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WARPED PRODUCT EINSTEIN METRICS OVER SPACES WITH
CONSTANT SCALAR CURVATURE*

CHENXU HE', PETER PETERSEN?!, AND WILLIAM WYLIES$

Abstract. In this paper we study warped product Einstein metrics over spaces with constant
scalar curvature. We call such a manifold rigid if the universal cover of the base is Einstein or is
isometric to a product of Einstein manifolds. When the base is three dimensional and the dimension
of the fiber is greater than one we show that the space is always rigid. We also exhibit examples of
solvable four dimensional Lie groups that can be used as the base space of non-rigid warped product
Einstein metrics showing that the result is not true in dimension greater than three. We also give
some further natural curvature conditions that characterize the rigid examples in higher dimensions.
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1. Introduction. A () n + m)-Einstein manifold (M™, g, w) is a complete Rie-
mannian manifold, possibly with boundary, and a smooth function w on M satisfying:

Hessw = B(Ric —Ag)
m

(1.1) w > 0 on int(M),
w =0 on IM.
When m = 1, we make the additional assumption that Aw = —Aw.

(A, n + m)-Einstein metrics are also called m-Quasi Finstein manifolds and the
case where OM is empty was studied earlier in [CSW] and [KK]. We also studied this
equation in [HPW1] and showed that many of the results from these earlier works
generalize to the case where the boundary is non-empty.

The (A, n+m)-Einstein equation has a natural geometric interpretation. Namely,
if m > 1 is an integer, then (M™, g, w) is a (A, n + m)-Einstein manifold if and only
if there is a smooth (n + m)-dimensional warped product Einstein metric (with no
boundary) with base space M (see [HPW1, Proposition 1.1]). Thus we can study
warped product Einstein metrics by analyzing the (A, n + m)-Einstein equation on
the lower dimensional base space. While the motivation requires m to be an integer,
there is no reason to restrict to this case in any of our results. When m = 1, solutions
are also called the static metrics and have been studied thoroughly for their connection
to general relativity and the positive mass theorem [Co]. The equation is also closely
related to considerations in optimal transport [Vi] and comparison geometry[ WW].

Many Einstein metrics can be constructed as warped products. In fact the first
non-trivial example of an Einstein metric, the Schwarzschild metric, is a 4-dimensional
doubly warped product metric on R? x S2. In our context it can be viewed in two
ways, either as a (0,2 + 2)-Einstein metric on R?, or as a (0,3 + 1)-Einstein metric
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on [0, 00) x S2. Much more recently C. Bshm constructed interesting warped product
Einstein metrics on spheres and products of spheres. These examples give rotationally
symmetric (A, n + m)-Einstein metrics on hemispheres and spheres respectively when
n=3,4,5,6,7 (see [B61]). Also see [LPP, B62] for more examples.

The Bohm metrics are in contrast to the solutions to the analogous gradient Ricci
soliton equation,

Ric + Hessf = Ag.

There is a well known classification theorem of three dimensional gradient Ricci
solitons with A > 0 following from the works of Ivey[lv], Hamilton[Ha], and
Perelman([Per]. Thus the Béhm metrics show that there are more examples of
(A, 3 + m)-Einstein metrics than gradient Ricci solitons. It is then natural to ask
whether one can classify (A, 3 + m)-Einstein metrics under additional natural cur-
vature assumptions. Before we state our first result in this direction, we require a
definition.

DEFINITION 1.2. A (A, n + m)-Einstein manifold (M, g, w) is called rigid if it is
Einstein or its universal cover is a product of Einstein manifolds.

There is an explicit list of the possible rigid examples, in particular we will see
that there are at most two different Einstein constants in the product, one of which is
A, see Section 2. Our first result is that, in dimension three, constant scalar curvature
characterizes rigidity.

THEOREM 1.3. A (A, 3 4+ m)-FEinstein manifold with m > 1 has constant scalar
curvature if and only if it is rigid. In particular, if the manifold has no boundary,
then it is a quotient of S3, S? x R, R3, H? x R, or H? with the standard metrics.

REMARK 1.4. In [Se] H. Seshadri considered compact (A, 3+1)-Einstein manifold
where the total space admits a non-trivial circle action. Under certain further condi-
tions on the circle action, he showed that the total space is either the standard S* with

the base 3-disk D? or the Riemannian product S? x S? with the base [fg, g} x S2.

Note, on the other hand, that every (A, n+ 1)-Einstein metric has constant scalar

curvature. While constant scalar curvature may appear to be a strong assumption,
we also exhibit examples showing that this theorem is not true in higher dimensions.

THEOREM 1.5. For each m > 0, there are 4-dimensional solvable Lie groups with
left invariant (X, 4 + m)-FEinstein metrics that are not rigid.

REMARK 1.6. These examples are also in stark contrast to the gradient Ricci
soliton case, where all homogeneous gradient Ricci solitons are rigid. As m goes
to infinity these examples converge to a Riemannian product R x H3 where H is a
homogeneous (non-gradient) Ricci soliton, see Theorem 6.14.

REMARK 1.7. We also note that the left invariant metrics we construct on solvable
Lie groups are not solvsoliton metrics unless they are isometric to R x H or are rigid.

We are then led to the question of whether we can classify (A, n 4+ m)-Einstein
metrics with constant scalar curvature in higher dimensions under natural additional
assumptions. This problem is also addressed in [CSW] where it is shown that every
compact (A, n + m)-Einstein metric with constant scalar curvature which does not
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have boundary must be a trivial A-Einstein metric. They also show that when A =0
the metric must be Ricci flat, our next result is the extension of this result to the
non-empty boundary case.

THEOREM 1.8. Suppose (M, g,w) is a complete (0, n+m)-Einstein manifold with
constant scalar curvature, then (M,g) is either Ricci flat without boundary or it is
isometric to (F x [0,00), gr +dr?) where (F, gr) is Ricci flat and w = w(r) is a linear
function.

Classification theorems for gradient Ricci solitons with constant scalar curvature
were also considered by the last two authors in [PW3]. They show that a gradient
Ricci soliton is rigid if it has constant scalar curvature and all the sectional curvatures
in the direction of the gradient of the potential function are zero. Our next result
appears to be a stronger result for (A, n + m)-Einstein metrics.

THEOREM 1.9. Suppose (M, g,w) is a complete (\,n + m)-FEinstein manifold
with constant scalar curvature and X > 0(< 0). If Ric(Vw, Vw) < 0(> 0), then M is
isometric to the product R x N where N is a A-FEinstein manifold.

REMARK 1.10. It turns out that the assumption about Ricci curvature is equiv-
alent to the scalar curvature being bounded between n\ and (n — 1)A. Thus this
theorem can also be viewed as a generalization of Proposition 3.6 in [CSW] which
states that for A < 0 if the scalar curvature is constant then it is bounded below by
nA, and is equal to nA if and only if the metric is A-Einstein.

This theorem shows that only a limited number of rigid (A, n+m)-Einstein metrics
have vanishing sectional curvatures in the “radial” direction. This is in contrast with
the gradient soliton case where all rigid examples have vanishing radial curvatures.
Our next theorem is a characterization of all rigid (A, n+m)-Einstein metrics in terms
of scalar curvature and the sectional curvatures in the radial direction.

THEOREM 1.11. Suppose (M, g,w) is a complete simply connected non-trivial
(A, n + m)-FEinstein manifold with constant scalar curvature and A # 0. If the Rie-
mann curvature tensor does not grow exponentially, and the radial sectional curvature
satisfies

|Vw|2 9 .
(1.12) R(X,Vw,Vw,X) = o ()\\X| — Ric(X, X)) ,

then the manifold is rigid.

REMARK 1.13. We only need to assume the curvature growth condition in the
case when the fiber in the warped product construction is Ricci flat.

In [HPW1] we defined two natural tensors, P and (), which are modifications
of the Ricci tensor and the Riemann curvature tensor. The equation in (1.12) is
equivalent to the radial flatness of @, i.e., Q(X, Vw, Vw, X) = 0.

Theorem 1.11 also has the same corollary as the result in the gradient Ricci soliton
case. Note in the corollary below, we do not need the curvature growth assumption.

COROLLARY 1.14. If (M, g, w) is a complete simply connected non-trivial (A, n+
m)-Einstein manifold with harmonic curvature, then it is rigid.

The paper is organized as follows. We classify the rigid examples in Section 2. In
Section 3, we derive some identities for the tensors P and @ on (A, n + m)-Einstein
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manifolds with constant scalar curvature. In Section 4 we turn our attention to
proving the classification theorems. We first prove Theorems 1.8 and 1.9. Theorem
1.3, the three dimensional classification, is then an application of these two results. In
Section 5 we discuss Theorem 1.11 and in Section 6 we construct the non-rigid metrics
on solvable Lie groups. See [HPW4] for the further investigations in homogeneous
spaces.

Acknowledgment. The major part of this paper was done when the first author
was a visiting scholar at Department of Math, University of Pennsylvania. He would
like to thank the university for their hospitality.

2. Rigid examples. In this section, we give a classification of rigid (A, n + m)-
Einstein manifolds. First recall

DEFINITION 2.1. A (A, n + m)-Einstein manifold (M, g, w) is called rigid if it is
Einstein or its universal cover is a product of Einstein manifolds.

In the gradient Ricci soliton case, if the metric splits, then each factor is a gradient
soliton with the same value of A and none of them has to be trivial. However in the
(A\,n + m)-Einstein case if the metric splits, then there are at most two Einstein
constants and one factor is trivial.

LEMMA 2.2. Suppose (M, g,w) is a (A\,n + m)-Einstein metric such that the
metric splits as a product

(M, g) = (M1,91) x (M2, g2).
Then one of the manifolds, say (M1, q1), is a trivial (A, n1 + m)-Einstein manifold
with n; = dim M.

Proof. We write the (A, n + m)-Einstein equation in the (1,1)-tensor form:
Ric — —VVw = AL
w

The operator E — 2V gVw preserves the splitting of the metric (M,g) = (M; x
Ms, g1 + g2). Using the local coordinates 27 and writing Vw = o/9;, we have Vw =
X1 + Xy where X; is a vector field on M;, i = 1,2. Choose a fixed point (p,q) €
M x My, then on the submanifold {p} x M, we have

mVXs(x2) = w(p, x2)(Ricy, — AI).

Therefore if (Ma, g2) is not a A-Einstein manifold, then w(p, z2) does not depend on
the value of p, i.e., X; = 0, which implies (M1, g1) is a trivial (A, n1 + m)-Einstein
manifold. O

The non-trivial (A, n + m)-Einstein manifolds which are also Einstein were clas-
sified in [CSW] and extended to manifolds with boundary in [HPW1]. The Einstein
constant which is not A is given by

(n — 1)\ — scal

(2.3) p=

Note that in general p is a function on M as scalar curvature may not be constant.
All such examples are listed in the next proposition.
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TABLE 2.1
Non-trivial (A, n+m)-Einstein manifolds that are also Einstein. Here S*~! has Ricci curvature
n — 2, F is Ricci flat and N has Ricci curvature —(n — 2). The constant p is defined in equation

(3.9).
l M [ g [ w [ 2) [ » [ w |
-z, %] dr? w(r) = cos(r) 0 m—1
0, 00) dr? w(r)=r 0 0 m—1
0, c0) dr? w(r) = sinh(r) —m 0 m—1
(=00, 00) dr? w(r) =e" —m 0 0
(—o00, 00) dr? w(r) = cosh(r) —m 0 —(m —1)
D" dr? +sinZ(r)gen—1 w(r) = cos(r) n+m—1 n—1 m—1
[0,00) X F dr? 4+ gr w(r) =r 0 0 m— 1
[0,00) X N dr? + cosh?(r)gn w(r) = sinh(r) —(n+m—1) | —(n—1) m—1
(—o00,00) X F dr? + %" gr w(r) =e" —(n+m—1) | —(n—1) 0
H" dr? + sinh? (1) ggn—1 w(r) =cosh(r) | —(n+m—-1) | —(n—1) | —(m —1)

PROPOSITION 2.4. Suppose that (M, g,w) is a non-trivial (A,n + m)-FEinstein
manifold which is also Einstein, then up to multiples of w and g, it is isometric to
one of the examples in Table 2.1.

REMARK 2.5. The first five (A, 1 + m)-Einstein structures in dimension one can
be viewed as degenerate cases of the last five examples. For instance, in Example 8 if
N is a point, then we have Example 3.

Combining these two results allows us to easily classify all rigid (A, n+m)-Einstein
manifolds.

PROPOSITION 2.6. A non-trivial complete rigid (A\,n + m)-Einstein manifold
(M, g,w) is one of the examples in Table 2.1, or its universal cover M splits as

M - (Mlvgl) X (M2792)

w = (Ca U}g),

where ¢ is a constant, (My,g1) is a trivial (A\,n; + m)-Einstein manifold and
(Ma, g2, ws) is one of the examples in Table 2.1.

Proof. If M is Einstein, then by Proposition 2.4 it is one of the examples in
Table 2.1. Otherwise the metric splits as a product of Einstein manifolds and Lemma
2.2 implies that the potential function w also splits and one of the factors, M; have
constant potential function and Ricci curvature A. Now Ms is both Einstein and
(A, ng +m)-Einstein and so applying Proposition 2.4 again shows that My is in Table
2.1. 0

3. Preliminaries. In this section we collect the formulas from [KK], [CSW] and
[HPW1] which we will use later in the proof of the theorems. We apply some of these
identities to give a classification of the possible forms of w on a (A,n + m)-Einstein
manifold with m > 1 and constant scalar curvature. Finally we derive some properties
about the critical point set of w.

Recall from [HPW1] that for a (A, n-+m)-Einstein manifold with m # 1, we define

(n —1)A — scal
m—1

p(x) = , P =Ric—pg
and

2 —A
Q:R+—P®g+Lg®g
m m
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where R is the (0,4) Riemann curvature tensor, and for any two symmetric (0,2)-tensor
sand r, s ®r is the Kulkarni-Nomizu product defining a (0,4)-tensor

(sorX,Y,Z W)= - (r(X,W)s(Y,Z) + r(Y, Z)s(X,W))

N |

_% (r(X, 2)s(Y, W) + (Y, W)s(X, Z)).

Note that we use the convention for the Riemann tensor that makes R (X,Y,Y, X)
have the same sign as the sectional curvature of the plane spanned by X and Y. The
Kulkarni-Nomizu tensor is defined to be consistent with this choice.
Up to a dimensional constant, P can be viewed as the Ricci tensor associated
with @, i.e., if {E;};_, is an orthonormal frame, then
- n+m-—2
3.1 X, E ,E;)Y)=——P(X,Y).
(3.1) > QX BB Y) = I PXY)

Also note that the trace of P and p are related by the equation
(3.2) trP=(n—1A—(n+m—1)p.

When the scalar curvature is constant, p is constant on M and P is just the Ricci
tensor shifted by a constant multiple of the metric. In this case the formulas in [CSW]
and [HPW1] simplify significantly. The first set of formulas we will need involve P and
the derivatives of the scalar curvature. Recall that for a (A, n + m)-Einstein manifold
with m > 1,

%Vp = P(Vw)

mA1 Tseal, Vo) = (A — p)te(P) — | P|?

div(w™ ' P) = 0.

%A(scal) +

The first two equations are just formulas (3.11) and (3.12) in [CSW] rewritten in
our notation, for the third identity see Proposition 5.6 in [HPW1]. Note that
div(w™T1 P) = 0 is equivalent to

div(P) = _Wp(vw).

When the scalar curvature is constant these identities give us the following formulas.

PROPOSITION 3.3. Let (M, g,w) be a (A, n+m)-Einstein manifold with constant
scalar curvature and m > 1, then

P(Vw)=0
|P|? = (A — p)trP = constant.
div(P) = 0.

There are two important corollaries of these formulas which we will find useful.

COROLLARY 3.4 ([CSW], Proposition 3.6). Let (M, g,w) be a (A, n+m)-FEinstein
manifold with constant scalar curvature and m > 1, assume in addition that \ # 0,
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then the scalar curvature is bounded by nA and np. Moreover if scal = n\ or np, then
the manifold is Einstein.

Proof. From the equation |P|? = (A — p)trP, we have

2
scal

= (trP) ()\ - > - f%(scal — np)(nA — scal).

n

Then the statement follows easily. O

COROLLARY 3.5. Let (M, g,w) be a (A\,n+ m)-Einstein manifold with constant
scalar curvature and m > 1. If A > 0(< 0), then A—p > 0(<0).

Proof. Suppose that A < 0 and p < A, then by (3.2), tr(P) > 0. Then the formula
|P]?=(\—p)trP <0

shows that M is Einstein and p = A. However, this case never occurs in Table 2.1
with m > 1 so we have a contradiction.

A similar argument shows p— A < 0 if A > 0. In fact, constant scalar curvature is
not necessary for the conclusion in the A > 0 case, see Proposition 5.4 in [HPWI1]. O

The other set of formulas we will use involve the covariant derivatives of the
tensors P and @, and are proven as Proposition 6.2 in [HPW1].

% (VxP)(Y,Z) — (VyP)(X, Z))
(3.6) 1
(9o 9)(X,Y,Z,P(Vuw)).

=-QX,)Y,Z,Vw) — —
m
In the case of constant scalar curvature these give us the following identities.

PROPOSITION 3.7. Suppose (M,g,w) is a (A\,n + m)-Einstein manifold with
constant scalar curvature and m > 1, then

— ((VxP)(Y.2) = (Vy P)(X.2)) = — ((VxRic) (Y. Z) - (VyRic)(X, 2))
=-QX,Y, Z,Vw),
L @euP)X.Y) = — (L) (- P, Y)

n (%)2 g(P(X),P(Y)) + Q(Vw, X, Y, Vuw).

Proof. The first equation comes from combining the equation (3.6) with the fact
that P(Vw) = 0 and p is constant. The second equation then follows from combining
the first equation with the following formula

(VxP)(Vw,Y) = P(VxVuw,Y) = %P ((Ric — A[)(X),Y)
= ZP((P+(p=ND(X),Y),

where we have assumed that X and Y are arbitrary parallel fields. O

We obtain the following corollary from considering the last identity at a critical
point of w.
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COROLLARY 3.8. If Vw vanishes at p € M, then
Po(P—(A—p)I)=0.
The other very important formula we will utilize is the identity from [KK] which
states that
(3.9) wAw + (m — 1)|Vw|? + Aw? = p = const.
By tracing the (A, n + m)-Einstein equation, we also have
Aw =" (scal — n)) .
m
Letting fi = 5 after a calculation the equation (3.9) then becomes

A=p

m .

(3.10) i = kw® + |Vw|?, where k=

Since k is constant when the scalar curvature is constant this tells us that the only
possibilities for the form of the function w are the functions appearing in the rigid
examples.

PROPOSITION 3.11. Suppose (M, g, w) is a non-trivial (A, n + m)-Einstein man-
ifold with constant scalar curvature and m > 1.

o If k>0, then i >0 and
_E 7
w= \/;cos (\/Er) ,
for a distance function 7.

o Ifl:c =0, then i > 0 and w = \/fir for a distance function r.
o [fk <0, then the general form of w is

w = Cq exp (\/—7’57“) + Cyexp (—\/—7]}7*)
where r s a distance function. More specifically we can express this as
w = exp (\/j/%r) , when o =0,
w = \/gcosh (\/—7]57“) , when i <0,

w = Hsinh (\/TET) , when i > 0.

REMARK 3.12. Note that Corollary 3.5 shows that k& and \ always have the same
sign.

Proof. Recall that a distance function is simply a smooth function whose gradient
always has unit length. The proof uses the equation

kw? + |[Vw|® = 4.
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When k£ = 0 and i > 0 we note that % is a distance function.
When fi = 0 and k < 0 the function log \/% is a distance function.

When k > 0 we note that i > 0 and we can rewrite the formula as

showing that Vk arccos ( W > is a distance function.

Finally when k& < 0 there are two cases depending on the sign of ji. The formula
is then rewritten as

[Vw|?

i

2
) + w?

when i > 0, or
Vol

when i < 0. And we get the specific expression using arcsinh or arccosh. O

| =

Finally in this section we discuss two propositions about the critical point set of
w that will be used in the proof of Theorem 1.11.

PROPOSITION 3.13. Suppose (M, g,w) is a (A\,n + m)-Einstein manifold with
constant scalar curvature and the set of critical points of w is non-empty. Then all
connected components have the same dimension. Furthermore let N be a connected
component, then normal vectors to N are 0 eigenvectors for P and tangent vectors
are (A — p) eigenvectors for P.

Proof. There are only two nontrivial cases where w has critical points
w = C cos (\/Zr) , or w=Ccosh (\/ —Er) .

By scaling we can further assume that C' = 1 and additionally that N' C {r = 0}.
We know that at N
n—1—1

Ar=———=+0(1).

Thus

Aw = (=kr + 0 (r%)) (”‘l‘l +0 (1)) +(=k+0 (%)

=—k(n—10)+0(r).

r

The (A, n + m)-Einstein equation gives us

w w
Aw = E(scal—n)\)— E(trP—n()\—p)).
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So at N we have

1
~ (trP — _ - _ _
—(trP —n(A—p))=—k(n-1)
showing that
trP=—A—p)(n—=0D+nA—p)=1(A—p).
Corollary 3.8 implies that at N

Po(P—(\—p)I)=0.

Thus 0 and A\ — p are the only possible eigenvectors at N. Since % converges to

normal vectors to N it follows that any normal vector to N is a 0 eigenvector for P.

As
trP=1(\—p)

the tangent vectors to N must be A\ — p eigenvectors for P. O

PROPOSITION 3.14. Suppose a (A, n + m)-Finstein manifold (M, g, w) satisfies
the following identity

Po(P—(\A—=p))=0

everywhere on M, then for N, the set of critical points of w, we have
1. N is totally geodesic.
2. VP vanishes at N.

Proof. The equation
mVVw=w(P—(A—p)I)
at N reduces to a soliton type equation
mVVw =P —(A—p)l.
In addition we also have from Proposition 3.7 that at V
0= —QUX.Y.Z V) = = (VxP)(Y.2) ~ (Vy P)(X. 2)).

First we show that IV is totally geodesic. Let Y be a normal vector field to N and X
be a tangent vector field. Thus

PY)=0 VyVw=kY
PX)=(A-p)X  VxVw=0.

Using that the only eigenvalues for P are 0 and A — p we can extend X,Y such
that they remain eigenfields for P. In particular

—P(VxY) = (VxP)(Y) = (Vy P) (X) = (A= p) Vy X — P(Vy X).
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Then from the soliton equation we see that

A=p)g(VxY,X)=P(VxY,X)— mHessw (VxY,X)
— P(VxV,X)
— P(VyX,X) — Ag(Vy X, X)+ pg (Vy X, X)
= mHessw (Vy X, X)
=0.

So the second fundamental form vanishes and N is totally geodesic.
Next we show that P is parallel at N. We show that

VXPZO and VyP:O,

where X is tangent to NV, and Y is normal to N.
To show the first we evaluate on X’ € TN and Y’ normal to N. Since

PXY=MA—-p) X' and PY')=0
we obtain

(VxP)(X')=(A=p) VxX' = P(VxX'),
(VxP)(Y')=—P(VxY').

Both of these expressions vanish as IV is totally geodesic.
For the second case use Proposition 3.7 again to obtain:

Y (VeuP)(2) =~ (2) (O~ )T~ P) P)(Z) +Q(2,Vw) Vu
=Q(Z,Vw)Vuw.
Dividing by |Vw| then yields
w Vw
E(Vlg;ﬁlp)(z) =Q(Z,Vuw) w

and supposing that

Yw
[Vl

as we approach N we obtain

——VyP =0
m

as desired. O

REMARK 3.15. If a (A\,n + m)-Einstein manifold satisfies the radial @ flatness
condition (1.12), then we will show that the P tensor satisfies the equation in Propo-
sition 3.14.
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4. Proof of Theorem 1.3, 1.8, and 1.9. In this section we will discuss the
proofs of theorems 1.3, 1.8, and 1.9. The easiest to prove is Theorem 1.8 which is the
classification in the A = 0 case. It already follows directly from the formulas in the
past section, and is the same argument as in [CSW].

Proof of Theorem 1.8. Since the scalar curvature is constant and A = 0, from
Proposition 3.3 we have

1

—tr(P
1P

p==

|P|? = —ptr(P) = (trP)>.

n+m-—1
The second identity above and the Cauchy-Schwarz inequality n|P|? > (tr(P))2 imply
that

_ P))?% > P))?.

I (@(P) 2 ((P)
So we have tr(P) = 0 as m > 1. It follows that p = 0 and then |P|? = 0. Hence
Ric = pg and the result follows from the classification in Proposition 2.4. O

Next we turn our attention to Theorem 1.9. Before the proof we give two corol-
laries that follow from combining the theorem with some of the other results we have
already discussed.

COROLLARY 4.1. Let (M, g,w) be a (A, n + m)-FEinstein manifold with constant
scalar curvature and m > 1. If A > 0, then

0<p<A
and if A < 0, then
0=>p>A

Moreover, in either case, p = X if and only if A = 0 and the metric is rigid, and p =0
if and only if M = N x R where N is a A-Einstein metric.

Proof. In Corollary 3.5 we already saw that A > p when A > 0 and that A < p
when A < 0. To see the rigidity statement for this side of inequality, note that if A = p,
then k = 0 and then we get rigidity by combining Proposition 3.11 and Theorem 1.8.

The other inequality is equivalent to Theorem 1.9. To see this note that, since
Ric(Vw) = pVw, the hypothesis on Ric(Vw, Vw) is equivalent to assuming p is zero
or has the opposite sign of \. O

As mentioned in the introduction, Theorem 1.9 can also be interpreted as a gap
theorem about the scalar curvature.

COROLLARY 4.2. Let (M, g,w) be a (A\,n + m)-Einstein manifold with constant
scalar curvature and m > 1. If the scalar curvature is between (n — 1)\ and n\ then
either the metric is a A\-Einstein metric, or it is rigid and splits as N x R where N is
a A-Einstein metric.

Proof. As we have seen in Proposition 3.4, the scalar curvature must be between
np and nA, and can only be equal to nA if the metric is A-Einstein. On the other
hand, by the definition of p, the scalar curvature being bounded away from zero by
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(n—1)A\ is equivalent to p having the opposite sign as A, so the other half of the result
is equivalent to Theorem 1.9. O

Now we prove the theorem.
Proof of Theorem 1.9. For the discussion above we see that the hypothesis is
equivalent to pk < 0.
By Proposition 3.11 we see that if w is not constant, then w = w(r) where r is a
distance function and w” = —kw. This implies
Vw=w'Vr, Aw=—kw+w'Ar
and
w
Aw = — (scal — n)
m
SO

hw +w'Ar = 2 (scal — n\)
m

which implies that

1— _
W Ar — w (scam nA N Amp> — _pw.

The Bochner formula for r is

0 = |Hessr|> + g (Vr, VAT) + Ric (Vr, Vr)
= [Hessr|> + g (Vr, VAT) + p.
The middle term can be calculated by using
’ 7. 1 _kw ’
—pw'Vr = —kwArVr + w'VAr = —— (—pw) Vr + w'VAr
w
Tw?
= pi,VT +w'VAr
w
showing that
_ w2
g(Vr,VAr)=—p+ pkw.
Thus we obtain

w?

(w')?

showing that pk > 0, and can only vanish when Hessr = 0, which implies the splitting
along the gradient of w. O

0 = [Hessr|* + g (Vr, VAr) + p = [Hessr|* — pk

We finish this section by showing Theorem 1.3, i.e., a three dimensional (A, 3+m)-
Einstein manifold is rigid if it has constant scalar curvature.
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Proof of Theorem 1.3. We start by showing that P has constant eigenvalues.
Proposition 3.3 says that
P (Vw) =0,
trP =2\ — (m+ 2)p,
|P|? = (A — p)trP.

Thus one eigenvalue is 0 and if the other two are p; and ps then

pPre = % (2)\ — (m +2)p £ /2mp — 2mp? — m2p2) = % (trP + \/mp(trP)) .

This shows in particular that (VP) (E, E) =0 if E is a unit eigenvector for P.

The goal now is to prove that either A = 0 in which case we can use Theorem
1.8 or p; = p2. In the latter case the metric is either p-Einstein or p = 0 reducing us
respectively to Proposition 2.4 or Corollary 4.1.

Recall

p—A

2
Q=R+ —PoOg+—9g0g.
m m

If n = 3, then we have R = %alg ® g+ (Ric — %g) ® g. Since scal = trP + 3p, the
tensor () can be written as

1 1
o=""1 (2P®g(trP)g®g).
m 2

If F; is a unit eigenfield for p;, then

1 trP
Q(Vw, E;, E;,Vw) = % (|Vw|2P(Ei,Ei) - r2|Vng(Ei,Ei)>
_m+1 9
= )Vl

where j # 1.
Using Proposition 3.7 we have

(VeuP)(X.¥) = — (L) = )P Y) + (2 g(P(x), P(Y))

m
+Q(Vw, X, Y, Vw).

w
m

Evaluating on F; yields

0=— (%)2 (A= p)pi + (%)21)? + m2;1 (pi — py)|Vw|?.

When M has boundary we know that w = 0 somewhere so this formula immedi-
ately shows that p; = ps. In general we can subtract the two equations to obtain

0= = p2) (== )4 2 )+ (1) V).

This shows that either p; = ps or

[Vw|?

2= (m+2)p=trP=A—p)—m(m+1) w2




RIGIDITY OF WARPED PRODUCT EINSTEIN MANIFOLDS 173
As
A— 2
A7 Py [Vw|* =
m

the latter case can only happen when g = 0 and

—(A=p)+mp Vuwl|®
( m—i—)l :m|w2| =—(=n)

Thus A=0.0

REMARK 4.3. In the proof above, we showed that Ric has constant eigenvalues.
Such a metric is called Ricci curvature homogeneous. This condition is more general
than being curvature homogeneous, i.e., for any two points p and ¢ in M, there exists
a linear isometry ¢ : T,M — T, M such that ¢* (R,) = R), see [Si]. Both notions are
equivalent in the two and three-dimensional cases but not for higher dimensions. In
dimension three there are curvature homogeneous spaces that are not homogeneous,
see [Bu, BV, Ko] and the references therein.

5. Proof of Theorem 1.11 and Corollary 1.14. In this section we prove
Theorem 1.11, i.e., that radial flatness of @) implies the rigidity. There are a number
of steps and the proof breaks down into different cases. The proof comes from studying
the eigenvalues and eigen-distributions of P. First we show that 0 and A — p are the
only possible eigenvalues.

LEMMA 5.1. Suppose a (A, n+m)-Finstein manifold (M, g,w) has constant scalar
curvature and

Q(Vw,-,-,Vw) = 0.
Then the eigenvalues of P are either 0 or A — p, i.e., on M we have

Po(P—(A=p))=0.

Proof. Since the scalar curvature is constant, from Proposition 3.7 we have

(VyuP) = %p o (P — (A= p)I)

= YPo(P—mkI),
m

where k = % # 0 by Corollary 3.5.
In addition from Proposition 3.11 if £ > 0 then

w = cos (\/27‘) ,
andif £ < 0
w = exp (\/jl_cr) , w = cosh (\/jl_cr) , or w=sinh (\/jl::r) .

At points where Vw # 0 the radial curvature equation can be rewritten as

(Vg P) = % (Po (P —mkI)).
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Let Y be a unit parallel vector field along an integral curve of r and let y(r) = P(Y,Y).
So the above equation becomes

y(r) = ——y(y —mk).

muw’
Using that w” = —kw we see that this equation has the general nonzero solution
- w mk

u(r) A 1+ Aw)™

Choose an orthonormal frame {Yi}?fl in the normal space of Vr and assume that
they are parallel vector fields along Vr. Suppose y; = P(Y;,Y;), i = 1,2,...,p, are
the non-constant values, i.e.,

mk

Y T A

where z(r) = (w') "

that

and A;’s are nonzero constants. As tr(P) is constant, it follows

To see the constant on the right hand side is zero, let » — 0. Now plugging in the
specific form for y we obtain

p+biz+boz? 4 - 4 by2P
I (1 + Az)

:O’

where the coefficients b; can be derived from the binomial formula. However, unless
p = 0 this is a contradiction since z(r) has the property that {1, 2,22, 23, .. } is a
linearly independent set of functions on their intervals of definition.

Therefore, in all cases, P(Y;,Y;) is constant and thus either 0 or A — p. It follows
that the eigenvalues of P are bounded by 0 and X\ — p. Using the identity |P|? =
(A — p)trP in Proposition 3.3, it is either 0 or A — p. O

From Proposition 3.11, there are four different cases:
1. w = cos (\/Er), M has boundary and i > 0,

2. w = cosh (\/ —l_cr), M has no boundary and n < 0,
3. w = sinh (\/ —I_cr), M has boundary and > 0,

4. w =exp (\/ —IQT), M has no boundary and i = 0.
In the first two cases, the critical point set of w is non-empty and the proof follows
from a similar argument as in Ricci soliton case, see [PW3].

Proof of Theorem 1.11 in Case (1) and (2). This comes from considering the
critical point set of w, N = {x : Vw(z) = 0}. From Proposition 3.14 we see that N
is a totally geodesic A-Einstein manifold.

The normal exponential map v (N) — M follows the integral curves for Vw(or
Vr) and therefore is a diffeomorphism. Using the fundamental equations, see for
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example [Pe, Chapter 2.5], the metric on M is completely determined by the radial
sectional curvatures and the metric on N as N C M is totally geodesic. Since these
match exactly with the values in the corresponding rigid cases, the metric must be
rigid. O

Now we are left with Case (3) and (4). The proof of the theorem in these cases
is much more involved since N = §).

From the explicit formula of the function w the maximal interval I of r is either
(—00,00) or [0,00). On this interval we can write the metric as

M=IxY% with g¢g=dr?+g,.

From Lemma 5.1, the tangent space of ¥ has an orthogonal splitting of eigen-
distributions of P:

TS =N&P
Ply = (A= p)idy
Pl'ona

and they are parallel along Vr.

Theorem 1.11 will follow by showing that the distributions are parallel, see Lemma
5.7 for Case (3) and Lemma 5.8 for Case (4). In Lemma 5.8 we assume that the
curvature does not grow as fast as exponentially. In fact we can show that the eigen-
distribution of P is integrable without this curvature growth assumption, see Propo-
sition A.2 and Theorem A.1 in [HPW2, Appendix A].

Before proceeding to the general case we note that these steps are considerably
simpler in the harmonic curvature case. In fact, the argument in [Be, Proposition
16.11] shows that the eigen-distributions of P are always integrable in this case. More-
over, if the curvature is harmonic, then

(VEIRIC) (EQ, E3) — (szRlC) (L?]_7 Eg) = d.inf(l;l7 EQ, E3) = 0

for any vector fields Fy, Fo and FE3. The scalar curvature is also constant and thus
Proposition 3.7 shows that Q(F1, E2, E5, Vw) = 0. This explains why harmonic cur-
vature is a stronger assumption than Q(Vw, E, F, Vw) = 0. For any two eigenvector
fields X with P(X) = (A — p)(X) and U with P(U) = 0 the vanishing of @ also
implies that

R(X,U,X,Vr)=R(U,X,U,Vr) =0.

On the other hand, we also have the following calculation. We will only use the
first and third equations for the harmonic curvature case, but will find the other two
equations useful later.

PROPOSITION 5.2. Suppose X,Y and U,V are A — p and 0 eigenvector fields of
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P respectively. Then we have

(5.3) R(X,U,Y,Vr) = —k%g (VxY,U)

(Vo R) (X,U,Y,Vr) = %R(X, U,Y,Vr)
(5.4) +E% (R(X,U,Y,Vr) + R(Y,U, X, Vr))
(5.5) R(U,X,V,Vr) = %%g (Vo V, X)

!
Ve, 1) (0. X,V,90) = (4 4+ £ ) R XV, 90

—w
(5.6) +kR(U.V, X, Vr).

Proof. First note that
Hessw = —kwdr @ dr + w'Hessr.

Therefore the second fundamental form for the hypersurface w=1 (r) is

w

11 = Hessr = (w') ' Hessw = (Ric — A\g) ,

muw’

ie.
(X, X) = 0I[(X,U) =0 and IIU,U)= —E%|U|2.
This implies
R(X,Vr)Vr =0, R(U,Vr)Vr = kU,
and
R(X,U,Y,Vr) = (VyID) (X,Y) — (VxII) (U,Y) =1II(U,VxY)
= —k—g(VxY.U).

From the second Bianchi identity

(Vv.R) (X,U,Y,Vr)+ (VxR) (U, Vr,Y,Vr)+ (VyR) (Vr,X,Y,Vr) =0,
it follows then that

(Vv,R) (X,U,Y,Vr)
= (VxR) (Vr,U,Y,Vr) — (VyR) (Vr, X,Y, Vr)
= —R(Vr,UNVxY,Vr)+ R(VyVr,X,Y,Vr) + R(Vr, X,Y, Vi Vr)

1 —_ _
= — (Ric(U, VxY) = Ag(U, VxY)) k%R(U, X,Y,Vr) — k%R(w, X,Y,U)

= —kg(U, VxY) + k= (R(X,U,Y, Vr) + R(Y,U, X, Vr))

/

- %R(X, U,Y,Vr) + l%% (R(X,U,Y,Vr) + R(Y,U, X, Vr)).
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An analogous argument gives us the other equations:
RU,X,V,Vr)=(VxI) (U, V) — (VyIl) (X, V) =11 (VyX,V)
—w

—w
= kgg(X,VUV)
and

(V. R) (U, X,V,Vr)
= (VuR) (Vr, X,V,Vr) — (VxR) (Vr,U,V, Vr)
= —R(Vr,VuyX,V,Vr) — R(VyVr, X,V,Vr) — R(Vr, X, V, Vi Vr)

1
= (Ric(V, VuX) — Ag(V,Vy X))
+E— R(U, X, V,Vr) + k— R(Vr, X, V,U)
w w
= —kg(V,VyX)+ E%R(U, X,V,Vr) + E%R(U, V, X, Vr)

= kg (VuV, X) + E%R(U, X,V,Vr) + E%R(U, V, X, Vr)

k
!
_ (“’ n k;j’,> R(U,X,V,Vr) + E%R(U, V, X, Vr)

!

- %R(U, X, V,Vr) + 1%% (R(U, X, V,Vr) — R(V,X,U,Vr)).

These give us the desired equations. O
We can now finish the proof when the curvature is harmonic.

Proof of Corollary 1.14. As the curvature is harmonic we have seen above that
R(X,U,X,Vr) = 0 and R(U,X,U,Vr) = 0. When combined with the previous
proposition, this tells us that the eigen-distributions are totally geodesic. This gives
a splitting of the universal cover along the eigen-distributions of P. The results from
section 2 tell us the metric is rigid. O

LEMMA 5.7. If M has non-empty boundary then the two eigen-distributions of P
are parallel.

Proof. As Vy,.P = 0, we can assume that the eigenvector fields X,Y,... € N
and U,V,... € P are parallel along Vr. The fact that the boundary is nonempty
is used as an initial value for the curvatures. We assume that the boundary corre-
sponds to the level set » = 0. Specifically we see that Proposition 5.2 implies that
R(E1, E3, E5,Vr) = 0 on the boundary. If we set X =Y in (5.3) and (5.4), then we
obtain

/

(Vo R) (X,U, X, Vr) = (“’ + 21«“’,) R(X,U,X,Vr)
w w
R(X,U,X,Vr)=0 atr=0.
So it follows that R(X,U,X,Vr) = 0 on M. This shows that R(X,U,Y,Vr) is

skew-symmetric in X,Y and hence that

w/

(Voo R) (X, U.Y,Vr) = —R(X,U,Y,Vr).
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We can then similarly conclude that R(X,U,Y, Vr) vanishes as long as it vanishes
on the boundary. Using (5.3) again this shows that A is integrable as well as totally
geodesic.

A similar argument works for P. Setting U = V in (5.6) we have

!
(VerR) (U, X, U, Vr) = (Z n k:uu)},) R(U, X, U, Vr).

So R(U,X,U,Vr) vanishes as it vanishes on the boundary. This implies that
R(U, X,V,Vr) is skew-symmetric in U and V', which in turn shows that

R(U,V,X,Vr) = R(U,X,V,Vr) — R(V,X,U,Vr)
= 2R(U, X, V,Vr)

and consequently
w' —w
(Vv-R) (U, X,V,Vr)=| — +3k— | R(U,X,V,Vr).
w w’

As R(U, X, V,Vr) vanishes on the boundary, it vanishes everywhere showing that P
is totally geodesic. O

LEMMA 5.8. If M has no boundary, i.e., i =0, and we further assume that |R| =
0 (exp (dz’st(x,p) vV —E)), then the two eigenvalue distributions for P are parallel.

Proof. 'We now turn to Case (4) where w = exp (\/ —Er). This means that

equation (5.4) reduces to

Dy, R(X,U,Y,Vr) = \/—’R X,U,Y,Vr)
—V—k(R(X,U,Y,Vr)+ R(Y,U,X,Vr)),

i.e.
R(X,U, X,Vr) = R(X,U, X, Vr)|,— Oexp< fr)

In particular we see again that R(X, U, X, Vr) must vanish if we assume that it cannot
grow as fast as exp (\/ fl_qr) . This again shows that R (X, U, Y, Vr) is skew-symmetric
in X, Y and thus

Dy, R(X,U,Y,Vr) = \/—_R X,U,Y,Vr)
—V =k (R(X,U,Y,Vr) + R(Y,U, X,Vr))
=V —kR( X, U,Y,Vr).

Using the growth assumption for R(X, U, Y, Vr) this in turn shows that R(X,U,Y, Vr)
vanishes and then that A is totally geodesic.
Next we note that R(U, X,V,Vr) = l_ﬂﬁg (VyV, X). The right hand side can be
calculated using Koszul’s formula together with the metric decomposition
/ 2
g:dr2+gr=dr2+ho+Mh1,
(w’ (0))
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where ho and h; are the restrictions of gg to N and P at r = 0 respectively.

We wish to calculate g (Vi V, X) and relate it to what happens at » = 0. This
requires that the fields we use commute with Vr. As our fields are chosen to be
parallel along Vr we simply have to switch to X, w'U, w'V instead. After eliminating
(w')? on both sides this yields the formula

g(VuV, X) = g.(VuV, X)

= 90(VuV, X) + (; - W) 90([V; U], X).
Thus
R(U,X,V,Vr) = ff% (90(VUV, X)+ <; — W) 90([V, U],X))

is forced to grow like (w’)f2 = ’l;:| exp (72r\/ 712') unless [U, V] is perpendicular to

X. As we have assumed that the curvature grows slower than exp (\/ —I_cr> this shows

that P is an integrable distribution.

Having shown that A/ is totally geodesic and its orthogonal distribution {Vr}®P
is integrable it follows that the foliation with vertical space given by {Vr} & P is
Riemannian. This means that we can use [BH] to conclude that there is a map
F : Bx H— M such that F (B x {q}) is an integral manifold for N for all ¢ € H
and similarly F' ({p} x H) is an integral manifold for {Vr} @ P for all p € B. Below
we shall show that the fibers are all isometric to each other and are in fact a simply
connected hyperbolic space of constant curvature k.

Note that if X is chosen to be basic along this Riemannian foliation then [X, U] €
P for any U € P. As N is totally geodesic we have VxU € P, consequently also
VuX € P. Let U,V € P with g(U,V) = 0, then

Dy, R(V.U,U,V) = (VyvR) (V.U,U,Vr) — (VyR) (V,U,V,Vr)
= —R(VyV,U,U,Vr) — R(V,VyU,U,Vr)
—~R(V,U,VyU,Vr) - R(V,U,U,VyVr)
R(VyV,U,V,Vr)+ R (V,VyU,V,Vr)
R(V,U,VyV,Vr)+ R(V,U,V,VyVr),

ie.,

Dv,R(V,U,U,V) = —\/—kg (N (Vy'V),VyU) + R(Vr,U,U, Vr)II(V,V)
+\fg N (VyU),VyU) +V—kg (N (VuV), Vi V)
—V—=kg (N (VyU),Vy V)— R(V,Vr,V,Vr)ILU,U)
—2V/—kR(V,U,U,V)
= —2v/—kg (W (Vv V), N (VuU)) + 2V —k N (Vy U)
—oV/—kR(V,U,U,V) + 2k\/—kg(U, U)g(V, V).

Here the term from the second fundamental form

(5.9) gN (Vv V), N (VyU)) = IN (Vv U)* = kg(U,U)g(V, V)
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is constant in the Vr direction. Thus R (V,U, U, V) will grow exponentially unless it
is constant and precisely cancels the term in (5.9), i.e.,

R(V,U,U,V) = N (VyU)]> = g(N (Vv V), N (VyU)) + kg(U,U)g(V, V).

This indicates that P is flat in M and more importantly that the fibers are isometric
to the simply-connected hyperbolic space with curvature k which we denote by (H, h).

We then conclude that the structure F' : B x H — M gives us a metric decom-
position of the form

F*(g) = ho + fy (h)

where f, : H — H is a family of isometries parametrized by the base space B. From
this it follows that any isometry of (H,h) extends to an isometry of M that fixes
the horizontal space B and maps a fiber to itself. Recall that we have a distance
function r such that Vr is tangent to the fibers. This means that a geodesic v with
velocity vector Vr stays in the fiber. Using an isometry f € Iso (H,h) then yields a
new geodesic f o~ with velocity Df (Vr) that also stays in the fiber. As the isometry
group of hyperbolic space is isotropic, i.e., the isotropy action is transitive on the unit
sphere in the tangent space, it follows that any geodesic tangent to a fiber will stay
in that fiber, i.e., the fiber is totally geodesic. O

Now we finish the proof of Theorem 1.11.

Proof of Theorem 1.11. Suppose (M, g,w) is a non-trivial (A, n 4+ m)-Einstein
manifold. By the definition of @, the radial sectional curvature condition (1.12) is
equivalent to Q(Vw, -, -, Vw) = 0. From Lemma 5.1, the eigenvalues of P are either
0 or A — p. From Lemma 5.7 and 5.8, the distribution for each eigenvalue is parallel.
Hence the manifold splits as (M, g) = (M1 x Ma, g1 + g2) such that Ric,, = Ag; and
Ricg, = pga. So the rigidity of M follows from Proposition 2.6. O

REMARK 5.10. We have only used the assumption about exponential growth
of curvature in the special case when i = 0 and the potential function is w =

exp (\/ fl_cr). Moreover, from the proof of Lemma 5.8, we can see that in this case

we get a stronger conclusion than rigidity. Namely that the manifold M splits iso-
metrically as L x H where L is A-Einstein and H is the simply-connected hyperbolic
space with Ricci curvature p.

6. Non-rigid (A, n + m)-Einstein metrics on solvable Lie groups. In this
section, we consider (A, n -+ m)-Einstein metrics on homogeneous spaces. The general
case of the (A, n + m)-Einstein equation is studied in [HPW3] where the function w
is also allowed to take negative values. Using this generalized equation, we obtain

THEOREM 6.1. If (M, g) be a simply connected homogeneous non-trivial (A, m +
n)-Einstein manifold with m > 1 and \ < 0, then one of the following cases holds.

1. p<0and M =S5 x L as a Riemannian product where S is a space form that

is p-Einstein and L is A-FEinstein.
2. p =0 and there are no other solutions to the \-Einstein equations with p < 0,
then the isometry group Iso(M) contains a codimension one normal subgroup
H that acts transitively on the connected components of the level set of w.
Moreover if F is an isometry of M, then wo F = Cw for some constant C.
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REMARK 6.2. In Case (1) above when p < 0, one can show that M is rigid by
Proposition 3.11, Proposition 3.13 and Proposition 3.14. In fact, 4 < 0 implies that
w has critical points. At a critical point VRic = 0 and the eigenvalue of Ric is either
A or p. Since the metric is homogeneous, this holds everywhere on M. So the metric
splits along the eigen-distributions of Ric, i.e., it is rigid.

Theorem 6.1 suggests that we are most likely to find non-rigid examples on solv-
able Lie groups. Using left invariant vector fields, we can rewrite the (A\,n 4+ m)-
Einstein equation.

LEMMA 6.3. Let (G, g) be a simply-connected Lie group with left invariant metric.
Suppose it admits a non-trivial (A\,n + m)-Einstein structure with m > 1 and p = 0.
Then there exists a codimension one normal subgroup H C G and left invariant vector
field Xog = —V'r, where r is the signed distance function from H. Furthermore the
(A, n 4+ m)-Einstein equation can be written as

Ric(X,Y) — % m(p — A) (9([Xo, X],Y) + g([Xo, Y], X))
(6.4) —(p—Ng(Xo, X)g(Xo,Y) = M\g(X,Y),

for any two left invariant vector fields X and Y .

Proof. From Proposition 3.11 and Theorem 6.1 we may assume that w = e\/jk’”
and the level hypersurface of w = 1 is a codimension one normal subgroup H in G.
Thus we obtain a Riemannian submersion G — G/H which is also a Lie algebra ho-
momorphism. This shows that left invariant vector fields on G/H lift to left invariant
vector fields on G that are perpendicular to H. As G/H = R it follows that Vr is a
left invariant vector field on G.

Using Koszul’s formula we note that

Hessr (X,Y) = g(VxX0,Y) = = (9([Xo, X],Y) + g([ X0, Y], X))

N | =

when X,Y are left invariant. As
Hessw = \/ —kwHessr — kwdr?

we obtain the desired form for the (A, n + m)-Einstein equation (1.1). O

PROPOSITION 6.5. Let G be a unimodular Lie group with left invariant metric g.
If (G, g) is a nontrivial (A\,n + m)-FEinstein manifold with m > 1, A <0 and p =0,
then G = H x R where H is \-Finstein.

Proof. Choose an orthonormal basis {Xi}?:_ol of left invariant vector fields. Then

from the equation (6.4) we have
Ric(X;, Xi) = vm(p — N g([Xo, Xi], Xi) + (p — A)doi + A
which implies that
scal = v/m(p — Ntr(adx,) + (n — 1)A + p.
The definition of being unimodular is that tr(adz) = 0 for all Z, so it follows that

m=DA=(m—-1Lp=Mn-1)A+p.
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In particular p = 0 and scal = (n — 1)A. The manifold splits by Theorem 1.9. O

In the following we give an explicit construction of non-rigid (A,4 + m)-Einstein
metrics on solvable Lie groups with A < 0 for all m > 0.

Let g be a 4-dimensional non-unimodular Lie algebra of the type g = a + [g, 9],
where a is a 2-dimensional abelian subalgebra and [g, g] the derived subalgebra, which
we also assume to be abelian. Let g denote a left invariant metric on the correspond-
ing simply connected Lie group G with Xg, X1, X9, X3 an orthonormal frame of left
invariant vector fields such that a = span{Xo, X1} and [g,g] = span {X3, X35}. The
distribution a defines a totally geodesic foliation whose leaves are R?. The distribution
[g, g] is Riemannian with vanishing A tensor and the intrinsic geometry of the leaves
are also R2. In other words we have a Riemannian submersion

RZ — G
1
R2

where the base and intrinsic geometry of the fibers are flat and the A tensor for
the submersion vanishes. We shall make further simplifying assumptions about the
Lie algebra, but in general we see that the T tensor controls everything. The Ricci
curvatures are computed using the follows properties.

PROPOSITION 6.6. The Ricci tensor preserves the distributions g = a + [g, g].
And fori,j =0,1
3

Ric (X;, X;) = > 29 ([Xi, X4, VX, X;) + 9 (Vx, Xi, Vi, X;)
k=2

and k,l =2,3

Ric (Xg, X0) = Y —g(Vx,Xi, VX, X0) + 9 (Vx, Xi, [Xi, X1])
ikl
+ Z 9(Vx, Xi, [Xi, X)) + 9 (Vx, Xi, Vx, X)) .
i#k,l

Proof. This relies on our knowledge of the covariant derivatives, specifically that
the foliation defined by a is totally geodesic. The only possible nonvanishing terms
up to permutations of indices are terms of the form

9(Vx,X;,Xy), where k=0,1 and ¢,j = 2,3.

These can be computed by observing

9 (Vx. X, X5) = & (9 (X0 X X)) + 9 (X0, X, X))

=—9(X;,Vx, Xg).

Note also that these quantities are all constant since the metric is left invariant.
With this in mind we can do the calculations. For ¢ = 0,1

4 4
Ric (X;) = > R(Xi, Xp) Xp = Y _ R(X;, Xp) Xy,
k=1 k=3
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and

R(X;, Xp) X = Vx,Vx, Xy — Vx, Vx, Xi, — Vix, x, Xk
= —Vx, [Xi, Xi] = Vx, Vx, Xi — Vix, x Xk
= *2VX;C [Xz,Xk] — vkaXkXi € span {XO,Xl}.

It shows that the Ricci tensor preserves the distributions.
This also helps us calculate the Ricci curvatures when ¢,5 = 0,1

3
Ric (X, X;) = > R(X;, Xy, Xy, X;)
k=2

3
= g (-2Vx, [Xi, Xi] — Vx, Vx, X, X;)
k=2

3
= 29([XivXk]»vXka)"_g(vXkXi’vXka)'
k=2

Similarly we obtain the formula when k,l = 2,3 and thus finish the proof. O

Next we need to determine the structure constants. We proceed as in the excellent
reference [Je] also using [Mi] to find an appropriate 3 dimensional non-unimodular
solvable Lie algebra satisfying

(X1, Xo] = aXy + X3
(X1, X3] =7vXo+ (2 — ) X3,
where o, 8 and v are constants. We will make the further simplifying assumption
that v = 8 # 0. Thus
1
Vx, X1 =—aXs — §5X3
ngXl = 75X2 — (2 — Oé) X3.
There are similar constraints for the structure constants
[X(),XZ‘} :Finj, fOI' Z,] :2,37

that yield the other relevant covariant derivatives:
1
Vx,Xo = —FpXs — 5 (Fa3 + F32) X3

Vx,Xo= (Fas + F39) Xo — F353.X5.

1

2
However, we also need to see how they interact with the other structure constants.
For the Jacobi identity we only have to consider three vectors Xg, X; and X; for 1 <
1 < j < 3. Using our assumptions on the Lie brackets a straightforward computation
shows that

PROPOSITION 6.7. The constants o, B and Fi; satisfy the following identities:

/BFQQ + 2(1 — CE)F23 — 5F33 = 0
Fa3 = F3.



184 C. HE, P. PETERSEN, AND W. WYLIE

We now wish to solve the (A, 4 + m)-Einstein equations on the Lie group G. Let
H be the Lie subgroup corresponding to the Lie subalgebra spanned by {X1, X2, X3}
and r is the distance function from H. Since Vx,Xo = 0 and Xy is the unit normal
vector field of H, we have Xy = Vr. From the (A, n + m)-Einstein equation (6.4) in
terms of left invariant vector fields, we have

LEMMA 6.8. The (A, 4 + m)-Einstein equations on G can be written as

RIC(X(), Xo) =p

RIC XlaXl) =
Ric(X1, Xo) =
Ric(Xa, X2) — /m (p — \) Fop =

RiC(X3,X3) — \/m(p - A F3
Ric(X2, X3) — v/m (p — A\) Fso

~—
w
|

A
0
A
A
0

These equations impose further constraints on the structure constants and as we
shall see the last three of them are equivalent when we know that the first three hold.

THEOREM 6.9. Given m > 0 and o, 8 € R with 8 # 0 and (o — 1)2 + 5% #1,
we obtain a left invariant (A, 4 + m)-Einstein metric on G with p = 0. Moreover, this
structure is not rigid.

Proof. We start by observing that if we have such a solution then

2(—a+a® + B*)Fs + 23F33

Ric(X1, Xo) = — 3 =0,
2 3 4 2 4 2 2 2
Ric(Xo, Xo) — _2(F32)" (2—-4a”+a” +38 +,§2 —20(3+28) +’(7+26%) _
Ric(X1, X1) = —2(2 — 2a + o’ 4 8%) =
Ric(Xa, X) = _ 2(08° + (F2)* (2 = 50’ + o + :w;; B +a%(9+28%) — a(7+58%)))
- (F”)(Q*?’g*auﬁ) m(p— M),
2 2 2 2
Ric(Xa, Xy) = 20+ F52) (15_ 2080 25D (Fay) /mGp — ),
Ric(Xs, X;) = - A= )8 + ()" (=30” + o + gz + 8" +a’(3+26%) — a(1+36%)))
__ F)(—atao’+5%) m(p—N).
B
The first equation forces the relationship
_ 2 2
Fy— 0T F L
B
If we introduce the notation
Fso
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then we have to solve the equations
Ric(Xo, Xo) = —22°(2 — 40® + a* 4+ 38% + B* — 2a(3 + 26°) + *(T+ 28%)) = p,
Ric(X1,X1) = —2(2 —2a+a’ + %) = A,
Ric(Xa, X2) = —2a — 22%(2 — 50 4+ o + 387 + * + &*(9 + 28%) — a(7 + 55?))
=X—2(2-3a+a’+8)Vm(p—N),
%Ric(Xz, X3) = —2422°(1 — 20+ a® + %) = z/m(p — N,
Ric(X3, X3) = —2(2 — )% — 22°(=3a® + o' + 8% + B8* + o*(3 + 28%) — a(1 + 35°))

=\ —z(—a+a’+ B)Vm(p = \).

Note that the first equation combined with the second yields

p=—22%2— 40> + ot +36% + g% — 2a(3 + 28%) + (7 + 26%))
AN +2)

2

:—2’2

showing

2 2
P—)\z—zQ)\()\é’—)—A:—A(A;zQ—i-l).

The last three equations turn out to be identical. Specifically, the fourth equation is
the same as the third if we factor by (2 — 3a + a2 + %) and the same as the fifth if
we factor by (—a + a? + $?). Thus these three equations reduce to

—24222(1 = 20+ o + B2) = z/m(p — \),

—2—()\—1—2)22:2\/—)\771(/\ 2z2+1).

This calculates z as a function of . Either (A + 2)z2 = —2 forcing p = A, or

(6.10) 2= 2 - -4
’ C dm—-(A+2) A(m+2)+4

or

which is equivalent to the first when m = 0. Only the latter case with m > 0 gives us
a nontrivial solution. If we substitute it into the equation for p we are left with the
two equations

(6.11) —2(2 = 2a+a? + 2) = A,
2A(A+2)
Am+2)+4 "
Note that we always have
2—2a4+a’+32>1

so A < —2.
Finally we do a few calculations to show that this is not rigid. Since A\ # p it can
only be rigid when the other two eigenvalues are also A, p.



186 C. HE, P. PETERSEN, AND W. WYLIE

We have
—4
C2(A(m+2)+4)+4(A+2)  —2xm
B A(m+2)+4 S A(m+2)+4
___mp
A2

Thus

scal = A+ p + Ric(Xa, X2) + Ric(X3, X3) = A+ p+ 22+ (A +2) z/m(p— )
=3A—(m—1)p.

So the only possibility for having a rigid solution is when
BA—(m—=1)p=2p+2X
which implies

A1)y 2OE2 0+

A(m+2)+4
or
20 +2)(m+1) .
=1 e, A=—4
Alm+2)+4 e
It follows that 10:77ni_~_1 and
Ric(Xa, Xa) = —4+ —""_ (2~ a), Ric(Xa, Xs) 2m_g
1 = — e — 1 = ——
C{A2, A2 m1 a), C{A2, A3 m+1
Ric(Xs, X3) = —4 4 1
i =— .
c(X3, X3 mr1

The principal Ricci curvatures are A and p if (o — 1)2 + 82 = 1. In this case, the
metric splits along the eigendistributions of Ric. O

Finally we consider the convergence of the metrics in Theorem 6.9 as m — oo.
We will see that the Ricci soliton structure naturally appears in the limiting metric.
First we recall

DEFINITION 6.12. A left invariant metric g on a simply-connected nilpotent(or
solvable) Lie group is called a nilsoliton(or solvsoliton) if the Ricci tensor satisfies the
following equation

(6.13) Ric(g) =cI + D

where ¢ is a constant and D € Der(g) is a derivation.

These manifolds are closely related to Ricci flows and Einstein metrics on non-
compact homogeneous spaces, see [Lal, La2, La3] and references therein.
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THEOREM 6.14. Let (G, g,) be the (A, 4 + m)-Einstein metrics in Theorem 6.9.
Asm — oo, they converge in C*° to the Riemannian product (R x H,dt? + go) where
(H, go) is a three dimensional solvsoliton.

Proof. Recall that {Xo, X1, X2, X3} is an orthonormal frame of left invariant
vector fields on G and then any left invariant metric g is determined by the structure
constants Cjjr, = g([X;, X;], Xx) for 4,5,k =0,...,3. That the metrics g,, converge to
goo in C™ is equivalent to that the structure constants C77; of g, converge to those of
Joo, see for example [La3, Proposition 2.8] when G is a nilpotent group. Alternatively,
the C'°° convergence of the structure constants implies C'*® convergence of the Levi-
Civita connections and then the convergence of the metrics follows, see for example
[GP, Section 6].

From the equation (6.11) of A in terms of o and 8, since A is unchanged for the
metrics g, @ and 3 are also unchanged. From the equation (6.10)

. 2 . —4
It follows that F3o and Fs3 converge to zero, i.e., [Xo,X;] = 0 for alli = 0,...,3
as m — 00. So the Lie algebra g corresponding to g., on G splits as direct sum of
RX, @bk where b is spanned by X, X5 and X3, and the limiting metric go, = dt? + go
where gy is the restriction on the Lie group H whose Lie algebra is . On H, the
nonzero Lie brackets are given by

adx, (§§> - (2 2/304) (ii)

A computation shows that the nonzero Ricci curvatures are

RiC(Xth) = )\RiC(XQ,XQ) = 2«
RiC(XQ,Xg) = 72ﬂRlC(X3,X3) = 72(2 - Oé).

Let D be the derivation on h as D(X;) = 0 and D(X;) = —A\X; — 2adx, (X;) for
i = 2,3, then we have Ric = Al + D which shows (H,gp) is a solvsoliton. The
solvsoliton structure can also be obtained by viewing h as an extension of the abelian
Lie algebra spang {X2, X3} by RX;, see the construction in [La2, Proposition 4.3].
Note the solvsoliton metric is not Einstein since § # 0.

This derivation can be constructed directly as a limit in the following way: we
know that

ng} = /m(p— NVXo+ (p— NX} @ X,

where X§ is a 1-form dual to X,. And the only nontrivial covariant derivatives for
Xo are

Vx,Xo

(2 —3a+ ao? +62) — B2X3 = < — a) 2X5 — BzX3
A
Vx,Xo=—B2zXs+ (—a +a?+ ,6’2) zX3=—0FzXo+ (—2 +2— a) 2X3.

Next note that

lim zy/m(p—A)= lim z M——2
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so it follows that 7>VVw converges to the derivation D as m — oo.

A similar limit argument also shows that the Ricci curvatures of g,, converge to
those of the limiting metric go. O
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