3, hence
de2 = −ade5; this is absurd by

0 6= de4 ∧ e3 = −de2 ∧ e1 = ade5 ∧ e1 = 0.

So V 3 is spanned by e1, e3, e5; since e25 is closed, de2 is a linear combination of e15 and
e35. By (14) and (de4)2 6= 0, de4 has a component along e12; since by construction
de2 ∧ de4 = 0, it follows that de2 is a multiple of e15. But then e3 ∧ de4 = 0, which is
absurd.

b) Suppose e5 is not in V 4; then e4 + ze5 is in V 4 for some nonzero z. Using the
full group of symmetries of the hypo equations, we can rescale e5, so that z = 1. For
brevity, we shall write e4+5 for e4 + e5. Then

0 = dψ2 = d((e13 + e4+5,2) ∧ e5) = de4+5,2 ∧ e5 mod Λ4V 4.

Closedness of e2,4+5 and the fact that e1, e3 are in V 3 imply that de2, de4+5 are in

Span
{

e12, e1,4+5, e23, e3,4+5
}

,

and more precisely they have the form

de2 = xe12 + ye1,4+5 + he23 + ke3,4+5, de4+5 = ae12 − xe1,4+5 + be23 + he3,4+5.

Moreover by d(e1,4+5 + e23) = 0 we see that h = −y, b = x, so

de2 = xe12 + ye1,4+5 − ye23 + ke3,4+5

de4+5 = ae12 − xe1,4+5 + xe23 − ye3,4+5.

We know that de2 and de4+5 are linearly dependent; by writing components and
computing determinants, we deduce

(15) x2 = −ay, xy = −ak, y2 = kx.

On the other hand

(16) 0 = e1 ∧ de2 + e3 ∧ de4 = −ye123 + ke13,4+5 + ae123 + xe13,4+5 − e3 ∧ de5,

whence

e13 ∧ de5 = 0.
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Now

0 = dψ2 = (e13 + e4+5,2) ∧ de5 = e4+5,2 ∧ de5,
0 = dψ3 = (e1,4+5 + e23) ∧ de5.

Therefore

de5 ∈ Span
{

e12, e1,4+5 − e23, e3,4+5
}

,

and more precisely, using (16)

de5 = (a− y)e12 − (k + x)(e1,4+5 − e23) + λe3,4+5.

Then

d2e5 = ((a− y)y + 2x(k + x)− λa)e123 + (−(a− y)k − λx− 2y(k + x))e13(4+5),

whence

λa = ay − y2 + 2kx+ 2x2, λx = −ak + ky − 2ky − 2xy.

Using (15), we get

λa = y2 + x2, λx = −xy − ky.

We claim that x and y are zero. Indeed, suppose otherwise; by (15), both x and
y are nonzero and

a = −x
2

y
, k =

y2

x
.

This implies that (de5)2 is zero, which is absurd.
So x = y = 0. Then ak = 0 = aλ. Then (de5)2 6= 0 implies k 6= 0, so a = 0 and

de2 = ke3(e4 + e5), de4+5 = 0, de5 = −k(e1(4+5) − e23) + λe3(4+5).

These equations were obtained by declaring z = 1. In the general case (changing
names to the variables),

dx,y,z =

(

0, xe3(e4+ ze
5), 0, (xe1−ye

3)(e4+ ze
5)−xe

23
, (−xe

1+ye
3)

(

1

z
e
4 + e

5

)

+
x

z
e
23

)

.

This is not a closed set in D. To compute the closure, we set

λ = xz, µ = yz, h =
x

z
, k =

y

z
;

these variables must satisfy

rk

(

λ µ x y
x y h k

)

< 2.

Then d has the form (12); the corresponding Lie algebra is isomorphic to
(0, 0, 0, 12, 13+ 24) if and only if both h and λ are nonzero.

Like in Lemma 16, the elements of U(2) that map d to an element of the same
family (12) constitute a group generated by the matrices (13), which have the effect
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of changing the signs of (x, h, λ) and (y, h, λ) respectively; it follows that h and λ can
be assumed to be positive.

Lemma 18. If d in D is in the GL(5,R)-orbit of (0, 0, 0, 0, 12 + 34), then

Hd = {dλ,µ ∈ M3 | λ, µ ∈ R, 0 ≤ µ 6= |λ|}/U(2);

in particular the closure of Hd is M3/U(2), and

{

dλ,µ ∈ M3 | µ2 − λ2 > 0
}

/U(2) ⊂ M2/U(2).

Proof. In terms of a coframe η1, . . . , η5 that makes d into (0, 0, 0, 0, 12+ 34), we
compute

Z2 = Λ2 Span
{

η1, η2, η3, η4
}

,

Z3 = Λ3 Span
{

η1, η2, η3, η4
}

⊕ η5 ∧ Span
{

η12 − η34, η13, η14, η23, η24
}

.

Thus η1, . . . , η4 and e1, . . . , e4 span the same space; in particular e1, . . . , e4 are closed
and de5 is in Λ2 Span

{

e1, . . . , e4
}

. Then

0 = d(e5 ∧ ω2) = de5 ∧ ω2,

and similarly de5 ∧ ω3 is zero. Then

de5 ∈ Span
{

e12 + e34
}

⊕ Λ2
−, Λ2

− = Span
{

e12 − e34, e13 − e42, e14 − e23
}

.

Since SU(2) acts transitively on the sphere in Λ2
−, we can assume that de5 is λω1 +

µ(e12 − e34), with µ non-negative. Moreover µ2 − λ2 cannot be zero, for otherwise
(de5)2 is zero.

The last part of the statement follows from the fact that when µ2 − λ2 > 0,
λω1 + µ(e12 − e34) is in the same U(2)-orbit as

λ(e12 + e34)−
√

µ2 − λ2(e14 − e23)− λ(e12 − e34).

Lemma 19. Let d be in the GL(5,R)-orbit of (0, 0, 0, 0, 12) in D. Then

Hd = {dy,k,µ | y2 = kµ, (k, µ) 6= (0, 0)}/U(2),

where

dy,k,µ =
(

0, 0, 0,−ye34 − µe35, ke34 + ye35
)

.

In particular Hd ⊂ M2.

Proof. Suppose d is hypo. There is a well defined filtration V 2 ⊂ V 4 ⊂ (R5)∗,
where Λ2V 2 is spanned by an exact two-form, and V 4 = kerd. Up to SU(2) action,
we can assume that e1, e2, e3 are in V 4.

There are two cases to consider.
a) If e5 is in V 4, then e4 is not in V 4, so dω1 = 0 implies that e3 is in V 2.

Closedness of ψ2, ψ3 gives

e25 ∧ de4 = 0 = e15 ∧ de4,
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so V 2 is spanned by e3, e5. Thus d = d0,0,µ, with µ nonzero.
b) If e5 is not in V 4, then e4 − ae5 is in V 4 for some a ∈ R. Then

e135 + e425 = e13 ∧ e5 + (e4 − ae5) ∧ e25,
e145 + e235 = e23 ∧ e5 − (e4 − ae5) ∧ e15.

Thus

(17) de5 ∧ (e13 + (e4 − ae5) ∧ e2) = 0 = de5 ∧ (e23 + e1 ∧ (e4 − ae5)).

We can also assume that e3 is in V 2. Indeed if e4 is in V 4, it suffices to act by an
element of SU(2) to obtain e3 ∈ V 2. If on the other hand e4 is not in V 4, then dω1 = 0
implies e3 ∈ V 2. It follows that de5 is a linear combination of e13, e34 − ae35, e23. By
(17),

de5 = k(e34 − ae35), de4 = ak(e34 − ae35),

so d has the form dy,k,µ.

Lemma 20. If d is in the GL(5,R)-orbit of (0, 0, 0, 12, 13), then

Hd = {dk,µ | k ≥ µ, k, µ 6= 0}/U(2),

where

dk,µ = (0, ke15, 0, µe35, 0).

In particular Hd ⊂ M1.

Proof. In terms of a coframe η1, . . . , η5 which makes d into (0, 0, 0, 12, 13), we
compute

Z2 = Span
{

η12, η13, η14, η15, η23, η24, η25 + η34, η35
}

,

Z3 = Span
{

η123, η124, η125, η134, η135, η145, η234, η235
}

.

Suppose d is hypo. Recall from [6] that if X ∈ R
5, β ∈ (R5)∗ are such that

dim(XyZ3) ∧ β < 2,

then e5(X) is zero. In this case, if η1, . . . , η5 is the frame dual to η1, . . . , η5,

dim(η4yZ
3) ∧ η1 = 1 = dim(η5yZ

3) ∧ η1;

so e5 is a linear combination of η1, η2, η3.
Suppose e5 is linearly independent of η1. Then

dim η1 ∧ e5 ∧ Span {ω1, ω2, ω3} = 3;

on the other hand, if e5 = aη2 + bη3 (mod η1),

η1 ∧ e5 ∧ Z2 ⊂ Span
{

η1234, η1235
}

= η1 ∧ Z3,

which is absurd. So e5 is linearly dependent of η1.
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Let V 3 = kerd. Then Span
{

e1, e2, e3, e4
}

intersects V 3 in a two-dimensional

space; up to SU(2) action, we can assume V 3 contains e1. Suppose that Span
{

e3, e4
}

has trivial intersection with V 3. Then de3 and de4 are non-zero, contradicting

de3 ∧ e4 − e3 ∧ de4 = de34 = −de12 ∈ Λ3V 3.

Thus, Span
{

e3, e4
}

intersects V 3 in a one-dimensional space; up to U(2) action, we
can assume that e3 is in V 3. Therefore

de2 = ae15 + be35, de4 = he15 + ke35;

using the fact that ω1 is closed, we see that h = b and obtain

(

de2

de4

)

=

(

a b
b k

)(

e15

e35

)

.

This matrix can be assumed to be diagonal, because the symmetry group U(2) con-
tains an S1 that rotates Span

{

e1, e3
}

and Span
{

e2, e4
}

, whose action corresponds
to conjugating the matrix by SO(2). So we obtain dk,µ as appears in the statement,
where k and µ can be interchanged by the same circle action.

Theorem 15 now follows trivially from the lemmas.

6. Integrating the flow. In this section we compute explicitly the hypo evolu-
tion flow in D for each nilpotent hypo Lie algebra, giving a description of the resulting
orbits. In particular, we conclude that the orbits are semi-algebraic sets in the affine
space D (i.e. they are defined by polynomial equalities and inequalities), each orbit
has at most one limit point, and there are no periodic orbits.

Moreover the only critical point is the origin of D: this means that the evolution
flow in (D) is always transverse to the group of automorphisms, except in the abelian
case, when the flow is constant.

In fact, the vector fields on the families Mi that generate the evolution flow
are homogeneous of degree 2 in the coordinates of D; this is a consequence of the
construction, and implies that multiplication by a scalar in D maps orbits into orbits.
So, we could also think of the flow as taking place in P(D). However, we shall refrain
from using the projective quotient as it does not appear to simplify the description of
the orbits.

Recall that there are three families of nilpotent hypo Lie algebras, which have to
be studied separately. We begin with M1, by computing first integrals for the flow.

Lemma 21. The evolution in M1 of

dλ,µ,h,k = (λe35, he35 + ke15, 0, (−λe2 + he1 + µe3) ∧ e5, 0)
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leaves the following sets invariant:

O1 = {k = 0 = h = λ},

O
A
2 =

{

h = 0, λ = 0,
(µ− k)4

µ3k3
= A

}

,

O
AP
3 =

{

k = 0,
(µ2 + 4(h2 + λ2))2

(h2 + λ2)3
= A, [h : λ] ≡ P ∈ RP

1

}

,

O
AB
4 =

{

h = 0,
(λ2 + 3k2 +Bk2λ)3

k4λ4
= A,µ =

1

3k
(−2λ2 + 3k2 +Bk

2
λ)

}

,

O
AB
5 =

{

λ = 0, µ =
Ah4

k5
+

h2

k
,Bh

3
k
2 + h

2
k
4 − Ah

4 + k
4 = 0

}

,

O
ABC
6 =

{

Bλ(3h2 + λ
2 + Ahλ)2 − 3h3(Cλ−B)2 = 0, µ =

h2 − λ2 − 1
3
Ahλ

k
, k

4 =
Bh3

3λ

}

.

Moreover every periodic orbit is contained in some OA2 or OAB4 .

Proof. We compute

dω2 = (he1 + µe3) ∧ e52 − e4 ∧ (he35 + ke15) = e5 ∧ (−he12 + µe23 + he34 + ke14),

dω3 = λe354 − e1 ∧ (−λe2 + µe3) ∧ e5 − ke135 = e5 ∧ (−λe34 + λe12 − µe13 − ke13).

Therefore the components of the intrinsic torsion can be given by

β = 0, f = 0, ω− = 0, (σ−
2 )a = −h/2, (σ−

2 )c =
k − µ

4
, g =

k + µ

2
,

(σ−
3 )a = λ/2, (σ−

3 )b = −µ+ k

4
.

The induced infinitesimal gauge transformation determined by the hypo evolution
flow is given by

X̂dλ,µ,h,k
=













1
2k 0 1

2h − 1
2λ 0

0 − 1
2k − 1

2λ − 1
2h 0

1
2h − 1

2λ
1
2µ 0 0

− 1
2λ − 1

2h 0 − 1
2µ 0

0 0 0 0 1
2k +

1
2µ













.

Thus

X̃dλ,µ,h,k
= µ∗e(X̂(dλ,µ,h,k))dλ,µ,h,k =

(

−3

2
λµe35 + λ2e25 − λe15h,

− 3

2
k2e15 +

1

2
kλe45 − 3

2
µe35h− 3

2
ke35h− 1

2
kµe15 + λe25h− e15h2,−1

2
kλe15,

3

2
λµe25 − λ2e35 − 3

2
µe15h− 3

2
ke15h− 1

2
kµe35 − 3

2
µ2e35 − e35h2, 0

)

.

This vector field is not tangent to M1. However, we can project to a vector that is
tangent to the family by using the SU(2)-invariance: indeed, adding an appropriate
element in µ∗e(su(2))dλ,µ,h,k, we obtain

(

−λµe35,−1

2
(3k2 + kµ)e15 − (2kh+ µh)e35, 0,

− 1

2
(4λ2 + kµ+ 3µ2 + 4h2)e35 + λµe25 − (2kh+ µh)e15, 0

)

.
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We conclude that evolution in M1 is given by



















λ′ = −µλ
h′ = −µh− 2hk

k′ = − 1
2µk − 3

2k
2

µ′ = − 3
2µ

2 − 2h2 − 2λ2 − 1
2µk

The only critical point is the origin. In order to describe the other orbits, we make
use of certain first integrals that were found by trial and error using a computer. A
posteriori, it is straightforward to verify that the following rational functions are first
integrals on their domain of existence:

h2 − λ2 − kµ

hλ
,

k4λ

h3
,

k2(6h2 − 2λ2 − 3µk + 3k2)

h3
.

The invariant set OABC6 is obtained by assuming k 6= 0 and setting these functions
equal to A/3, B/3 and C respectively.

More than these three first integrals, what is relevant is the field extension of
R they generate. This field also contains rational functions that are defined on the
invariant hyperplane h = 0. Indeed, an alternative description of the same curves,
also valid for h = 0, can be obtained by setting

A =
h2 − λ2 − kµ

(kλ)4/3
, B =

h3

k4λ
, C =

6h2 − 2λ2 − 3µk + 3k2

k2λ
.

Then

µk = −A(kλ)4/3 + (Bk4λ)2/3 − λ2,

Ck2λ = 3(Bk4λ)2/3 + λ2 + 3A(kλ)4/3 + 3k2.

For B = 0, up to renaming the constants, we obtain the family denoted in the
statement by OAB4 .

Similarly, we can describe the orbits contained in {λ = 0} by the two first integrals

−A =
k4(h2 − µk)

h4
, −B =

k2(2h2 − µk + k2)

h3
.

This description gives rise to the curve

µ =
Ah4

k5
+
h2

k
, Bh3k2 + h2k4 −Ah4 + k4 = 0,

denoted in the statement by OAB5 .
In the invariant hyperplane {k = 0}, the evolution equations imply h′/h = λ′/λ.

Assuming h, λ are not both zero, it follows that the point [h : λ] of RP1 does not vary
along orbits; equivalently, we can set

h = (cosB)s, λ = (sinB)s, s =
√

h2 + λ2,

where B is a constant. Assuming both µ and s are nonzero, we can use s as a new
variable, and compute explicitly

µ2 = −4s2 +Ks3,
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showing that (µ2 + 4s2)/s3 is a first integral. This is also true when µ = 0, so O3 is
indeed invariant.

Restricting now to the invariant plane {h = 0, λ = 0}, the evolution equations
become

{

k′/k = − 1
2µ− 3

2k

µ′/µ = − 3
2µ− 1

2k.

Up to a change of variable, we obtain

(k3µ−1)′

k3µ−1
= −k/µ, (kµ−3)′

kµ−3
= 1,

which can be solved explicitly, showing that (µ − k)4/(kµ)3 is a first integral. This
proves that OA2 is invariant.

Finally, the invariance of O1 is obvious.

The fact that all periodic orbits are contained in the families OA2 , O
AB
4 can be

deduced directly from the evolution equations by producing a quantity that varies
monotonously along the flow. Indeed, if kh 6= 0, then k2/h is monotonous. If k = 0,
then λ2+h2 is either monotonous or identically zero, in which case we are in O1, that
obviously contains no periodic orbit. If k 6= 0 and h = 0, we are in the families OA2 ,
OAB4 .

Having computed invariant curves for the flow, we can now give a more explicit
description of the orbits. This amount essentially to detecting the connected compo-
nents of the invariant curves appearing in Lemma 21.

Theorem 22. With respect to the hypo evolution of M1, all orbits are semi-

algebraic subsets of D and have at most one limit point, namely the unique critical

point d0,0,0,0 = 0; in particular, there is no periodic orbit. Orbits are mapped into

orbits by the transformations sending dλ,µ,h,k into

d−λ,µ,h,k, dλ,µ,−h,k, dλ,−µ,h,−k.

Up to these symmetries, the non-trivial orbits are

{h = 0 = k = λ, µ > 0}; {µ = k > 0, h = 0 = λ}; OA2 ∩ {µ > k,±k > 0}, A > 0;

OA2 ∩ {µ > k}, A < 0; OAP3 ∩ {h, λ ≥ 0}, A > 0, P ∈ RP
1;

OAB4 ∩ {k > 0, λ > 0}; OAB5 ∩ {h > 0, k > 0}, (A,B) 6= (0, 0);

and the connected components of OABC6 , B,C > 0. The latter can be parametrized as

λ(s) =
s3B2

s4B2 + 3+ABs2 +BCs3
, h(s) =

1

3
s2Bλ,

k(s) =
B

3

√

|s3λ|, µ(s) =
h2 − λ2 − 1

3Ahλ

k

where s ranges in any maximal interval in R∗ where the denominator of λ(s) is

nonzero.
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Proof. The only critical point is the origin, so all orbits are connected, smooth
immersed curves. Thus, we only need determine the connected components of the
invariant curves Oi. We have six cases to consider.

i) The invariant set O1 is a line containing the origin, so it contains three orbits,
all non-periodic, each with the origin itself as the unique limit point. The half-line
µ < 0 is obtained from the half-line µ > 0 by a symmetry.

ii) In order to study OA2 , introduce the variable s = µ− k. If A = 0 then s ≡ 0;
so there is no periodic orbit and the origin is the only limit point. Assume that A is
nonzero; then s 6= 0 on OA2 , so s > 0 and s < 0 define distinct components. Up to a
symmetry, we can assume s > 0. For each fixed s, we get the two points

µ = k + s, k =
1

2

(

−s±
√

s2 + 4A−1/3s4/3
)

.

So if A > 0, to each value of s correspond two points, one with k > 0 and the other
with k < 0. Therefore, OA2 contains two distinct orbits, both non-periodic with a
single limit point, namely the origin. On the other hand if A < 0, there are two
points over s if s2 > −64/A, and one point if equality holds. So in this case there is
a single orbit, non-periodic, with no limit points.

iii) We can rewrite OAP3 using the equation

µ2 =
√
Ar3 − 4r2, r2 = h2 + λ2;

this shows immediately that A has to be positive. Using the symmetries, we can
restrict to {h, λ ≥ 0}, which intersects OA3 in a single orbit, non-periodic, with no
limit points.

iv) Now consider ÕAB4 = OAB4 ∩ {k > 0, λ > 0}, defined by the equation

(λ2 + 3k2 +Bk2λ)3

k4λ4
= A,

that we rewrite as

k2(3 +Bλ)− k4/3(A1/3λ4/3) + λ2 = 0.

For fixed values of A,B, λ, by setting t = k2/3 we obtain a polynomial in t, namely

pABλ(t) = t3(3 +Bλ)− t2A1/3λ4/3 + λ2

which for short we rewrite as

p(t) = at3 + bt2 + c,

where c > 0. Assuming for the moment that a, b 6= 0, the Sturm sequence of p is

p, 3at2 + 2bt,
2

9

b2

a
t− c,−9ac

b
− 243a3c2

4b4
.

The number of positive roots can be computed using the Sylvester theorem (see e.g.
[3]). To that end, we compute the number ν(p, t) of sign changes of the Sturm sequence
evaluated at t; remembering that c > 0, we find

ν(p,+∞) = signchanges

(

a, 3a,
2

9

b2

a
,−9ac

b
− 243a3c2

4b4

)

= signchanges
(

1, 1, 1,−4b3 − 27a2c
)
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and

ν(p, 0) = signchanges

(

c, 0,−c,−9ac

b
− 243a3c2

4b4

)

= signchanges
(

1, 0,−1, a(−4b3 − 27a2c)
)

.

The number of positive roots of p equals ν(p, 0)−ν(p,+∞), by the Sylvester theorem;
when either a or b are zero, it can be determined directly. So there are the following
possibilities:

a > 0, b 6= 0,−4b3 − 27a2c > 0 =⇒ two positive roots,

a < 0, or a = 0, b < 0 =⇒ one positive root,

a > 0, b 6= 0,−4b3 − 27a2c = 0 =⇒ one positive double root,

and no positive root otherwise. Returning to the original variables, we have

−4b3 − 27a2c ≥ 0 ⇐⇒ (3 +Bλ)2

λ2
≤ 4

27
A.

We claim that ÕAB4 is either empty or connected. Indeed, for fixed A,B let

Sk = {λ > 0 | pABλ(t) has at least k positive roots}.

Then ÕAB4 has 2 points over each point of S2. If S2 is not empty, it is easy to check
that it is connected and its boundary contains exactly one λb ∈ R corresponding to a
double root. Hence, the part of the curve lying over S2 ∪{λb} is connected. Likewise,
S1 is connected. It follows that ÕAB4 is either empty or diffeomorphic to an interval.
So, it consists of a single non-periodic orbit.

By construction, the limit set is necessarily contained in some hyperplane λ ≡ λ0.
If λ0 6= 0, this hyperplane intersects each invariant set appearing in Lemma 21 in a
discrete set and contains no critical point. It follows that the limit set is contained in
λ ≡ 0. On the other hand, inside Õ4, if λ goes to zero then so do k and λ2/k. Since

µ =
1

3k
(−2λ2 + 3k2 +Bk2λ),

it follows that the only limit point is the origin.
v) Now consider the curve ÕAB5 = OAB5 ∩ {h > 0, k > 0}, defined by

Bh3k2 + h2k4 −Ah4 + k4 = 0.

We assume that A,B are not both zero, for otherwise k = 0. Solving in t = k2, we
find

t =
−Bh3 ± h2

√

(B2 + 4A)h2 + 4A

2(h2 + 1)
.

• If 4A ≤ −B2, there is no positive solution.
• If −B2 < 4A ≤ 0 and B > 0, there is no positive solution.
• If −B2 < 4A < 0 and B < 0, there are two positive solutions for h2 greater
than −4A/(B2 + 4A), and one when equality holds.

• If A = 0 and B < 0, there is one positive solution for all h > 0.
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• If A > 0, there is one positive solution for all h > 0.
We conclude that ÕAB5 is either empty or connected.

As for the limit set, it is contained in h = 0. By definition of ÕAB5 , k, h2/k go to
zero when h goes to zero. Hence, if A = 0, µ = h2/k also goes to zero, and the only
limit point is the origin. On the other hand if A > 0, then k2/h2 goes to

√
A when h

goes to zero, so µ goes to infinity and there is no limit point.
vi) We now turn to OABC6 , whose defining equation is

Bλ(3h2 + λ2 +Ahλ)2 − 3h3(Cλ −B)2 = 0.

Two of the symmetries in the statement have the effect of changing the signs of C, λ, h
and A,B, λ respectively. Thus we can assume C > 0 and B > 0.

Introduce a variable z = h
Bλ ; then z > 0 on OABC6 . We compute

λ2(3z2B2 + 1 +ABz)2 − 3B2z3(Cλ−B)2 = 0,

or equivalently

λ(3z2B2 + 1 +ABz)±
√
3Bz3/2(Cλ−B) = 0.

Setting s = ±
√
3z, we obtain

λ =
s3B2

s4B2 + 3 +ABs2 +BCs3
.

By construction, h = 1
3s

2Bλ; moreover, by definition of OABC6 we have

k4 =
1

81
B4s6λ2.

Up to a symmetry, we can impose that k > 0, and obtain the curve appearing in the
statement. It is now obvious that only the origin can be a limit point.

This concludes our study of the first family. Recall that the second family M2

consists of elements of the form

dx,y,h,k,λ,µ =
(

0, xe34 + λe35, 0, x(e14 − e23)− ye34 + λe15 − µe35,

−h(e14 − e23) + ke34 − xe15 + ye35
)

.

More precisely, M2 is an algebraic variety in D which can be described as the union

M2 =
⋃

l20=l1l2

M2,l, M2,l = {dx,y,h,k,λ,µ | (x, h, λ), (y, k, µ) ∈ l},

where l = [l0 : l1 : l2] is viewed as both a point in RP
2 and a line in R3.

Theorem 23. With respect to the hypo evolution of M2, all orbits are semi-

algebraic subsets of M2 and have at most one limit point, namely the unique critical

point d0,...,0 = 0; in particular, there is no periodic orbit. Orbits are mapped into

orbits by the transformations sending dx,y,h,k,λ,µ into

d−x,y,−h,k,−λ,µ, dx,−y,h,−k,λ,−µ, d−x,−y,h,k,λ,µ.
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Up to these symmetries, the non-trivial orbits are

OAl =
{

dx,y,h,k,λ,µ ∈ M2,l | (h+ λ)3 = A((µ+ k)2 + 4(h+ λ)2), x, y, h, λ, k, µ > 0
}

,

A > 0;

Ol = {dx,y,h,k,λ,µ ∈ M2,l | x = 0 = h = λ, y, k, µ ≥ 0, (k, µ) 6= (0, 0)} ;

where l varies among points of the quadric l20 = l1l2.

Proof. Proceeding as in Lemma 21, we compute

X̂dx,y,h,k,λ,µ
=













0 0 1
2λ+ 1

2h 0 0
0 0 0 − 1

2λ+ 1
2h x

1
2λ+ 1

2h 0 − 1
2k − 1

2µ 0 0
0 − 1

2λ+ 1
2h 0 − 1

2k +
1
2µ −y

0 x 0 −y 1
2k − 1

2µ













.

The resulting ODE is







































x′ = x(µ+ k)

λ′ = λ(µ+ k)

h′ = h(µ+ k)

µ′ = 2λ(h+ λ) + 3
2µ(µ+ k)

y′ = 2x(h+ λ) + 3
2y(µ+ k)

k′ = 2h(h+ λ) + 3
2k(µ+ k).

Critical points are given by the subspace {µ + k = 0, h + λ = 0}, which intersects
M2 only in the origin. It is also easy to verify that each M2,l is invariant under the
flow, and that the symmetries appearing in the statement map orbits into orbits. By
construction µk and hλ are non-negative; using [x : h : λ] = [y : k : µ], we can assume
up to symmetry that all parameters are non-negative.

In order to determine the integral lines, consider the associated two-dimensional
system

{

(h+ λ)′ = (h+ λ)(µ + k)

(µ+ k)′ = 2(h+ λ)2 + 3
2 (µ+ k)2

which has only the origin as a critical point. Outside of the origin, a first integral is
given by

(h+ λ)3

(µ+ k)2 + 4(h+ λ)2
≡ A.

Since h+ λ ≥ 0, necessarily A ≥ 0. If A = 0, we find the orbit Ol. Otherwise, A > 0
and the orbit is contained in OAl; writing

µ+ k = (h+ λ)

√

h+ λ

A
− 4,

we see that OAl is connected, so it coincides with the orbit. It is clear that the only
limit point is the origin.
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We now come to the last family M3, whose general element has the form

dλ,µ =
(

0, 0, 0, 0, (λ+ µ)e12 + (λ − µ)e34
)

.

Theorem 24. With respect to the hypo evolution of M3, all orbits are semi-

algebraic subsets of M3 and have at most one limit point, namely the unique critical

point d0,0 = 0; in particular, there is no periodic orbit. Orbits are mapped into orbits

by the transformations sending dλ,µ into

d−λ,µ, dλ,−µ.

Up to these symmetries, the non-trivial orbits are

{µ = 0, λ > 0};
{

(λ2 − µ2)3 = Aµ4, λ, µ > 0
}

, A ≥ 0;
{

(λ2 − µ2)3 = Aµ4, µ > 0
}

, A < 0.

Proof. At dλ,µ, the intrinsic torsion is

β = 0, f = λ, g = 0, ω− = µ(e12 − e34), σ−
k = 0.

So

X̂d = diag

(

−1

2
(µ+ λ),−1

2
(µ+ λ),

1

2
(µ− λ),

1

2
(µ− λ), λ

)

.

Hence

X̃dλ,µ
=
(

0, 0, 0, 0, (µ2 + 2λ2)(e12 + e34) + 3λµ(e12 − e34)
)

.

The resulting equations are

λ′ = µ2 + 2λ2, µ′ = 3λµ.

It is easy to see that the only critical point is the origin. Moreover the invariant set
{µ = 0} contains two other orbits, namely the half-lines ±λ > 0.

When µ2 − λ2 > 0, we can reduce to the case of M2 by

k = 2λ, h =
√

µ2 − λ2;

by Theorem 23, h3/(k2 + 4h2) is a first integral, which in terms of λ and µ gives

(λ2 − µ2)3µ−4;

one can check directly that this is a first integral on all of µ 6= 0. Up to the symmetries,
we can assume that µ > 0. Writing the curve as

λ2 = µ4/3(A+ µ2/3),

we see that it has two connected components in the half-plane µ > 0 if A ≥ 0, and
one otherwise. In the first case, we can use the symmetries and assume λ > 0.

The facts that all orbits are non-periodic and that the only limit point is the
origin are now obvious.
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Remark. The non-existence of periodic orbits can also be seen as a consequence
of the Cheeger-Gromoll splitting theorem (see [2]). Indeed a periodic orbit gives a
solution to the evolution equations defined on all of R, meaning that the 6-manifold is
complete and contains a line; by the Cheeger-Gromoll splitting theorem, this means
that it is a product. Then the Weingarten tensor −QPt

is zero: this implies that the
orbit consists of a single point.

Remark. Multiplication by a scalar in D amounts to a change in time scale
in terms of the evolution flow, and an overall scale change in terms of the resulting
six-dimensional metric. One could therefore eliminate one parameter and consider
these metrics up to rescaling. The disadvantage of doing so would be losing track of
the relations between the orbits.

7. Examples. In this section we show with examples that the classification of
orbits in terms of D is sufficient to determine the geometric properties of the corre-
sponding 6-dimensional metrics.

Example 1. In this first example we consider the orbits Ol in M2, and show
how the corresponding one-parameter family of SU(2)-structures on the Lie algebra
(0, 0, 0, 0, 12) can be recovered.

The generic element of Ol has the form

dy,k,µ =
(

0, 0, 0,−ye34 − µe35, ke34 + ye35
)

, y2 = kµ.

We parametrize Ol by setting

µ = s cos2 θ, k = s sin2 θ, y = s sin θ cos θ,

where s = µ+ k and θ is in [0, π/2). Then

ds,θ =
(

0, 0, 0,−s sinθ cos θe34 − s cos2 θe35, s sin2 θe34 + s sin θ cos θe35
)

.

From the evolution equations s′ = 3
2s

2; up to time translation, this gives

s =
2

1− 3t
.

By the calculations in the proof of Theorem 23,

X̂d(t) =
1

1− 3t













0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 cos 2θ − sin 2θ
0 0 0 − sin 2θ − cos 2θ













.

The eigenspaces of this matrix do not depend on t; in particular, setting

E(t) = cos θ e4(t)− sin θ e5(t), F (t) = sin θ e4(t) + cos θ e5(t),

we find

E′(t) =
1

1− 3t
E(t), F ′(t) =

−1

1− 3t
F (t),

hence

E(t) = (1− 3t)−1/3E(0), F (t) = (1− 3t)1/3F (0).
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Similarly, we compute

e1(t) = e1(0), e2(t) = e2(0), e3(t) = (1− 3t)1/3e3(0).

Now observe that F (0) is closed and dE(0) = −2e3(0) ∧ F (0). Thus, up to an
automorphism we can assume

η1 = F (0), η2 = 2e3(0), η3 = e1(0), η4 = e2(0), η5 = E(0).

Then

e1(t) = η3, e2(t) = η4, e3(t) =
1

2
(1− 3t)1/3η2

e4(t) = cos θ(1 − 3t)−1/3η5 + sin θ(1 − 3t)1/3η1

e5(t) = − sin θ(1 − 3t)−1/3η5 + cos θ(1− 3t)1/3η1.

In terms of the defining forms (α, ωi), the corresponding one-parameter family of
SU(2)-structures is given by

α(t) = − sin θ(1− 3t)−1/3η5 + cos θ(1 − 3t)1/3η1

ω1(t) = η34 +
1

2
cos θη25 − 1

2
sin θ(1 − 3t)2/3η12

ω2(t) = −1

2
(1− 3t)1/3η23 − cos θ(1 − 3t)−1/3η45 + sin θ(1 − 3t)1/3η14

ω3(t) = cos θ(1 − 3t)−1/3η35 − sin θ(1− 3t)1/3η13 − 1

2
(1− 3t)1/3η24.

One can easily verify that the evolution equations are indeed satisfied.

Remark. In this special case the infinitesimal gauge transformation has constant
eigenspaces, which is why the evolution has a “diagonal” form. The other orbits with
this property are those contained in O1, O

A
2 (whose corresponding metrics are studied

in [7]) and M3.

Example 2. This example shows that it is not necessary to integrate the in-
finitesimal gauge transformation in order to determine whether the 6-dimensional
metric corresponding to an orbit is reducible or its holonomy equals SU(3).

Given a solution of the hypo evolution equations on a Lie algebra g, let gt be
the underlying one-parameter family of metrics on g; let Ωt ∈ Λ2g∗ ⊗ so(5) be the
corresponding one-parameter family of curvature forms. Let g be the corresponding
generalized cylinder metric on G × (a, b); by the holonomy condition, the curvature
form at (e, t) is a map

Ωt : Λ
2(g⊕ R) → su(3),

and by invariance the one-parameter family of forms Ωt determines the curvature of
g.

By the last remark of Section 3, QPt
coincides with minus the Weingarten tensor;

denoting by

Ω5
t : Λ

2
R

5 → so(5)
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the curvature forms of the five-dimensional metrics gt, the Gauss equation gives

(18) Ωtang
t = Ω5

t −
∑

i,j

QPt
(ei) ∧QPt

(ej)ei ⊗ ej ,

where the tangential part Ωtang
t of g is related to Ωt by the diagram

Λ2(g⊕ R)
Ωt // so(6)

iT

��
Λ2g

i

OO

Ωtang
t // so(5)

.

By the Bianchi identity Ωt is symmetric. Hence

Im (Ωt ◦ i)⊥ = ker iT ◦ Ωt = kerΩt,

where we have used the fact that ImΩt ⊂ su(3) and iT : su(3) → so(5) is injective. It
follows that

dimΩtang
t = dim ImΩt ◦ i = dim ImΩt.

By the Ambrose-Singer theorem the metric has holonomy equal to SU(3) if and only
if Ωtang

t has rank 8 for some t.
For example, in the case of M3, it follows easily from (18) that the image of Ωtang

t

is spanned by

1

2
e34(λ2 − µ2) + (λ + µ)2e12, e24(λ2 − µ2) + e13(λ2 − µ2),

−e14(λ2 − µ2) + e23(λ2 − µ2), e15(3λ2 + 4µλ+ µ2), e25(3λ2 + 4µλ+ µ2),

1

2
e12(λ2 − µ2) + e34(λ− µ)2, e35(3λ2 − 4µλ+ µ2), e45(3λ2 − 4µλ+ µ2).

Thus, the image is 8-dimensional if and only if

(19) 3λ2 + µ2 6= ±4µλ, λµ(λ2 − µ2) 6= 0.

It follows that the orbits on which λ = µ and µ = 0 do not give rise to irreducible
six-dimensional metrics. On the other hand, if

(λ2 − µ2)3 = Aµ4, λ, µ > 0, A 6= 0,

the inequalities (19) are generically satisfied. Hence the six-dimensional metric has
holonomy equal to SU(3) in this case.

This can also be verified directly by integrating the metric as in the first example.
For instance, if A = −1, setting

s = arsinhλµ−2/3,

whence

µ = (cosh s)3, λ = sinh s cosh2 s, s′ = (cosh s)−3,
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one finds a metric on G × (0,+∞), where G is the Lie group with Lie algebra
(0, 0, 0, 0, 12+ 34) and an orthonormal frame is given by

1

cosh s
√
1 + tanh s

η1,
1

cosh s
√
1 + tanh s

η2,
√
1 + tanh s η3,−

√
1 + tanh s η4,

cosh s η5, dt =
1

cosh3 s
ds.

8. Completeness. In this section we show that our metrics cannot be extended
in a complete way, except in the trivial case. In other words, we prove that every
complete manifold with an integrable SU(3)-structure preserved by the cohomogeneity
one action of a five-dimensional nilpotent Lie group is flat. The proof depends on the
results of Section 6 in an essential way.

Let G be a 5-dimensional Lie group acting with cohomogeneity one on a complete
manifold M with an integrable SU(3)-structure; assume that the action preserves
the structure. Let c(t) be a geodesic orthogonal to principal orbits. Then the map
(g, t) → gc(t) defines a local diffeomorphism; the pullback to G×I, with I an interval,
defines an integrable SU(3)-structure, and therefore a one-parameter family of left-
invariant hypo structures on G satisfying the hypo evolution equations. In particular
the metric defines an integral curve in D defined on the interval I; conversely, an
integral curve in D defines a cohomogeneity one metric on some product G× I.

If all orbits are five-dimensional, then one can assume I = R; this means that the
one-parameter family of SU(2)-structures is defined on all of R. Otherwise there is
an orbit of dimension less than five, called a singular special orbit. Since the action
preseves a Riemannian metric, about a singular special orbit M has the form

G×H V,

where H is the special stabilizer and V its normal isotropy representation (see e.g.
[4]). In this case, the interval I has a boundary point b ∈ R, with c(b) lying in the
singular special orbit; we shall say that the metric defined by the integral curve in D
extends across b with special stabilizer H .

We can now state the main result of this section.

Theorem 25. There are no singular special orbits on any six-manifold with an

integrable SU(3)-structure preserved by the cohomogeneity one action of a nilpotent

Lie group of dimension five.

Notice that M is not required to be complete in this theorem; if one adds this
assumption, the following ensues:

Corollary 26. Let M be a complete six-manifold with an integrable SU(3)-
structure preserved by the cohomogeneity one action of a nilpotent Lie group of di-

mension five. Then M is flat.

Proof. By Theorem 25, all orbits are five-dimensional. Consequently, the map

G× R →M, (g, t) → gc(t)

is a local diffeomorphism, and the SU(3)-structure can be pulled back. We can there-
fore assume M = G× R.

The geodesic c(t) = (e, t) is a line on M = G × R; by the Cheeger-Gromoll
theorem, the metric on M is a product metric. This means that X̂ preserves the
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metric: so it is both symmetric and antisymmetric, hence zero. So the evolution is
trivial, and the defining forms α(t), ωi(t) are constant in time and closed. This implies
that G is Ricci-flat, hence flat; so the product G× R is also flat.

Remark. In the proof of the corollary we used a covering map to avoid consider-
ation of the exceptional special orbits, namely those about which the cohomogeneity
one manifold has the form

G×H R,

with H a discrete subgroup of G acting non-trivially and orthogonally on R. On the
other hand, one can verify directly that the existence of an exceptional orbit implies
that the metric is flat, even without assuming completeness. Indeed, the correspond-
ing one-parameter family of SU(2)-structures on G is H-invariant at time zero (corre-
sponding to the exceptional orbit), and therefore H-invariant for all time, because the
evolution equations preserve invariance. This implies that the one-parameter family
of SU(2)-structures is invariant under t→ −t, so by (5) the defining forms are closed
at t = 0. Thus, the evolution is trivial, and the resulting metric is flat.

In order to prove Theorem 25, we will need two lemmas.

Lemma 27. Suppose M has an SU(3)-structure preserved by the cohomogeneity

one action of a nilpotent five-dimensional Lie group G. Then the Lie algebra of each

stabilizer is either trivial or an ideal of g isomorphic to R.

Proof. Let H be the stabilizer of p ∈ M ; if H is discrete, there is nothing to
prove.

Otherwise, Gp is a singular special orbit with a neighbourhood of the formG×HV ,
where

TpM = Tp(Gp)⊕ V

is an orthogonal direct sum and H acts on V via the isotropy representation. Then
H acts on V with cohomogeneity one and discrete stabilizer. Moreover H acts tran-
sitively on a sphere, so it is a nilpotent Lie group that covers a sphere, and therefore
necessarily isomorphic to R or S1. Let X be a generator of its Lie algebra h. As
representations of H ,

Tp(Gp) ∼=
g

h
,

which therefore has an invariant metric. Since the action of H on the first factor is
induced by the adjoint action, adX is both nilpotent and antisymmetric, therefore
zero. It follows that h is an ideal of g.

Lemma 28. Let σ : I → D be a maximal integral curve for the hypo evolution

flow, and assume the induced cohomogeneity one metric extends across the boundary

point b of I with special stabilizer H. Suppose that W ⊆ R5 is a linear subspace

invariant under X̂σ(t) for all t. Then either

∫ b

t0

tr((X̂σ(t))|W = −∞, h ⊂W ; or

∣

∣

∣

∣

∣

∫ b

t0

tr((X̂σ(t))|W

∣

∣

∣

∣

∣

< +∞, h 6⊂W.
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Proof. By construction the metric on G ×H V pulls back to a time-dependent
symmetric tensor g on G, which degenerates at t = b, and satisfies

g′(t) = X̂σ(t)g(t).

Because X̂σ(t) is symmetric it also leaves W⊥ invariant; this implies that W stays

orthogonal to W⊥ for all t, and

(g′(t)|W ) = X̂σ(t)|W g|W (t).

The determinant of g(t)|W satisfies

(det g(t)|W )′ = tr(X̂σ(t)|W ) det g|W (t),

so for any fixed t0 in I,

det g|W (b) =

(

exp

∫ b

t0

tr(X̂σ(t)|W )dt

)

det g|W (t0).

It suffices now to observe that det g|W (b) may not be infinite, and it is zero if and
only if W contains h.

This lemma will be mostly used in the case that W is one-dimensional, i.e. that
X̂ has an eigenvector not depending on t, and W = R5, in which case necessarily
h ⊂W .

Proof of Theorem 25. LetM be as in the statement, and supposeM has a singular
special orbit; then there is a maximal integral curve σ : I → D whose associated
metric extends across a boundary point b of I with special stabilizer H . Because
the symmetry group is nilpotent, by Theorem 15 we can assume up to U(2) action
that the integral curve is contained in one of the families M1, M2 and M3. We will
discuss each case separately.

For M1, observe that by the proof of Lemma 16

tr X̂σ(t) =
1

2
(µ(t) + k(t)).

So by Lemma 28 applied to W = R5, necessarily

∫ b

t0

(µ+ k)dt = −∞.

Applying the same lemma to W = Span {e5}, we see that h is spanned by e5. By
Lemma 27, it follows that e5 is in the center of g, and by definition of M1 this is
equivalent to

λ = h = k = µ = 0.

However, this condition implies that the integral curve is constant and defined on all
of R, which is absurd.

In the case of M2, the explicit formulae appearing in the proof of Theorem 23
give

tr X̂σ(t) = −1

2
(µ+ k).
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So, applying Lemma 28 to W = R5,

∫ b

t0

−(µ+ k)dt = −∞.

Applying Lemma 28 to W = Span {e1, e3}, we see that h is contained in W . By
Lemma 27, h is a one-dimensional ideal. This gives rise to two possibilities:

i) If x = λ = y = µ = 0, we can apply Lemma 28 to Span {e5}, which is a
constant eigenspace with eigenvalue k/2, and reach a contradiction.

ii) If

x = h = λ = 0,

the integral curve is some Ol in M2. Even without using the explicit expression of
the metric appearing in Section 7, one can compute

µ(t) =
µ(0)

1− 3
2 t
, k(t) =

k(0)

1− 3
2 t
.

Therefore the interval of definition is (−∞, 23 ). Now we observe that X̂ has constant
eigenvectors with eigenvalues 0 and ± 1

2 (k + µ). Therefore

∫ 2/3

t0

µ+ k = +∞

contradicts Lemma 28.

Finally, for M3 the trace of X̂σ(t) is −λ, so Lemma 28 applied to W = R5 gives

∫ b

t0

−λ = −∞.

On the other hand e5 is a costant eigenvector with eigenvalue λ, so applying Lemma 28
again gives a contradiction.

REFERENCES

[1] C. Bär, P. Gauduchon, and A. Moroianu, Generalized cylinders in semi-Riemannian and
spin geometry, Math. Z., 249 (2005), pp. 545–580.

[2] A. L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
Reprint of the 1987 edition.

[3] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry, volume 36 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)]. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by
the authors.

[4] G. E. Bredon, Introduction to compact transformation groups, Number 46 in Pure and
Applied Mathematics. Academic Press, 1972.

[5] D. Conti, Special holonomy and hypersurfaces, PhD thesis, Scuola Normale Superiore, Pisa,
2005.

[6] D. Conti, M. Fernández, and J. A. Santisteban, Solvable Lie algebras are not that hypo,
Transform. Groups, 16 (2011), pp. 51–69.

[7] D. Conti and S. Salamon, Generalized Killing spinors in dimension 5, Trans. Amer. Math.
Soc., 359 (2007), pp. 5319–5343.

[8] L. C. de Andrés, M. Fernández, A. Fino, and L. Ugarte, Contact 5-manifolds with SU(2)-
structure, Q. J. Math., 60 (2009), pp. 429–459.



320 D. CONTI

[9] N. Hitchin, Stable forms and special metrics, in “Global Differential Geometry: The Math-
ematical Legacy of Alfred Gray”, Contemp. Math., American Math. Soc., 288 (2001),
pp. 70–89.

[10] J. Lauret, A canonical compatible metric for geometric structures on nilmanifolds, Ann.
Global Anal. Geom., 30 (2006), pp. 107–138.
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