NOETHER'S PROBLEM AND UNRAMIFIED BRAUER GROUPS*

AKINARI HOSHI ${ }^{\dagger}$, MING-CHANG KANG ‡, AND BORIS E. KUNYAVSKII ${ }^{\S}$

Abstract

Let k be any field, G be a finite group acting on the rational function field $k\left(x_{g}: g \in\right.$ $G)$ by $h \cdot x_{g}=x_{h g}$ for any $h, g \in G$. Define $k(G)=k\left(x_{g}: g \in G\right)^{G}$. Noether's problem asks whether $k(G)$ is rational (= purely transcendental) over k. It is known that, if $\mathbb{C}(G)$ is rational over \mathbb{C}, then $B_{0}(G)=0$ where $B_{0}(G)$ is the unramified Brauer group of $\mathbb{C}(G)$ over \mathbb{C}. Bogomolov showed that, if G is a p-group of order p^{5}, then $B_{0}(G)=0$. This result was disproved by Moravec for $p=3,5,7$ by computer calculations. We will prove the following theorem. Theorem. Let p be any odd prime number, G be a group of order p^{5}. Then $B_{0}(G) \neq 0$ if and only if G belongs to the isoclinism family Φ_{10} in R. James's classification of groups of order p^{5}.

Key words. Noether's problem, rationality problem, unramified Brauer groups, Bogomolov multipliers, rationality, retract rationality.

AMS subject classifications. Primary 13A50, 14E08, 14M20, 20J06, 12F12.

1. Introduction. Let k be any field and G be a finite group. Let G act on the rational function field $k\left(x_{g}: g \in G\right)$ by k-automorphisms so that $g \cdot x_{h}=x_{g h}$ for any $g, h \in G$. Denote by $k(G)$ the fixed field $k\left(x_{g}: g \in G\right)^{G}$. Noether's problem asks whether $k(G)$ is rational (= purely transcendental) over k. It is related to the inverse Galois problem, to the existence of generic G-Galois extensions over k, and to the existence of versal G-torsors over k-rational field extensions [Sw; Sa1; GMS, 33.1, p. 86]. Noether's problem for abelian groups was studied by Swan, Voskresenskii, Endo, Miyata and Lenstra, etc. The reader is referred to Swan's paper for a survey of this problem [Sw].

On the other hand, just a handful of results about Noether's problem are obtained when the groups are not abelian. It is the case even when G is a p-group.

Before stating the results on Noether's problem for non-abelian p-groups, we recall some relevant definitions.

Definition 1.1. Let $k \subset K$ be an extension of fields. K is rational over k (for short, k-rational) if K is purely transcendental over k. K is stably k-rational if $K\left(y_{1}, \ldots, y_{m}\right)$ is rational over k for some y_{1}, \ldots, y_{m} such that y_{1}, \ldots, y_{m} are algebraically independent over K. When k is an infinite field, K is said to be retract k-rational if there is a k-algebra A contained in K such that (i) K is the quotient field of A, (ii) there exist a non-zero polynomial $f \in k\left[X_{1}, \ldots, X_{n}\right]$ (where $k\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring) and k-algebra homomorphisms $\varphi: A \rightarrow k\left[X_{1}, \ldots, X_{n}\right][1 / f]$ and $\psi: k\left[X_{1}, \ldots, X_{n}\right][1 / f] \rightarrow A$ satisfying $\psi \circ \varphi=1_{A}$. (See [Sa2; Ka4] for details.) It is not difficult to see that " k-rational" \Rightarrow "stably k-rational" \Rightarrow "retract k-rational".

[^0]Definition 1.2. Let $k \subset K$ be an extension of fields. The notion of the unramified Brauer group of K over k, denoted by $\mathrm{Br}_{v, k}(K)$, was introduced by Saltman [Sa3]. By definition, $\operatorname{Br}_{v, k}(K)=\bigcap_{R} \operatorname{Image}\{\operatorname{Br}(R) \rightarrow \operatorname{Br}(K)\}$ where $\operatorname{Br}(R) \rightarrow \operatorname{Br}(K)$ is the natural map of Brauer groups and R runs over all the discrete valuation rings R such that $k \subset R \subset K$ and K is the quotient field of R.

Lemma 1.3 (Saltman [Sa3; Sa4]). If k is an infinite field and K is retract k rational, then the natural map $\operatorname{Br}(k) \rightarrow \operatorname{Br}_{v, k}(K)$ is an isomorphism. In particular, if k is an algebraically closed field and K is retract k-rational, then $\operatorname{Br}_{v, k}(K)=0$.

Theorem 1.4 (Bogomolov, Saltman [Bo; Sa5, Theorem 12]). Let G be a finite group, k be an algebraically closed field with $\operatorname{gcd}\{|G|, \operatorname{char} k\}=1$. Let μ denote the multiplicative subgroup of all roots of unity in k. Then $\operatorname{Br}_{v, k}(k(G))$ is isomorphic to the group $B_{0}(G)$ defined by

$$
B_{0}(G)=\bigcap_{A} \operatorname{Ker}\left\{\operatorname{res}_{G}^{A}: H^{2}(G, \mu) \rightarrow H^{2}(A, \mu)\right\}
$$

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either a cyclic group or a direct product of two cyclic groups).

Note that $B_{0}(G)$ is a subgroup of $H^{2}(G, \mu)($ where $\operatorname{gcd}\{|G|$, char $k\}=1)$. Since $H^{2}(G, \mu) \simeq H_{2}(G)$, which is the Schur multiplier of G (see [Kar]), we will call $B_{0}(G)$ the Bogomolov multiplier of G, following the convention in $[\mathrm{Ku}]$. Because of Theorem 1.4 we will not distinguish $B_{0}(G)$ and $\operatorname{Br}_{v, k}(k(G))$ when k is algebraically closed and $\operatorname{gcd}\{|G|, \operatorname{char} k\}=1$. In this situation, $B_{0}(G)$ is canonically isomorphic to $\bigcap_{A} \operatorname{Ker}\left\{\operatorname{res}_{G}^{A}: H^{2}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(A, \mathbb{Q} / \mathbb{Z})\right\}$, i.e. we may replace the coefficient μ by \mathbb{Q} / \mathbb{Z} in Theorem 1.4.

Using the unramified Brauer groups, Saltman and Bogomolov are able to establish counter-examples to Noether's problem for non-abelian p-groups.

Theorem 1.5. Let p be any prime number, k be any algebraically closed field with char $k \neq p$.
(1) (Saltman $[\mathrm{Sa} 3])$ There is a group G of order p^{9} such that $B_{0}(G) \neq 0$. In particular, $k(G)$ is not retract k-rational. Thus $k(G)$ is not k-rational.
(2) (Bogomolov [Bo]) There is a group G of order p^{6} such that $B_{0}(G) \neq 0$. Thus $k(G)$ is not k-rational.

For p-groups of small order, we have the following result.
Theorem 1.6 (Chu and Kang [CK]). Let p be any prime number, G be a p-group of order $\leq p^{4}$ and of exponent e. If k is a field satisfying either (i) char $k=p$, or (ii) k contains a primitive e-th root of unity, then $k(G)$ is k-rational.

Because of the above Theorems 1.5 and 1.6 , we may wonder what happens to non-abelian p-groups of order p^{5}.

Theorem 1.7 (Chu, Hu, Kang and Prokhorov [CHKP]). Let G be a group of order 32 and of exponent e. If k is a field satisfying either (i) char $k=2$, or (ii) k contains a primitive e-th root of unity, then $k(G)$ is k-rational. In particular, $B_{0}(G)=0$.

Working on p-groups, Bogomolov developed a lot of techniques and interesting results. Here is one of his results.

Theorem 1.8. (1) [Bo, Lemma 4.11] If G is a p-group with $B_{0}(G) \neq 0$ and $G /[G, G] \simeq C_{p} \times C_{p}$, then $p \geq 5$ and $|G|>p^{7}$.
(2) [Bo, Lemma 5.6; BMP, Corollary 2.11] If G is a p-group of order $\leq p^{5}$, then $B_{0}(G)=0$.

Because of part (2) of the above theorem, Bogomolov proposed to classify all the groups G with $|G|=p^{6}$ satisfying $B_{0}(G) \neq 0$ [Bo, page 479].

It came as a surprise that Moravec's recent paper [Mo1] disproved the above Theorem 1.8.

Theorem 1.9 (Moravec [Mo1, Section 5]). If G is a group of order 243, then $B_{0}(G) \neq 0$ if and only if $G=G(243, i)$ with $28 \leq i \leq 30$, where $G(243, i)$ is the i-th group among groups of order 243 in the database of GAP.

Moravec proves Theorem 1.9 by using computer calculations. No theoretic proof is given. A file of the GAP functions and commands for computing $B_{0}(G)$ can be found at Moravec's website www.fmf.uni-1j.si/~moravec/b0g.g. Recently, using this computer package, Moravec was able to classify all groups G of order 5^{5} and 7^{5} such that $B_{0}(G) \neq 0$.

Before stating the main result of this paper, we recall the classification of p-groups of order $\leq p^{6}$ and introduce the notion of isoclinism.

A list of groups of order 2^{5} (resp. $3^{5}, 5^{5}, 7^{5}$) can be found in the database of GAP. However the classification of groups of order p^{5} dated back to Bagnera (1898), Bender (1927), R. James (1980), etc. [Ba; Be; Ja], although some minor errors might occur in the classification results finished before the computer-aided time. For example, in Bender's classification of groups of order 3^{5}, one group is missing, i.e. the group $\Delta_{10}(2111) a_{2}$ which was pointed by [Ja, page 613]. A beautiful formula for the total number of the groups of order p^{5}, for $p \geq 3$, was found by Bagnera [Ba] as

$$
2 p+61+\operatorname{gcd}\{4, p-1\}+2 \operatorname{gcd}\{3, p-1\}
$$

Note that the above formula is correct only when $p \geq 5$ (see the second paragraph of Section 4).

On the other hand, groups of order $2^{n}(n \leq 6)$ were classified by M. Hall and Senior [HaS]. There are 267 groups of order 2^{6} in total. Groups of order 2^{7} were classified by R. James, Newman and O'Brien [JNOB].

Definition 1.10. Two p-groups G_{1} and G_{2} are called isoclinic if there exist group isomorphisms $\theta: G_{1} / Z\left(G_{1}\right) \rightarrow G_{2} / Z\left(G_{2}\right)$ and $\phi:\left[G_{1}, G_{1}\right] \rightarrow\left[G_{2}, G_{2}\right]$ such that $\phi([g, h])=\left[g^{\prime}, h^{\prime}\right]$ for any $g, h \in G_{1}$ with $g^{\prime} \in \theta\left(g Z\left(G_{1}\right)\right), h^{\prime} \in \theta\left(h Z\left(G_{1}\right)\right)$ (note that $Z(G)$ and $[G, G]$ denote the center and the commutator subgroup of the group G respectively).

For a prime number p and a fixed integer n, let $G_{n}(p)$ be the set of all nonisomorphic groups of order p^{n}. In $G_{n}(p)$ consider an equivalence relation: two groups G_{1} and G_{2} are equivalent if and only if they are isoclinic. Each equivalence class of $G_{n}(p)$ is called an isoclinism family.

Question 1.11. Let G_{1} and G_{2} be isoclinic p-groups. Is it true that the fields $k\left(G_{1}\right)$ and $k\left(G_{2}\right)$ are stably isomorphic ?

According to a private communication from Bogomolov, one should expect an affirmative answer even within larger classes of groups. Our results for groups of order p^{5} confirm many cases for these expectations.

After this paper had been submitted, Bogomolov and Böhning posted a paper solving the above question in the affirmative [BB, Theorem 3.2]. Their result makes possible to shorten many proofs of this paper, but we choose to retain our "empirical" proof.

Return to groups of order p^{5}. If p is an odd prime number, then there are precisely 10 isoclinism families for groups of order p^{5}; each family is denoted by $\Phi_{i}, 1 \leq i \leq 10$ [Ja, pages 619-621]. As for groups of order 64, there are 27 isoclinism families [JNOB, page 147].

The main result of the present paper is the following theorem.
Theorem 1.12. Let p be any odd prime number, G be a group of order p^{5}. Then $B_{0}(G) \neq 0$ if and only if G belongs to the isoclinism family Φ_{10}. Each group G in the family Φ_{10} satisfies the condition $G /[G, G] \simeq C_{p} \times C_{p}$. There are precisely 3 groups in this family if $p=3$. For $p \geq 5$, the total number of non-isomorphic groups in this family is

$$
1+\operatorname{gcd}\{4, p-1\}+\operatorname{gcd}\{3, p-1\} .
$$

Note that, for $p=3$, the isoclinism family Φ_{10} consists of the groups $\Phi_{10}(2111) a_{r}$ (where $r=0,1$) and $\Phi_{10}(5)$ [Ja, page 621], which are just the groups $G\left(3^{5}, i\right)$ with $28 \leq i \leq 30$ in the GAP code numbers. This confirms the computation of Moravec [Mo1]. Similarly, when $p=5$, the isoclinism family Φ_{10} consists of the groups $G\left(5^{5}, i\right)$ with $33 \leq i \leq 38$; when $p=7$, the isoclinism family consists of the groups $G\left(7^{5}, i\right)$ with $37 \leq i \leq 42$. They agree with Moravec's computer results.

We use the computer package provided by Moravec to study groups of order 11^{5}. We find that, for a group G of order $11^{5}, B_{0}(G) \neq 0$ if and only if $G \simeq G\left(11^{5}, i\right)$ with $39 \leq i \leq 42$, also confirming the above Theorem 1.12.

It may be interesting to record the computing time to determine $B_{0}(G)$ for all p-groups of order p^{5} with $p=3,5,7,11$. When $p=3,5,7$, it requires only 20 seconds, one hour and two days respectively. When $p=11$, it requires more than one month by parallel computing at four cores.

As a corollary of Theorem 1.12, we record the following result.
Theorem 1.13. Let n be a positive integer and k be a field with $\operatorname{gcd}\{|G|, \operatorname{char} k\}=$ 1. If $2^{6} \mid n$ or $p^{5} \mid n$ for some odd prime number p, then there is a group G of order n such that $B_{0}(G) \neq 0$. In particular, $k(G)$ is not stably k-rational; when k is an infinite field, $k(G)$ is not even retract k-rational.

See Theorem 5.7 for another application of Theorem 1.12.
For completeness, we record the result for groups of order 2^{6}. Recall that there are 267 non-isomorphic groups of order 2^{6} and 27 isoclinism families in total [JNOB].

Theorem 1.14 (Chu, Hu, Kang and Kunyavskii [CHKK]). Let G be a group of order 2^{6}.
(1) $B_{0}(G) \neq 0$ if and only if G belongs to the 16 th isoclinism family, i.e. $G=$ $G\left(2^{6}, i\right)$ where $149 \leq i \leq 151,170 \leq i \leq 172,177 \leq i \leq 178$, or $i=182$.
(2) If $B_{0}(G)=0$ and k is an algebraically closed field with char $k \neq 2$, then $k(G)$ is rational over k except possibly for groups G belonging to the 13 rd isoclinism family, i.e. $G=G\left(2^{6}, i\right)$ with $241 \leq i \leq 245$.

Finally we mention a recent result which supplements Moravec's result in Theorem 1.9.

Theorem 1.15 (Chu, Hoshi, Hu and Kang [CHHK]). Let G be a group of order 3^{5} and of exponent e. If k is a field containing a primitive e-th root of unity and $B_{0}(G)=0$, then $k(G)$ is rational over k except possibly for groups $G \in \Phi_{7}$, i.e. $G=G\left(3^{5}, i\right)$ with $56 \leq i \leq 60$.

We explain briefly the idea of the proof of Theorem 1.12. Let G be a group of order p^{5} where p is an odd prime number. To show that $B_{0}(G)=0$, we apply Theorems 3.3-3.6 or some "standard" techniques. For the proof of $B_{0}(G)=0$ when G belongs to the isoclinism family Φ_{6}, we use the 7 -term cohomology exact sequence in [DHW] (see also [Hu1], [Hu2], [Hu3]), see Theorems 5.4 and 5.6. We remark that, for many cases in Sections 4 and 5 , we prove not only $B_{0}(G)=0$, but also $k(G)$ is retract k-rational or the $k(G)$'s are k-isomorphic for the groups G belonging to the same isoclinism family. Moravec has another proof showing that $B_{0}(G)=0$ when G is a group of order p^{5} not belonging to the isoclinism family $\Phi_{10}[\mathrm{Mo2}]$.

On the other hand, to show that $B_{0}(G) \neq 0$, we find suitable generators and relations for G. It turns out that $B_{0}(G) \neq 0$ if some relations are satisfied (see Lemma 2.2). All the groups in the isoclinism family Φ_{10} satisfy these relations. Lemma 2.2 relies on the 5 -term exact sequence of Hochschild and Serre [HS]

$$
\begin{aligned}
0 & \rightarrow H^{1}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \\
& \rightarrow H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q} / \mathbb{Z})
\end{aligned}
$$

where ψ is the inflation map. The crux of showing $B_{0}(G) \neq 0$ is to prove that the image of ψ is non-zero and is contained in $B_{0}(G)$.

The paper is organized as follows. In Section 2, we prove that $B_{0}(G) \neq 0$ if G belongs to the isoclinism family Φ_{10}. Then we give a proof of Theorem 1.13. Section 3 contains some rationality criteria or previous results for showing $B_{0}(G)=0$. Section 4 is devoted to the proof of $B_{0}(G)=0$ if G belongs to the isoclinism family Φ_{i} where $1 \leq i \leq 9$ and $i \neq 6$. The case of Φ_{6} is postponed till Section 5. In our proof, we check all of the groups in every isoclinism family Φ_{i} for $1 \leq i \leq 10$. The reader should be aware that such a proof can be shortened, because it suffices to check only one group in each isoclinism family by Bogomolov-Böhning's Theorem [BB, Theorem 3.2].

Standing notations. Throughout this paper, k is a field, ζ_{n} denotes a primitive n-th root of unity. Whenever we write $\zeta_{n} \in k$ (resp. $\operatorname{gcd}\{n$, $\operatorname{char} k\}=1$), it is understood that either char $k=0$ or char $k=l>0$ with $l \nmid n$. When k is an algebraically closed field, μ denotes the set of all roots of unity, i.e. $\mu=\{\alpha \in k \backslash\{0\}$: $\alpha^{n}=1$ for some integer n depending on $\left.\alpha\right\}$. If G is a group, $Z(G)$ and $[G, G]$ denote the center and the commutator subgroup of G respectively. If $g, h \in G$, we define $[g, h]=g^{-1} h^{-1} g h \in G$. When N is a normal subgroup of G and $g \in G$, the element $\bar{g} \in G / N$ denotes the image of g in the quotient group G / N. The exponent of G is defined as $\operatorname{lcm}\{\operatorname{ord}(g): g \in G\}$ where $\operatorname{ord}(g)$ is the order of the element g. We denote by C_{n} the cyclic group of order n. A group G is called a bicyclic group if it is either a cyclic group or a direct product of two cyclic groups. When we write cohomology groups $H^{q}(G, \mu)$ or $H^{q}(G, \mathbb{Q} / \mathbb{Z})$, it is understood that μ and \mathbb{Q} / \mathbb{Z} are trivial G-modules.

For emphasis, recall that the field $k(G)$ was defined in the first paragraph of this section. The group $G(n, i)$ is the i-th group among the groups of order n in GAP. The version of GAP we refer to in this paper is GAP4, Version: 4.4.12 [GAP]. All the groups G in this paper are finite.
2. Groups in the isoclinism family $\boldsymbol{\Phi}_{\mathbf{1 0}}$. We start with a general lemma.

Lemma 2.1. Let G be a finite group, N be a normal subgroup of G. Assume that (i) $\operatorname{tr}: H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \rightarrow H^{2}(G / N, \mathbb{Q} / \mathbb{Z})$ is not surjective where tr is the transgression map, and (ii) for any bicyclic subgroup A of G, the group $A N / N$ is a cyclic subgroup of G / N. Then $B_{0}(G) \neq 0$.

Proof. Consider the Hochschild-Serre 5-term exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{1}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \\
& \xrightarrow{\operatorname{tr}} H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q} / \mathbb{Z})
\end{aligned}
$$

where ψ is the inflation map [HS].
Since tr is not surjective, we find that ψ is not the zero map. Thus Image $(\psi) \neq 0$.
We will show that $\operatorname{Image}(\psi) \subset B_{0}(G)$. By definition, it suffices to show that, for any bicyclic subgroup A of G, the composite map $H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\text { res }}$ $H^{2}(A, \mathbb{Q} / \mathbb{Z})$ becomes the zero map where res is the restriction map. Consider the following commutative diagram

where ψ_{0} is the restriction map, ψ_{1} is the inflation map, $\widetilde{\psi}$ is the natural isomorphism.
Since $A N / N$ is cyclic, write $A N / N \simeq C_{m}$ for some integer m. It is well-known that $H^{2}\left(C_{m}, \mathbb{Q} / \mathbb{Z}\right)=0$ (see, e.g., [Kar, page 37, Corollary 2.2.12]). Hence ψ_{0} is the zero map. Thus res $\circ \psi: H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(A, \mathbb{Q} / \mathbb{Z})$ is also the zero map.

As Image $(\psi) \subset B_{0}(G)$ and Image $(\psi) \neq 0$, we find that $B_{0}(G) \neq 0$.
Lemma 2.2. Let $p \geq 3$ and G be a p-group of order p^{5} generated by f_{i} where $1 \leq i \leq 5$. Suppose that, besides other relations, the generators f_{i} satisfy the following conditions:
(i) $f_{4}^{p}=f_{5}^{p}=1, f_{5} \in Z(G)$,
(ii) $\left[f_{2}, f_{1}\right]=f_{3},\left[f_{3}, f_{1}\right]=f_{4},\left[f_{4}, f_{1}\right]=\left[f_{3}, f_{2}\right]=f_{5},\left[f_{4}, f_{2}\right]=\left[f_{4}, f_{3}\right]=1$, and
(iii) $\left\langle f_{4}, f_{5}\right\rangle \simeq C_{p} \times C_{p}, G /\left\langle f_{4}, f_{5}\right\rangle$ is a non-abelian group of order p^{3} and of exponent p.
Then $B_{0}(G) \neq 0$.
REMARK. If $p=2$ and G / N is a non-abelian group of order 8 , then $H^{2}(G / N$, $\mathbb{Q} / \mathbb{Z})=0$ or $C_{2}\left[\right.$ Kar, page 138, Theorem 3.3.6]. Thus tr: $H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \rightarrow H^{2}(G / N$, $\mathbb{Q} / \mathbb{Z})$ in Lemma 2.2 may become surjective. This is the reason why we assume $p \geq 3$ in this lemma.

Proof. Choose $N=\left\langle f_{4}, f_{5}\right\rangle$. We will check the conditions in Lemma 2.1 are satisfied. Thus $B_{0}(G) \neq 0$.

Step 1. Since $N \simeq C_{p} \times C_{p}$, we find that $H^{1}(N, \mathbb{Q} / \mathbb{Z}) \simeq C_{p} \times C_{p}$.
Define $\varphi_{1}, \varphi_{2} \in H^{1}(N, \mathbb{Q} / \mathbb{Z})=\operatorname{Hom}(N, \mathbb{Q} / \mathbb{Z})$ by $\varphi_{1}\left(f_{4}\right)=1 / p, \varphi_{1}\left(f_{5}\right)=0$, $\varphi_{2}\left(f_{4}\right)=0, \varphi_{2}\left(f_{5}\right)=1 / p$. Clearly $H^{1}(N, \mathbb{Q} / \mathbb{Z})=\left\langle\varphi_{1}, \varphi_{2}\right\rangle$.

The action of G on φ_{1}, φ_{2} are given by ${ }^{f_{1}} \varphi_{1}\left(f_{4}\right)=\varphi_{1}\left(f_{1}^{-1} f_{4} f_{1}\right)=\varphi_{1}\left(f_{4} f_{5}\right)=$ $\varphi_{1}\left(f_{4}\right)+\varphi_{1}\left(f_{5}\right)=1 / p,{ }^{f_{1}} \varphi_{1}\left(f_{5}\right)=\varphi_{1}\left(f_{1}^{-1} f_{5} f_{1}\right)=\varphi_{1}\left(f_{5}\right)=0$. Thus ${ }^{f_{1}} \varphi_{1}=\varphi_{1}$. Similarly, ${ }^{f_{1}} \varphi_{2}\left(f_{4}\right)=1 / p,{ }^{f_{1}} \varphi_{2}\left(f_{5}\right)=1 / p$ and ${ }^{f_{1}} \varphi_{2}=\varphi_{1}+\varphi_{2}$.

For any $\varphi \in H^{1}(N, \mathbb{Q} / \mathbb{Z})=\left\langle\varphi_{1}, \varphi_{2}\right\rangle \simeq C_{p} \times C_{p}$, write $\varphi=a_{1} \varphi_{1}+a_{2} \varphi_{2}$ for some integers $a_{1}, a_{2} \in \mathbb{Z}$ (modulo p). Since ${ }^{f_{1}} \varphi={ }^{f_{1}}\left(a_{1} \varphi_{1}+a_{2} \varphi_{2}\right)=a_{1}\left({ }^{f_{1}} \varphi_{1}\right)+a_{2}\left({ }^{f_{1}} \varphi_{2}\right)=$ $\left(a_{1}+a_{2}\right) \varphi_{1}+a_{2} \varphi_{2}$, we find that ${ }^{f_{1}} \varphi=\varphi$ if and only if $a_{2}=0$, i.e. $\varphi \in\left\langle\varphi_{1}\right\rangle$. On the other hand, it is easy to see that ${ }^{f_{2}} \varphi_{1}=\varphi_{1}={ }^{f_{3}} \varphi_{1}$ and therefore $\varphi_{1} \in H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G}$. We find $H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G}=\left\langle\varphi_{1}\right\rangle \simeq C_{p}$.

By [Le, Proposition 6.3; Kar, page 138, Theorem 3.3.6], since G / N is a nonabelian group of order p^{3} and of exponent p, we find $H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \simeq C_{p} \times C_{p}$. Thus tr: $H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \rightarrow H^{2}(G / N, \mathbb{Q} / \mathbb{Z})$ is not surjective. Hence the first condition of Lemma 2.1 is verified.

Step 2. We will verify the second condition of Lemma 2.1, i.e. for any bicyclic subgroup A of $G, A N / N$ is a cyclic group.

Before the proof, we list the following formulae which are consequences of the commutator relations, i.e. relations (ii) of this lemma. The proof of these formulae is routine and is omitted.

For $1 \leq i, j \leq p-1, f_{4}^{i} f_{1}^{j}=f_{1}^{j} f_{4}^{i} f_{5}^{i j}, f_{3}^{i} f_{2}^{j}=f_{2}^{j} f_{3}^{i} f_{5}^{i j}$, and

$$
f_{3}^{i} f_{1}^{j}=f_{1}^{j} f_{3}^{i} f_{4}^{i j} f_{5}^{i \cdot\binom{j}{2}}, \quad f_{2}^{i} f_{1}^{j}=f_{1}^{j} f_{2}^{i} f_{3}^{i j} f_{4}^{i \cdot\binom{j}{2}} f_{5}^{i \cdot\binom{j}{3}+\binom{i}{2} \cdot j}
$$

where $\binom{a}{b}$ denotes the binomial coefficient when $a \geq b \geq 1$ and we adopt the convention $\binom{a}{b}=0$ if $1 \leq a<b$.

Moreover, in $G / N,\left(\bar{f}_{1}^{j} \bar{f}_{2}^{i}\right)^{e}=\bar{f}_{1}^{e j} \bar{f}_{2}^{e i} \bar{f}_{3}^{\binom{e}{2} \cdot i j}$ for $1 \leq i, j \leq p-1,1 \leq e \leq p$.
Step 3. Let $A=\left\langle h_{1}, h_{2}\right\rangle$ be a bicyclic subgroup of G. We will show that $A N / N$ is cyclic in G / N.

Since $A N / N$ is abelian and G / N is not abelian, we find that $A N / N$ is a proper subgroup of G / N which is of order p^{3}.

If $|A N / N| \leq p$, then $A N / N$ is cyclic. From now on, we will assume $A N / N$ is an order p^{2} subgroup and try to find a contradiction.

In G / N, write $\bar{h}_{1}=\bar{f}_{1}^{a_{1}} \bar{f}_{2}^{a_{2}} \bar{f}_{3}^{a_{3}}, \bar{h}_{2}=\bar{f}_{1}^{b_{1}} \bar{f}_{2}^{b_{2}} \bar{f}_{3}^{b_{3}}$ for some integers a_{j}, b_{j} (recall that $G / N=\left\langle\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}\right\rangle$ and $\left.A=\left\langle h_{1}, h_{2}\right\rangle\right)$. After suitably changing the generators h_{1} and h_{2}, we will show that there are only three possibilities: $\left(\bar{h}_{1}, \bar{h}_{2}\right)=\left(\bar{f}_{2}, \bar{f}_{3}\right)$, $\left(\bar{f}_{1} \bar{f}_{3}^{a_{3}}, \bar{f}_{2} \bar{f}_{3}^{b_{3}}\right),\left(\bar{f}_{1} \bar{f}_{2}^{a_{2}}, \bar{f}_{3}\right)$ for some integers a_{2}, a_{3}, b_{3}.

Suppose $\bar{h}_{1}=\bar{f}_{1}^{a_{1}} \bar{f}_{2}^{a_{2}} \bar{f}_{3}^{a_{3}}$ and $\bar{h}_{2}=\bar{f}_{1}^{b_{1}} \bar{f}_{2}^{b_{2}} \bar{f}_{3}^{b_{3}}$ as above. If $a_{1}=b_{1}=0$, then $\left\langle\bar{h}_{1}, \bar{h}_{2}\right\rangle=\left\langle\bar{f}_{2}, \bar{f}_{3}\right\rangle$. Thus after changing the generating elements h_{1}, h_{2}, we may assume that $\bar{h}_{1}=\bar{f}_{2}, \bar{h}_{2}=\bar{f}_{3}$. This is the first possibility.

If $a_{1} \not \equiv 0$ or $b_{1} \not \equiv 0(\bmod p)$, we may assume $1 \leq a_{1} \leq p-1$. Find an integer e such that $1 \leq e \leq p-1$ and $a_{1} e \equiv 1(\bmod p)$. Use the formulae in Step 2, we get $\bar{h}_{1}^{e}=\bar{f}_{1} \bar{f}_{2}^{c_{2}} \bar{f}_{3}^{c_{3}}$. Since $\left\langle h_{1}, h_{2}\right\rangle=\left\langle h_{1}^{e}, h_{2}\right\rangle$, without loss of generality, we may assume that $\bar{h}_{1}=\bar{f}_{1} \bar{f}_{2}^{a_{2}} \bar{f}_{3}^{a_{3}}$ (i.e. $a_{1}=1$ from the beginning).

Since $\left\langle h_{1}, h_{2}\right\rangle=\left\langle h_{1},\left(h_{1}^{b_{1}}\right)^{-1} h_{2}\right\rangle$, we may assume $\bar{h}_{1}=\bar{f}_{1} \bar{f}_{2}^{a_{2}} \bar{f}_{3}^{a_{3}}$ and $\bar{h}_{2}=\bar{f}_{2}^{b_{2}} \bar{f}_{3}^{b_{3}}$.
In the case $1 \leq b_{2} \leq p-1$, take an integer e^{\prime} with $1 \leq e^{\prime} \leq p-1$ and $b_{2} e^{\prime} \equiv 1$ $(\bmod \underline{p})$. Use the generating set $\left\langle h_{1}, h_{2}^{e^{\prime}}\right\rangle$ for A. Thus we may assume $\bar{h}_{1}=\bar{f}_{1} \bar{f}_{3}^{a_{3}}$, $\bar{h}_{2}=\bar{f}_{2} \dot{f}_{3}^{b_{3}}$. This is the second possibility.

If $b_{2} \equiv 0(\bmod p)$, then $\bar{h}_{1}=\bar{f}_{1} \bar{f}_{2}^{a_{2}} \bar{f}_{3}^{a_{3}}, \bar{h}_{2}=\bar{f}_{3}^{b_{3}}$. If $b_{3}=0$, then $A N / N$ is cyclic. Thus $b_{3} \not \equiv 0(\bmod p)$. Changing the generators again, we may assume $\bar{h}_{1}=\bar{f}_{1} \bar{f}_{2}^{a_{2}}$, $\bar{h}_{2}=\bar{f}_{3}$. This is the third possibility.

Step 4. We will show that all three possibilities in Step 3 lead to contradiction.
Suppose $\bar{h}_{1}=\bar{f}_{2}, \bar{h}_{2}=\bar{f}_{3}$. Write $h_{1}=f_{2} f_{4}^{a_{4}} f_{5}^{a_{5}}, h_{2}=f_{3} f_{4}^{b_{4}} f_{5}^{b_{5}}$. Since $h_{1} h_{2}=$ $h_{2} h_{1}$, we get $f_{2} f_{4}^{a_{4}} f_{3} f_{4}^{b_{4}}=f_{3} f_{4}^{b_{4}} f_{2} f_{4}^{a_{4}}$ (because $f_{5} \in Z(G)$). Rewrite this equality with the help of the formulae in Step 2. We get $f_{2} f_{3} f_{4}^{a_{4}+b_{4}}=f_{2} f_{3} f_{4}^{a_{4}+b_{4}} f_{5}$, which is a contradiction.

Suppose $\bar{h}_{1}=\bar{f}_{1} \bar{f}_{3}^{a_{3}}, \bar{h}_{2}=\bar{f}_{2} \bar{f}_{3}^{b_{3}}$. In G / N, we have $\bar{h}_{1} \bar{h}_{2}=\bar{h}_{2} \bar{h}_{1}$, but it is obvious the two elements $\bar{f}_{1} \bar{f}_{3}^{a_{3}}, \bar{f}_{2} \bar{f}_{3}^{b_{3}}$ do not commute. Done.

Suppose $\bar{h}_{1}=\bar{f}_{1} \bar{f}_{2}^{a_{2}}, \bar{h}_{2}=\bar{f}_{3}$. Write $h_{1}=f_{1} f_{2}^{a_{2}} f_{4}^{a_{4}} f_{5}^{a_{5}}, h_{2}=f_{3} f_{4}^{b_{4}} f_{5}^{b_{5}}$. Use the fact $h_{1} h_{2}=h_{2} h_{1}$. It is easy to find a contradiction.

ThEOREM 2.3. Let p be an odd prime number and G be a group of order p^{5} belonging to the isoclinism family Φ_{10}. Then $B_{0}(G) \neq 0$.

Proof. Apply Lemma 2.2. It suffices to show that G satisfies conditions (i), (ii), (iii) in Lemma 2.2.

Case 1. $p=3$.
It is routine to verify that the groups $\Phi_{10}\left(1^{5}\right), \Phi_{10}(2111) a_{0}, \Phi_{10}(2111) a_{1}$ in [Ja, page 621] are isomorphic to $G\left(3^{5}, 28\right), G\left(3^{5}, 29\right), G\left(3^{5}, 30\right)$ respectively. All these three groups $G\left(3^{5}, i\right)$ with $28 \leq i \leq 30$ can be defined as

$$
\begin{gathered}
G\left(3^{5}, i\right)=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle, \quad Z\left(G\left(3^{5}, i\right)\right)=\left\langle f_{5}\right\rangle \\
{\left[f_{2}, f_{1}\right]=f_{3},\left[f_{3}, f_{1}\right]=f_{4},\left[f_{4}, f_{1}\right]=\left[f_{3}, f_{2}\right]=f_{5},\left[f_{4}, f_{2}\right]=\left[f_{4}, f_{3}\right]=1}
\end{gathered}
$$

with additional relations

$$
\begin{aligned}
& f_{1}^{3}=f_{4}^{3}=f_{5}^{3}=1, f_{2}^{3}=f_{4}^{-1}, f_{3}^{3}=f_{5}^{-1} \quad \text { for } G\left(3^{5}, 28\right), \\
& f_{4}^{3}=f_{5}^{3}=1, f_{1}^{3}=f_{5}, f_{2}^{3}=f_{4}^{-1}, f_{3}^{3}=f_{5}^{-1} \quad \text { for } G\left(3^{5}, 29\right), \\
& f_{4}^{3}=f_{5}^{3}=1, f_{1}^{3}=f_{5}^{-1}, f_{2}^{3}=f_{4}^{-1}, f_{3}^{3}=f_{5}^{-1} \text { for } G\left(3^{5}, 30\right)
\end{aligned}
$$

Case 2. $p \geq 5$.
The group $G=\Phi_{10}\left(1^{5}\right)$ in [Ja, page 621] is defined as

$$
\begin{gathered}
G=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle, \quad Z(G)=\left\langle f_{5}\right\rangle \\
f_{i}^{p}=1 \text { for } 1 \leq i \leq 5
\end{gathered}
$$

$$
\left[f_{2}, f_{1}\right]=f_{3},\left[f_{3}, f_{1}\right]=f_{4},\left[f_{4}, f_{1}\right]=\left[f_{3}, f_{2}\right]=f_{5},\left[f_{4}, f_{2}\right]=\left[f_{4}, f_{3}\right]=1
$$

The group $G=\Phi_{10}(2111) a_{r}$ in [Ja, page 621] is defined as

$$
\begin{gathered}
G=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle, \quad Z(G)=\left\langle f_{5}\right\rangle \\
f_{1}^{p}=f_{5}^{\alpha^{r}}, f_{i}^{p}=1 \text { for } 2 \leq i \leq 5 \\
{\left[f_{2}, f_{1}\right]=f_{3},\left[f_{3}, f_{1}\right]=f_{4},\left[f_{4}, f_{1}\right]=\left[f_{3}, f_{2}\right]=f_{5},\left[f_{4}, f_{2}\right]=\left[f_{4}, f_{3}\right]=1}
\end{gathered}
$$

where α is the smallest positive integer which is a primitive $\operatorname{root}(\bmod p)$ and $0 \leq$ $r \leq \operatorname{gcd}\{3, p-1\}-1$.

The group $G=\Phi_{10}(2111) b_{r}$ in [Ja, page 621] is defined as

$$
\begin{gathered}
G=\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\rangle, \quad Z(G)=\left\langle f_{5}\right\rangle \\
f_{2}^{p}=f_{5}^{\alpha^{r}}, f_{1}^{p}=f_{i}^{p}=1 \text { for } 3 \leq i \leq 5, \\
{\left[f_{2}, f_{1}\right]=f_{3},\left[f_{3}, f_{1}\right]=f_{4},\left[f_{4}, f_{1}\right]=\left[f_{3}, f_{2}\right]=f_{5},\left[f_{4}, f_{2}\right]=\left[f_{4}, f_{3}\right]=1}
\end{gathered}
$$

where α is the smallest positive integer which is a primitive $\operatorname{root}(\bmod p)$ and $0 \leq$ $r \leq \operatorname{gcd}\{3, p-1\}-1$.

Remark. In the proof of [Bo, Lemma 5.6, page 478], Bogomolov tried to prove that there do not exist p-groups G of order p^{5} with $B_{0}(G) \neq 0$. He assumed that the commutator group $[G, G]$ was abelian and discussed three situations when the order of $G /[G, G]$ was p^{2}, p^{3}, or $\geq p^{4}$ (in general, if G is a non-abelian group of order p^{5}, then [G, G] is abelian, since G has an abelian normal subgroup of order p^{3} by a theorem of Burnside). The case when $G /[G, G]=p^{2}$ was reduced to [Bo, Lemma 4.11, page 478] (see the first part of Theorem 2.3). But this lemma is disproved in the proof of the above theorem.

Proof of Theorem 1.13. Suppose that $p^{5} \mid n$ for some odd prime number p. Write $n=p^{5} m$. By Theorem 2.3 choose a group G_{0} of order p^{5} satisfying $B_{0}\left(G_{0}\right) \neq 0$. Define $G=G_{0} \times C_{m}$.

We will prove that $k(G)$ is not stably k-rational (resp. not retract k-rational if k is infinite). Suppose not. Assume that $k(G)$ is stably k-rational (resp. retract k-rational if k is infinite). Then so is $\bar{k}(G)$ over \bar{k} where \bar{k} is the algebraic closure of k. In particular, $\bar{k}(G)$ is retract \bar{k}-rational. Since $G=G_{0} \times C_{m}$, by [Sa1, Theorem 1.5; Ka4, Lemma 3.4], we find that $\bar{k}\left(G_{0}\right)$ is retract \bar{k}-rational. This implies $B_{0}(G)=0$ by Lemma 1.3. A contradiction.

In case $2^{6} \mid n$, the proof is similar by applying Theorem 1.5.
3. Some reduction theorems. We recall several known results in this section.

Theorem 3.1 (Ahmad, Hajja and Kang [AHK, Theorem 3.1]). Let L be any field, $L(x)$ the rational function field in one variable over L, and G a finite group acting on $L(x)$. Suppose that, for any $\sigma \in G, \sigma(L) \subset L$ and $\sigma(x)=a_{\sigma} \cdot x+b_{\sigma}$ where $a_{\sigma}, b_{\sigma} \in L$ and $a_{\sigma} \neq 0$. Then $L(x)^{G}=L^{G}(f)$ for some polynomial $f \in L[x]$. In fact, if $m=\min \left\{\operatorname{deg} g(x): g(x) \in L[x]^{G} \backslash L^{G}\right\}$, any polynomial $f \in L[x]^{G}$ with $\operatorname{deg} f=m$ satisfies the property $L(x)^{G}=L^{G}(f)$.

Theorem 3.2 (Hajja and Kang [HK, Theorem 1]). Let G be a finite group acting on $L\left(x_{1}, \ldots, x_{n}\right)$, the rational function field in n variables over a field L. Suppose that
(i) for any $\sigma \in G, \sigma(L) \subset L$,
(ii) the restriction of the action of G to L is faithful,
(iii) for any $\sigma \in G$,

$$
\left(\begin{array}{c}
\sigma\left(x_{1}\right) \\
\sigma\left(x_{2}\right) \\
\vdots \\
\sigma\left(x_{n}\right)
\end{array}\right)=A(\sigma) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+B(\sigma)
$$

where $A(\sigma) \in G L_{n}(L)$ and $B(\sigma)$ is an $n \times 1$ matrix over L.
Then there exist elements $z_{1}, \ldots, z_{n} \in L\left(x_{1}, \ldots, x_{n}\right)$ so that $L\left(x_{1}, \ldots, x_{n}\right)=L\left(z_{1}\right.$, \ldots, z_{n}) and $\sigma\left(z_{i}\right)=z_{i}$ for any $\sigma \in G$, any $1 \leq i \leq n$.

Theorem 3.3 (Fischer [Sw, Theorem 6.1]). Let G be a finite abelian group of exponent e, and let k be a field containing a primitive e-th root of unity. Then $k(G)$ is rational over k.

Theorem 3.4 (Kang and Plans [KP, Theorem 1.3]). Let k be any field, G_{1} and G_{2} be two finite groups. If $k\left(G_{1}\right)$ and $k\left(G_{2}\right)$ are rational over k, then so is $k\left(G_{1} \times G_{2}\right)$ over k.

Theorem 3.5. Let k be a field and G be a finite group. Assume that (i) G contains an abelian normal subgroup H such that G / H is a cyclic group, and (ii) k contains a primitive e-th root of unity where $e=\exp (G)$.
(1) (Bogomolov [Bo, Lemma 4.9]) If k is algebraically closed, then $B_{0}(G)=0$.
(2) (Kang [Ka4, Theorem 5.10]) If k is an infinite field, then $k(G)$ is retract k-rational. In particular, $B_{0}(G)=0$.
(3) (Kang [Ka2, Theorem 2.2]) If $\mathbb{Z}\left[\zeta_{n}\right]$ is a unique factorization domain where $n=|G / H|$, then $k(G)$ is rational over k.

Theorem 3.6 (Kang [Ka3, Theorem 1.8]). Let $n \geq 3$ and G be a non-abelian group of order p^{n} such that G has a cyclic subgroup of index p^{2}. If k is a field containing a primitive p^{n-2}-th root of unity, then $k(G)$ is rational over k.

Theorem 3.7. Let L be any field containing a field $k, L(x)$ be the rational function field of one variable over L.
(1) (Saltman [Sa2, Proposition 3.6; Ka4, Lemma 3.4]) If k is an infinite field, then L is retract k-rational if and only if so is $L(x)$ over k.
(2) (Saltman [Sa4, Section 2; Ka4, Theorem 3.2]) The natural map $\operatorname{Br}_{v, k}(L) \rightarrow$ $\operatorname{Br}_{v, k}(L(x))$ is an isomorphism.

The following is an elementary result in group theory, whose proof is omitted.
Lemma 3.8. Let G be a finite p-group. If H is a normal subgroup of G and $H \neq\{1\}$, then $H \cap Z(G) \neq\{1\}$.

Lemma 3.9. Let G be a finite p-group, $Z(G)$ be its center. Let $\theta: G \rightarrow G L(W)$ be a linear representation of G where W is a finite-dimensional vector space over some field k. Assume that, for any $g \in Z(G) \backslash\{1\}, \theta(g) \neq 1$. Then θ is a faithful representation of G, i.e. θ is injective.

Proof. Let $N=\operatorname{Ker}(\theta)$. If $N \neq\{1\}$, then $N \cap Z(G) \neq\{1\}$ by Lemma 3.8. It follows that there is some $g \in Z(G) \backslash\{1\}$ with $\theta(g)=1$. A contradiction. [

We recall the definitions of G-lattices and purely monomial actions.
Definition 3.10. Let G be a finite group. A G-lattice M is a finitely generated $\mathbb{Z}[G]$-module which is \mathbb{Z}-free as an abelian group, i.e. $M=\bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot x_{i}$ with a $\mathbb{Z}[G]$-module structure.

If k is a field and $M=\bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot x_{i}$ is a G-lattice, define $k(M)=k\left(x_{1}, \ldots, x_{n}\right)$ the rational function field over k with G acting by k-automorphisms defined as follows: For any $\sigma \in G$, if $\sigma \cdot x_{j}=\sum_{1 \leq i \leq n} a_{i j} x_{i}$ in M, then $\sigma \cdot x_{j}=\prod_{1 \leq i \leq n} x_{i}^{a_{i j}}$ in $k(M)$. The action of G on $k(M)$ is called a purely monomial k-action [HKK , Definition 1.15]. The fixed field of $k(M)$ under the G-action is denoted by $k(M)^{G}$.

Theorem 3.11 (Barge [Bar]). Let G be a finite group, k be an algebraically closed field with $\operatorname{gcd}\{|G|$, char $k\}=1$. The following two statements are equivalent,
(i) all the Sylow subgroups of G are bicyclic.
(ii) $\operatorname{Br}_{v, k}\left(k(M)^{G}\right)=0$ for all G-lattices M.

Proof. In [Bar], the above theorem is proved for the case $k=\mathbb{C}$ but the arguments there work in the general case.

Here is an alternative proof for the direction "(i) \Rightarrow (ii)" of the above theorem: apply [Sa5, Theorem 12].
4. $\boldsymbol{B}_{0}(G)=0$ for the groups not belonging to $\boldsymbol{\Phi}_{6}$ and $\boldsymbol{\Phi}_{10}$. Let p be an odd prime number and G be a group of order p^{5} belonging to the isoclinism family Φ_{i} where $1 \leq i \leq 9$. We will show that $B_{0}(G)=0$ in this section and the next section.

We adopt the classification of groups of order p^{5} by R. James [Ja]. For groups of order p^{5}, there are in total 10 isoclinism families Φ_{i} where $1 \leq i \leq 10$ [Ja, pages 619$621]$. When $p \geq 5$, the numbers of groups in the family Φ_{i} where $1 \leq i \leq 10$ are
$7,15,13, p+8,2, p+7,5,1, \operatorname{gcd}\{3, p-1\}+2, \operatorname{gcd}\{4, p-1\}+\operatorname{gcd}\{3, p-1\}+1$ respectively. The same numbers hold true for groups of order 3^{5} except for Φ_{6} and Φ_{10}. The numbers of groups of order 3^{5} in Φ_{6} and Φ_{10} are 7 and 3 respectively.

We call the attention of the reader to two conventions of James's paper [Ja]. First the notation $\alpha_{i+1}^{(p)}$ is not α_{i+1}^{p} in general; it is defined as $\alpha_{i+1}^{(p)}=$ $\alpha_{i+1}^{p} \alpha_{i+2}^{\binom{p}{2}} \cdots \alpha_{i+k}^{\binom{p}{k}} \cdots \alpha_{i+p}$ where $\alpha_{i+2}, \ldots, \alpha_{i+p}$ are suitably defined [Ja, p. 614, lines 8-10]. In particular, for the groups of order p^{5} with $p \geq 5$ defined in [Ja, pages 619621], $\alpha_{i+1}^{(p)}=\alpha_{i+1}^{p}$. On the other hand, when $p=3$, the relations $\alpha_{1}^{(3)}=\alpha_{2}^{(3)}=\alpha_{3}^{(3)}=$ $\alpha_{4}^{(3)}=1$ for the group $\Phi_{9}(2111) a$ in [Ja, page 621] are equivalent to the relations $\alpha_{1}^{3}=\alpha_{3}^{-1} \alpha_{4}, \alpha_{2}^{3}=\alpha_{4}^{-1}$ and $\alpha_{3}^{3}=\alpha_{4}^{3}=1$. The second convention of [Ja] is that all relations of the form $[\alpha, \beta]=1$ are omitted from the list [Ja, p. 614, lines 11-12].

Theorem 4.1. Let p be an odd prime number and G be a group of order p^{5} and of exponent e. If k is an infinite field containing a primitive e-th root of unity and G belongs to the isoclinism family Φ_{i} where $1 \leq i \leq 4$ or $8 \leq i \leq 9$, then $k(G)$ is retract rational over k. In particular, $B_{0}(G)=0$.

Proof. If G belongs to the isoclinism family Φ_{i} where $1 \leq i \leq 4$ or $8 \leq i \leq 9$, it is not difficult (from the list of [Ja, pages 619-621]) to find an abelian normal subgroup H such that G / H is cyclic. Thus $k(G)$ is retract k-rational and $B_{0}(G)=0$ by Theorem 3.5. But we can say more about $k(G)$.

Step 1. The groups in Φ_{1} are abelian groups. If $G \in \Phi_{1}$, then $k(G)$ is k-rational by Theorem 3.3.

Step 2. Some groups in Φ_{2} are direct products. If $G \in \Phi_{2}$ and $G \simeq G_{1} \times G_{2}$ with $\left|G_{1}\right|,\left|G_{2}\right|<|G|$, then both $k\left(G_{1}\right)$ and $k\left(G_{2}\right)$ are k-rational by Theorem 1.6. Thus $k(G)$ is k-rational by Theorem 3.4.

For the other groups $G \in \Phi_{2}$, it is easy to verify that $G / Z(G) \simeq C_{p} \times C_{p}$. Let \bar{g} be an element of order p in $G / Z(G)$ and g be a preimage of \bar{g} in G. Then $H=\langle Z(G), g\rangle$ is abelian and normal in G with $G / H \simeq C_{p}$. By Theorem 3.5, $k(G)$ is retract k-rational.

Step 3. If G belongs to Φ_{3} or Φ_{4}, it is not difficult to show that G contains an abelian normal subgroup of index p by checking the list provided in [Ja, page 620].

Alternatively, we may use the fact asserted in Bender's paper [Be, p.69]: If G is a group of order p^{5} (where $p \geq 3$) with $|Z(G)|=p^{2}$ and $|[G, G]| \leq p^{2}$, then G contains an abelian normal subgroup of index p. Assuming this fact, since $|Z(G)|=|[G, G]|=p^{2}$ (if $G \in \Phi_{3}$ and G is not a direct product) and $|Z(G)|=|[G, G]|=p^{2}$ (if $G \in \Phi_{4}$), we are done.

In either case, apply Theorem 3.5. We find that $k(G)$ is retract k-rational.
Step 4. If $G \in \Phi_{8}$, the family Φ_{8} consists of only one group $G \simeq C_{p^{3}} \rtimes C_{p^{2}}$. Apply Theorem 3.6. We find $k(G)$ is k-rational.

Step 5. If $G \in \Phi_{9}$, check the list of the generators and relations of these groups in [Ja, p.621]. We find that these groups G are generated by elements $f_{0}, f_{1}, f_{2}, f_{3}$, f_{4} and, besides other relations, they satisfy the relations

$$
\begin{aligned}
& {\left[f_{i}, f_{0}\right]=f_{i+1} \text { for } 1 \leq i \leq 3} \\
& {\left[f_{i}, f_{j}\right]=1 \quad \text { for } 1 \leq i, j \leq 4, \text { and }} \\
& \left\{f_{1}, f_{2}, f_{3}, f_{4}\right\} \text { generates a subgroup of index } p
\end{aligned}
$$

Define $H=\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle$. It follows that H is an abelian normal subgroup of index p. Apply Theorem 3.5. \square

The following theorem is essentially due to Barge [Bar]. We include a proof for the convenience of the reader.

Theorem 4.2. Let $G=A \rtimes G_{0}$ be a finite group where A and G_{0} are subgroups of G such that (i) A is an abelian normal subgroup of G with G_{0} acting on A, and (ii) all the Sylow subgroups of G_{0} are bicyclic. If k is an algebraically closed field with $\operatorname{gcd}\{|G|$, char $k\}=1$, then $\operatorname{Br}_{v, k}(k(G))=0$.

Proof. Step 1. Let $V=\bigoplus_{g \in G} k \cdot x(g)$ with the G-action defined by $g \cdot x(h)=x(g h)$ for any $g, h \in G$. Then $k(G)=k(x(g): g \in G)^{G}$ by definition.

Consider a subspace $W=\bigoplus_{\tau \in A} k \cdot x(\tau)$. Since A is abelian, the action of A on W can be diagonalized. Explicitly, there is a linear change of variables of W with $W=\bigoplus_{1 \leq i \leq n} k \cdot x_{i}$ (where $\left.n=|A|\right)$ such that, for all $\tau \in A, \tau \cdot x_{i} \in k \cdot x_{i}$ for $1 \leq i \leq n$. Thus we may write $\tau \cdot x_{i}=\chi_{i}(\tau) x_{i}$ where $\chi_{i}: A \rightarrow k^{\times}$is a linear character of A.

For any $h \in G_{0}$, define $W(h)=\bigoplus_{\tau \in A} k \cdot x(h \tau)$. Since $x(h \tau)=h \cdot x(\tau)$, we find that $W(h)=h(W)=h\left(\bigoplus_{1 \leq i \leq n} k \cdot x_{i}\right)=\bigoplus_{1 \leq i \leq n} k \cdot\left(h \cdot x_{i}\right)$. Note that $\tau \cdot\left(h \cdot x_{i}\right)=$ $h\left(h^{-1} \tau h\right) \cdot x_{i}=\chi_{i}\left(h^{-1} \tau h\right)\left(h \cdot x_{i}\right)$ for any $\tau \in A$, any $h \in G_{0}$.

Write $y_{i}(g)=g \cdot x_{i}$ for any $g \in G_{0}$, any $1 \leq i \leq n$. It follows that $k(x(g): g \in$ $G)=k\left(y_{i}(g): 1 \leq i \leq n, g \in G_{0}\right)$. The action of G on $y_{i}(g)$ is given as follows: For all $\tau \in A, g, h \in G_{0}, 1 \leq i \leq n$, we have

$$
\tau \cdot y_{i}(g)=\chi_{i}\left(g^{-1} \tau g\right) y_{i}(g), \quad h \cdot y_{i}(g)=y_{i}(h g)
$$

It remains to show that $\operatorname{Br}_{v, k}\left(k\left(y_{i}(g): 1 \leq i \leq n, g \in G_{0}\right)^{G}\right)=0$.
Step 2. Define a $G_{0-l a t t i c e ~} N=\bigoplus_{g \in G_{0}, 1 \leq i \leq n} \mathbb{Z} \cdot y_{i}(g)$ with

$$
h \cdot y_{i}(g)=y_{i}(h g)
$$

for any $h, g \in G_{0}$.
Let us choose $\tau_{1}, \ldots, \tau_{m} \in A$ such that $A=\left\langle\tau_{1}, \ldots, \tau_{m}\right\rangle$. Let ζ be a root of unity such that $\left\langle\chi_{i}(\tau): \tau \in A, 1 \leq i \leq n\right\rangle=\langle\zeta\rangle$. Regard $\langle\zeta\rangle^{m}:=\langle\zeta\rangle \times \cdots \times\langle\zeta\rangle$ (the direct product of m copies of $\langle\zeta\rangle)$ as a $\mathbb{Z}\left[G_{0}\right]$-module where the action of G_{0} is trivial. Define a morphism $\Phi: N \rightarrow\langle\zeta\rangle^{m}$ of $\mathbb{Z}\left[G_{0}\right]$-modules by $\Phi\left(\sum_{g \in G_{0}, 1 \leq i \leq n} a_{i, g} y_{i}(g)\right)=$ $\left(\frac{\tau_{1}(Y)}{Y}, \frac{\tau_{2}(Y)}{Y}, \ldots, \frac{\tau_{m}(Y)}{Y}\right)$ where $Y=\prod_{g \in G_{0}, 1 \leq i \leq n} y_{i}(g)^{a_{i, g}} \in k\left(y_{i}(g): 1 \leq i \leq n, g \in\right.$ G_{0}) 。

Define $M=\operatorname{Ker}(\Phi)$. Clearly M is a G_{0}-lattice.
It is easy to see that $k\left(y_{i}(g): 1 \leq i \leq n, g \in G_{0}\right)^{A}=k(M)$, i.e. if $M=$ $\bigoplus_{1 \leq l \leq e} \mathbb{Z} \cdot z_{l}$, then $k\left(y_{i}(g): 1 \leq i \leq n, g \in G_{0}\right)^{A}=k\left(z_{1}, z_{2}, \ldots, z_{e}\right)$ where each z_{l} is a monomial in $y_{i}(g)$'s.

Moreover, $k\left(y_{i}(g): 1 \leq i \leq n, g \in G_{0}\right)^{G}=\left\{k\left(y_{i}(g): 1 \leq i \leq n, g \in G_{0}\right)^{A}\right\}^{G_{0}}=$ $k(M)^{G_{0}}$. The group G_{0} acts on $k(M)$ by purely monomial k-automorphisms (see Definition 3.10). Applying Theorem 3.11, we find that $\operatorname{Br}_{v, k}\left(k(M)^{G_{0}}\right)=0$. Hence the result.

Remark. Saltman shows that, if $G=A \rtimes G_{0}$ where A is abelian normal such that (i) $\operatorname{gcd}\left\{|A|,\left|G_{0}\right|\right\}=1$, and (ii) both $k(A)$ and $k\left(G_{0}\right)$ are retract k-rational, then $k(G)$ is also retract k-rational [Sa1, Theorem 3.5; Ka4, Theorem 3.5].

Now we turn to groups belonging to the isoclinism family Φ_{5} for groups of order p^{5}.

Definition 4.3. Let p be an odd prime number. The isoclinism family Φ_{5} for groups of order p^{5} consists of two groups: $\Phi_{5}(2111)$ and $\Phi_{5}\left(1^{5}\right)$ (see [Ja, page 620]). These two groups are defined as follows.

For $G=\Phi_{5}(2111), G=\left\langle f_{i}: 1 \leq i \leq 5\right\rangle$ with $Z(G)=\left\langle f_{5}\right\rangle$ and relations

$$
\begin{gathered}
{\left[f_{1}, f_{2}\right]=\left[f_{3}, f_{4}\right]=f_{5},\left[f_{1}, f_{3}\right]=\left[f_{2}, f_{3}\right]=\left[f_{1}, f_{4}\right]=\left[f_{2}, f_{4}\right]=1} \\
f_{1}^{p}=f_{5}, f_{i}^{p}=1 \text { for } 2 \leq i \leq 5
\end{gathered}
$$

For $G=\Phi_{5}\left(1^{5}\right), G=\left\langle f_{i}: 1 \leq i \leq 5\right\rangle$ with $Z(G)=\left\langle f_{5}\right\rangle$ and relations

$$
\begin{gathered}
{\left[f_{1}, f_{2}\right]=\left[f_{3}, f_{4}\right]=f_{5},\left[f_{1}, f_{3}\right]=\left[f_{2}, f_{3}\right]=\left[f_{1}, f_{4}\right]=\left[f_{2}, f_{4}\right]=1} \\
f_{i}^{p}=1 \text { for } 1 \leq i \leq 5
\end{gathered}
$$

Note that both $\Phi_{5}(2111)$ and $\Phi_{5}\left(1^{5}\right)$ are extra-special p-groups.
Theorem 4.4. Let p be an odd prime number and G belong to the isoclinism family Φ_{5} for groups of order p^{5}. Then $B_{0}(G)=0$.

Proof. Choose an algebraically closed field k with char $k \neq p$ (in particular, we may choose $k=\mathbb{C}$). If $\operatorname{Br}_{v, k}(k(G))=0$, then $B_{0}(G)=0$ by Theorem 1.4. Hence we will show that $\operatorname{Br}_{v, k}(k(G))=0$ by using Theorem 4.2.

For $G=\Phi_{5}(2111)$ or $\Phi_{5}\left(1^{5}\right)$, write $G=A \rtimes G_{0}$ where $A=\left\langle f_{1}, f_{3}, f_{5}\right\rangle$ and $G_{0}=\left\langle f_{2}, f_{4}\right\rangle$. Conditions (i), (ii), (iii) in Theorem 4.2 are satisfied. Hence we may apply Theorem 4.2. Done.

Now we consider groups in the isoclinism family Φ_{7}. Since the relations for $p=3$ and $p \geq 5$ are not the same (due to the notation $\alpha_{1}^{(p)}=1$), we define these groups separately.

Definition 4.5. The isoclinism family Φ_{7} for groups of order 3^{5} consists of five groups: $G=G\left(3^{5}, i\right)$ where $56 \leq i \leq 60$ and $G\left(3^{5}, i\right)$ is the GAP code number. These groups G are defined by $G=\left\langle f_{i}: 1 \leq i \leq 5\right\rangle$ with $Z(G)=\left\langle f_{5}\right\rangle$, common relations

$$
\left[f_{2}, f_{1}\right]=f_{4},\left[f_{3}, f_{2}\right]=\left[f_{4}, f_{1}\right]=f_{5},\left[f_{3}, f_{1}\right]=\left[f_{4}, f_{2}\right]=\left[f_{4}, f_{3}\right]=1
$$

but with extra relations
(1) for $G=G\left(3^{5}, 56\right): f_{i}^{3}=1$ for $1 \leq i \leq 5$;
(2) for $G=G\left(3^{5}, 57\right): f_{2}^{3}=f_{5}, f_{1}^{3}=f_{i}^{3}=1$ for $3 \leq i \leq 5$;
(3) for $G=G\left(3^{5}, 58\right): f_{2}^{3}=f_{5}^{2}, f_{1}^{3}=f_{i}^{3}=1$ for $3 \leq i \leq 5$;
(4) for $G=G\left(3^{5}, 59\right): f_{1}^{3}=f_{2}^{-3}=f_{5}, f_{i}^{3}=1$ for $3 \leq i \leq 5$;
(5) for $G=G\left(3^{5}, 60\right): f_{3}^{3}=f_{5}, f_{1}^{3}=f_{2}^{3}=f_{4}^{3}=f_{5}^{3}=1$.

Note that, in the notation of [Ja, page 621], the GAP groups $G\left(3^{5}, i\right), 56 \leq i \leq 60$, correspond to $\Phi_{7}(2111) b_{1}, \Phi_{7}(2111) b_{\nu}, \Phi_{7}\left(1^{5}\right), \Phi_{7}(2111) a$ and $\Phi_{7}(2111) c$ respectively.

Theorem 4.6. If G is a group belonging to the isoclinism family Φ_{7} for groups of order 3^{5}, then $B_{0}(G)=0$.

Proof. The proof is the same as that of Theorem 4.8 except for $G=G\left(3^{5}, 59\right)$ and $G=G\left(3^{5}, 60\right)$. Write $G=A \rtimes G_{0}$ where $G_{0} \simeq C_{3} \times C_{3}$, and
(i) if $G=G\left(3^{5}, 56\right), A=\left\langle f_{2}, f_{4}, f_{5}\right\rangle, G_{0}=\left\langle f_{1}, f_{3}\right\rangle$;
(ii) if $G=G\left(3^{5}, 57\right)$ or $G\left(3^{5}, 58\right), A=\left\langle f_{2}, f_{4}\right\rangle, G_{0}=\left\langle f_{1}, f_{3}\right\rangle$.

It can be shown as before that $B_{0}(G)=0$ when $G=G\left(3^{5}, 56\right), G\left(3^{5}, 57\right)$ or $G\left(3^{5}, 58\right)$. It remains to prove that $B_{0}(G)=0$ for $G=G\left(3^{5}, 59\right)$ and $G=G\left(3^{5}, 60\right)$. We will indicate only the proof for $G=G\left(3^{5}, 59\right)$. The case $G\left(3^{5}, 60\right)$ is almost the same.

Step 1. Let η be a primitive 9 th root of unity and $\zeta=\eta^{3}$. We will construct a faithful 9-dimensional representation of $G=G\left(3^{5}, 59\right)$ over k, which may be embedded into the regular representation of G. The method is similar to that of Step 1 in the proof of Theorem 4.2.

Let $A=\left\langle f_{1}, f_{3}\right\rangle=\left\langle f_{1}, f_{3}, f_{5}\right\rangle \simeq C_{9} \times C_{3}$ act on the 1-dimensional space $k \cdot X$ by $f_{1} \cdot X=\eta X, f_{3} \cdot X=X$. It follows that $f_{5} \cdot X=\zeta X$.

The above action defines a linear character $\rho: A \rightarrow k^{\times}$. The induced representation can be written explicitly as follows.

Define $V=\bigoplus_{1 \leq i \leq 9} k \cdot x_{i}$ where $x_{1}=X, x_{2}=f_{4} \cdot X, x_{3}=f_{4}^{2} \cdot X, x_{4}=f_{2} \cdot X$, $x_{5}=f_{2} f_{4} \cdot X, x_{6}=f_{2} f_{4}^{2} \cdot X, x_{7}=f_{2}^{2} \cdot X, x_{8}=f_{2}^{2} f_{4} \cdot X, x_{9}=f_{2}^{2} f_{4}^{2} \cdot X$. The action of G on x_{i} is given by

$$
\begin{aligned}
& f_{1}: x_{1} \mapsto \eta x_{1}, x_{2} \mapsto \eta^{7} x_{2}, x_{3} \mapsto \eta^{4} x_{3}, x_{4} \mapsto \eta^{4} x_{6}, x_{5} \mapsto \eta x_{4}, x_{6} \mapsto \eta^{7} x_{5}, \\
& x_{7} \mapsto \eta^{7} x_{8}, x_{8} \mapsto \eta^{4} x_{9}, x_{9} \mapsto \eta x_{7}, \\
& f_{2}: x_{1} \mapsto x_{4} \mapsto x_{7} \mapsto \zeta^{2} x_{1}, x_{2} \mapsto x_{5} \mapsto x_{8} \mapsto \zeta^{2} x_{2}, x_{3} \mapsto x_{6} \mapsto x_{9} \mapsto \zeta^{2} x_{3}, \\
& f_{3}: x_{1} \mapsto x_{1}, x_{2} \mapsto x_{2}, x_{3} \mapsto x_{3}, x_{4} \mapsto \zeta x_{4}, x_{5} \mapsto \zeta x_{5}, x_{6} \mapsto \zeta x_{6}, \\
& x_{7} \mapsto \zeta^{2} x_{7}, x_{8} \mapsto \zeta^{2} x_{8}, x_{9} \mapsto \zeta^{2} x_{9}, \\
& f_{4}: x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto x_{1}, x_{4} \mapsto x_{5} \mapsto x_{6} \mapsto x_{4}, x_{7} \mapsto x_{8} \mapsto x_{9} \mapsto x_{7}, \\
& f_{5}: x_{i} \mapsto \zeta x_{i} \text { for } 1 \leq i \leq 9 .
\end{aligned}
$$

By Lemma 3.9, it is a faithful representation of G. This representation can be embedded into the regular representation of G, because it is an irreducible representation of G.

Apply Theorem 3.2. We find that $k(G)$ is rational over $k\left(x_{i}: 1 \leq i \leq 9\right)^{G}$.
Step 2. Define $u_{1}=x_{4} / x_{1}, u_{2}=x_{7} / x_{4}, u_{3}=x_{2} / x_{1}, u_{4}=x_{3} / x_{2}, u_{5}=x_{5} / x_{4}$, $u_{6}=x_{6} / x_{5}, u_{7}=x_{8} / x_{7}, u_{8}=x_{9} / x_{8}$. Apply Theorem 3.1. We find that $k\left(x_{i}: 1 \leq\right.$ $i \leq 9)^{G}=k\left(u_{i}: 1 \leq i \leq 8\right)^{G}\left(u_{0}\right)$ for some element u_{0} fixed by the action of G.

We conclude that $k(G)$ is rational over $k\left(u_{i}: 1 \leq i \leq 8\right)^{G}$.
By Theorem 3.7 and Theorem 1.4, it follows that $B_{0}(G) \simeq \operatorname{Br}_{v, k}\left(k\left(u_{i}: 1 \leq i \leq\right.\right.$ $\left.8)^{G}\right)$.

Step 3. Now consider the group $H=G\left(3^{5}, 58\right)$. We will repeat the procedure of Step 1 and Step 2 for H.

Namely, define $B=\left\langle f_{1}, f_{3}, f_{5}\right\rangle \simeq C_{3} \times C_{3} \times C_{3}$. Let B act on $k \cdot Y$ by $f_{1} \cdot Y=$ $f_{3} \cdot Y=Y, f_{5} \cdot Y=\zeta Y$.

Construct the induced representation $W=\bigoplus_{1<i \leq 9} k \cdot y_{i}$ where $y_{1}=Y, y_{2}=f_{4} \cdot Y$, $y_{3}=f_{4}^{2} \cdot Y, y_{4}=f_{2} \cdot Y, y_{5}=f_{2} f_{4} \cdot Y, y_{6}=f_{2} f_{4}^{2} \cdot Y, y_{7}=f_{2}^{2} \cdot Y, y_{8}=f_{2}^{2} f_{4} \cdot Y$, $y_{9}=f_{2}^{2} f_{4}^{2} \cdot Y$. The actions of $f_{2}, f_{3}, f_{4}, f_{5}$ on W are the same as those on V (just replace x_{i} 's by y_{i} 's), but

$$
\begin{aligned}
f_{1}: & x_{1} \mapsto x_{1}, x_{2} \mapsto \zeta^{2} x_{2}, x_{3} \mapsto \zeta x_{3}, x_{4} \mapsto \zeta x_{6}, x_{5} \mapsto x_{4}, x_{6} \mapsto \zeta^{2} x_{5}, \\
& x_{7} \mapsto \zeta^{2} x_{8}, x_{8} \mapsto \zeta x_{9}, x_{9} \mapsto x_{7} .
\end{aligned}
$$

The coincidence of the group actions can be explained as follows. The relations of $G\left(3^{5}, 59\right)$ and $G\left(3^{5}, 58\right)$ are almost the same except for $f_{1}^{3}=f_{5}$ in $G\left(3^{5}, 59\right)$ and $f_{1}^{3}=1$ in $G\left(3^{5}, 58\right)$.

Step 4. Define $v_{1}=y_{4} / y_{1}, v_{2}=y_{7} / y_{4}, v_{3}=y_{2} / y_{1}, v_{4}=y_{3} / y_{2}, v_{5}=y_{5} / y_{4}$, $v_{6}=y_{6} / y_{5}, v_{7}=y_{8} / y_{7}, v_{8}=y_{9} / y_{8}$. Similar to Step 2, we get that $k(H)$ is rational over $k\left(v_{i}: 1 \leq i \leq 8\right)^{H}$ and $B_{0}(H) \simeq \operatorname{Br}_{v, k}\left(k\left(v_{i}: 1 \leq i \leq 8\right)^{H}\right)$.

Compare the actions of G on u_{1}, \ldots, u_{8} with the actions of H on v_{1}, \ldots, v_{8}. We find they are the same!

Thus $k\left(u_{i}: 1 \leq i \leq 8\right)^{G} \simeq k\left(v_{i}: 1 \leq i \leq 8\right)^{G}$ over k.
Hence $B_{0}(G) \simeq \operatorname{Br}_{v, k}\left(k\left(u_{i}: 1 \leq i \leq 8\right)^{G}\right) \simeq \operatorname{Br}_{v, k}\left(k\left(v_{i}: 1 \leq i \leq 8\right)^{H}\right) \simeq B_{0}(H)$. But $B_{0}(H)=0$ has been proved at the beginning. Hence $B_{0}(G)=0$.

Definition 4.7. Let p be a prime number and $p \geq 5$. The isoclinism family Φ_{7} for groups of order p^{5} consists of five groups: $G=\Phi_{7}(2111) a, \Phi_{7}(2111) b_{1}, \Phi_{7}(2111) b_{\nu}$ (where $2 \leq \nu \leq p-1$ and ν is a fixed quadratic non-residue modulo p), $\Phi_{7}(2111) c$ and $\Phi_{7}\left(1^{5}\right)$ (see [Ja, page 621]). These groups G are defined by $G=\left\langle f_{i}: 0 \leq i \leq 4\right\rangle$ with $Z(G)=\left\langle f_{3}\right\rangle$, common relations

$$
\left[f_{1}, f_{0}\right]=f_{2},\left[f_{2}, f_{0}\right]=\left[f_{1}, f_{4}\right]=f_{3},\left[f_{4}, f_{0}\right]=\left[f_{2}, f_{1}\right]=\left[f_{4}, f_{2}\right]=1
$$

but with extra relations
(1) for $G=\Phi_{7}(2111) a: f_{0}^{p}=f_{3}, f_{i}^{p}=1$ for $1 \leq i \leq 4$;
(2) for $G=\Phi_{7}(2111) b_{1}: f_{1}^{p}=f_{3}, f_{0}^{p}=f_{i}^{p}=1$ for $2 \leq i \leq 4$;
(3) for $G=\Phi_{7}(2111) b_{\nu}: f_{1}^{p}=f_{3}^{\nu}, f_{0}^{p}=f_{i}^{p}=1$ for $2 \leq i \leq 4$;
(4) for $G=\Phi_{7}(2111) c: f_{4}^{p}=f_{3}, f_{i}^{p}=1$ for $0 \leq i \leq 3$;
(5) for $G=\Phi_{7}\left(1^{5}\right): f_{i}^{p}=1$ for $0 \leq i \leq 4$.

THEOREM 4.8. Let p be a prime number and $p \geq 5$. If G belongs to the isoclinism family Φ_{7} for groups of order p^{5}, then $B_{0}(G)=0$.

Proof. The proof is similar to that of Theorem 4.4 by applying Theorem 4.2. Except for groups $G=\Phi_{7}(2111) a$ or $\Phi_{7}(2111) c$, we write $G=A \rtimes G_{0}$ for suitable subgroups A and G_{0}. Here are the subgroups we choose.

If $G=\Phi_{7}(2111) b_{1}$ or $\Phi_{7}(2111) b_{\nu}, A=\left\langle f_{1}, f_{2}\right\rangle, G_{0}=\left\langle f_{0}, f_{4}\right\rangle$.
If $G=\Phi_{7}\left(1^{5}\right), A=\left\langle f_{0}, f_{3}, f_{4}\right\rangle, G_{0}=\left\langle f_{1}, f_{2}\right\rangle$.
When $G=\Phi_{7}(2111) a$ or $\Phi_{7}(2111) c$, it is not difficult to show that $\mathbb{C}(G)$ is isomorphic to $\mathbb{C}(H)$ where H is any one of the groups $H=\Phi_{7}(2111) b_{1}, \Phi_{7}(2111) b_{\nu}$ or $H=\Phi_{7}\left(1^{5}\right)$ by the same method as in the proof of Theorem 4.6. We outline the case of $G=\Phi_{7}(2111) a$ and $H=\Phi_{7}\left(1^{5}\right)$ as follows. The situation for $G=\Phi_{7}(2111) c$ and $H=\Phi_{7}\left(1^{5}\right)$ is almost the same.

Step 1 . Denote by η a primitive p^{2}-th root of unity and $\zeta=\eta^{p}$. We will construct a faithful p^{2}-dimensional representation of $G=\Phi_{7}(2111) a$ over k.

In the group G, define $A=\left\langle f_{0}, f_{4}\right\rangle=\left\langle f_{0}, f_{3}, f_{4}\right\rangle \simeq C_{p^{2}} \times C_{p}$. Let it act on the 1 -dimensional space $k \cdot X$ by $f_{0} \cdot X=\eta X, f_{4} \cdot X=X$. It follows that $f_{3} \cdot X=\zeta X$.

The above action defines a linear character $\rho: A \rightarrow k^{\times}$. The induced representation can be written as $V=\bigoplus_{0 \leq i, j \leq p-1} k \cdot x_{i, j}$ where $x_{i, j}=f_{1}^{i} f_{2}^{j} \cdot X$.

Step 2. Similarly, in the group $H=\Phi_{7}\left(1^{5}\right)$, define $B=\left\langle f_{0}, f_{3}, f_{4}\right\rangle \simeq C_{3} \times C_{3} \times C_{3}$. Let B act on $k \cdot Y$ by $f_{0} \cdot Y=f_{4} \cdot Y=Y, f_{3} \cdot Y=\zeta Y$.

Construct the induced representation $W=\bigoplus_{0 \leq i, j \leq p-1} k \cdot x_{i, j}$ where $x_{i, j}=f_{1}^{i} f_{2}^{j}$. Y; here we use the same notation $x_{i, j}$ as in Step 1 on purpose.

Step 3. It is easy to verify the actions of G and H on these $x_{i, j}$. For both the groups G and H, we have

$$
f_{1}: x_{i, j} \mapsto x_{i+1, j}, f_{2}: x_{i, j} \mapsto x_{i, j+1}, f_{3}: x_{i, j} \mapsto \zeta x_{i, j}, f_{4}: x_{i, j} \mapsto \zeta^{-i} x_{i, j}
$$

The actions of f_{0} are different. For the group $G, f_{0}\left(x_{i, j}\right)=\zeta^{i-j} \eta x_{i, j-i}$; for the group $H, f_{0}\left(x_{i, j}\right)=\zeta^{i-j} x_{i, j-i}$.

The action of G on $\mathbb{P}(V)$ and that of H on $\mathbb{P}(W)$ become the same. Hence the result. [
5. $\boldsymbol{B}_{\mathbf{0}}(\boldsymbol{G})=0$ for the groups belonging to $\boldsymbol{\Phi}_{\mathbf{6}}$. Let p be an odd prime number. Throughout this section g is the smallest positive integer which is a primitive root modulo p, and ν is the smallest positive integer which is a quadratic non-residue modulo p.

Definition 5.1. Let p be an odd prime number. The isoclinism family Φ_{6} for groups of order p^{5} consists of the groups $G=\Phi_{6}(221) a, \Phi_{6}(221) b_{r}$ (where $1 \leq r \leq(p-$ $1) / 2), \Phi_{6}(221) c_{r}$ (where $r=1$ or $\left.\nu\right), \Phi_{6}(221) d_{0}, \Phi_{6}(221) d_{r}$ (where $\left.1 \leq r \leq(p-1) / 2\right)$, $\Phi_{6}(2111) a$ (this group exists only for $p \geq 5$), $\Phi_{6}(2111) b_{r}$ (where $r=1$ or ν; these groups exist only for $p \geq 5$), and $\Phi_{6}\left(1^{5}\right)$. When $p \geq 5$, there are $p+7$ such groups; when $p=3$, there are 7 such groups (see [Ja, pages $620-621]$). These groups G are defined by $G=\left\langle f_{1}, f_{2}, f_{0}, h_{1}, h_{2}\right\rangle$ with $Z(G)=\left\langle h_{1}, h_{2}\right\rangle$, common relations

$$
\left[f_{1}, f_{2}\right]=f_{0},\left[f_{0}, f_{1}\right]=h_{1},\left[f_{0}, f_{2}\right]=h_{2}, f_{0}^{p}=h_{1}^{p}=h_{2}^{p}=1
$$

but with extra relations
(1) for $G=\Phi_{6}(221) a: f_{1}^{p}=h_{1}, f_{2}^{p}=h_{2}$;
(2) for $G=\Phi_{6}(221) b_{r}: f_{1}^{p}=h_{1}^{k}, f_{2}^{p}=h_{2}$ where $k=g^{r}$;
(3) for $G=\Phi_{6}(221) c_{r}: f_{1}^{p}=h_{2}^{-r / 4}, f_{2}^{p}=h_{1}^{r} h_{2}^{r}$;
(4) for $G=\Phi_{6}(221) d_{0}: f_{1}^{p}=h_{2}, f_{2}^{p}=h_{1}^{\nu}$;
(5) for $G=\Phi_{6}(221) d_{r}: f_{1}^{p}=h_{2}^{k}, f_{2}^{p}=h_{1} h_{2}$ where $4 k=g^{2 r+1}-1$;
(6) for $G=\Phi_{6}(2111) a: f_{1}^{p}=h_{1}, f_{2}^{p}=1$;
(7) for $G=\Phi_{6}(2111) b_{r}: f_{1}^{p}=1, f_{2}^{p}=h_{1}^{r}$;
(8) for $G=\Phi_{6}\left(1^{5}\right): f_{1}^{p}=1, f_{2}^{p}=1$.
(Note that whenever the exponent of h_{2} is fractional, it is understood that it is taken modulo p, which is the order of h_{2}.)

Before proving $B_{0}(G)=0$ for the groups G in Definition 5.1, we recall two results in group cohomology.

Theorem 5.2 (Dekimpe, Hartl and Wauters [DHW], Huebschmann [Hu1], [Hu2], [Hu3]). Let G be a finite group, N a normal subgroup of G. Then the Hochschild-Serre spectral sequence gives rise to the following 7 -term exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{1}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \rightarrow H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \\
& \rightarrow H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1} \rightarrow H^{1}\left(G / N, H^{1}(N, \mathbb{Q} / \mathbb{Z})\right) \xrightarrow{\lambda} H^{3}(G / N, \mathbb{Q} / \mathbb{Z})
\end{aligned}
$$

where $H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}=\operatorname{Ker}\left\{H^{2}(G, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\text { res }} H^{2}(N, \mathbb{Q} / \mathbb{Z})\right\}$ and λ is defined as follows. Choose a section $u: G / N \rightarrow G$ and define a 2-cocycle $\varepsilon: G / N \times G / N \rightarrow N$ satisfying $u(\tau) u\left(\tau^{\prime}\right)=\varepsilon\left(\tau, \tau^{\prime}\right) u\left(\tau \tau^{\prime}\right)$ for any $\tau, \tau^{\prime} \in G / N$. For each 1-cocycle $\gamma: G / N \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})$, the map λ is defined by

$$
\begin{gathered}
\lambda: H^{1}\left(G / N, H^{1}(N, \mathbb{Q} / \mathbb{Z})\right) \longrightarrow H^{3}(G / N, \mathbb{Q} / \mathbb{Z}) \\
\gamma \longmapsto \lambda(\gamma)=c
\end{gathered}
$$

where $c: G / N \times G / N \times G / N \rightarrow \mathbb{Q} / \mathbb{Z}$ is the 3-cocycle defined as $c\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=$ $\left({ }^{u\left(\tau_{1} \tau_{2}\right)} \gamma\left(\tau_{3}\right)\right)\left(\varepsilon\left(\tau_{1}, \tau_{2}\right)\right)$ for all $\tau_{1}, \tau_{2}, \tau_{3} \in G / N$.

Proof. See [DHW] for details.
The formula for λ is summarized in [DHW, page 21, formula (6)]. If $\gamma: G / N \rightarrow$ $H^{1}(N, M)$ is a 1-cocycle where M is a G-module, $[\gamma]$ denotes its cohomology class in $H^{1}\left(G / N, H^{1}(N, M)\right)$ in the paper [DHW]. The image $\lambda([\gamma]) \in H^{3}\left(G / N, M^{N}\right)$ is represented by a 3-cocycle $c: G / N \times G / N \times G / N \rightarrow M^{N}$ which is given on [DHW, page 21]. Note that the definition of $-\delta^{0}: M \rightarrow \operatorname{Der}(N, M)$ can be found on [DHW, page 14].

When M is a trivial G-module, $-\delta^{0}$ is a zero map and therefore the map $F^{\prime}: G / N \times G / N \rightarrow M$ on [DHW, page 21] can be chosen to be a zero map. Consequently, $c\left(q_{1}, q_{2}, q_{3}\right)=\left({ }^{s_{1}\left(q_{1} q_{2}\right)} s_{2} D\left(q_{3}\right)\right)\left(F_{1}\left(q_{1}, q_{2}\right)\right)$ for any $q_{1}, q_{2}, q_{3} \in G / N$. This is our formula when $M=\mathbb{Q} / \mathbb{Z}$.

TheOrem 5.3. Let p be a prime number, $C_{p}=\langle\sigma\rangle$ and M be a C_{p}-module. For any 1-cocycle $\beta: C_{p} \rightarrow M$, the following map

$$
\begin{gathered}
\Phi: H^{1}\left(C_{p}, M\right) \longrightarrow H^{3}\left(C_{p}, M\right) \\
\beta \longmapsto \Phi(\beta)=\gamma
\end{gathered}
$$

is a group isomorphism where $\gamma: C_{p} \times C_{p} \times C_{p} \rightarrow M$ is a 3-cocycle defined as

$$
\gamma\left(\sigma^{i}, \sigma^{j}, \sigma^{l}\right)= \begin{cases}0 & \text { if } 0 \leq i+j \leq p-1 \\ \left(\sigma^{i+j} \beta\right)\left(\sigma^{l}\right) & \text { if } i+j \geq p\end{cases}
$$

where $0 \leq i, j, l \leq p-1$.
Proof. By [Se, page 149, Theorem 14], the 2-cocycle $\alpha: C_{p} \times C_{p} \rightarrow \mathbb{Z}$ defined as

$$
\alpha\left(\sigma^{i}, \sigma^{j}\right)= \begin{cases}0 & \text { if } 0 \leq i+j \leq p-1 \\ 1 & \text { if } i+j \geq p\end{cases}
$$

represents a "fundamental" cohomology class in $H^{2}\left(C_{p}, \mathbb{Z}\right)$ such that, for any $C_{p^{-}}$ module M, the map

$$
\begin{aligned}
\Phi: H^{1}\left(C_{p}, M\right) & \longrightarrow H^{3}\left(C_{p}, M\right) \\
\beta \longmapsto & \Phi(\beta)=\alpha \cup \beta
\end{aligned}
$$

is an isomorphism where $\alpha \cup \beta$ is the cup product. It is easy to check that $\alpha \cup \beta=\gamma$ where γ is defined in the statement of this theorem.

Theorem 5.4. Let G be the group $\Phi_{6}(221)$ a in Definition 5.1. Then $B_{0}(G)=0$.
Proof. Step 1. Write $G=\left\langle f_{1}, f_{2}, f_{0}, h_{1}, h_{2}\right\rangle$. Choose $N=\left\langle f_{1}, f_{0}, h_{1}, h_{2}\right\rangle ; N$ is a normal subgroup of G. We will apply Theorem 5.2 to the group extension $1 \rightarrow N \rightarrow$ $G \rightarrow G / N \rightarrow 1$.

Since $G / N=\left\langle\bar{f}_{2}\right\rangle \simeq C_{p}$, we find that $H^{2}(G / N, \mathbb{Q} / \mathbb{Z})=0[$ Kar, page 37, Corollary 2.2.12]). By Theorem 5.2, we obtain the following exact sequence

$$
0 \rightarrow H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1} \rightarrow H^{1}\left(G / N, H^{1}(N, \mathbb{Q} / \mathbb{Z})\right) \xrightarrow{\lambda} H^{3}(G / N, \mathbb{Q} / \mathbb{Z})
$$

Step 2. Note that $B_{0}(G)$ is a subgroup of $H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}$.
For, consider the restriction map res: $H^{2}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(N, \mathbb{Q} / \mathbb{Z})$. It induces a map res : $B_{0}(G) \rightarrow B_{0}(N)$ such that the following diagram commutes

Since N is a p-group of order $p^{4}, k(N)$ is k-rational for any algebraically closed field k with char $k \neq p$ by Theorem 1.6. It follows that $B_{0}(N) \simeq \operatorname{Br}_{v, k}(k(N))=0$ by Lemma 1.3 and Theorem 1.4. Hence $B_{0}(G)$ is contained in the kernel of the map res : $H^{2}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(N, \mathbb{Q} / \mathbb{Z})$. That is, $B_{0}(G)$ is a subgroup of $H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}$.

If we can show that $H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}=0$, then $B_{0}(G)=0$ and the proof is finished. Note that $H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}=0$ if and only if λ is an injective map by the exact sequence in Step 1.

Step 3. We recall a general fact about $H^{1}\left(C_{n}, M\right)$.
Let $G=\langle\sigma\rangle \simeq C_{n}$ and M be a G-module. Define the map Norm : $M \rightarrow M$ by $\operatorname{Norm}(x)=x+\sigma \cdot x+\sigma^{2} \cdot x+\cdots+\sigma^{n-1} \cdot x$ for any $x \in M$. It is well-known that $H^{1}(G, M) \simeq \operatorname{Ker}(N o r m) /$ Image $(\sigma-1)$. We will give an explicit correspondence between these two groups. If $x \in M$ satisfies $\operatorname{Norm}(x)=0$, define a normalized 1-cocycle $\beta_{x}: G \rightarrow M$ by $\beta_{x}(\sigma)=x, \beta_{x}\left(\sigma^{i}\right)=x+\sigma \cdot x+\sigma^{2} \cdot x+\cdots+\sigma^{i-1} \cdot x$ for $0 \leq i \leq n-1$. It is easy to see that $x \in \operatorname{Image}(\sigma-1)$ if and only β_{x} is cohomologously trivial.

Step 4. We will determine $H^{1}\left(G / N, H^{1}(N, \mathbb{Q} / \mathbb{Z})\right)$.
To keep the notations clean and transparent, we adopt the multiplicative notation for \mathbb{Q} / \mathbb{Z}, i.e. we identify \mathbb{Q} / \mathbb{Z} with all the roots of unity in $\mathbb{C} \backslash\{0\}$. Thus a primitive
p-th root of unity is the element i / p (for some $1 \leq i \leq p-1$) in the additive notation of \mathbb{Q} / \mathbb{Z}.

Let ζ be a primitive p-th root of unity. Since $H^{1}(N, \mathbb{Q} / \mathbb{Z}) \simeq \operatorname{Hom}(N, \mathbb{Q} / \mathbb{Z}) \simeq$ $\operatorname{Hom}(N /[N, N], \mathbb{Q} / \mathbb{Z})$ and $N /[N, N]=\left\langle\bar{f}_{1}, \bar{f}_{0}, \bar{h}_{2}\right\rangle \simeq C_{p} \times C_{p} \times C_{p}$, we find that $H^{1}(N, \mathbb{Q} / \mathbb{Z})=\left\langle\varphi_{1}, \varphi_{0}, \psi\right\rangle$ where these 1-cocycles $\varphi_{1}, \varphi_{0}, \psi$ are defined as

$$
\begin{array}{cc}
\varphi_{1}\left(f_{1}\right)=\zeta, & \varphi_{1}\left(f_{0}\right)=\varphi_{1}\left(h_{1}\right)=\varphi_{1}\left(h_{2}\right)=1 \\
\varphi_{0}\left(f_{0}\right)=\zeta, & \varphi_{0}\left(f_{1}\right)=\varphi_{0}\left(h_{1}\right)=\varphi_{0}\left(h_{2}\right)=1 \\
\psi\left(h_{2}\right)=\zeta, & \psi\left(f_{1}\right)=\psi\left(f_{0}\right)=\psi\left(h_{1}\right)=1
\end{array}
$$

The group G (resp. $\left.G / N=\left\langle\bar{f}_{2}\right\rangle\right)$ acts on $H^{1}(N, \mathbb{Q} / \mathbb{Z})=\left\langle\varphi_{1}, \varphi_{0}, \psi\right\rangle$. It is easy to verify that

$$
{ }^{\bar{f}_{2}} \varphi_{1}=\varphi_{1}, \quad \bar{f}_{2} \varphi_{0}=\varphi_{1} \varphi_{0}, \quad \bar{f}_{2} \psi=\varphi_{0} \psi
$$

Consider the norm map Norm: $H^{1}(N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})$ defined by the action of \bar{f}_{2} (see Step 3).

We find that $H^{1}\left(G / N, H^{1}(N, \mathbb{Q} / \mathbb{Z})\right) \simeq \operatorname{Ker}(N o r m) / \operatorname{Image}\left(\bar{f}_{2}-1\right)=$ $\left\langle\varphi_{1}, \varphi_{0}, \psi\right\rangle /\left\langle\varphi_{1}, \varphi_{0}\right\rangle$ if $p \geq 5$. But, if $p=3, \operatorname{Ker}\left(1+\bar{f}_{2}+\bar{f}_{2}^{2}\right)=\left\langle\varphi_{1}, \varphi_{0}\right\rangle$.

It follows that

$$
H^{1}\left(G / N, H^{1}(N, \mathbb{Q} / \mathbb{Z})\right)= \begin{cases}0, & \text { if } p=3 \\ \langle\bar{\psi}\rangle \simeq C_{p}, & \text { if } p \geq 5\end{cases}
$$

When $p=3$, we obtain $H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}=0$ from the exact sequence in Step 1. Hence $B_{0}(G)=0$.

From now on, we assume that $p \geq 5$. By Step 3 , the element $\bar{\psi} \in$ $\operatorname{Ker}(N o r m) /$ Image $\left(\bar{f}_{2}-1\right)$ corresponds to the 1-cocycle $\beta: G / N \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})$ defined as

$$
\begin{aligned}
& \beta(1)=1, \quad \beta\left(\bar{f}_{2}\right)=\psi \\
& \beta\left(\bar{f}_{2}^{i}\right)=\left(\bar{f}_{2} \beta\left(\bar{f}_{2}^{i-1}\right)\right) \beta\left(\bar{f}_{2}\right)=\varphi_{1}^{\binom{i}{3}} \varphi_{0}^{\binom{i}{2}} \psi^{i}
\end{aligned}
$$

where $1 \leq i \leq p-1$ and $\binom{a}{b}$ is the binomial coefficient with the convention that $\binom{a}{b}=0$ if $1 \leq a<b$.

Step 5. We will show that $\lambda(\beta) \neq 0$ and finish the proof of $B_{0}(G)=0$.
Follow the description of λ in Theorem 5.2. Choose a section $u: G / N \rightarrow G$ by $u(1)=1, u\left(\bar{f}_{2}^{i}\right)=f_{2}^{i}$ for $1 \leq i \leq p-1$. It is easy to find the 2 -cocycle ε : $G / N \times G / N \rightarrow N$. In fact, if $0 \leq i, j \leq p-1$, then

$$
\varepsilon\left(\bar{f}_{2}^{i}, \bar{f}_{2}^{j}\right)= \begin{cases}1, & \text { if } 0 \leq i+j \leq p-1 \\ h_{2}, & \text { if } i+j \geq p\end{cases}
$$

the second alternative follows from the fact $f_{2}^{p}=h_{2}$.
Now we will evaluate $\lambda(\beta)$ where β is the 1-cocycle determined in Step 4. Write $c=\lambda(\beta)$. Then, for $0 \leq i, j, l \leq p-1$,

$$
c\left(\bar{f}_{2}^{i}, \bar{f}_{2}^{j}, \bar{f}_{2}^{l}\right)=\left({ }^{u\left(\bar{f}_{2}^{i+j}\right)} \beta\left(\bar{f}_{2}^{l}\right)\right)\left(\varepsilon\left(\bar{f}_{2}^{i}, \bar{f}_{2}^{j}\right)\right)
$$

by Theorem 5.2.
In particular, for $0 \leq i \leq p-1$, we have

$$
\begin{aligned}
c\left(\bar{f}_{2}, \bar{f}_{2}^{p-1}, \bar{f}_{2}^{i}\right) & =\left({ }^{u(1)} \beta\left(\bar{f}_{2}^{i}\right)\right)\left(\varepsilon\left(\bar{f}_{2}, \bar{f}_{2}^{p-1}\right)\right)=\left(\beta\left(\bar{f}_{2}^{i}\right)\right)\left(h_{2}\right) \\
& =\left(\varphi_{1}^{\binom{i}{3}} \varphi_{0}^{\binom{i}{2}} \psi^{i}\right)\left(h_{2}\right)=\left(\psi\left(h_{2}\right)\right)^{i}=\zeta^{i}
\end{aligned}
$$

On the other hand, apply Theorem 5.3 for $\Phi: H^{1}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{3}(G / N, \mathbb{Q} / \mathbb{Z})$. We will find a 1-cocycle $\tilde{\beta}: G / N \rightarrow \mathbb{Q} / \mathbb{Z}$ such that $\Phi(\tilde{\beta})=c \in H^{3}(G / N, \mathbb{Q} / \mathbb{Z})$. In fact, from Theorem 5.3, $c\left(\bar{f}_{2}, \bar{f}_{2}^{p-1}, \bar{f}_{2}^{i}\right)=\tilde{\beta}\left(\bar{f}_{2}^{i}\right)$. Thus $\tilde{\beta}\left(\bar{f}_{2}^{i}\right)=\zeta^{i}$ for all $0 \leq i \leq p-1$.

By Step 3, the 1-cocycle $\tilde{\beta} \in H^{1}(G / N, \mathbb{Q} / \mathbb{Z})$ corresponds to the non-zero element $\bar{\zeta} \in \operatorname{Ker}(N o r m) / \operatorname{Image}\left(\bar{f}_{2}-1\right)$, regarding ζ as an element in $\operatorname{Ker}($ Norm $)$ where Norm $: \mathbb{Q} / \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$ is defined by the action of \bar{f}_{2} (see Step 3). Hence $\tilde{\beta} \neq 0$ and $\Phi(\tilde{\beta})=c \neq 0$. Thus λ is injective.

The proof of the following lemma is routine and is omitted.
Lemma 5.5. Let G be a group in Definition 5.1. If $0 \leq i, j \leq p-1$, then $f_{0}^{j} f_{1}^{i}=f_{1}^{i} f_{0}^{j} h_{1}^{i j}, f_{0}^{j} f_{2}^{i}=f_{2}^{i} f_{0}^{j} h_{2}^{i j}$, and

$$
f_{2}^{i} f_{1}^{j}=f_{1}^{j} f_{2}^{i} f_{0}^{-i j} h_{1}^{-i\binom{j}{2}} h_{2}^{-j\binom{i}{2}}
$$

THEOREM 5.6. Let p be an odd prime number. If G is a group belonging to the isoclinism family Φ_{6} for groups of order p^{5}, then $B_{0}(G)=0$.

Proof. Let k be an algebraically closed field with char $k \neq p$ (in particular, we may choose $k=\mathbb{C}$). Let $\eta \in k$ be a primitive p^{2}-th root of unity and $\zeta=\eta^{p}$. In the following we adopt the notation in Definition 5.1. We will show that the fields $k(G)$ are isomorphic to one another over k for all groups G in the isoclinism family Φ_{6}. Thus they have isomorphic $B r_{v, k}(k(G)) \simeq B_{0}(G)$ by Theorem 1.4. Since $B_{0}(G)=0$ if $G=\Phi_{6}(221) a$ by Theorem 5.4, it follows that $B_{0}(G)=0$ for all other groups G.

Case 1. $G=\Phi_{6}(221) a, \Phi_{6}(221) b_{r}($ where $1 \leq r \leq(p-1) / 2), \Phi_{6}(2111) a, \Phi_{6}\left(1^{5}\right)$.
Step 1. For these groups G, we have

$$
f_{1}^{p}=h_{1}^{e_{1}}, \quad f_{2}^{p}=h_{2}^{e_{2}}
$$

where $0 \leq e_{1}, e_{2} \leq p-1$.
We will employ the same method as in Step 1 of the proof in Theorem 4.6.
Consider the subgroups $H_{1}=\left\langle f_{1}, f_{0}, h_{1}, h_{2}\right\rangle$ and $H_{2}=\left\langle f_{2}, f_{0}, h_{1}, h_{2}\right\rangle$ of G. Note that $H_{2}=\left\langle f_{2}, f_{0}, h_{2}\right\rangle \times\left\langle h_{1}\right\rangle \simeq\left\langle f_{2}, f_{0}, h_{2}\right\rangle \times C_{p}$. Hence we get a linear character of H_{2} so that $\left\langle f_{2}, f_{0}, h_{2}\right\rangle$ is the kernel. Explicitly, we may define an action of H_{2} on $k \cdot X$ defined by

$$
h_{1} \cdot X=\zeta X, \quad f_{2} \cdot X=f_{0} \cdot X=h_{2} \cdot X=X
$$

Similarly, define an action of H_{1} on $k \cdot Y$ by

$$
h_{2} \cdot Y=\zeta Y, \quad f_{1} \cdot Y=f_{0} \cdot Y=h_{1} \cdot Y=Y
$$

Construct the induced representations of these linear characters by defining $x_{i}=$ $f_{1}^{i} \cdot X, y_{i}=f_{2}^{i} \cdot Y$ for $0 \leq i \leq p-1$. Thus we get an action of G on $\left(\bigoplus_{0 \leq i \leq p-1} k \cdot x_{i}\right) \oplus$ $\left(\bigoplus_{0 \leq i \leq p-1} k \cdot y_{i}\right)$. With the aid of Lemma 5.5, the action of G is given as follows.

$$
\begin{aligned}
& f_{1}: x_{0} \mapsto x_{1} \mapsto \cdots \mapsto x_{p-1} \mapsto \zeta^{e_{1}} x_{0}, y_{i} \mapsto \zeta^{\binom{i}{2}} y_{i}, \\
& f_{2}: x_{i} \mapsto \zeta^{-\binom{i}{2}} x_{i}, y_{0} \mapsto y_{1} \mapsto \cdots \mapsto y_{p-1} \mapsto \zeta^{e_{2}} y_{0}, \\
& f_{0}: x_{i} \mapsto \zeta^{i} x_{i}, y_{i} \mapsto \zeta^{i} y_{i}, \\
& h_{1}: x_{i} \mapsto \zeta x_{i}, y_{i} \mapsto y_{i}, \\
& h_{2}: x_{i} \mapsto x_{i}, y_{i} \mapsto \zeta y_{i} .
\end{aligned}
$$

By Lemma 3.9, G acts faithfully on $\left(\bigoplus_{0 \leq i \leq p-1} k \cdot x_{i}\right) \oplus\left(\bigoplus_{0 \leq i \leq p-1} k \cdot y_{i}\right)$. Moreover, this representation may be embedded into the regular representation of G. By Theorem 3.2, we find that $k(G)$ is rational over $k\left(x_{i}, y_{i}: 0 \leq i \leq p-1\right)^{G}$.

Step 2. We will apply Theorem 3.1 to $k\left(x_{i}, y_{i}: 0 \leq i \leq p-1\right)^{G}$. Define $u_{i}=$ $x_{i} / x_{i-1}, U_{i}=y_{i} / y_{i-1}$ for $1 \leq i \leq p-1$. By applying Theorem 3.1 twice, we get $k\left(x_{i}, y_{i}: 0 \leq i \leq p-1\right)^{G}=k\left(u_{i}, U_{i}: 1 \leq i \leq p-1\right)^{G}\left(u_{0}, U_{0}\right)$ where u_{0}, U_{0} are fixed by the action of G. The action of G on u_{i}, U_{i} is given by

$$
\begin{aligned}
& f_{1}: u_{1} \mapsto u_{2} \mapsto \cdots \mapsto u_{p-1} \mapsto \zeta^{e_{1}} /\left(u_{1} u_{2} \cdots u_{p-1}\right), U_{i} \mapsto \zeta^{i-1} U_{i} \\
& f_{2}: u_{i} \mapsto \zeta^{-(i-1)} u_{i}, U_{1} \mapsto U_{2} \mapsto \cdots \mapsto U_{p-1} \mapsto \zeta^{e_{2}} /\left(U_{1} U_{2} \cdots U_{p-1}\right) \\
& f_{0}: u_{i} \mapsto \zeta u_{i}, U_{i} \mapsto \zeta U_{i}
\end{aligned}
$$

Note that $h_{1}\left(u_{i}\right)=h_{2}\left(u_{i}\right)=u_{i}, h_{1}\left(U_{i}\right)=h_{2}\left(U_{i}\right)=U_{i}$ for $1 \leq i \leq p-1$. Thus

$$
\begin{aligned}
k\left(u_{i}, U_{i}: 1 \leq i \leq p-1\right)^{G} & =k\left(u_{i}, U_{i}: 1 \leq i \leq p-1\right)^{G /\left\langle h_{1}, h_{2}\right\rangle} \\
& =k\left(u_{i}, U_{i}: 1 \leq i \leq p-1\right)^{\left\langle f_{0}, f_{1}, f_{2}\right\rangle} .
\end{aligned}
$$

Step 3. Define $u_{i}^{\prime}=u_{i} / \eta^{e_{1}}, U_{i}^{\prime}=U_{i} / \eta^{e_{2}}$ for $1 \leq i \leq p-1$.
It follows that $k\left(u_{i}, U_{i}: 1 \leq i \leq p-1\right)=k\left(u_{i}^{\prime}, U_{i}^{\prime}: 1 \leq i \leq p-1\right)$ and

$$
\begin{aligned}
& f_{1}: u_{1}^{\prime} \mapsto u_{2}^{\prime} \mapsto \cdots \mapsto u_{p-1}^{\prime} \mapsto 1 /\left(u_{1}^{\prime} u_{2}^{\prime} \cdots u_{p-1}^{\prime}\right), U_{i}^{\prime} \mapsto \zeta^{i-1} U_{i}^{\prime}, \\
& f_{2}: u_{i}^{\prime} \mapsto \zeta^{-(i-1)} u_{i}^{\prime}, U_{1}^{\prime} \mapsto U_{2}^{\prime} \mapsto \cdots \mapsto U_{p-1}^{\prime} \mapsto 1 /\left(U_{1}^{\prime} U_{2}^{\prime} \cdots U_{p-1}^{\prime}\right), \\
& f_{0}: u_{i}^{\prime} \mapsto \zeta u_{i}^{\prime}, U_{i}^{\prime} \mapsto \zeta U_{i}^{\prime} .
\end{aligned}
$$

Note that the parameters e_{1}, e_{2} of these groups G disappear in the above action. In conclusion, for any group G in this case, $k(G)$ is rational over $k\left(u_{i}^{\prime}, U_{i}^{\prime}: 1 \leq i \leq\right.$ $p-1)^{\left\langle f_{1}, f_{2}, f_{0}\right\rangle}$. Thus all these fields $k(G)$ are isomorphic.

Case 2. $G=\Phi_{6}(221) c_{r}$ (where $r=1$ or $\left.\nu\right), \Phi_{6}(221) d_{r}($ where $1 \leq r \leq(p-1) / 2)$.
For these groups G, we have

$$
f_{1}^{p}=h_{2}^{e_{1}}, \quad f_{2}^{p}=h_{1}^{e_{2}} h_{2}^{e_{2}}
$$

where $1 \leq e_{1}, e_{2} \leq p-1$. The proof is similar to Step 1 and Step 2 of Case 1.
Find integers $e_{1}^{\prime}, e_{2}^{\prime}$ such that $1 \leq e_{1}^{\prime}, e_{2}^{\prime} \leq p-1$ and $e_{1} e_{1}^{\prime} \equiv e_{2} e_{2}^{\prime} \equiv 1(\bmod p)$.

Consider the subgroups $H_{1}=\left\langle f_{1}, f_{0}, h_{1}, h_{2}\right\rangle, H_{2}=\left\langle f_{2}, f_{0}, h_{1}, h_{2}\right\rangle$ of G. Since $H_{2} /\left\langle h_{2}\right\rangle=\left\langle\bar{f}_{2}, \bar{f}_{0}\right\rangle \simeq C_{p^{2}} \times C_{p}$, we get a linear character of H_{2}. Similarly for H_{1}. More precisely, we have actions of H_{2} on $k \cdot X$, and H_{1} on $k \cdot Y$ defined by

$$
\begin{array}{ll}
f_{2} \cdot X=\eta^{e_{2}^{\prime}} X, & h_{1} \cdot X=\zeta X, \\
f_{1} \cdot Y=\eta_{0} \cdot X=h_{2} \cdot X=X \\
f_{1}^{\prime} & h_{2} \cdot Y=\zeta Y,
\end{array} f_{0} \cdot Y=h_{1} \cdot Y=Y .
$$

Find the induced representations of G from these two linear characters. Define $x_{i}=f_{1}^{i} \cdot X, y_{i}=f_{2}^{i} \cdot Y$ where $0 \leq i \leq p-1$. Then G acts faithfully on $\left(\bigoplus_{0 \leq i \leq p-1} k\right.$. $\left.x_{i}\right) \oplus\left(\bigoplus_{0 \leq i \leq p-1} k \cdot y_{i}\right)$. Thus $k(G)$ is rational over $k\left(x_{i}, y_{i}: 1 \leq i \leq p-1\right)^{\bar{G}}$.

The action of G is given by

$$
\begin{aligned}
& f_{1}: x_{0} \mapsto x_{1} \mapsto \cdots \mapsto x_{p-1} \mapsto x_{0}, y_{i} \mapsto \eta^{e_{1}^{\prime}+p\left({ }_{2}^{i}\right)} y_{i}, \\
& f_{2}: x_{i} \mapsto \eta^{e_{2}^{\prime}-p\binom{i}{2}} x_{i}, y_{0} \mapsto y_{1} \mapsto \cdots \mapsto y_{p-1} \mapsto \zeta^{e_{2}} y_{0}, \\
& f_{0}: x_{i} \mapsto \zeta^{i} x_{i}, y_{i} \mapsto \zeta^{i} y_{i}, \\
& h_{1}: x_{i} \mapsto \zeta x_{i}, y_{i} \mapsto y_{i}, \\
& h_{2}: x_{i} \mapsto x_{i}, y_{i} \mapsto \zeta y_{i} .
\end{aligned}
$$

Define $u_{i}=x_{i} / x_{i-1}, U_{i}=y_{i} / y_{i-1}$ for $1 \leq i \leq p-1$. We get $k\left(x_{i}, y_{i}: 1 \leq i \leq\right.$ $p-1)^{G}=k\left(u_{i}, U_{i}: 1 \leq i \leq p-1\right)^{G}\left(u_{0}, U_{0}\right)$ where u_{0}, U_{0} are fixed by G by applying Theorem 3.1 twice. The action of G is given by

$$
\begin{aligned}
& f_{1}: u_{1} \mapsto u_{2} \mapsto \cdots \mapsto u_{p-1} \mapsto 1 /\left(u_{1} u_{2} \cdots u_{p-1}\right), U_{i} \mapsto \zeta^{i-1} U_{i} \\
& f_{2}: u_{i} \mapsto \zeta^{-(i-1)} u_{i}, U_{1} \mapsto U_{2} \mapsto \cdots \mapsto U_{p-1} \mapsto \zeta^{e_{2}} /\left(U_{1} U_{2} \cdots U_{p-1}\right) \\
& f_{0}: u_{i} \mapsto \zeta u_{i}, U_{i} \mapsto \zeta U_{i}
\end{aligned}
$$

But the above action is just a special case of the action in Step 2 of Case 1. Hence the result.

Case 3. $G=\Phi_{6}(221) d_{0}$.
This group satisfies

$$
f_{1}^{p}=h_{2}, \quad f_{2}^{p}=h_{1}^{e}
$$

where $1 \leq e \leq p-1$. In fact, $e=\nu$.
The proof is the same as for Case 2. Choose an integer e^{\prime} such that $1 \leq e^{\prime} \leq p-1$ and $e e^{\prime} \equiv 1(\bmod p)$.

Consider the subgroups $H_{1}=\left\langle f_{1}, f_{0}, h_{1}, h_{2}\right\rangle, H_{2}=\left\langle f_{2}, f_{0}, h_{1}, h_{2}\right\rangle$. Note that $H_{1} /\left\langle h_{1}\right\rangle \simeq C_{p^{2}} \times C_{p} \simeq H_{2} /\left\langle h_{2}\right\rangle$. Hence we get vectors X and Y such that

$$
\begin{array}{lll}
f_{2} \cdot X=\eta^{e^{\prime}} X, & h_{1} \cdot X=X, & f_{0} \cdot X=h_{2} \cdot X=X \\
f_{1} \cdot Y=\eta Y, & h_{2} \cdot Y=\zeta Y, & f_{0} \cdot Y=h_{1} \cdot Y=Y
\end{array}
$$

Construct the induced representation of G on $\left(\bigoplus_{0 \leq i \leq p-1} k \cdot x_{i}\right) \oplus\left(\bigoplus_{0 \leq i \leq p-1} k \cdot y_{i}\right)$
where $x_{i}=f_{1}^{i} \cdot X, y_{i}=f_{2}^{i} \cdot Y$ with $0 \leq i \leq p-1$. It follows that

$$
\begin{aligned}
& f_{1}: x_{0} \mapsto x_{1} \mapsto \cdots \mapsto x_{p-1} \mapsto x_{0}, y_{i} \mapsto \eta^{1+p\binom{i}{2}} y_{i}, \\
& f_{2}: x_{i} \mapsto \eta^{e^{\prime}-p\binom{i}{2}} x_{i}, y_{0} \mapsto y_{1} \mapsto \cdots \mapsto y_{p-1} \mapsto y_{0} \\
& f_{0}: x_{i} \mapsto \zeta^{i} x_{i}, y_{i} \mapsto \zeta^{i} y_{i}, \\
& h_{1}: x_{i} \mapsto \zeta x_{i}, y_{i} \mapsto y_{i}, \\
& h_{2}: x_{i} \mapsto x_{i}, y_{i} \mapsto \zeta y_{i} .
\end{aligned}
$$

By the same arguments as in Case 2, we solve this case.

Case 4. $G=\Phi_{6}(2111) b_{r}$ (where $r=1$ or $\left.\nu\right)$.
These two groups G satisfy

$$
f_{1}^{p}=1 \quad \text { and } \quad f_{2}^{p}=h_{1}^{e}
$$

where $1 \leq e \leq p-1$.
Choose an integer e^{\prime} such that $1 \leq e^{\prime} \leq p-1$ and $e e^{\prime} \equiv 1(\bmod p)$.
The proof is almost the same as for Case 2.
Consider $H_{1}=\left\langle f_{1}, f_{0}, h_{1}, h_{2}\right\rangle$ and $H_{2}=\left\langle f_{2}, f_{0}, h_{1}, h_{2}\right\rangle$. Note that $H_{1} /\left\langle h_{1}\right\rangle \simeq$ $C_{p} \times C_{p} \times C_{p}$ and $H_{2} /\left\langle h_{2}\right\rangle \simeq C_{p^{2}} \times C_{p}$. Thus we get vectors X and Y such that

$$
\begin{gathered}
f_{2} \cdot X=\eta^{e^{\prime}} X, \quad h_{1} \cdot X=\zeta X, \quad f_{0} \cdot X=h_{2} \cdot X=X \\
h_{2} \cdot Y=\zeta Y, \quad f_{1} \cdot Y=f_{0} \cdot Y=h_{1} \cdot Y=Y
\end{gathered}
$$

Define $x_{i}=f_{1}^{i} \cdot X, y_{i}=f_{2}^{i} \cdot Y$ for $0 \leq i \leq p-1$. The action of G on $k\left(x_{i}, y_{i}: 0 \leq\right.$ $i \leq p-1)$ is given by

$$
\begin{aligned}
& f_{1}: x_{0} \mapsto x_{1} \mapsto \cdots \mapsto x_{p-1} \mapsto x_{0}, y_{i} \mapsto \zeta^{\binom{i}{2}} y_{i}, \\
& f_{2}: x_{i} \mapsto \eta^{e^{\prime}-p\binom{i}{2}} x_{i}, y_{0} \mapsto y_{1} \mapsto \cdots \mapsto y_{p-1} \mapsto y_{0}, \\
& f_{0}: x_{i} \mapsto \zeta^{i} x_{i}, y_{i} \mapsto \zeta^{i} y_{i}, \\
& h_{1}: x_{i} \mapsto \zeta x_{i}, y_{i} \mapsto y_{i}, \\
& h_{2}: x_{i} \mapsto x_{i}, y_{i} \mapsto \zeta y_{i} .
\end{aligned}
$$

The remaining part is the same as in Case 2. Hence the result.
Proof of Theorem 1.12. Combine Theorems 2.3, 4.1, 4.4, 4.8, 4.6 and 5.6.
Theorem 5.7. Let p be an odd prime number and k be an algebraically closed field with char $k \neq p$. If G is a group belonging to the isoclinism family Φ_{10} for groups of order p^{5}, then there is a linear representation $G \rightarrow G L(V)$ over k satisfying (i) $\operatorname{dim}_{k} V=p^{2}$, and (ii) $k(V)^{G}$ is not k-rational. In particular, the quotient variety $\mathbb{P}(V) / G$ is not k-rational where $\mathbb{P}(V)$ is the projective space associated to V and the action of G on $\mathbb{P}(V)$ by projective linear automorphisms is induced from the linear representation $G \rightarrow G L(V)$.

On the other hand, if k is an algebraically closed field with chark $\neq 2$ and G is a group belonging to the 16 th isoclinism family for groups of order 64 , then there is a linear representation $G \rightarrow G L(V)$ over k satisfying (i) $\operatorname{dim}_{k} V=8$, and (ii) $k(V)^{G}$ is not k-rational. In particular, the quotient variety $\mathbb{P}(V) / G$ is not k-rational.

Proof. We will find a faithful representation of the required degree for the group G.

In the first case, when p is odd and G is the group given in the theorem, look into the proof of Theorem 2.3 for the generators and relations of G. The center of G is $\left\langle f_{5}\right\rangle$. Take $H=\left\langle f_{3}, f_{4}, f_{5}\right\rangle ; H$ is an abelian group. Choose a linear character $\chi: H \rightarrow k^{\times}$such that $\chi\left(f_{5}\right)=\zeta_{p}$ and $\chi\left(f_{3}\right)=\chi\left(f_{4}\right)=1$. Designate the induced representation of χ (from H to G) by $G \rightarrow G L(V)$. It is of degree p^{2} and is faithful by Lemma 3.9. Note that $B r_{v, k}\left(k(V)^{G}\right)$ is isomorphic to $B r_{v, k}(k(G))$ by the same arguments as in the proof of Theorem 4.2.

For the projective variety $\mathbb{P}(V) / G$, we use Theorem 3.1 and Lemma 1.3. In fact, if $k(V)=k\left(x_{i}: 1 \leq i \leq p^{2}\right)$, then $k(\mathbb{P}(V))=k\left(x_{i} / x_{1}: 2 \leq i \leq p^{2}\right)$. By Theorem 3.1, $k\left(x_{i}: 1 \leq i \leq p^{2}\right)^{G}=k\left(x_{i} / x_{1}: 2 \leq i \leq p^{2}\right)^{G}(x)$ for some element x. These two fixed fields have isomorphic unramified Brauer groups by Lemma 1.3. Hence the result.

Let now G be of order 64. By [CHKK, Lemma 5.5], find the generators and relations of G. We will discuss only the case $G=G(149)$ and leave the other groups to the reader. When $G=G(149)$, take the abelian subgroup $H=\left\langle f_{2}, f_{5}\right\rangle$. Note that $Z(G)=\left\langle f_{2}^{4}, f_{5}\right\rangle$. Construct two linear characters of H, χ_{1} and χ_{2}, by $\chi_{1}\left(f_{2}\right)=$ $\zeta_{8}, \chi_{1}\left(f_{5}\right)=1$ and $\chi_{2}\left(f_{2}\right)=1, \chi_{2}\left(f_{5}\right)=-1$. Let χ be the direct sum of χ_{1} and χ_{2}. The induced representation is of degree 8 . The rest of the proof is the same as above.

REFERENCES

[AHK] H. Ahmad, M. HajJa, and M. Kang, Rationality of some projective linear actions, J. Algebra, 228 (2000), pp. 643-658.
[Ba] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. Mat. Pura Appl., 1 (1898), pp. 137-228.
[Bar] J. Barge, Cohomologie des groupes et corps d'invariants multiplicatifs, Math. Ann., 283 (1989), pp. 519-528.
[Be] H. A. Bender, A determination of the groups of order p^{5}, Ann. of Math., 29 (1927/28), pp. 61-72.
[Bo] F. A. Bogomolov, The Brauer group of quotient spaces by linear group actions, Math. USSR Izv., 30 (1988), pp. 455-485.
[BB] F. A. Bogomolov and C. Böhning, Isoclinism and stable cohomology of wreath products, in "Birational geometry, rational curves, and arithmetic" (F. Bogomolov, B. Hassett, and Yu. Tschinkel, eds.), Springer, New York, 2013, pp. 57-76.
[BMP] F. A. Bogomolov, J. Maciel, and T. Petrov, Unramified Brauer groups of finite simple groups of Lie type A_{ℓ}, Amer. J. Math., 126 (2004), pp. 935-949.
[CHHK] H. Chu, A. Hoshi, S.-J. Hu, and M. Kang, Noether's problem for groups of order 243, preprint.
[CHKK] H. Chu, S.-J. Hu, M. Kang, and B. E. Kunyavskir, Noether's problem and the unramified Brauer groups for groups of order 64, Intern. Math. Res. Notices, 12 (2010), pp. 23292366.
[CHKP] H. Chu, S.-J. Hu, M. Kang, and Y. G. Prokhorov, Noether's problem for groups of order 32, J. Algebra, 320 (2008), pp. 3022-3035.
[CK] H. Chu and M. Kang, Rationality of p-group actions, J. Algebra, 237 (2001), pp. 673-690.
[DHW] K. Dekimpe, M. Hartl, and S. Wauters, A seven-term exact sequence for the cohomology of a group extension, J. Algebra, 369 (2012), pp. 70-95; addendum: J. Algebra, 373 (2013), pp. 439-440.
[GAP] The GAP Groups, GAP-Groups, Algorithms, and Programming, Version 4.4.12; 2008. (http://www.gap-system.org)
[GMS] S. Garibaldi, A. Merkurjev, and J-P. Serre, Cohomological invariants in Galois cohomology, AMS Univ. Lecture Series, vol. 28, Amer. Math. Soc., Providence, RI, 2003.
[HK] M. HajJa and M. Kang, Some actions of symmetric groups, J. Algebra, 177 (1995), pp. 511-535.
[HaS] M. Hall Jr. and J. K. Senior, The groups of order $2^{n}(n \leq 6)$, Macmillan, New York, 1964.
[HS] G. P. Hochschild and J-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc., 74 (1953), pp. 110-134.
[HKK] A. Hoshi, M. Kang, and H. Kitayama, Quasi-monomial actions and some 4-dimensional rationality problems, arXiv: 1201.1332.
[Hu1] J. Huebschmann, Automorphisms of group extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence, J. Algebra, 72 (1981), pp. 296-334.
[Hu2] J. Huebschmann, Group extensions, crossed pairs and an eight term exact sequence, J. reine angew. Math., 321 (1981), pp. 150-172.
[Hu3] J. HuEbSCHMANn, Exact sequences in the cohomology of a group extension, arXiv:1303.3174.
[Ja] R. James, The groups of order p^{6} (p an odd prime), Math. Comp., 34 (1980), pp. 613-637.
[JNOB] R. James, M. F. Newman, and E. A. O'Brien, The groups of order 128, J. Algebra, 129 (1990), pp. 136-158.
[Ka1] M. Kang, Noether's problem for dihedral 2-groups II, Pacific J. Math., 222 (2005), pp. 301316.
[Ka2] M. KANG, Rationality problem for some meta-abelian groups, J. Algebra, 322 (2009), pp. 1214-1219.
[Ka3] M. Kang, Noether's problem for p-groups with a cyclic subgroups of index p^{2}, Adv. Math., 226 (2011), pp. 218-234.
[Ka4] M. Kang, Retract rational fields, J. Algebra, 349 (2012), pp. 22-37.
[KP] M. Kang and B. Plans, Reduction theorems for Noether's problem, Proc. Amer. Math. Soc., 137 (2009), pp. 1867-1874.
[Kar] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, vol.2, Oxford Univ. Press, 1987.
[Ku] B. E. Kunyavskir, The Bogomolov multiplier of finite simple groups, in "Rationality problems" (F. A. Bogomolov and Y. Tschinkel, eds.), Progress in Math. vol. 282, Birkhauser, Boston, 2010, pp. 209-217.
[Le] G. Lewis, The integral cohomology rings of groups of order p^{3}, Trans. Amer. Math. Soc., 132 (1968), pp. 501-529.
[Mo1] P. Moravec, Unramified Brauer groups of finite and infinite groups, Amer. J. Math., 134 (2012), pp. 1679-1704.
[Mo2] P. Moravec, Groups of order p^{5} and their unramified Brauer groups, J. Algebra, 372 (2012), pp. 420-427.
[Sa1] D. J. Saltman, Generic Galois extensions and problems in field theory, Adv. Math., 43 (1982), pp. 250-283.
[Sa2] D. J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math., 47 (1984), pp. 165-215.
[Sa3] D. J. Saltman, Noether's problem over an algebraically closed field, Invent. Math., 77 (1984), pp. 71-84.
[Sa4] D. J. Saltman, Multiplicative field invariants, J. Algebra, 106 (1987), pp. 221-238.
[Sa5] D. J. Saltman, Multiplicative field invariants and the Brauer group, J. Algebra, 133 (1990), pp. 533-544.
[Se] J-P. Serre, Local fields, Springer GTM, vol. 67, Springer-Verlag, Berlin, 1979.
[Sw] R. G. Swan, Noether's problem in Galois theory, in "Emmy Noether in Bryn Mawr" (B. Srinivasan and J. Sally, eds.), Springer-Verlag, Berlin, 1983, pp. 21-40.

[^0]: *Received March 29, 2012; accepted for publication July 17, 2012. Parts of the work of this paper were finished while the first-named author visited National Center for Theoretic Sciences (Taipei).
 ${ }^{\dagger}$ Department of Mathematics, Rikkyo University, Tokyo, Japan (hoshi@rikkyo.ac.jp). The firstnamed author was partially supported by KAKENHI (22740028).
 ${ }^{\ddagger}$ Department of Mathematics and Taida Institute of Mathematical Sciences, National Taiwan University, Taipei, Taiwan (kang@math.ntu.edu.tw). The second-named author was partially supported by National Center for Theoretic Sciences (Taipei Office).
 §Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel (kunyav@macs. biu.ac.il). The third-named author was partially supported by the Minerva Foundation through the Emmy Noether Research Institute for Mathematics.

