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MORSE FIELD THEORY∗

RALPH COHEN† AND PAUL NORBURY‡

Abstract. In this paper we define and study the moduli space of metric-graph-flows in a manifold
M . This is a space of smooth maps from a finite graph to M , which, when restricted to each edge, is
a gradient flow line of a smooth (and generically Morse) function on M . Using the model of Gromov-
Witten theory, with this moduli space replacing the space of stable holomorphic curves in a symplectic
manifold, we obtain invariants, which are (co)homology operations in M . The invariants obtained in
this setting are classical cohomology operations such as cup product, Steenrod squares, and Stiefel-
Whitney classes. We show that these operations satisfy invariance and gluing properties that fit
together to give the structure of a topological quantum field theory. By considering equivariant
operations with respect to the action of the automorphism group of the graph, the field theory has
more structure. It is analogous to a homological conformal field theory. In particular we show that
classical relations such as the Adem relations and Cartan formulae are consequences of these field
theoretic properties. These operations are defined and studied using two different methods. First,
we use algebraic topological techniques to define appropriate virtual fundamental classes of these
moduli spaces. This allows us to define the operations via the corresponding intersection numbers of
the moduli space. Secondly, we use geometric and analytic techniques to study the smoothness and
compactness properties of these moduli spaces. This will allow us to define these operations on the
level of Morse-Smale chain complexes, by appropriately counting metric-graph-flows with particular
boundary conditions.
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Introduction. In this paper we construct a moduli space of graphs |CΓ|/AutΓ
associated to a fixed oriented graph Γ. It is built from a category CΓ in which the
objects are graphs and morphisms are homotopy equivalences. We use this moduli
space to study families of maps of graphs into a manifold, which allows us to probe
the topology of the manifold. The moduli space is described in detail in section 1. For
the moment it is best understood by its following properties. To each element of |CΓ|
is associated an oriented, compact metric graph—where edges are given lengths—and
an orientation preserving homotopy equivalence from the metric graph to the given
graph Γ that collapses edges and vertices. The space |CΓ| is contractible, and admits
a free Aut(Γ) action, and hence the quotient is a model for the classifying space,

|CΓ|/AutΓ ≃ BAutΓ.

In particular when Γ has non-trivial automorphisms |CΓ|/AutΓ has non-trivial homol-
ogy.

Given a fixed closed manifold M , we then thicken this moduli space by defining
a space SΓ whose points are pairs, (x, µ), where x ∈ |CΓ|, and µ is a labeling of the
edges of the graph by smooth functions on M . We call SΓ the space of metric-Morse
structures on M , and define the moduli space of such structures to be the quotient
space,

MΓ = SΓ/Aut(Γ).
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It will be easily seen that in thickening the moduli space |CΓ|/AutΓ to define the
moduli space of structures, MΓ, we did not change the homotopy type, so that
MΓ ≃ BAut(Γ). It is for this reason in our notation we suppress the dependence
on M of the moduli spaceMΓ.

We can then define a moduli space MΓ(M) of metric graph flows in M . This
space consists of isomorphism classes of pairs, (σ, γ), where σ ∈ SΓ is a metric-Morse
structure on Γ, and γ is a continuous map from the graph toM , which, when restricted
to a given edge, is a gradient flow line of the smooth function labeling that edge with
respect to the parameterization of the edge coming from the orientation and metric.
Since MΓ ≃ BAut(Γ), we can take as a representative of a homology class of the
automorphism group Aut(Γ), a family of metric-Morse structures on the graph Γ.
When the structures in the moduli space of metric-graph-flows are restricted to vary
in a family representing a fixed homology class of the automorphism group, we will
have a finite dimensional moduli space. By studying the topology of this moduli
space by two different methods (one using algebraic topology, to define Pontrjagin-
Thom constructions and induced “umkehr maps” in homology, and the other using
geometry and analysis to understand the smoothness, transversality, and compactness
properties of these moduli spaces), we obtain Gromov-Witten type invariants of M .
For example, the ring structure (cup product) in the cohomology of the manifold
arises as such an invariant when the graph is a tree with three edges, and the family
of structures is a single point. Further classical invariants such as Steenrod squares and
Stiefel- Whitney classes of the manifold arise when we take higher dimensional families
of structures representing nontrivial elements of the homology of the automorphism
group.

The approach in this paper is designed specifically to deal with families of metric-
graphs mapping to manifolds. Graphs are the essential objects here. Functions on the
manifold are quite peripheral and do not even need to be Morse. The title “Morse field
theory” primarily refers to integral flow lines of gradient vector fields on a manifold as
well as the Morse complex and cohomology operations defined on the Morse complex.

The original goal of this project was to understand the Gromov-Witten formal-
ism in the setting of Morse theory, where the analysis is considerably easier. In this
model, the role of oriented, metric graphs fills the role of oriented surfaces with a
conformal class of metric. Maps from these graphs to manifolds that satisfy gradi-
ent flow equations fill the role of J-holomorphic maps from a Riemann surface to a
symplectic manifold. This project took its original form in the work of M. Betz in
his Ph.D thesis [2] written under the direction of the first author, and in the research
announcement [3]. Similar constructions were discovered by Fukaya [10] in which he
described his beautiful ideas on the A∞- structure of Morse homotopy. In particular
those ideas have been used in the work of Fukaya and Oh regarding deformations of
J- holomorphic disks in the cotangent bundle of a manifold [11].

This present paper contains new ideas involving families of metric-Morse struc-
tures, as well as constructions of virtual fundamental classes of these moduli spaces,
that allow us to define equivariant invariants, investigate their properties, plus provide
proofs of old ideas on non-equivariant invariants [2, 3, 10]. As mentioned above, we
show how to deal with families both by using algebraic topological methods, and by
using geometric and analytical techniques. The algebraic topological techniques allow
us to define generalized Pontrjagin-Thom constructions and resulting umkehr maps,
which in turn allow the definition of virtual fundamental classes. These techniques are
based on the generalized Pontrjagin-Thom constructions defined by the first author
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and J. Klein in [8]. In particular these techniques allow us to avoid transversality
(smoothness) and compactness issues that arise from the geometric viewpoint. How-
ever, because the geometric viewpoint is quite important in its own right, in the second
half of the paper we study these analytic issues, and prove the appropriate transver-
sality and compactness results. This allows a second definition of the invariants that
are defined on the level of Morse-Smale chain complexes, by counting the number of
graph flows in a manifold that satisfy appropriate boundary conditions.

The moduli spaceMΓ is somewhat analogous to the moduli spaceMg of Riemann
surfaces homeomorphic to a given surface, and more generally toMg,n, the space of
Riemann surfaces with nmarked points, when the graphs come equipped with marked,
univalent vertices. A point in the Teichmuller space T (Σ) of a topological surface Σ
(with n labeled points) is a pair (Σ′, h) where Σ′ is a complete hyperbolic surface
and h : Σ′ → Σ is a homeomorphism well-defined up to isotopy. Teichmuller space is
contractible and admits an action of the group of isotopy classes of homeomorphisms of
Σ, known as the mapping class group of Σ. The quotient of T (Σ) by the mapping class
group is the moduli space of hyperbolic structures on Σ, which appears in algebraic
geometry as the moduli spaceMg of Riemann surfaces. In our setup, the contractible
space |CΓ| plays the role of Teichmuller space, AutΓ plays the role of the mapping
class group, although unlike the mapping class group it acts freely, and the metric
graph and homotopy equivalence h : Γ′ → Γ is analogous to the isotopy class of
homeomorphism h : Σ′ → Σ.

A further analogy between MΓ and Mg,n comes from the fact that Mg,n is
homotopy equivalent to the moduli space of metric ribbon graphs—finite graphs whose
vertices are at least trivalent, and come equipped with a cyclic ordering of (half-)edges
at each vertex and lengths on edges—divided by automorphisms [15]. This analogy
will be pursued further by the first author in order to describe a Morse theoretic
interpretation of string topology, and the relation between string topology operations
and J-holomorphic curves in the cotangent bundle [7]. A description of these ideas
was given in [6].

A labeling µ of the edges of a graph in |CΓ| by functions on M is, in some
sense, analogous to choosing a compatible almost complex structure J on a symplectic
manifold. In both cases the space of choices of these structures is contractible, and
each choice allows the definition of the relevant differential equations used to define a
point in the moduli space (a J-holomorphic curve in the Gromov-Witten setting, and
a gradient graph flow in our setting).

Aside from the study of these moduli spaces of graphs and graph flows, and the
resulting definition of the graph invariants (operations), the main result of this paper
is that these invariants fit together to define an appropriate field theory. Recall that an
n-dimensional topological quantum field theory (TQFT) over a ring R assigns to every
closed n−1- dimensional manifold N , an R-module Z(N) and to every cobordism W
from N1 to N2, (i.e W is an n-manifold with boundary ∂W = N1 ⊔N2), an operation

µW : Z(N1)→ Z(N2),

which is a map of R-modules. This structure is supposed to satisfy certain properties,
the most important of which is gluing: If W1 is a cobordism from N1 to N2, and W2

is a cobordism from N2 to N3, W =W1 ∪N2 W2 is the “glued cobordism” from N1 to
N3 obtained by identifying the boundary components of W1 and W2 corresponding
to N2, then we require

µW1∪N2
W2 = µW2 ◦ µW1 : Z(N1)→ Z(N2)→ Z(N3).
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These operations only depend on the diffeomorphism classes of the cobordisms. See
[1] for details.

In the simplest case when n = 1, we choose to relax the manifold condition, and
think of graphs with univalent vertices as defining generalized cobordisms between
zero dimensional manifolds. These univalent vertices can be thought to have signs
attached to them, according to whether the edge they lie on is oriented via an arrow
that points toward or away from the vertex. Alternatively we can think of these
univalent vertices as “incoming” or “outgoing”.

For a given manifold M , the Morse field theory functor ZM assigns to each ori-
ented point, ZM (point) = H∗M . Given a graph Γ with p incoming and q outgoing
univalent vertices (i.e a generalized cobordism between p points and q points), as well
as a homology class α ∈ H∗(MΓ) = H∗(BAut(Γ)), the graph invariants described
above can be viewed as a homology operation

qαΓ : H∗(M)⊗p → H∗(M)⊗q.

We prove that these operations satisfy gluing and a certain invariance properties.
This is the “Morse field theory” of the title. We remark that it is a well known
folk theorem that a 2-dimensional quantum field theory is equivalent to a Frobenius
algebra A. That is, A is an algebra over a field k, equipped with a “trace map”
θ : A→ k, such that the pairing

A⊗A multiply−−−−−→ A
θ−→ k

is nonsingular. A well known example of a Frobenius algebra is the homology of a
connected, closed, oriented manifold, H∗(M), where the product is the intersection
product, and the trace map is the projection onto the H0 summand. The resulting
nondegeneracy is a manifestation of Poincare duality. As we will see, the basic Frobe-
nius algebra ofH∗(M) is realized by our Morse field theory, when the homology classes
α are simply taken to be the generator α = 1 ∈ H0(B(Aut(Γ))). In other words, the
basic Frobenius algebra structure is the nonequivariant version of our field theory,
achieved by choosing a fixed metric-Morse structure on the graph. It is interesting
that by choosing families of these structures we obtain operations

qΓ : H∗(B(Aut(Γ)))⊗H∗(M)⊗p → H∗(M)⊗q

that satisfy the appropriate gluing and invariance properties. Thus we get an extended
Frobenius algebra structure on H∗(M), whose operations we prove encompass such
classical operations in algebraic topology as Steenrod squares and Stiefel-Whitney
classes. This structure is analogous to the structure in 2-dimensional field theory,
where given a connected genus g-cobordism between p circles and q circles, one has
an operation,

µ : H∗(Mg,p+q)⊗ Z(S1)⊗p → Z(S1)⊗q

which satisfy gluing laws. Such a field theory is called a homological conformal field
theory [14].

We will also prove that the field theoretic properties (invariance and gluing) of
our operations force the classical relations among cohomology operations such as the
Adem relations and the Cartan formulae.

The organization of this paper is as follows. In sections 1 and 2 we define the
moduli spaces of metric graph structures,MΓ, as well as the moduli space of graph
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flows in a manifold,MΓ(M). These are described in algebraic topological terms, using
categories of graphs, following ideas of Culler-Vogtmann [9], Igusa [13], and Godin [12].
We then describe a generalized Pontrjagin-Thom construction that allows us to define
fundamental classes of these moduli spaces, without having to study smoothness or
compactness issues. We then define the invariants (the graph operations) in section
3, and prove their field theoretic properties in section 4. In section 5 we describe
examples of these invariants, and show how cup products, Steenrod operations, and
Stiefel-Whitney classes arise. We also show how the Cartan and Adem formulae follow
from the field theoretic properties.

The second half of the paper begins in section 6, where we deal with the geometric
and analytic aspects of the moduli spaces, and give a more combinatorial, Morse
theoretic description of the graph operations. Transversality, compactness issues, the
resulting smoothness of the moduli spaces is studied in sections 6 through 8. The
Morse theoretic description of the graph operations is given in section 9, where they
are shown to live on the level of the Morse-Smale chain complexes associated to Morse
functions. In particular the operations are defined by suitably counting the number of
metric graph flows in M that satisfy certain boundary conditions. A geometric proof
of a generalized gluing formula is also given.

There are three appendices to the paper. Two cover analytic issues such as
regularity and Fredholm properties. The third gives a detailed description of the
generalized Pontrjagin-Thom construction needed to define the virtual fundamental
classes of the moduli spaces.

The first author would like to acknowledge and thank the Department of Mathe-
matics and Statistics at Melbourne University for its hospitality during a visit in 2004
where much of the work in this paper was carried out. The second author would like
to acknowledge the support of the Australian Academy of Sciences.

1. Categories of graphs, and the moduli space of metric-Morse struc-
tures on a graph. In this section we describe a category of graphs that will be used
to define our moduli space of graph flows. As we will show, the geometric realization
of this category will consist of graphs equipped with appropriate metrics. The idea of
this category was inspired by the work of Culler-Vogtmann [9], and the interpretation
of this work due to Igusa [13] and Godin [12].

Definition 1. Define Cb,p+q to be the category of oriented graphs of first Betti
number b, with p + q leaves. More specifically, the objects of Cb,p+q are finite graphs
(one dimensional CW-complexes) Γ, with the following properties:

1. Each edge of the graph Γ has an orientation.
2. Γ has p + q univalent vertices, or “leaves”. p of these are vertices of edges

whose orientation points away from the vertex (toward the body of the graph).
These are called “incoming” leaves. The remaining q leaves are on edges
whose orientation points toward the vertex (away from the body of the graph).
These are called “outgoing” leaves.

3. Γ comes equipped with a “basepoint”, which is a nonunivalent vertex.
For set theoretic reasons we also assume that the objects in this category (the graphs)
are subspaces of a fixed infinite dimensional Euclidean space, R∞.

A morphism between objects ϕ : Γ1 → Γ2 is combinatorial map of graphs (cellular
map) that satisfies:

1. ϕ preserves the orientations of each edge.
2. The inverse image of each vertex is a tree (i.e a contractible subgraph).
3. The inverse image of each open edge is an open edge.
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4. ϕ preserves the basepoints.

Fig. 1. An object Γ in C2,2+2

We observe that by the definition of Cb,p+q, a morphism ϕ : Γ1 → Γ2 is a basepoint
preserving cellular map which is a homotopy equivalence. Given a graph Γ ∈ Cb,p+q,
we define the automorphism group Aut(Γ) to be the group of invertible morphisms
from Γ to itself in this category. Aut(Γ) is a finite group, as it is a subgroup of the
group of permutations of the the edges.

We now fix a graph Γ (an object in Cb,p+q), and we describe the category of
“graphs over Γ”, CΓ. As we will see below, a point in the geometric realization of this
category will be viewed as a metric on a generalized subdivision of Γ.

Definition 2. Define CΓ to be the category whose objects are morphisms in
Cb,p+q with target Γ: ϕ : Γ0 → Γ. A morphism from ϕ0 : Γ0 → Γ to ϕ1 : Γ1 → Γ is a
morphism ψ : Γ0 → Γ1 in Cb,p+q with the property that ϕ0 = ϕ1 ◦ ψ : Γ0 → Γ1 → Γ.

Notice that the identity map id : Γ → Γ is a terminal object in CΓ. That is,
every object ϕ : Γ0 → Γ has a unique morphism to id : Γ → Γ. This implies that
the geometric realization of the category, |CΓ| is contractible. But notice that the
category CΓ has a free right action of the automorphism group, Aut(Γ), given on the
objects by composition:

Objects (CΓ)×Aut(Γ)→ Objects (CΓ)

(ϕ : Γ0 → Γ) · g → g ◦ ϕ : Γ0
ϕ−→ Γ

g−→ Γ.(1)

This induces a free action on the geometric realization CΓ. We therefore have the
following:

Proposition 3. The orbit space is homotopy equivalent to the classifying space,

|CΓ|/Aut(Γ) ≃ BAut(Γ).

We now consider the geometric realization of the category |CΓ|. Following an idea
of Culler-Vogtmann [9] and Igusa [13], we interpret a point in this space as defining
a metric on a generalized subdivision of the graph Γ.

Recall that

|CΓ| =
∪
k

∆k × {Γk
ψk−−→ Γk−1

ψk−1−−−→ Γk−2 → · · ·
ψ1−−→ Γ0

ϕ−→ Γ}/ ∼
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Fig. 2. A 2-simplex in |CΓ|.

where the identifications come from the face and degeneracy operations.
Let (⃗t, ψ⃗) be a point in |CΓ|, where t⃗ = (t0, t1, · · · , tk) is a vector of positive

numbers whose sum equals one, and ψ⃗ is a sequence of k-composable morphisms in
CΓ. Recall that a morphism ϕi : Γi → Γi−1 can only collapse trees, or perhaps compose
such a collapse with an automorphism. So given a composition of morphisms,

ψ⃗ : Γk → · · · → Γ0 → Γ

we may think of Γk is a generalized subdivision of Γ, in the sense that Γ is obtained
from Γk by collapsing various edges.

We use the coordinates t⃗ of the simplex ∆k to define a metric on Γk as follows.
For each edge E of Γk, define k + 1 numbers, λ0(E), · · · , λk(E) given by

λi(E) =

{
0 if E is collapsed by ψ⃗ in Γi, and,

1 if E is not collapsed in Γi

We then define the length of the edge E to be

(2) ℓ(E) =
k∑
i=0

tiλi(E).

Notice also that the orientation on the edges and the metric deterimine parame-
terizations (isometries) of standard intervals to the edges of the graph Γk over Γ,

(3) θE : [0, ℓ(E)]
∼=−→ E



668 R. COHEN AND P. NORBURY

Fig. 3. A 2-simplex of metrics.

Thus a point (⃗t, ψ⃗) ∈ |CΓ| determines a metric on a graph Γk living over Γ, as well
as a parameterization of its edges. In some sense this may be viewed as the analogue
in our theory, of the moduli space of Riemann surfaces in Gromov-Witten theory.
In that theory, one studies maps from a Riemann surface (an element of moduli
space) to a symplectic manifold, which satisfy the Cauchy-Riemann equations (or
some perturbation of them) with respect to a choice of a compatible almost complex
structure on the symplectic manifold. In our case, we want to study maps from an
element of our moduli space, i.e a graph living over Γ, equipped with a metric and
parameterization of the edges, to a target manifold M , that satisfies certain ordinary
differential equations. These differential equations will be the gradient flow equations
of smooth functions on M . To define these, we need to impose more structure on our
graphs, given by a labeling of the edges of the graph by distinct smooth functions on
the manifold. We call such a structure a Morse labeling of a graph. We define this
precisely as follows.

Let V be a real vector space. Let F (V, k) be the configuration space of k distinct
ordered points in V . That is, F (V, k) = {(v1, · · · , vk) ∈ V k such that vi ̸= vj if i ̸= j}.
Recall that if V is infinite dimensional, F (V, k) is contractible.

Throughout the rest of this section we let M be a fixed closed, Riemannian
manifold.

Definition 4. An M -Morse labeling of a graph Γ ∈ Cb,p+q is a pair (ϕ0 : Γ0 →
Γ, c), where ϕ0 : Γ0 → Γ is an object of CΓ, and c ∈ F (C∞(M), e(Γ0)), where C

∞(M)
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is the vector space of smooth, real valued functions on M , and e(Γ0) is the number
of edges of Γ0. We think of the vector of functions making up the configuration c as
labeling the edges of Γ0.

Fixing our manifold M and graph Γ, our goal now is to define the moduli space
of metrics and Morse structures (abbreviated “structures”) on Γ,MΓ. We do this as
follows.

Consider the functor

µ : CΓ → Spaces

which assigns to a graph over Γ, ϕ0 : Γ0 → Γ, the configuration space
F (C∞(M), e(Γ0)). Given a morphism ψ : Γ1 → Γ0, which collapses certain edges
and perhaps permutes others, there is an obvious induced map,

µ(ψ) : F (C∞(M), e(Γ1))→ F (C∞(M), e(Γ0)).

This map projects off of the coordinates corresponding to edges collapsed by ψ, and
permutes coordinates corresponding to the permutation of edges induced by ψ.

We can now do a homotopy theoretic construction, called the homotopy colimit
(see for example [4]).

Definition 5. We define the space of metric structures and Morse labelings on
G, SΓ, to be the homotopy colimit,

SΓ = hocolim (µ : CΓ → Spaces).

The homotopy colimit construction is a simplicial space whose k simplices consist
of pairs, (f⃗ , ψ⃗), where ψ⃗ : Γk → Γk−1 → · · ·Γ0 → Γ is a k-tuple of composable

morphisms in CΓ, and f⃗ ∈ µ(Γk). That is, f⃗ is an M - Morse labeling of the edges
of Γk. So we can think of a point σ ∈ SΓ as defining a metric on a graph over Γ,
together with an M - Morse labeling of its edges.

We now make the following observation.

Lemma 6. The space of metric-Morse structures SΓ is contractible with a free
Aut(Γ) action.

Proof. The contractibility follows from standard facts about the homotopy colimit
construction, considering the fact that both |CΓ| and F (C∞(M),m) are contractible.
The free action of Aut(Γ) on |CΓ| extends to an action on SΓ, since Aut(Γ) acts by
permuting the edges of Γ, and therefore permutes the labels accordingly.

We now define our moduli space of structures.

Definition 7. The moduli space of metric structures and M - Morse labelings on
G,MΓ, is defined to be the quotient,

MΓ = SΓ/Aut(Γ).

We therefore have the following.

Corollary 8. The moduli space is a classifying space of the automorphism
group,

MΓ ≃ BAut(Γ).
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2. The moduli space of metric-graph flows in a manifold. Let M be
a fixed, smooth, closed n-manifold with a Riemannian metric. Let Γ ∈ Cb,p+q be a
graph. In this section we define the moduli space of Γ-flows inM ,MΓ(M), and study
its topology. This will be an infinite dimensional space built from the moduli space
of metric-Morse structures,MΓ, which in turn has an infinite dimensional homotopy
type, sinceMΓ ≃ BAut(Γ), and Aut(Γ) is a finite group. However, given a homology
class α ∈ Hk(Aut(Γ)), we show how to define a “virtual fundamental class”,

[Mα
Γ(M)] ∈ Hq(MΓ(M))

where q = k + χ(Γ)n, where χ(Γ) = 1 − b is the Euler characteristic. The smooth
structures on these moduli spaces will be studied in later sections. But even without
knowledge of this structure, these virtual fundamental classes will be constructed
using generalized Pontrjagin-Thom constructions similar to those defined in [8]. These
constructions allow us to define invariants in the next section, which we will identify
with classical cohomology operations in section 4. Let σ ∈ SΓ be a metric-Morse
structure. Then σ = (⃗t, ψ⃗, c), where t⃗ ∈ ∆k, ψ⃗ : Γk → · · · → Γ0 → Γ is a k-simplex in
the nerve of CΓ, that is a k-tuple of composable morphisms, and c is a Morse labeling
of the edges of Γk.

Definition 9. A metric-Γ-flow in M , is a pair (σ, γ), where σ = (⃗t, ψ⃗, c) ∈ SΓ is
a metric-Morse structure on Γ, and γ : Γk →M is a continuous map, smooth on the
edges, satisfying the following property. Given any edge E of Γk, let γE : [0, ℓ(E)]→
M be the composition

γE : [0, ℓ(E)]
θE−−→ E ⊂ Γk

γ−→M,

where θE is the parameterization of the edge E defined in (3). Then γE is required to
satisfy the differential equation

dγE
dt

(s) +∇fE(γE(s)) = 0.

Here the collection of labeling functions {fE : M → R : E is an edge of Γ} is the
configuration c ∈ F (C∞(M), e(Γ)) determined by the structure σ.

We define the “structure space of metric-graph flows”, M̃Γ(M), to be the space

(4) M̃Γ(M) = {(σ, γ) a metric-Γ-flow in M},

and the moduli space of graph flows to be the orbit space,

MΓ(M) = M̃Γ(M)/Aut(Γ).

Here the automorphism group Aut(Γ) acts on M̃Γ(M) by acting on the structure σ
as described above.

We have not yet defined the topology on these spaces of flows. To do that we first
consider the case when the graph Γ is a tree. That is, Γ is contractible, so b1(Γ) = 0.

Proposition 10. Let Γ be a tree. Then there is an Aut(Γ)-equivariant bijective
correspondence

Ψ : M̃Γ(M)
∼=−→ SΓ ×M

(σ, γ)→ σ × γ(v)
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where v is the fixed vertex of the graph Γk over Γ determined by the structure σ. On
the right hand side, Aut(Γ) acts on SΓ as described above, and acts trivially on M .

Proof. This follows from the existence and uniqueness theorem for solutions of
ODE’s on compact manifolds. The point is that the values of γ on the edges emanating
from v are completely determined by γ(v) ∈ M , since one has a unique flow line
through that point for any of the functions labeling these edges. The value of γ
on these edges determines the value of γ on coincident edges (i.e edges that share
a vertex) for the same reason. The fact that Ψ is a bijection now follows. The
Aut(Γ)-equivariance of Ψ is immediate.

We now topologize M̃Γ(M) so that Ψ : M̃Γ(M)→ S(Γ)×M is a homeomorphism.
We then have the following description of the moduli space of graph flows, when Γ is
a tree:

Corollary 11. Let Γ be a tree. Then Ψ induces a homeomorphism,

Ψ :MΓ(M)
∼=−→ SΓ/Aut(Γ)×M

which has the homotopy type of BAut(Γ)×M .

For general connected graphs Γ, we analyze the topology of MΓ(M) in the fol-
lowing way. Let σ ∈ SΓ. A tree flow of Γ with respect to the structure σ is a collection
γ = {γT } where γT : T →M is a graph flow on a maximal subtree T ⊂ Γk. The col-
lection ranges over all maximal subtrees T ⊂ Γk, and is subject only to the condition
that the values at the basepoint are the same:

γT1(v) = γT2(v)

for any two maximal trees T1, T2 ⊂ Γk. (Here v ∈ T ⊂ Γ is the fixed point vertex.)
We define

(5) M̃tree(Γ,M) = {(σ, γ) : σ ∈ SΓ, and γ = {γT } is a tree flow of Γwith respect toσ}

and

Mtree(Γ,M) = M̃tree(Γ,M)/Aut(Γ).

Notice that the proof of proposition 10 also proves the following.

Theorem 12. For any graph Γ ∈ Cb,p+q there is an Aut(Γ) -equivariant bijective
correspondence,

Ψ : M̃tree(Γ,M)
∼=−→ SΓ ×M

(σ, γ)→ σ × γ(v).

We therefore again topologize M̃tree(Γ,M) so that Ψ is an equivariant homeo-
morphism. Then

Mtree(Γ,M) ∼= SΓ/Aut(Γ)×M ≃ BAut(Γ)×M.

Consider the inclusion, ρ̃ : M̃Γ(M) ↪→ M̃tree(Γ,M) defined to be the map that
sends a graph flow γ to the tree flow obtained by restricting γ to each maximal
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tree. We then give M̃Γ(M) the subspace topology, which makes ρ an equivariant
embedding. This defines an embedding ρ :MΓ(M) ↪→Mtree(Γ,M).

We use this embedding to define virtual fundamental classes ofMΓ(M). Recall
that the spaceMΓ(M) is infinite dimensional because the moduli space SΓ/Aut(Γ) ≃
BAut(Γ) is infinite dimensional. We can “cut down” this moduli space by considering
an embedding of a compact manifold of structures, Ñ ⊂ SΓ. We let N = Ñ/Aut(Γ) ⊂
SΓ/Aut(Γ) ≃ BAut(Γ). We can then define the space MN

Γ (M) ⊂ MΓ(M) to be
the subspace MN

Γ (M) = {(σ, γ) ∈ M̃Γ(M) such that σ ∈ Ñ)/Aut(Γ)}. Then the
embedding ρ :MΓ(M) ↪→Mtree(Γ,M) ∼= SΓ/Aut(Γ)×M defines an embedding

(6) ρN :MN
Γ (M) ↪→ N ×M.

To motivate our construction of the virtual fundamental classes, suppose we know
thatMN

Γ (M) is a smooth closed submanifold of N ×M of codimension k. Then the
image of its fundamental class [MN

Γ (M)] ∈ H∗(MN
Γ (M)) in H∗(MΓ(M)) would be

the image under the “umkehr map”,

H∗(N ×M)
(ρN )!−−−→ H∗−k(MN

Γ (M)))→ H∗−k(MΓ(M))

of the product of the fundamental classes [N ]× [M ]. The umkehr map (ρN )! : H∗(N×
M) → H∗−k(MN

Γ (M)) is Poincare dual to the restriction map in cohomology, ρ∗N :
H∗(N ×M) → H∗(MN

Γ (M)), induced by the embedding ρN :MN
Γ (M) ↪→ N ×M .

In particular the fundamental class [MN
Γ (M)] ∈ H∗−k(MΓ(M)) only depends on the

homology class represented by the manifold [N ] ∈ H∗(SΓ/Aut(Γ)) ∼= H∗(BAut(Γ)).
To define our “virtual fundamental class”, we avoid the question of whether

MN
Γ (M) can be given a smooth structure (we address this question in a later section),

by directly defining the umkehr map

(7) ρ! : H∗(BAut(Γ)×M) = H∗(SΓ/Aut(Γ)×M)→ H∗−bn(MΓ(M))

where b = b1(Γ), and n = dimM . Once we have this map, then given α ∈
Hq(BAut(Γ)), the virtual fundamental class [Mα

Γ(M)] is defined by

(8) [Mα
Γ(M)] = ρ!(α× [M ]) ∈ Hq−(b−1)n(MΓ(M)).

The rest of this section will be devoted to defining the umkehr map ρ!. The
existence of this map follows from a construction that is used to give a proof of a
general existence theorem for umkehr maps by the first author and J. Klein in [8].
This construction is based on the existence of “Pontrjagin-Thom collapse maps”.
We recall that given a smooth embedding of compact manifolds, e : N ↪→ M of
codimension k, the umkehr map e! : H∗(N)→ H∗−k ∗ (M) can be computed via the
Pontrjagin-Thom collapse map,

τe :M →M/M − ηe

where N ⊂ ηe is a tubular neighborhood. This quotient space is the one point
compactification of the tubular neighborhood, which is homeomorphic to the Thom
space of the normal bundle, Nνe . The umkehr map is then given by the composition,

e! : H∗(M)
(τe)∗−−−→ H∗(N

νe)
∩u−−−−→∼=

H∗−k(N)
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where the last map is the cap product with the Thom class, yielding the Thom
isomorphism.

To apply this construction in our setting, we need to produce an open neighbor-
hood ηϵ of the embedding ρ : MΓ(M) ↪→ Mtree(Γ,M) ∼= SΓ/Aut(Γ) ×M, that is
homeomorphic to the total space of an appropriate normal bundle, νρ. We now define
these objects.

Let T ⊂ Γ be a maximal tree. We define a map pT : M̃tree(Γ,M) → M2b as
follows. Since T is a maximal tree, the complement Γ − T consists of b = b1(Γ)
open edges, eT1 , · · · , eTb . Now let ϕ : Γ0 → Γ be an object in CΓ. Since the inverse
image under ϕ of an edge is an edge, then ϕ−1(eTi ) = eTi (Γ0) is an edge, and the
tree T (Γ0) = ϕ−1(T ) ⊂ Γ0 has complement Γ0 − T (Γ0) given by the b open edges
eTi (Γ0), i = 1, · · · , b. The edges eTi (Γ0) are oriented, so they have source and target
vertices, sTi (Γ0), and t

T
i (Γ0).

Now let (σ, γ) be a point in M̃tree(Γ,M). So σ = (⃗t, ψ⃗, c) ∈ SΓ, and γ = {γTj :
Tj →M}, where the Tj ’s are the maximal trees in Γk, and γTj is a graph flow on the

tree Tj with respect to the structure σ. Let T1 = T (Γk) = ϕ−1
k (T ) ⊂ Γk.

Consider the graph flow γT1 : T1 → M , and let xi be the image of the source
vertex,

(9) xi = γT1(s
T
i (Γk)) ∈M.

Now consider the image of the target vertex, γT1(t
T
i (Γk)) ∈ M. The existence and

uniqueness theorem for solutions of ODE’s says there is a unique map αi : e
T
i (Γk)→

M which is graph flow with respect to the structure σ, satisfying the initial condition,
αi(t

T
i (Γk) = γT1(t

T
i (Γk)) ∈ M. We then define yi ∈ M to be the image of the source

vertex under the map αi:

yi = αi(s
T
i (Γk)) ∈M.

Notice that the tree flow γ is induced from a flow on the full graph Γ if and only if
xi = yi for all i = 1, · · · , b. Said another way, we have defined a map

pT : M̃tree(Γ,M)→ (M2)b(10)

(σ, γ)→ (x1, y1), · · · , (xb, yb)

where the following diagram is a pullback square:

(11)

M̃Γ(M)
ρ−−−−→
↪→

M̃tree(Γ,M)

pT

y ypT
M b ↪→−−−−→

∆b
(M2)b.

Here ∆ : M → M2 is the diagonal. We now define our tubular neighborhood and

normal bundle. Give M a Riemannian metric.

Definition 13. 1. For ϵ > 0, let ηϵ ⊂ M̃tree(Γ,M) be the open set containing
ρ(M̃Γ(M)) defined to be the inverse image of the ϵ-neighborhood of the diagonal,

ηϵ = {(σ, γ) ∈ M̃Γ(M) : d(pT (σ, γ),∆(M)) < ϵ for every maximal tree T ⊂ Γ}
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where d is the Riemannian distance in M ×M . 2. Let ν(ρ)→ M̃Γ(M) be the vector
bundle defined as follows. Let p : M̃Γ(M)→M be the map (σ, γ)→ γ(v). This is the
right hand factor of the embedding ρ : M̃Γ(M) ↪→ M̃tree(Γ,M) ∼= SΓ ×M . Define

ν(ρ) = p∗(
⊕
b

TM)

to be the pullback of the Whitney sum of b-copies of the tangent bundle.

We notice that ηe is an Aut(Γ)-invariant open subspace of M̃tree(Γ,M) and
therefore defines an open neigborhood which, by abuse of notation we also call ηϵ of
the embedding of quotient spaces, ρ :MΓ(M) ↪→Mtree(Γ,M). Similarly, ν(ρ) is an
invariant bundle over M̃Γ(M),and therefore defines a bundle ν(ρ) = p∗(

⊕
b TM) over

MΓ(M). The following theorem will allow us to define a Pontrjagin-Thom collapse
map, which as observed above, will allow us to define the umkehr map ρ!. This is a
tubular neighborhood theorem for the embedding ρ : MΓ(M) ↪→ Mtree(Γ,M). Its
proof is rather technical, so we leave it to the appendix.

Theorem 14. For ϵ > 0 sufficiently small, there is a homeomorphism Θ : ηϵ
∼=−→

ν(ρ) takingMΓ(M) to the zero section.

The homeomorphism Θ then defines a homeomorphism of the quotient space to
the Thom space,

Θ :Mtree(Γ,M)/(Mtree(Γ,M)− ηϵ) →MΓ(M)ν(ρ)

and so we have a Pontrjagin-Thom collapse map,

τρ : SΓ/Aut(Γ)×M ∼=Mtree(Γ,M)
project−−−−−→Mtree(Γ,M)/(Mtree(Γ,M)− ηϵ)(12)

Θ−→MΓ(M)ν(ρ).

Assuming M is oriented, this defines an umkehr map,

ρ! : H∗(BAut(Γ)×M) ∼= H∗(SΓ/Aut(Γ)×M)
τρ−→ H∗(MΓ(M)ν(ρ))(13)

Thom iso−−−−−−→ H∗−b·n(MΓ(M)).

We are now ready to define virtual fundamental classes of these moduli spaces.

Definition 15. Let α ∈ Hq(BAut(Γ); k), where k is a coefficient field. Define
the virtual fundamental class, [Mα(Γ,M)] ∈ Hq+χ(Γ)n(MΓ(M); k) to be the image of
α⊗ [M ] under the umkehr map

ρ! : H∗(BAut(Γ); k)⊗H∗(M ; k)→ H∗−bn(MΓ(M); k).

Notice that since 1− b is the Euler characteristic χ(Γ), we have that the virtual
fundamental class associated to a homology class α of degree q lies in degree, q+χ(Γ)n,

[Mα(Γ,M)] ∈ Hq+χ(Γ)n(MΓ(M); k).

These virtual fundamental classes, and more generally the umkehr map ρ!, will
allow us to define cohomology operations yielding the Morse Field Theory described
in the introduction. We define and study these operations in the next section.
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3. Graph operations. In this section we describe Gromov-Witten type oper-
ations induced by our moduli spaces of graphs and their virtual vector bundles. We
actually describe two types of operations induced by a graph Γ, the first, q0Γ, is equiv-
ariant with respect to the bordered automorphism group, Aut0(Γ), which consists
of those automorphisms g ∈ Aut(Γ) that fix the marked points (univalent vertices).
These operations are the directly analogous to Gromov- Witten operations. We then
show how these operations can be extended to operations qΓ that are equivariant with
respect to the full automorphism group.

Let Γ be an object in Cb,p+q, and M a closed, n- dimensional manifold. In what
follows we consider homology and cohomology with coefficients in an arbitrary but
fixed field k. We begin by defining the operations,

(14) q0Γ : H∗(BAut0(Γ))⊗H∗(M)⊗p → H∗(M)⊗q

which raises total dimension by χ(Γ)n− np where χ(Γ) is the Euler characteristic of
the graph Γ (χ(Γ) = 1 − b), b is the first Betti number of Γ, and p and q are the
number of incoming and outgoing marked points of Γ respectively.

Let M0(Γ,M) = M̃Γ(M)/Aut0(Γ) ≃ BAut0(Γ). Consider the evaluation maps
evin : M̃Γ(M) → Mp and evout : M̃Γ(M) → Mq that evaluate a graph flow on the
incoming and outgoing marked points, respectively. Since automorphisms in Aut0(Γ)
preserve these marked points, they descend to give maps evin :M0(Γ,M)→Mp and
evout :M0(Γ,M)→Mq. Let ev be the product map,

ev = evin × evout :M0(Γ,M)→Mp ×Mq.

Let α ∈ Hr(BAut0(Γ)) = Hr(M0(Γ,M)). As we did in the last section (8) we
can define a virtual fundamental class

[Mα
0 (Γ,M)] = ρ!(α× [M ]) ∈ Hr+n−bn(M0(Γ,M)) = Hr+χ(Γ)n(M0(Γ,M)).

Consider the Gromov-Witten type invariant,

q̄0Γ(α) : H
∗(M)⊗p ⊗H∗(M)⊗q → k

x⊗ y → ⟨ev∗(x⊗ y), [Mα
0 (Γ,M)]⟩.

Notice that q̄0Γ(α) can only be nonzero if the total dimension of x ⊗ y is r + χ(Γ)n.
We may think of q̄0Γ(α) as an element of homology,

q̄0Γ(α) = ev∗([Mα
0 (Γ,M)]) ∈ H∗(M

p)⊗H∗(M
q)

of total dimension r + χ(Γ)n. By applying Poincare duality to the left hand tensor
factor, this defines a class

q0Γ(α) ∈ Hnp−∗(Mp)⊗H∗(M
q) ∼= Hom(H∗(M)⊗p;H∗(M)⊗q)

which raises total dimension by r+χ(Γ)n−np. We have therefore defined an operation

(15) q0Γ : H∗(BAut0(Γ))⊗H∗(M)⊗p → H∗(M)⊗q

which raises total dimension by χ(Γ)n− np.
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We now describe an extension of the operation q0Γ to an operator on equivariant
homology,

qΓ : H
Aut(Γ)
∗ (Mp)→ H

Aut(Γ)
∗+χ(Γ)n−np(M

q).

Here Aut(Γ) acts onMp via the permutation action determined by the homomorphism
Aut(Γ) → Σp that sends an automorphism to the induced permutation of the p-
incoming marked points. The Aut(Γ) action on Mq is defined similarly. The sense in
which the operation qΓ will extend q0G, is the following. Since an element g ∈ Aut0(Γ)
lies in the kernel of the homomorphism Aut(Γ) → Σp its action on Mp is trivial.
Therefore the inclusion Aut0(Γ) ⊂ Aut(Γ) induces a map of homotopy orbit spaces,

BAut0(Γ)×Mp → EAut(Γ)×Aut(Γ) Mp

and therefore an induced map in homology, H∗(BAut0(Γ)) ⊗ H∗(M)⊗p →
H
Aut(Γ)
∗ (Mp). The compatibility of the operators q0Γ and qΓ is that the following

diagram commutes:

(16)

H∗(BAut0(Γ))⊗H∗(M)⊗p
q0Γ−−−−→ H∗(M

q)y y
H
Aut(Γ)
∗ (Mp) −−−−→

qΓ
H
Aut(Γ)
∗ (Mq) −−−−→ H

Σq
∗ (Mq).

We now define the graph operation qΓ. As above, consider the evaluation map

evin : M̃Γ(M)→Mp,

which evaluates a graph flow on the p incoming marked points. This map is Aut(Γ)
equivariant, where as above, Aut(Γ) acts on Mp by permuting the coordinates ac-
cording to the homomorphism Aut(Γ) → Σp. Taking homotopy orbit spaces, we get
a map

evin : M̃Γ(M)/Aut(Γ) =MΓ(M)→ EAut(Γ)×Aut(Γ) Mp.

We similarly have a map evout :MΓ(M) → EAut(Γ)×Aut(Γ) Mq. Notice that up to
homotopy, the map evin factors as the composition,

evin :MΓ(M)
ρ−→Mtree(Γ,M) ∼= SΓ(M)/Aut(Γ)×M(17)

≃ BAut(Γ)×M ∆p

−−→ EAut(Γ)×Aut(Γ) Mp.

Here ∆p : M → Mp is the p-fold diagonal, which maps M to the fixed points of
the Aut(Γ)-action on Mp. Therefore by applying homotopy orbit spaces, we have
an induced map ∆p : BAut(Γ) ×M → EAut(Γ) ×Aut(Γ) Mp. ∆p is a codimension
n(p − 1) embedding, and so there is a Pontrjagin-Thom map to the Thom space of
the normal bundle,

τ∆p : EAut(Γ)×Aut(Γ) Mp → (BAut(Γ)×M)ν(∆
p).

As described in the previous section, such a map induces an umkehr map in homology,

(∆p)! : H∗(EAut(Γ)×Aut(Γ) Mp)→ H∗−n(p−1)(BAut(Γ)×M).
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Because of the factoring of evin in (17), we can then define the umkehr map (evin)!
as the composition of umkehr maps,

(evin)! : H∗(EAut(Γ)×Aut(Γ) Mp)
(∆p)!−−−→ H∗−n(p−1)(BAut(Γ)×M)
ρ!−→ H∗−n(p−1)−bn(MΓ(M))

= H∗+χ(Γ)n−np(MΓ(M)).

We now define the operation qΓ as follows.

Definition 16. Define

qΓ : H
Aut(Γ)
∗ (Mp)→ H

Aut(Γ)
∗+χ(Γ)n−np(M

q)

to be the composition

qΓ : H∗(EAut(Γ)×Aut(Γ) Mp)
(evin)!−−−−→ H∗+χ(Γ)n−np(MΓ(M))
evout−−−→ H∗+χ(Γ)n−np(EAut(Γ)×Aut(Γ) Mq).

We now observe the following property relating the operations qΓ and q0Γ.

Proposition 17. The operation qΓ extends q0Γ in the sense that it makes diagram
(16) commute.

Proof. Let α ∈ H∗(BAut0(Γ)), β ∈ H∗(M
p), and x ∈ H∗(Mq) be in the image of

H∗
Σq

(Mq)→ H∗(Mq). Then by definition,

(18) ⟨x , q0Γ(α⊗ β)⟩ = ⟨ev∗out(x) ∪ ev∗in(Dβ) , ρ!(α⊗ [M ])⟩,

where D : H∗(M
p) → Hnp−∗(Mp) is Poincare duality. On the other hand, by the

definition of qΓ,

⟨x , qΓ(α⊗ β)⟩ = ⟨ev∗out(x) , ρ!(α⊗∆p
! (β)⟩.

But by the commutativity of the diagram

H∗(M
p)

∆p
!−−−−→ H∗(M)

D

y x∩[M ]

Hnp−∗(Mp) −−−−→
(∆p)∗

Hnp−∗(M)

this quantity is equal to

(19) ⟨ev∗out(x) , ρ!(α⊗ (∆p)∗(Dβ) ∩ [M ])⟩.

Now the dual umkehr map,

ρ! : H∗(M0(Γ,M))→ H∗+bn(BAut0(Γ)×M)

is a map of H∗(MΓ(M))-modules. This implies that ρ!(α ⊗ (∆p)∗(Dβ) ∩ [M ]) =
ρ!(α⊗ [M ]) ∩ ρ∗((∆p)∗(Dβ)). Thus quantity (19) is equal to

(20) ⟨ev∗out(x) , ρ!(α⊗ [M ]) ∩ ρ∗((∆p)∗(Dβ))⟩.
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Now by the definition of the evaluation map evin, the following diagram commutes:

H∗(Mp)
(∆p)∗−−−−→ H∗(M)

↪→−−−−→ H∗(M ×BAut0(Γ))

evin

y yρ∗
H∗(M0(Γ,M) −−−−→

=
H∗(M0(Γ,M).

So quantity (20) is equal to

⟨ev∗out(x) , ρ!(α⊗ [M ]) ∩ ev∗in(Dβ) = ⟨ev∗out(x) ∪ ev∗in(Dβ) , ρ!(α⊗ [M ])⟩,

which is the same as the quantity in equation (18).

We end this section with the observation that given any group homomorphism
θ : G → Aut(Γ), the above constructions and arguments using the moduli space
MG

Γ (M) = EG×θ M̃Γ(M), allow us to construct an umkehr map,

(evin)! : H
G
∗ (Mp)→ H∗+χ(Γ)n−np(MG

Γ (M)),

which in turn allows the definition of an operation defined on G-equivariant homology,

(21) qGΓ : HG
∗ (Mp)→ HG

∗ (Mq)

that is natural with respect to homomorphisms between groups living over Aut(Γ).
That is if θ1 : G1 → Aut(Γ) and θ2 : G2 → Aut(Γ) are homomorphisms and f : G1 →
G2 is a group homomorphism such that θ2 ◦ f = θ1, then then the following diagram
commutes:

(22)

HG1
∗ (Mp)

q
G1
Γ−−−−→ HG1

∗ (Mq)

f∗

y yf∗
HG2

∗ (Mp) −−−−→
q
G2
Γ

HG2
∗ (Mq)

4. Field theoretic properties of the graph operations. In this section we
describe the two properties, invariance and gluing, that imply the assignment to a
graph Γ the operation qΓ defines a field theory. We begin with the invariance property.
Roughly this says that a morphism

ϕ : Γ1 → Γ2

in Cb,p+q takes the operation qΓ1
to qΓ2

. We state this more precisely as follows. Let
G1 < Aut(Γ)1 and G2 < Aut(Γ)2 be subgroups.

Definition 18. We say that a morphism ϕ : Γ1 → Γ2 is G1-G2 equivariant, if
for every g1 ∈ G1 there exists a unique g2 ∈ G2 such that the following composite
morphisms are equal:

ϕ ◦ g1 = g2 ◦ ϕ : Γ1 → Γ2.

In this setting, ϕ determines a homomorphism,

ϕ∗ : G1 → G2

g1 → g2.
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Furthermore, one easily checks that the homomorphism ϕ∗ : Γ1 → Γ2 lives over the
identity in the symmetric groups. That is, the following diagram commutes:

G1 −−−−→ Σp × Σq

ϕ∗

y y=

G2 −−−−→ Σp × Σq

where the two horizontal maps assign to an automorphism the induced permutation
of the incoming and outgoing leaves. The commutativity of this diagram then says
that ϕ induces maps of equivariant homology,

ϕ∗ : HG1
∗ (Mp)→ HG2

∗ (Mp) and ϕ∗ : HG1
∗ (Mq)→ HG2

∗ (Mq).

Theorem 19. (Invariance) Let ϕ : Γ1 → Γ2 be a morphism in Cg,p+q, G1 <
Aut(Γ)1 and G2 < Aut(Γ)2 be such that ϕ is G1-G2 equivariant. Then the following
diagram commutes:

HG1
∗ (Mp)

q
G1
Γ1−−−−→ HG1

∗ (Mq)

ϕ∗

y yϕ∗

HG2
∗ (Mp)

q
G2
Γ2−−−−→ HG2

∗ (Mq)

Proof. The proof of this theorem is immediate from the definitions, using the
naturality of the Pontrjagin-Thom collapse maps (and thus umkehr maps). We leave
the details of this argument to the reader.

We now discuss a gluing relation held by these operations. In the nonequivariant
setting, a gluing relation is proved using analytic techniques below. Here we describe
and prove a gluing relation in the general equivariant setting. Let Γ1 be a graph with
p incoming marked points and q outgoing marked points. Let Γ2 be a graph with
q incoming and r outgoing marked points. Say Γ1 ∈ Cb1,p+q, and Γ2 ∈ Cb2,q+r. By
identifying the the q outgoing leaves (univalent vertices) of Γ1 to the q incoming leaves
of Γ2, this defines a “glued” graph, Γ1#Γ2 ∈ Cb1+b2+q−1,p+r.

Let Γ1 and Γ2 be as above. Consider the homomorphisms

ρout : Aut(Γ1)→ Σq ρin : Aut(Γ2)→ Σq

defined by the induced permutations of the outgoing and incoming leaves, respectively.
Let Aut(Γ1)×Σq Aut(Γ2) be the fiber product of these homomorphisms. That is,

Aut(Γ1)×Σq Aut(Γ2) ⊂ Aut(Γ1)×Aut(Γ2)

is the subgroup consisting of those (g1, g2) with ρout(g1) = ρin(g1). Let

p1 : Aut(Γ1)×Σq Aut(Γ2)→ Aut(Γ1) and p2 : Aut(Γ1)×Σq Aut(Γ2)→ Aut(Γ2)

be the projection maps. There is also an obvious inclusion as a subgroup of the
automorphism group of the glued graph,

ι : Aut(Γ1)×Σq Aut(Γ2) ↪→ Aut(Γ1#Γ2)
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Fig. 4. Γ1#Γ2

which realizes Aut(Γ1) ×Σq Aut(Γ2) as the subgroup of Aut(Γ1#Γ2) consisting of
automorphisms that preserve the subgraphs, Γ1 and Γ2. Similarly, for any pair of
homomorphisms, θ1 : G1 → Aut(Γ1) and θ2 : G2 → Aut(Γ2), we have an induced
homomorphism

θ1 × θ2 : G1 ×Σq G2 → Aut(Γ1)×Σq Aut(Γ2) ↪→ Aut(Γ1#Γ2).

We then have the following gluing theorem.

Theorem 20. Let Γ1, Γ2, θ1 : G1 → Aut(Γ1), and θ2 : G2 → Aut(Γ2) be as
above. Then the composition of the graph operations

q
G1×ΣqG2

Γ2
◦ qG1×ΣqG2

Γ1
: H

G1×ΣqG2

∗ (Mp)→ H
G1×ΣqG2

∗ (Mq)→ H
G1×ΣqG2

∗ (Mr)

is equal to the graph operation for the glued graph,

q
G1×ΣqG2

Γ1#Γ2
: H

G1×ΣqG2

∗ (Mp)→ H
G1×ΣqG2

∗ (Mr).

Proof. For the sake of ease of notation, we leave off the superscript G1 ×Σq G2 in
the following description of moduli spaces and graph operations. We wish to prove
that qΓ1#Γ2 = qΓ2 ◦ qΓ1 .

Consider the restriction maps,

MΓ1(M)
r1←−−−− MΓ1#Γ2(M)

r2−−−−→ MΓ2(M).

given by restricting a graph flow on Γ1#Γ2 to Γ1 or Γ2, respectively. Notice that the
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following is a pullback square of fibrations,

MΓ1#Γ2(M)
r2−−−−→ MΓ2(M)

r1

y yev2in
MΓ1(M) −−−−→

ev1out

E(G1 ×Σq G2)×G1×ΣqG2 M
q.

Here the superscripts of the evaluation maps are meant to represent the graph moduli
space on which they are defined. By the naturality of the Pontrjagin-Thom collapse
maps used to define the umkehr maps (see in the proof of theorem 14 as well as the
more general setup described in [8]), we have the following relation:

(23) r2 ◦ (r1)! = (ev2in)! ◦ ev1out : H
G1×ΣqG2

∗ (Mq)→ H∗(MΓ1#Γ2(M)).

Notice furthermore that we have commutative diagrams

MΓ1#Γ2(M)
ev1,2in−−−−→ E(G1 ×Σq G2)×G1×ΣqG2 M

p

r1

y =

y
MΓ1(M) −−−−→

ev1in

E(G1 ×Σq G2)×G1×ΣqG2 M
p

and

MΓ1#Γ2(M)
ev1,2out−−−−→ E(G1 ×Σq G2)×G1×ΣqG2 M

r

r2

y =

y
MΓ2(M) −−−−→

ev2out

E(G1 ×Σq G2)×G1×ΣqG2 M
r.

The first of these diagrams implies, by the naturality of the Pontrjagin-Thom
collapse maps, that

(24) (ev1,2in )! = (r1)! ◦ (ev1in)! : H
G1×ΣqG2

∗ (Mp))→ H∗(MΓ1#Γ2(M)).

These naturality properties allow us to calculate:

qΓ1#Γ2

= ev1,2out ◦ (ev
1,2
in )!, by definition

= ev1,2out ◦ (r1)! ◦ (ev1in)!, by (24)

= ev2out ◦ r2 ◦ (r1)! ◦ (ev1in)!, by the commutativity of the second diagram above,

= ev2out ◦ (ev2in)! ◦ ev1out ◦ (ev1in)!, by (23)

= qΓ2 ◦ qΓ1 , by definition.

This completes the proof of this theorem.

5. Examples. In this section we give some examples of the equivariant opera-
tions qΓ.
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Fig. 5. Γ1

5.1. The “Y”-graph and the Steenrod squares. Let Γ1 be the graph:
This graph is a tree with one incoming and two outgoing leaves. The automor-

phism group is the group of order 2: Aut(Γ) = Z/2. The operation qΓ1 is therefore a
homomorphism,

qΓ1 = evout ◦ (evin)! : H∗(BZ/2)⊗H∗(M)→ H∗(MΓ1(M))→ H
Z/2
∗ (M ×M).

Since Γ1 is a tree,MΓ1(M) ≃ BZ/2×M , and clearly evin :MΓ1(M)→ B(Z/2)×M
is homotopic to the identity. This means (evin)! is the identity homomorphism, and so
qΓ1 = evout. But as identified earlier, evout :MΓ1(M) ≃ B(Z/2)×M → EZ/2×Z/2
M ×M is homotopic to the equivariant diagonal map. Thus

qΓ1 : H∗(B(Z/2))⊗H∗(M)→ H
Z/2
∗ (M ×M)

is the equivariant diagonal.
Consider the dual map in cohomology with Z/2-coefficients:

(qΓ1)
∗ : H∗

Z/2(M ×M)→ H∗(BZ/2)⊗H∗(M).

This is Steenrod’s equivariant cup product map [18]. Indeed if we considered the
nonequivariant operation (associated to the homomorphism {id} ↪→ Aut(Γ) = Z/2),
then the operation

(qidΓ1
)∗ : H∗(M)⊗H∗(M)→ H∗(M)

is the cup product homomorphism. In the Z/2-equivariant setting, recall that Steen-
rod defined the Steenrod squaring operations Sqj in terms of the equivariant cup
product map in the following way. Let α ∈ Hq(M ;Z/2). So α ⊗ α represents a well
defined class in HZ/2(M ×M ;Z/2). Then

(25) (qΓ1)
∗(α⊗ α) =

∑
j=02q

aj ⊗ Sq2q−j(α).

Here a ∈ H1(BZ/2;Z/2) = H1(RP∞;Z/2) = Z/2 is the generator.

5.2. The Cartan and Adem formulas. We now describe how the Cartan and
Adem formulas for the Steenrod squares follow from the field theoretic properties
(invariance and gluing) of the graph operations. Consider the following graph, Γ2:

Notice that the automorphism group, Aut(Γ)2 ∼= Σ2

∫
Σ2, the wreath product of

the symmetric group with itself. It sits in a short exact sequence, 1 → Σ2 × Σ2 →
Σ2

∫
Σ2 → Σ2 → 1. We will view this group as a subgroup of the symmetric group,

Σ2

∫
Σ2 ↪→ Σ4. Consider the subgroup τ : Z/2 ↪→ Σ2

∫
Σ2 defined by the permutation,
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Fig. 6. Γ2

(a, b, c, d) → (b, a, d, c). We consider the graph operation in cohomology with Z/2-
coefficients:

qτΓ2
: H∗

τ (M
4)→ H∗(B(Z/2))⊗H∗(M),

where H∗
τ is the Z/2-equivariant cohomology determined by the embedding τ .

Notice that Γ2 is the graph obtained by gluing two copies of the Y-graph Γ1, each
having a single incoming leaf, to the two outgoing leaves of a third Y-graph Γ1.

By the gluing formula (theorem (20)) and the description of qΓ1 above in terms
of the (equivariant) cup product, then if α ∈ Hq(M), β ∈ Hr(M), then

(26) qτΓ2
(α⊗ α⊗ β ⊗ β) =

∑
i+s+t=q+r

ai ⊗ Sqs(α) ∪ Sqt(β) ∈ H∗(B(Z/2))⊗H∗(M).

We now use the invariance property (theorem(19)) to understand this operation
in another way. Let Γ3 be the following graph:

Here Aut(Γ3) = Σ4, the symmetric group. Consider the morphism,

θ : Γ2 → Γ3

obtained by collapsing the edges e and f in figure 6 and then permuting the two
internal outgoing leaves. That is, on the level of edges,

θ : g → e, a→ a, b→ c, c→ b, d→ d.

θ sends the involution τ on Γ2 to the involution σ on Γ3 defined by the inclusion
σ : Z/2 ↪→ Σ4, given by the permutation, (a, b, c, d)→ (c, d, a, b). So by the invariance
property, the following diagram commutes:

(27)

H∗
τ (M

4)
qτΓ2−−−−→ H∗(B(Z/2))⊗H∗(M)

θ

y∼=
y=

H∗
σ(M

4) −−−−→
qσΓ3

H∗(B(Z/2))⊗H∗(M).



684 R. COHEN AND P. NORBURY

Fig. 7.

Fig. 8. Γ3

Now θ(α ⊗ α ⊗ β ⊗ β) = α ⊗ β ⊗ α ⊗ β ∈ H∗
σ(M

4). Thus we know from the
invariance property and formula (26), that

(28) qσΓ3
=

∑
i+s+t=q+r

ai ⊗ Sqs(α) ∪ Sqt(β).

On the other hand, consider the morphism

(29) ϕ : Γ2 → Γ3

that also collapses edges e and f but maps edges a, b, c, and d, to a, b, c, and d
respectively. Since the image of σ : Z/2 ↪→ Σ4 lies in Σ2

∫
Σ2, the invariance property

implies

qσΓ2
= qσΓ3

: H∗
σ(M

4)→ H∗(B(Z/2))⊗H∗(M).
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But by using figure 7 the gluing formula (theorem 20) implies that

qσΓ2
(α⊗ β ⊗ α⊗ β) = qΓ1(αβ ⊗ αβ)

=
∑
i

ai ⊗ Sqq+r−i(αβ), by (25).(30)

Comparing this to formula (28) yields the Cartan formula,

Sqm(αβ) =
∑

u+v=m

Squ(α)Sqv(β).

For the Adem relations, the graph operations don’t give us new calculational
techniques, but they do supply an interesting perspective on what calculations are
necessary. Namely, the Adem relations are relations involving iterates of Steenrod
squaring operations. From the graph point of view, the gluing formula tells us that
these operations come from considering the graph Γ2 given in figure 6. As pointed
out above, the automorphism group of Γ2 is the wreath product, Aut(Γ2) = Σ2

∫
Σ2.

In cohomology, the graph operation is a homomorphism,

q∗Γ2
: H∗

Σ2

∫
Σ2

(M4)→ H∗(B(Σ2

∫
Σ2))⊗H∗(M),

and the relevant calculation is q∗Γ2
(α⊗4) for α ∈ H∗(M). Now consider the morphism

ϕ : Γ2 → Γ3 described above. As remarked above, Aut(Γ)4 = Σ4. Moreover, in the
language of theorem (19), ϕ is Σ2

∫
Σ2 −Σ4 equivariant. Therefore by the invariance

property, the following diagram commutes:

H∗
Σ2

∫
Σ2

(M4)
q∗Γ2−−−−→ H∗(B(Σ2

∫
Σ2))⊗H∗(M)

ϕ

x ι⊗1

x
H∗

Σ4
(M4)

q∗Γ3−−−−→ H∗(B(Σ4))⊗H∗(M)

where ι : Σ2

∫
Σ2 ↪→ Σ4 is the inclusion as a subgroup. But since α⊗4 lies in the

image of ϕ : H∗
Σ4

(M4) → H∗
Σ2

∫
Σ2

(M4), we have that q∗Γ2
(α⊗4) is the image of

q∗Γ3
(α⊗4) under the map

ι∗ ⊗ 1 : H∗(B(Σ4))⊗H∗(M)→ H∗(B(Σ2

∫
Σ2))⊗H∗(M).

Now any approach to the Adem relations involves computing the relative cohomologies
of ι : Σ2

∫
Σ2 ↪→ Σ4, and in particular, the relative equivariant cohomologies of

the permutation action on M4. However from this perspective, the reasons these
calculations are forced upon us, are the gluing and invariance properties of the graph
operations.

5.3. Stiefel-Whitney classes. Consider the following graph, Γ4: In this case
the automorphism group Aut(Γ4) ∼= Z/2. Also, since there is just one incoming leaf,
the operation qΓ4 taken with Z/2-coefficients is a map,

H∗(B(Z/2))⊗H∗(M)→ Z/2.
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Fig. 9. Γ4

Or, equivalently, qΓ4 ∈ H∗(B(Z/2)) ⊗ H∗(M). The following identifies this graph
operation.

Theorem 21.

qΓ4 =
n∑
i=0

ai ⊗ wn−i(M)

∈ H∗(B(Z/2))⊗H∗(M)(31)

where, wj(M) ∈ Hj(M) is the jth-Stiefel-Whitney class of the tangent bundle of M ,
and as above, a ∈ H1(B(Z/2)) is the generator.

Proof. Let T ⊂ Γ4 be the tree obtained by removing the edges d and e in figure
9 above. T has the same automorphism group, Aut(T ) = Z/2. By restricting a
Γ4-graph flow to T , one obtains an embedding,

MΓ4(M)
ρ−−−−→
↪→

MT (M) ∼= (ST (M)/Z/2)×M ≃ BZ/2×M.

By definition (16) the operation qΓ4 is given by the image of the umkehr map in
cohomology,

qΓ4 = ρ!(1) ∈ Hn(B(Z/2)×M).

To understand this class, notice that the tree T has one incoming and two outgoing
leaves. Evaluating a graph flow on T at the two outgoing leaves defines a map

evout :MT (M)→ E(Z/2)×Z/2 M ×M

which is homotopic to the equivariant diagonal, ∆ : B(Z/2)×M → E(Z/2)×Z/2M ×
M . Furthermore, from (11), the following diagram is a homotopy cartesian square:

MΓ4(M)
ρ−−−−→
↪→

MT (M) ∼= (S(T,M)/Z/2)×M ≃−−−−→ BZ/2×M

δ

y y∆

B(Z/2)×M −−−−→
∆

E(Z/2)×Z/2 M ×M

By the naturality of the Pontrjagin-Thom collapse map and the resulting umkehr map
in cohomology, this homotopy cartesian square implies that

ρ! ◦ δ∗ = ∆∗ ◦∆! : H∗(B(Z/2))⊗M → H∗(B(Z/2))⊗M.
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So

qΓ4 = ρ!(1) = ρ! ◦ δ∗(1) = ∆∗ ◦∆!(1).

But by standard properties of umkehr maps, ∆∗◦∆!(1) is the mod 2 Euler class of the
normal bundle of the equivariant diagonal embedding, ∆ : BZ/2×M ↪→ E(Z/2)×Z/2
M ×M. Since the normal bundle of the (nonequivariant) diagonal ∆ :M →M ×M
is the tangent bundle, p : TM → M , the normal bundle of the equivariant diagonal
is the equivariant tangent bundle,

E(Z/2)×Z/2 TM
1×p−−→ B(Z/2)×M,

where Z/2 acts fiberwise on TM by multiplication by −1. The mod 2 Euler class is
the nth-Stiefel-Whitney class of this bundle, which is given by the sum,

∑n
i=0 a

i ⊗
wn−i(TM).

This completes the proof of this theorem.

5.4. Miscellaneous. We conclude this section with a few miscellaneous remarks
about examples. Here we work nonequivariantly (i.e we take q1Γ where 1 ∈ G is the
trivial subgroup).

• Consider the operation q1Γ with field coefficients. Then rather than a ho-
momorphism q1Γ : H∗(M)⊗p → H∗(M)⊗q, we may think of q1Γ as living in
the tensor product,

⊗
pH

∗(M)⊗
⊗

qH∗(M). It is shown in section 9 below
(corollary 43), that if one changes the orientation of an edge connected to a
univalent vertex, one changes the invariant by Poincare duality on that factor.
• The previous remark shows that when one lets Γ̃1 be the Y-graph as in
figure 5, except that the orientations of all three edges are reversed, then
the operation

q1
Γ̃1

: H∗(M)⊗H∗(M)→ H∗(M)

is the intersection pairing.
• Consider the graph below with two incoming univalent vertices. Then the op-

Fig. 10. Γ0

eration q1Γ0
: H∗(M)⊗H∗(M)→ k is the nondegenerate intersection pairing.

Thus the Frobenius algebra structure of H∗(M) is encoded in the the Morse
field theory structure.

6. Transversality. We now give a differential topological construction of the
graph invariants qΓ defined in section 3. Throughout this section, and the rest of the
paper, we will only be using the automorphism group Aut0(Γ) introduced in section
3, that consists of those automorphisms that preserve the univalent vertices (leaves).
Since we will be using this group exclusively throughout the remainder of the paper,
we ease notation by simply writing Aut(Γ) for Aut0(Γ),MΓ(M) for M̃Γ(M)/Aut0(Γ).
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Giving this alternative definition of the graph operations involves studying the
smoothness properties of the moduli spaces. This is the main goal of this section.
Our plan for this section is the following.

We will consider the “graph flow map”

Φ : PΓ(M) → PΓ(TM)

γ 7→ dγE
dt

+∇fE(γ(t))

for each edge E of the metric graph Γk, where (Γk, fE) ∈ SΓ and where PΓ(M) (which
will be defined carefully below) is a space consisting of pairs (Γk, γ), where Γk is a
graph over Γ (i.e an object in CΓ), and γ : Γk →M is a map. The map Φ is a section
of the vector bundle PΓ(TM) over PΓ(M) with fibres given by sections of γ∗(TM).

The universal moduli space of metric-graph flows can therefore be thought of as
the quotient by Aut(Γ) of the zero set of the section Φ

MΓ(M) = M̃Γ(M)/Aut(Γ), M̃Γ(M) = Φ−1(0) ⊂ PΓ(M).

We will show that it is a smooth, orientable manifold by an application of the implicit
function theorem. Furthermore, we will show that the projection map

MΓ(M)
↓ π
MΓ

is smooth, and has virtual codimension (i.e the dimension ofMΓ minus the dimension
ofMΓ(M)) equal to −dim M · χ(Γ). Thus for any submanifold N ⊂MΓ transverse
to the map π, the space

MN
Γ (M) = π−1(N)

is a smooth manifold of dimension dim M · χ(Γ) + dim N .
The evaluation map evv : MN

Γ (M) → M of a graph flow at a univalent vertex
v ∈ Γ allows one to cut down the moduli space further. Given a Morse function f on
M associate to an outgoing univalent vertex v ∈ Γ a critical point av of f with stable
manifold Ws(av) ⊂ M . Then we will see that N ⊂ MΓ can be chosen transverse to
the map π :MΓ(M)→MΓ, and so that evv(MN

Γ (M)) intersectsWs(av) transversely
in M . This will imply that

MN
Γ (M ; av) =MN

Γ (M) ∩ ev−1
v (Ws(av))

is a smooth manifold of dimension dim M · χ(Γ) + dim N − index(av). By repeated
application of this on a collection of critical points a⃗ = {av} of f labeled by the
univalent vertices of Γ, one can choose N to get a smooth manifold MN

Γ (M ; a⃗) of
dimension

dimMN
Γ (M ; a⃗) = dimMN

Γ (M)−
∑

v incoming

(dim M − index(av))−
∑

v outgoing

index(av)

where the two sums are taken over the set of incoming and outgoing univalent vertices,
respectively.

In section 7 we will prove that the zero dimensional moduli spacesMN
Γ (M ; a⃗) are

compact and hence one can count the number of points in the moduli space to get
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invariants of the manifold. (We will study more general compactness issues in section
8.) These invariants take their values in formal sums of critical points of f and can
be interpreted as homology classes in the Morse chain complex of f . This will lead to
a differential topology construction of the invariants qΓ which we do in section 9.

The simple purpose of this section is to prove that transversality can be arranged.
This is a generalisation of the fact that Morse-Smale functions exist. We will use the
Sard-Smale theorem so we must first put a Banach manifold structure on the universal
moduli spaceMΓ(M).

6.1. Mapping spaces. To study the flow map

Φ : PΓ(M)→ PΓ(TM)

we put a Banach manifold structure on the spaces of maps PΓ(M) and PΓ(TM), then
linearise Φ, and prove regularity. When the moduli spaces are finite-dimensional an
index calculation gives the dimension.

Continuous maps from a graph Γ to a compact manifold M are best understood
when one equips Γ and M with metrics. More precisely, equip M with a smooth
Riemannian metric and take an oriented metric graph Γk → Γ homotopy equivalent
to Γ. (Strictly speaking we are considering a point in the geometric realization of
|CΓ|, and interpreting it as a metric-graph over Γ as discussed in section 1.) The
mapping space PΓ(M) consists of continuous maps with square integrable derivative
of all metric graphs Γk homotopy equivalent to Γ as follows.

Definition 22. For an oriented metric graph Γk define PΓk
(M) to be the subset

of continuous maps Γk →M with square integrable derivative

PΓk
(M) =

{
γ : Γk →M

∣∣∣∣∣ γ continuous,

∫
Γk

∣∣∣∣dγdt
∣∣∣∣2 dt <∞

}
.

Put the W 1,2 metric on PΓk
(M) to give it a Banach manifold structure, i.e. take

continuous sections s of V = γ∗TM satisfying

∥s∥2 =

∫
Γk

(∣∣∣∣dsdt
∣∣∣∣2 + |s|2

)
dt <∞.

Note that the Sobolev embedding theorem

W 1,2(E,V) ⊂ C0(E,V)

on the interior of edges shows that the requirement of continuity on s can be stated
more weakly as continuity at vertices.

We wish to take the union of PΓk
(M) over all σ = (Γk, f⃗) ∈ SΓ. Before doing

this, we need a Banach manifold structure on SΓ. This is achieved by building up SΓ
from finite dimensional manifolds, so that the Banach manifold structure is simply
obtained by taking finite objects in SΓ.

In the construction of SΓ, take V ⊂ C∞(M) to be an N -dimensional vector space
and allow only Γk for k less than N . That is, gk is a point on the k-skeleton of
|CΓ|/Aut(Γ), for k < N . (We have unnecessarily chosen the bound on k to coincide

with the dimension of V .) Then SΓ is built up out of the union of S(N)
Γ ⊂ SΓ.

Definition 23.
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• Define

PΓ(M) =
∪

(Γk,f⃗)∈SΓ

{Γk, f⃗} × PΓk
(M)

and equip it with the topology induced from SΓ and PΓk
(M).

• Define the vector bundle PΓ(TM)→ PΓ(M) so that for each γ ∈ PΓ(M) the
fibre over γ consists of L2 maps.

(PΓ(TM))γ =

{
(γ, ξ) : Γk → TM

∣∣∣∣ ∫
Γk

|ξ|2dt <∞
}
.

6.2. Surjectivity. In the previous section we proved that the space PΓ(M) is a
manifold. We next show that 0 is a regular value of Φ.

Theorem 24. Φ : PΓ(M)→ PΓ(TM) intersects the zero section transversally.

Proof. The tangent space at a point (Γk, f⃗ , γ) ∈ PΓ(M) is given by

T(Γk,f⃗ ,γ)
PΓ(M) = T(Γk,f⃗)

SΓ ⊕W 1,2(Γk,V)

where V = γ∗(TM) is a vector bundle over Γ. (If M is orientable then V is trivial
so W 1,2(Rn) suffices.) The linearisation of Φ decomposes into DΦ = (I,D1 + DΓk

)
where I is the identity on the TSΓ part and

D1 +DΓk
: T(Γk,f⃗)

SΓ ⊕W 1,2(Γk,V)→ L2(Γk,V) .

We must show that for all points of the universal moduli space (Γk, f⃗ , γ) ∈ MΓ(M),
DΦ(Γk,f⃗ ,γ)

is surjective and has a right inverse.

A tangent vector in T(Γk,f⃗ ,γ)
PΓ(M) is given by a triple (λ, h⃗, s) where λ = {λE}

is the infinitesimal change in the length of E, h⃗ = {hE} is the infinitesimal change
in the smooth function labeling E, and s = {sE} is a section of the vector bundle
V = γ∗TM over Γ.

γE 7→ γE + ϵsE

lE 7→ lE + ϵλE

fE 7→ fE + ϵhE .

To linearise Φ(Γk, f⃗ , γ) = { ˙γE + ∇fE(γE)} assume for the moment that lE > 0
and reparametrise E by τ ∈ [0, 1] so t = τ lE . Then ℓEdγ/dt = dγ/dτ and
ℓE (dγE/dt+∇fE(γE)) = dγE/dτE + ℓE∇fE(γE).

ℓE (Φ + ϵ∆Φ)

=
d

dτE
(γE + ϵsE) + (ℓE + ϵλE)∇(fE + ϵhE)

=
d

dτE
γE + ℓE∇fE(γE) + ϵ(

d

dτE
sE + ℓE∇∇fE · sE + λE∇fE + ℓE∇hE)

= ℓE

(
d

dtE
γE +∇fE(γE) + ϵ(

d

dtE
sE +∇∇fE · sE +

λE
ℓE
∇fE +∇hE)

)
.
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hence for ℓE > 0

D1(λ, h⃗) +DΓk
s = (

λE
ℓE
∇fE +∇hE) + (ṡE +∇∇fE · sE).

For the case ℓE = 0 we first need to understand more about the cokernel of DΓk
. Since

L2(Γ,V) is a Hilbert space the cokernel of DΓk
can be identified with the orthogonal

complement of its image. Thus

coker DΓk
= {r ∈ L2(Γ,V)|⟨r,DΓk

ϕ⟩ = 0 for all ϕ ∈ C∞
0 (Γ)}

which gives good local behaviour of an element r of the cokernel on the interior of an
edge and at a vertex.

Lemma 25. On the interior of any edge E ⊂ Γk, an element r ∈ coker DΓk
is

smooth and satisfies

(32) ṙE − (∇∇fE)T · rE = 0.

At a vertex v ∈ Γk, r is free to be discontinuous up to the codimension 1 condition

(33)
∑
E∋v

(−1)v(E)rE(v) = 0

where v(E) = 0 (or 1) when E is incoming (outgoing).

Proof. The first part of the lemma is standard so we defer that to an appendix. To
prove (33) consider ϕ ∈ C∞

0 (Γ) whose support lies in a neighbourhood of the vertex
v ∈ Γ. Then

0 =

∫
Γ

⟨r, ϕ̇+Aϕ⟩dt

=
∑
E∋v

(−1)v(E)rE(v)ϕ(v)−
∫
Γ

⟨ṙ, ϕ⟩dt+
∫
Γ

⟨AT r, ϕ⟩dt

=
∑
E∋v

(−1)v(E)rE(v)ϕ(v).

When ℓE = 0 we can make sense of D1(λ, h⃗) weakly in L2 as follows. Along
an edge E, ∇fE ∈ kerDΓk

since it gives an infinitesimal change in parametrisation.
Thus, for any rE ∈ coker DΓk

,

d

dt
⟨rE(t),∇fE(t)⟩ = ⟨ṙE − (∇∇fE)T · rE ,∇fE(t)⟩+ ⟨rE(t), DΓk

∇fE(t)⟩ = 0

so

⟨rE(t),∇fE(t)⟩2 = ℓE⟨rE(0),∇fE(0)⟩

since rE(0) makes sense (as a one-sided limit.) Therefore,

(34) ⟨rE , D1(λ, 0)⟩2 =
λE
ℓE
⟨rE ,∇fE⟩2 = λE⟨rE(0),∇fE(0)⟩

which makes sense when ℓE = 0.
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When building up SΓ from finite-dimensional V ⊂ C∞(M), choose V to be gen-
erated by {f1, . . . , fN} such that {∇f1, . . . ,∇fN} span TxM at every point x ∈ M .
At a vertex v ∈ Γk, identify Γk with Γk+d → Γk a metric graph with d = dimM extra
edges that contract to v and associate to these edges smooth functions with gradients
spanning Tγ(v)M . Then an infinitesimal increase in the length of one of the zero length
edges E′ at v gives any direction ∇fE′(0) and thus from (34) λE′⟨rE′(0),∇fE′(0)⟩ = 0
implies rE(0) = rE′(0) = 0 and since rE satisfies an ODE this implies that rE(t) ≡ 0
so DΦ is onto.

It is proven in an appendix that DΓk
is Fredholm and it is a standard fact that

this implies DΦ has a right inverse.

Theorem 26. The universal moduli space of graph flows MΓ(M) is a smooth
Banach manifold. The projection map

π :MΓ(M)→MΓ

has virtual codimension −dimM · χ(Γ). Its cover M̃Γ(M) inherits a natural coori-
entation from an orientation of M .

Proof. Since Φ intersects the zero section transversally, from the implicit function
theorem it follows that M̃Γ(M) = Φ−1(0) is a manifold and since Aut(Γ) acts freely
on M̃Γ(M) so too isMΓ(M) = M̃Γ(M)/Aut(Γ).

The projection map

π : M̃Γ(M)→ SΓ

is a Fredholm map between Banach manifolds since it is clear that kerDπ = kerDΓk

and with a little more thought one can see that D1 induces an isomorphism between
coker Dπ and coker DΓk

. Since DΓk
is Fredholm (see the appendix), Dπ is Fredholm

with index equal to index DΓk
.

Lemma 27. The index of the operator DΓk
is given by

index DΓk
= dim M · χ(Γ).

Proof. The index remains unchanged on the continuous families of operators

DΓk
(λ) =

d

dt
+ λ∇∇f, λ ∈ [0, 1]

so we may replace DΓk
by d

dt which is differentiation on γ∗(TM), an Rd bundle over

Γ. The operator d
dt is well-defined even if γ∗(TM) is non-trivial since we choose

trivialisations so that γ∗(TM) is the sum of a trivial bundle and a non-trivial line
bundle with transition function multiplication by −1. Thus the transition function
commutes with d

dt . By Lemma 25 d
dt is self-adjoint up to boundary terms and elements

r of the cokernel also satisfy d
dtr = 0.

If the bundle γ∗(TM) is trivial then ker d
dt consists of constant sections so it has

dimension dimM . Elements of the cokernel are constant along edges but may be
discontinuous at vertices, satisfying a codimension one condition there. The cokernel
is spanned by sections constant around a cycle in Γ representing a generator of H1(Γ)
and zero outside the cycle. Thus it has dimension dimM · b1(Γ) and index DΓk

=
dim M · χ(Γ).
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If the bundle γ∗(TM) is non-trivial then ker d
dt has dimension dimM − 1 since

it is trivial on the non-trivial sub-line bundle of γ∗(TM). This is because there has
to be a cycle in Γ on which there is an odd number of transition functions given by
multiplication by −1. But then since any element of the kernel is a constant c, we
must have c = −c = 0. To see that the cokernel has dimension dim M · b1(Γ) − 1 it
is enough to consider the non-trivial sub-line bundle of γ∗(TM) since the argument
above takes care of the trivial sub-bundle. Note that H1(Γ) can be generated by
b1(Γ) cycles such that γ∗(TM) is trivial around all but one cycle and it has an odd
number of transition functions given by multiplication by −1 along one cycle. (To see
this, take b1(Γ) cycles in Γ that generate H1(Γ). If the bundle is non-trivial on two
cycles α and β in the generating set, then replace α and β by α+ β and β. Continue
this until the bundle is non-trivial on only one generator.) Again the cokernel is
spanned by sections constant around a cycle in the generating set of H1(Γ), hence it
is zero on the non-trivial cycle and constant on the other b1(Γ)− 1 cycles. As before
index DΓk

= dim M · χ(Γ).
The normal bundle of π : M̃Γ(M) → SΓ at σ = (Γk, f⃗) ∈ SΓ is canonically

isomorphic to (coker Dϕ)∗ = (coker DΓk)
∗. A coorientation of M̃Γ(M) in SΓ which is

an orientation of its normal bundle is thus a section of the line bundle ∧max(coker DΦ)∗

over M̃Γ(M). This line bundle coincides with the determinant line bundle

detDΦ = ∧max kerDΦ⊗ ∧max(coker DΦ)∗

since DΦ is surjective. The determinant line bundle extends to a locally trivial line
bundle over all of PΓ(M), and since PΓ(M) is contractible the determinant line bundle
is globally trivial . Thus π(M̃Γ(M)) is coorientable. A coorientation is canonically
determined from an orientation on M via the evaluation map.

The following is a corollary of what we have just proved. It is the main result of
this section. It gives the smoothness of the finite dimensional moduli spaces.

Theorem 28. For a generic submanifold with boundary N ⊂ MΓ, the moduli
spaceMN

Γ (M) is a manifold with boundary, and has dimension

dimMN
Γ (M) = dim M · χ(Γ) + dim N.

Proof. A strong version of the Sard-Smale theorem guarantees that that any
submanifold of SΓ can be perturbed to an arbitrarily close submanifold N that is
transverse to π :MΓ(M)→MΓ, with its boundary transverse to π(MΓ(M)). Hence
MN

Γ (M) = π−1(N) is a manifold with boundary. The dimension formula follows
immediately from the codimension of π(MΓ(M)) inMΓ. (In the case b1(Γ) = 0, this
means thatMΓ(M) maps onto SΓ with fibre of dimension dim M .)

Remark. The moduli space Mg,n(M,β) of stable maps from genus g curves
with n marked points to a variety M (or symplectic manifold) γ : Σ→M with image
representing β = [γ(Σ)] ∈ H2(M) uses the entire parameter space N =Mg,n and has
(real) dimension

dimMN
g,n(M) =

1

2
dim M · χ(Σ) + dim N + 2⟨c1(M), [γ(Σ)]⟩.

The analogue of Lemma 27 is the Riemann-Roch formula given in terms of complex
dimensions

dim H0(γ∗(TM))− dim H1(γ∗(TM)) =
1

2
dim γ∗(TM) · χ(Σ) + degree γ∗(TM).
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Both Riemann-Roch and Lemma 27 are index theorems relating the index of a dif-
ferential operator to topological information. The topological term ⟨c1(M), [γ(Σ)]⟩
specifies different components of the moduli space and is detected in the dimension
formula. Similarly, connected components of the moduli space of graph flows have con-
stant ⟨w1(M), [γ(Γ)]⟩. One might expect different dimensions for different connected
components, however the term ⟨w1(M), [γ(Γ)]⟩ is not detected in the dimension for-
mula, although curiously it does appear in the calculation of the dimension.

7. Zero dimensional moduli spaces and counting. Given a Morse function
f onM , the Morse complex of f is a chain complex generated by the critical points of
f , with boundary maps obtained from counting gradient flows. Using this description
of the homology of M , we will show how the graph operations defined earlier can be
defined geometrically on the chain level as maps between formal linear combinations
of critical points of f . The graph moduli spaces are ideal for defining such chain level
maps.

The stable and unstable manifolds of critical points of f represent homology and
cohomology classes on M and they intersect the image of the moduli space of graph
flows under the evaluation map. This will allow us to give a realisation of the umkehr
maps defined in section 3 from tensor products of the homology and cohomology of
M to to the homology of the moduli space of graph flows.

The intersection of the image of the evaluation map with stable and unstable man-
ifolds will be interpreted in terms of a moduli space of graph flows for a non-compact
graph. Non-compact edges will map to gradient flows of the Morse function f . As we
will see, the Morse condition—that the critical points of f are non-degenerate—arises
because the gradient flows live on a non-compact graph. Until now the degeneracy of
critical points of a smooth function on M has been of no concern to the construction
of the moduli spaces because only compact graphs have been used.

For the remainder of the paper we work with the non-compact graph Γ̃, obtained
from Γ by adding, for each univalent vertex v ∈ Γ, a non-compact edge Ev oriented
incoming or outgoing according to whether v is incoming or outgoing. A graph flow
is a continuous map γ : Γ̃→M which is the previously defined graph flow on Γ, and
on non-compact edges it is the gradient flow of the Morse function f .

To define the moduli space of graph flows we now specify a collection of critical
points a⃗ = {av} of the Morse function f and require that the gradient flow of the
non-compact edge Ev, of Γ̃ converges to the critical point av. The graph flow map is
defined on appropriate path spaces (defined below) and is given by:

Φ(γ) =
dγE
dt

+∇fE(γ(t))

where E ⊂ Γ̃k varies over all edges of Γk and non-compact edges of Γ̃k. In this
notation fE is the restriction of f to the edge E.

The universal moduli space of graph flows of Γ̃ is notated by

M̃Γ(M ; a⃗) = Φ−1(0)
↓ π
SΓ

where Γ encodes Γ̃ through its oriented univalent vertices. Notice that the space of
structures remains SΓ, (i.e it has not changed even though we are now working with
the enlarged graph Γ̃), because there is a fixed function f labeling all the noncompact
edges.
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Most of the results for compact graphs generalise to these particular non-compact
graphs. The following theorem encapsulates these generalisations.

Theorem 29. For a generic submanifold with boundary N ⊂ MΓ, the moduli
space of graph flows MN

Γ (M ; a⃗) = π−1(N)/Aut(Γ) ⊂ MΓ(M ; a⃗) is a manifold with
boundary, of dimension

dimMN
Γ (M ; a⃗) = dimMN

Γ (M)−
∑

v incoming

(dim M − index(av))−
∑

v outgoing

index(av).

Remarks. 1. The moduli spaceMN
Γ (M ; a⃗) is in general not compact.

2. There is a canonical orientation on M̃N
Γ (M ; a⃗) induced by an orientation on

M .
Proof. To prove the theorem we must define the Banach manifold structure on

the mapping spaces, construct the universal moduli space of graph flows, prove that
the projection π to the structure space is Fredholm, calculate its index and prove
regularity. Except for the proof that the operator is Fredholm, these results require
only small adjustments to the compact graph case.

For an oriented metric graph Γk with univalent vertices attach a half-line Ev to
each univalent vertex v to get the non- compact graph Γ̃k. The non-compact edge is
oriented according to the orientation of v and this is realised in the parametrisation
of incoming Ev by t ∈ (−∞, 0] and outgoing Ev by t ∈ [0,∞).

Definition 30. Define PΓk
(M ; a⃗) to be the subset of continuous maps from

Γ̃k →M , that converge on non-compact edges to ai, with square integrable derivative

PΓk
(M ; a⃗) =

{
γ : Γk →M

∣∣∣∣∣ γ continuous, lim
t→(−)∞

γEv (t) = av,

∫
Γ̃k

∣∣∣∣dγdt
∣∣∣∣2 dt <∞

}

and for any section s of the vector bundle V = γ∗TM over Γ̃k define its norm using
the W 1,2 metric

∥s∥2 =

∫
Γ̃k

(∣∣∣∣dsdt
∣∣∣∣2 + |s|2

)
dt.

This Banach manifold contains the solutions to the graph flow equation since on
a non-compact (outgoing, say) edge E associated to the critical point av,∫

E

∣∣∣∣dγdt
∣∣∣∣2 dt = −∫ ∞

0

⟨
dγ

dt
,∇fE

⟩
dt = −

∫ ∞

0

dfE
dt

dt = fE(γ(v))− fE(av) <∞.

Then PΓ(M ; a⃗) is defined as a union of PΓk
(M ; a⃗) in the same way that PΓ(M) is

defined. Similarly define PΓ(TM ; a⃗). The graph flow map Φ : PΓ(M ; a⃗)→ PΓ(TM ; a⃗)
defines the universal moduli space as its zero set:

MΓ(M ; a⃗) = Φ−1(0) ⊂ PΓ(M ; a⃗).

Regularity of Φ at 0 requires the following minor adjustments to the compact case.
The proof of Theorem 24 shows that any element r of the cokernel of DΦ must vanish
on Γk, the compact part of Γ̃k. But on a non-compact edge Ev, r is determined, via
the codimension 1 condition (33) at v, by its values on compact edges containing v
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and hence it vanishes on Ev and so vanishes everywhere on Γ̃k. Thus DΦ is onto. It
has a right inverse since DΓ̃k

is Fredholm (see the appendix).
There is no change to the proof of a canonical coorientation on MΓ(M ; a⃗).

As before, the virtual codimension of π follows from an index calculation. The
projection π to the parameter space is Fredholm, since DΓ̃k

is Fredholm, and
index Dπ = index DΓ̃k

.

Lemma 31.

index DΓ̃k
= dim M · χ(Γ)−

∑
v>0

(dim M − index(av))−
∑
v<0

index(av).

Proof. Choose trivialisations of V = γ∗TM over Γ̃k so that transition functions
are simply multiplication by ±1. With respect to these local trivialisations DΓ̃k

=
d
dt +A(t) is well-defined since the operator commutes with multiplication by ±1. The
index remains unchanged under continuous deformations of DΓ̃k

although we cannot
deform A(t) to zero as in the compact case, because at infinity A(t) looks like the
Hessian of the Morse function f at each critical point and hence it is invertible there.
However, we may deform A(t) so that it is diagonal, zero on Γk ⊂ Γ̃k and constant
outside of a compact subset of Γ̃k that contains Γk.

For A = diag(λ1(t), ..., λd(t)) we can explicitly solve the system for the kernel:

ṡi = −λi(t)s(t), i = 1, ..., d .

Since λi(t) = λvi is constant near infinity along Ev ⊂ Γ̃ then s(t) ∼ e−λit near infinity.
Thus, s ∈W 1,2(R+,R) only when λvi < 0 (respectively, λvi > 0) when Ev is incoming
(respectively, outgoing). If the ith eigenvalue does not satisfy this condition for a
single v then the solution must vanish on Ev and hence by continuity on all of Γ̃. We
see then that the dimension of the kernel is given by the number of λi(t) with λ

v
i < 0

for all v oriented positively (Ev incoming) and λvi > 0 for all v oriented negatively
(Ev outgoing.)

For the cokernel we use −AT so negate each λvi . Then ri ∈ W 1,2(R+,R) when
λvi > 0 (respectively, λvi < 0) when Ev is incoming (respectively, outgoing). It is no
longer true that if ri vanishes along one edge then it vanishes on all of Γ̃. For each
i we get a contribution to the cokernel from each incoming (outgoing) edge Ev with
λvi > 0(< 0).

In order to calculate

index DΓ̃k
= dimkerDΓ̃k

− dim coker DΓ̃k

change the index of a critical point and observe the change in index DΓ̃k
. For an

incoming edge Ev change index(av) to index(av) − 1, so take λvi < 0 and send it to
−λvi . Either λvi contributes to the kernel (it cannot contribute to the cokernel) then
−λvi cannot contribute to the cokernel and we lose 1 from index DΓ̃k

, or λvi does not

contribute to the kernel in which case −λji does contribute to the cokernel and we
again lose 1 from index DΓ̃k

. A similar argument shows that on an outgoing edge Ev,
the change index(av) 7→ index(av)+1 affects the change index DΓ̃k

7→ index DΓ̃k
−1.

Thus

index DΓ̃k
=
∑
v>0

index(av)−
∑
v<0

index(av) + constant.
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To determined the constant, suppose that index(av) = dim M (i.e. λvi < 0 for all i)
for each incoming Ev and index(av) = 0 (i.e. λvi > 0 for all i) for each outgoing Ev.
Then the non-compact edges make no contribution to the cokernel and there is no
obstruction to the kernel. Hence the index is the same as that for the compact graph,
i.e.

index DΓ̃k
= index DΓk

= dim M · χ(Γ)

and the constant agrees with the statement of the lemma. (In terms of the graph
flow, we have just seen that when incoming and outgoing edges converge respectively
to maxima and minima of f , locally it is as if there is no critical point restriction.)

This completes the proof of the theorem.
To the collection a⃗ of l critical points of f associate the product of stable and

unstable manifolds W (⃗a) ⊂M l

W (⃗a) =
∏
v>0

Wu(av)×
∏
v<0

Ws(av).

Now consider the evaluation map on the univalent vertices, ev :MN
Γ (M)→Mp+q(we

are assuming p incoming leaves and q outgoing leaves). It is clear that

MN
Γ (M ; a⃗) =MN

Γ (M) ∩ ev−1(W (⃗a)).

In the introduction to Section 6, we claimed thatN can be chosen so that ev(MN
Γ (M))

intersects W (⃗a) transversally. The proof of this does not give a new proof that
MN

Γ (M ; a⃗) is a manifold since it uses the proof of that fact, although it is a more
intuitive way of seeing the manifold structure and its dimension and it will be used
in the compactness arguments.

Lemma 32. If γ ∈ MN
Γ (M ; a⃗) is a regular point of the flow map Φ, then

ev(MN
Γ (M)) intersects W (⃗a) transversally in Mp+q.

Proof. If ev(MN
Γ (M)) does not intersect W (⃗a) transversally at x⃗ ∈ Mp+q then

there is a vector ξ⃗ ∈ Tx⃗Mp+q orthogonal to the tangent spaces of ev(MN
Γ (M)) and

W (⃗a). Take a non-zero component of ξ⃗ in one factorM ofMp+q, corresponding to the
univalent vertex v ∈ Γ. Along the non-compact edge Ev parametrised by t ∈ [0,∞)
solve the equation ṙ(t) − (∇∇f)T · r(t) = 0 with r(0) = ξ. Since ξ is orthogonal to
ev(MN

Γ (M)) at x, r(t) decays at infinity and lives in L2. Put r = 0 on the rest of the
graph Γ̃k.

Since DΓk
is surjective, r ∈ im DΓk

so r = DΓ̃k
s for some s ∈W 1,2(Γ̃k). Now∫

Γ̃k

⟨r, r⟩dt =
∫ ∞

0

⟨r,DΓ̃k
s⟩dt =

∫ ∞

0

d/dt⟨r, s⟩dt = ⟨ξ, s(0)⟩.

But r ≡ 0 on Γk so DΓk
s = 0 so s(0) ∈ Txev(MN

Γ (M)) and ⟨ξ, s(0)⟩ = 0 which is a
contradiction.

The following corollary is a generalisation of the Morse-Smale condition.

Corollary 33. Any submanifold N ⊂ MΓ(M) can be perturbed so that
ev(MN

Γ (M)) intersects W (⃗a) transversally for all collections of critical points a⃗ of
f .

Proof. For each collection of critical points a⃗ of f , the proof of Theorem 29
supplies a universal moduli space together with a map to the parameter space π :
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MΓ(M ; a⃗) → SΓ. For a given a⃗, the Sard-Smale theorem allows one to make an
arbitrarily small deformation of a submanifold with boundary N0 ⊂ MΓ to N1 that
is transverse to π(MΓ(M ; a⃗)). Take another collection a⃗′ and again apply the Sard-
Smale theorem to choose a deformation N2 of N1 small enough so that it remains
transverse to π(MΓ(M ; a⃗)) and so that it is also transverse to π(MΓ(M ; a⃗′)). Take
the finite list of all collections of critical points a⃗ labeled by a given set of univalent
vertices of Γ, and update N0, N1, N2, . . . to get a finite sequence that finishes at
N ⊂MΓ simultaneously transverse to all the spaces, π(MΓ(M ; a⃗)).

8. Compactness. The graph moduli spaces are non-compact due to the non-
compact edges of the graph. This will imply, as we will see, the non-compactness and
gluing issues essentially reduce to these same issues for spaces of gradient flows of a
Morse function.

8.1. Piecewise graph flows. We begin by recalling the natural compactifica-
tion of the space of gradient flow lines converging to two fixed critical points of the
Morse function f .

The space of flow-lines of the Morse function f from the critical point a to the
critical point b can be viewed as using the noncompact graph Γ = R which has a
one-dimensional space of translational symmetries. The moduli space of flows is the
quotient space

M(a, b) =MR(M ; a, b)/R.

Notice thatMR(M ; a, b) is the intersection of the unstable manifold of a with the
stable manifold of b,MR(M ; a, b) =Wu

a ∩W s
b .

Now assume that M is equipped with a metric so that f : M → R satisfies
the Morse-Smale condition. This says that the intersections of stable and unstable
manifolds are all transverse. Recall the partial ordering on the set of critical points
in this setting, a ≥ b if there is a gradient flow connecting a and b, i.eM(a, b) ̸= ∅.

Define the space of piecewise flow lines connecting critical points a and b by:

M(a, b) =
∪

a=a0≥a1≥...≥aj=b

M(a, a1)×M(a1, a2)× ...×M(aj−1, b)

where the union is taken over all nonincreasing finite sequences of critical points. For
example, a ≥ b impliesM(a, b) ⊂M(a, b).

Since f satisfies the Morse-Smale condition, a > b implies that f(a) > f(b)
and index a > index b. The result is that M(a, b) is compact, which is a simple
equicontinuity argument, and that it containsM(a, b) as an open dense subset. This
is often expressed as a gluing theorem since it implies the existence of true flows
arbitrarily close to piecewise flows. A uniqueness part of gluing further implies that
M(a, b) is a manifold with corners. For our purposes it is sufficient to consider at
most 1-dimensional moduli spaces. In the one dimensional M(a, b) is a 1-manifold
with boundary. In particular a deleted neighbourhood of any boundary component
inM(a, b) is a connected, open interval.

By analogy, we define the space of piecewise graph flows by

MN

Γ (M ; a⃗) =
∪
b⃗

MN
Γ (M ; b⃗)×

∏
v incoming

M(av, bv)×
∏

v outgoing

M(bv, av)

where the union is taken over all collections of critical points b⃗ labeling the univalent
vertices of Γ. Notice that the restriction of such piecewise graph flow γ to a compact
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edge is a gradient flow of the function labeling that edge, and when restricted to a
noncompact edge, it is a piecewise flow line.

Proposition 34. When N is compact,MN

Γ (M ; a⃗) is compact.

Proof. For any (Γk, f⃗) ∈ N , the gradient vector fields ∇fE along the edge E ⊂ Γ̃k
are bounded and uniformly continuous, uniformly in N , since M is compact. (As
usual, we express the Morse function f by fE for any non-compact edge of Γ̃k.)

Hence the space of mapsMN

Γ (M ; a⃗) is an equicontinuous family since the deriva-

tives dγE/dt = −∇fE are uniformly bounded. Let {γj} ⊂ MN

Γ (M ; a⃗) be a sequence
of piecewise graph flows. Take any univalent vertex v ∈ Γ̃, or any point on a non-
compact edge labeled by its parameter T < 0 (T > 0) for an incoming (outgoing) edge
E of the metric graph. Both of these give well-defined choices of points in any metric
graph in N . Since M is compact, the sequence γj(v), or γj(T ), has a convergent
subsequence converging to a point x ∈M . By differentiating ∇fE over M one gets a
uniform C2 bound on the {γj} and thus the limit of the subsequence satisfies the flow
equation. Thus the flow from the limit point x is a uniform limit of the subsequence
of graph flows. It may be a graph flow or a gradient flow of f . As we choose different
points on non-compact edges, we get different gradient flows of f that are also uniform
limits of a subsequence of graph flows.

So the limit of a sequence of piecewise flows is locally a flow and to prove that it
is itself a piecewise flow it remains to show that the limit is a continuous map from
Γ̃k to M . Canonically parametrise {γj} by s = f(γj(t)) so they satisfy dγj(s)/ds +
∇f/|∇f | = 0. Again one gets a uniform bound on dγj(s)/ds so by equicontinuity the
limit of the subsequence is a continuous map from Γ̃k to M and hence a piecewise
flow.

Remark. In the above proof it is clear that the that non-compactness of the
moduli space of graph flows arises due to the non-compact edges of the graph. We
say that a sequence bubbles along a non-compact edge if its limit is not a smooth flow
there.

Corollary 35. For generic choice of N , if dimMN
Γ (M ; a⃗) = 0 thenMN

Γ (M ; a⃗)
is compact.

Proof. Choose f to be Morse-Smale and N as in Corollary 33 so that all moduli
spacesMN

Γ (M ; b⃗) are manifolds of the expected dimension. Suppose that a sequence
of graph flows bubbles along an incoming edge Ev and converges to a piecewise graph
flow. Since f is Morse-Smale, M(av, bv) is non-empty only if index av > index bv.
But then

dimMN
Γ (M ; b⃗) < dimMN

Γ (M ; a⃗) = 0

so by transversality MN
Γ (M ; b⃗) is empty, contradicting the claim that the sequence

bubbles. The same argument works for an outgoing edge. Thus no bubbling can occur

andMN

Γ (M ; a⃗) =MN
Γ (M ; a⃗).

Theorem 36. For generic choice of N , if dimMN
Γ (M ; a⃗) = 1 thenMN

Γ (M ; a⃗) is

a 1-manifold with boundary
∪
v

∪
bv

MN
Γ (M ; b⃗)×M(av, bv) where for each v index bv =

index av ± 1, and it containsMN
Γ (M ; a⃗) as an open dense subset.
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Proof. The same argument as in the proof of Corollary 35 shows that for a 1-
dimensional moduli space MN

Γ (M ; a⃗), any sequence {γj} ⊂ MN
Γ (M ; a⃗) bubbles at

most once. If a sequence bubbles along the incoming edge Ev then its limit is given
by the pair (γ, µ) satisfying

(i) γ ∈MN
Γ (M ; b⃗),

(ii) µ ∈M(av, bv) uniquely defined up to rescaling,

(iii) index bv = index av − 1 so dimMN
Γ (M ; b⃗) = 0.

Conversely, to prove the theorem we need to show that any (γ, µ) satisfying (i), (ii)
and (iii) is a unique end ofMN

Γ (M ; a⃗). The same argument will apply to an outgoing
edge.

We follow the approach in [5]. The idea is to find a manifold with boundary P
and a smooth manifold N that lie inside a common ambient space, such that the
broken flow (γ, µ) maps to a point in both these manifolds. If P and ∂P intersect N
transversely then (γ, µ) is a unique end of the 1-dimensional intersection P∩N . More
is proven in [5] for higher-dimensional moduli spaces, where P is a product of manifolds
with boundary, so a manifold with corners, hence the transversal intersection inherits
a structure of a manifold with corners.

Put f(bv) = c. Choose ϵ > 0 small enough so that c is the only critical value in
[c− ϵ, c+ ϵ]. Define

M± = f−1(c± ϵ) ⊂M

and

P ⊂M+ ×M−

by pairs (x+, x−) that flow to the same point x ∈ f−1(c) under the forward, respec-
tively backward, gradient flow (possibly flowing for infinite time.)

Let a⃗(−v) be a⃗ with av removed. Define W s
v to be all those points of M that flow

under the gradient flow of f to evv(MN
Γ (M ; a⃗(−v)) and

N =Wu
av ∩M

+ ×W s
v ∩M− ⊂M+ ×M−.

The “stable manifold” W s
v is a manifold of dimension d− index av+2 for d = dim M

so N is a d dimensional manifold.
It is proven in [5] that P is a d − 1 dimensional manifold with boundary that

intersects N transversally inside the 2(d− 1) dimensional manifold M+ ×M−. The
critical point bv is contained inside the intersection P ∩N and a neighbourhood of bv
in P ∩N is a 1-manifold K with boundary bv.

The arguments in [5] require the Morse function f to be Morse-Smale, and we
must choose either a metric onM that is standard near critical points of f , or replace
the gradient flow with a Morse-like vector field on M . If we choose the latter, the
analysis in Section 7 does not change since it depends only on the fact that ∇∇f
is invertible at infinity and this is still true of Morse-like vector fields. Thus, in our
adaption of the arguments in [5] we will require the same conditions on f and replace
the gradient vector field on external edges by a Morse-like vector field.

Finally, we will prove that the analogues of stable and unstable manifolds for a
graph flow intersect stable and unstable manifolds of f transversally. This is a slight
adjustment of Corollary 33 which shows that the image of the moduli space of graph
flows under the evaluation map, ev(MN

Γ ), intersects the stable and unstable manifolds
of f transversally.
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First notice that the stable manifold for a graph flow, W s
v , constructed from

evv(MN
Γ (M ; a⃗(−v)), is a moduli space of graph flows as follows. For σ = (Γk, f⃗) ∈ N

define σ+ = (Γ+
k , f⃗) on the graph Γ+

k obtained from Γk by adding a compact edge E
at v ∈ Γk oriented inwards and assigning to E the vector field ∇f and length ℓE any
positive real number. This gives a family of structures N+ with dimN+ = dimN+1.
(Since Γ+ → Γ is a homotopy equivalence the set N+ is almost a subset ofMΓ except
that the lengths of edges do not add to 1.)

The argument in Corollary 33 also shows that for any length ℓE on the extra
compact edge E ⊂ Γ+

k , for generic choice of N the image of the moduli space of graph
flows under the evaluation map at the univalent vertex of E intersects the unstable
manifolds of f transversally. Thus, as we vary ℓE transversality is unchanged so W s

v

intersects the unstable manifolds of f transversally. Note that N ⊂ SΓ is chosen so
that all moduli spaces MN

Γ (M ; b⃗) are manifolds of the expected dimension which is
independent of ℓE .

The same construction works for a negatively oriented vertex v by adding an
outward pointing compact edge at v to get Γ−

k and thus showing that Wu
v intersects

the stable manifolds of f transversally.

Remark. The main ingredient in gluing is the transversality of the intersection
of the image of the evaluation map and stable and unstable manifolds of f , which
follows from surjectivity of DΦΓ̃k

. Gluing can be defined directly from surjectivity of
DΦΓ̃k

. One uses the energy functional defined on PΓk
(M ; a⃗)

E(γ) = 1

2

∫
Γ̃k

(∣∣∣∣dγdt
∣∣∣∣2 + |∇f(γ)|2

)
dt

= f(α)− f(β) + 1

2

∫
Γ̃k

∣∣∣∣dγdt +∇f(γ)
∣∣∣∣2 dt

where the first expression shows that E is non-negative and the second expression
shows that E is minimised by graph flows. A broken flow yields a path with small
energy—an approximate flow. The implicit function theorem shows that there is a
unique true flow nearby. Details for the case of the Morse complex can be found in [17].

Using the same gluing constructions as in the proof of Theorem 36 we will now
show how to remove an edge E ⊂ Γ leaving two marked vertices given by its endpoints.
(An endpoint of E must not coincide with an existing marked vertex of Γ. To find
such an edge it may be necessary to take an edge E ⊂ Γ1 → Γ and consider all
Γk → Γ1 → Γ.) The edge E may or may not be separating. We denote Γ− E to be
the graph, or union of two graphs, with marked vertices those of Γ and the endpoints
of E, oriented according to the orientation of E.

Choose N so that MN
Γ (M ; a⃗) is a smooth zero-dimensional moduli space for all

a⃗ and so that for a given edge E ⊂ Γ the induced structure on Γ−E gives a smooth
zero-dimensional moduli space for all b⃗ . Here b⃗ = (⃗a, a−, a+) is a vector of critical
points of f associated to the marked vertices of Γ− E, and a− = a+ is named twice
because it is used twice. The critical point a− is associated to the negatively oriented
(outgoing) endpoint of E and a+ is associated to the positively oriented (incoming)
endpoint of E. To the edge E, each metric-Morse structure in N should associate the
gradient vector field ∇f of the external Morse function.
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Theorem 37. The moduli spaces MN
Γ (M ; a⃗) and

∪
(a−,a+)

MN
Γ−E(M ; a⃗, a−, a+)

are cobordant.

Proof. Define the one-dimensional moduli space MNE

Γ (M ; a⃗) using a family NE
of structures with dimNE = dimN + 1 as follows. For σ = (Γk, f⃗) ∈ N , take
the edge Ek = ϕ−1(E) ∈ Γk where ϕ : Γk → Γ is the homotopy equivalence and
assign to it any length ℓ ∈ [ℓEk

,∞). This gives a family ÑE of structures on Γ with
∂ÑE = N ∪ N |Γ−E . As in the proof of Theorem 36 the family NE is not contained
inMΓ since the lengths of edges do not add to 1 so we use an enlargement of SΓ to
allow E to have an arbitrarily large edge length. Inside this space of parameters take
an arbitrarily small deformation NE of ÑE that fixes the boundary so that NE is
transversal to π(MΓ(M ; a⃗)) for all a⃗. Then it immediately follows thatMNE

Γ (M ; a⃗)
is a one-dimensional manifold with compact and non-compact ends. At the compact
ends it is a manifold with boundary MN

Γ (M ; a⃗) and we will show that it can be
compactified at the non-compact ends so that the 1-manifold gives the cobordance
stated in the theorem. In other words

(35) ∂MNE

Γ (M ; a⃗) =MN
Γ (M ; a⃗) ∪

∪
(a−,a+)

MN
Γ−E(M ; a⃗, a−, a+).

The same transversality argument as in the proof of Corollary 35 shows that any
sequence {γj} ⊂ MN

Γ (M ; a⃗) bubbles at most once along the edge E to give a
graph flow in MN

Γ−E(M ; a⃗, a−, a+) for critical point a− = a+ with index so that
dimMN

Γ−E(M ; a⃗, a−, a+) = 0. (The expected dimension is the same as the ac-
tual dimension.) As usual, if Γ − E is disconnected then MN

Γ−E(M ; a⃗, a−, a+) is
the product of moduli spaces for each component of Γ − E and by a graph flow in
MN

Γ−E(M ; a⃗, a−, a+) we mean a pair of graph flows.
The theorem will be proven if we can show that for any flow in the zero-

dimensional moduli space MN
Γ−E(M ; a⃗, a−, a+) there is a unique flow nearby in

MNE

Γ (M ; a⃗). This gluing result follows the proof of Theorem 36 exactly. Once
again we construct a manifold with boundary P and a smooth manifold N that
lie inside a common ambient space, such that a broken graph flow given by a
flow in MN

Γ−E(M ; a⃗, a−, a+) maps to a point in both these manifolds. In fact

MNE

Γ (M ; a⃗) = P ∩ N and the intersection will be transverse so MNE

Γ (M ; a⃗) is a
1-manifold with boundary and in particular any broken flow is a unique end of this
1-manifold.

Put f(a±) = c then there is no change to the definition of P ⊂ M+ ×M− for
M± = f−1(c ± ϵ). In the definition of N we now use stable and unstable manifolds
of graph flows:

N =Wu
v− ∩M

+ ×W s
v+ ∩M

− ⊂M+ ×M−

where v± are the endpoints of E and Wu
v− and W s

v+ are defined in the proof of
Theorem 36. Arguing as in Corollary 33 it can be shown that when NE is cho-
sen transversally to π(MΓ(M ; a⃗)) the stable and manifolds Wu

v− and W s
v+ intersect

transversally so the theorem follows.

Remark. In the previous two theorems, if the moduli spaces are oriented then
the orientation on the 1-manifold agrees with the orientations on the boundary. This
is because the orientations are canonically induced from the evaluation map, and the
gluing construction also used the evaluation map.
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9. Cohomology operations on the Morse chain complex. In this section
we represent the homology H∗(M) in terms of the Morse complex of the Morse func-
tion f :M → R and express the homology operation

qΓ : H∗(BAut0(Γ))⊗H∗(M)⊗p → H∗(M)⊗q

with respect to this representation.

Recall that the Morse complex of a Morse function f is the chain complex of
abelian groups

Cn
∂→ Cn−1

∂→ . . .
∂→ C1

∂→ C0

generated by the critical points of f , graded by their index. The boundary operator
∂ is defined by counting points in the moduli space of solutions to the gradient flow
equation converging to critical points of consecutive degrees. We will give the proof
that that this does indeed define a complex, i.e. ∂ ◦ ∂ = 0, since an analogous proof
is used to show that the graph moduli spaces define homological invariants.

Let a and b be critical points of f of index k + 1 and k respectively. It follows
from the analysis in Section 6 that M(a, b) is a zero-dimensional oriented compact
manifold. Thus it makes sense to count the points, with sign, in M(a, b). Put
n(a, b) = #M(a, b) and define the linear operator

∂a = Σn(a, b)b

where the sum is over all critical points b of index k.

Lemma 38.

∂2 = 0 .

Proof. By linearity

∂∂a = Σn(a, b)∂b = Σn(a, b)n(b, c)c

where the sum is over all critical points b of index k and c of index k − 1. We will
show that for fixed c the sum Σn(a, b)n(b, c)c over all intermediate critical points b
vanishes. By Theorem 36 the compactified one-dimensional moduli spaceM(a, c) is
a manifold with boundary. That is the boundary points, which are piecewise flows,
each correspond to a unique edge. Since one-dimensional compact manifolds can only
be a finite collection of closed intervals this means that the ends come in pairs. Thus
the contributions to ∂2(a) come in pairs. This immediately gives the vanishing of each
component modulo two. Furthermore the orientations on the 1 dimensional moduli
space and its boundary agree, meaning that n(a, b)n(b, c) = −1(+1) if that boundary
component is oriented negatively (positively). This is because the orientations are
defined canonically using the evaluation map and the gluing construction also uses
the evaluation map. Thus the boundary points are oriented oppositely so the oriented
sum vanishes.

Choose an Aut0(Γ)-invariant submanifold Ñ ⊂ SΓ such that the quotient N =
Ñ/Aut0(Γ) ∈MΓ is transverse to the image of the universal moduli space. Given the
Morse-Smale function f , let C∗(M,f) be the associated Morse-Smale chain complex
generated by the critical points, and let C∗(M,f) be the dual cochain complex. The
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cochains are negatively graded so that the evaluation pairing C∗(M,f)⊗C∗(M,f)→
Z is of degree zero.

Define a class qNΓ to be an element of the tensor product complex,⊗
v incoming

C∗(M,f)
⊗

v outgoing

C∗(M,f)

in the following manner. Consider those collections of critical points a⃗ such that
dimMσ

Γ(M ; a⃗) = 0. These spaces contain a finite number of oriented points which
can be counted with sign (ifMσ

Γ(M ; a⃗) is oriented—otherwise this is well defined mod
2, and we take coefficients to be Z2).

Definition 39.

qNΓ =
∑

#MN
Γ (X; a⃗)[⃗a] ∈

⊗
v incoming

C∗(M,f)
⊗

v outgoing

C∗(M,f).

Theorem 36 and the definition of the boundary operator in the Morse-Smale
complex yields the following.

Lemma 40.

dq = 0.

Proof. Recall that the boundary operator on the tensor product of the chain
complexes is given by

∂ :
⊗

1≤i≤k

C∗(M,f)→
⊗

1≤i≤k

C∗(M,f)

(a1, ..., an) 7→ Σi(a1, ..., ∂i(ai), ..., ak)

where ∂i is defined using fi. Then if we think of q as a map

q :
⊗

1≤i≤n1

C∗(M,f)→
⊗

n1+1≤i≤n

C∗(M,f) ,

the requirement that dq = 0 is equivalent to the requirement that q is a chain map:
∂q = q∂. Choose a⃗ = (⃗b, c⃗) so that dim MN

Γ (M ; a⃗) = 1. We have divided a⃗ into crit-

ical points b⃗ corresponding to incoming flows and c⃗ corresponding to outgoing flows.
Notice that for ∂b⃗ = Σ⃗bj , then dimMN

Γ (M ; (∂b⃗, c⃗)) = 0 so q(∂b⃗) ∈
⊗

v<0 C∗(M,f)
is obtained by counting piecewise graph flows, containing a piecewise gradient flow
along an incoming edge, from b⃗ to c⃗, and it takes it values in the module generated
by c⃗. The composition ∂q(⃗b) ∈

⊗
v<0 C∗(M,f) is given by piecewise graph flows,

containing a piecewise gradient flow along an outgoing edge, and takes its values in
the same module generated by c⃗ so it makes sense to compare q(∂b⃗) and ∂q(⃗b). We
will show that there is a pairing between the two types of piecewise graph flows which
gives ∂q = q∂.

The one-dimensional manifold Mσ
Γ(M ; a⃗) is compact with boundary so it is a

finite collection of closed intervals. Each boundary point of an interval corresponds to
a piecewise graph flow with exactly one external edge not a true gradient flow. This
is the key fact behind the proof. If more than one external edge were to break then
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the true graph flow inside this piecewise graph flow would lie in a moduli space of
negative dimension, thus contradicting its existence. These boundary piecewise graph
flows are paired by the interval they bound.

There are three types of components of the one-dimensional manifoldMσ
Γ(M ; a⃗)

and thus three types of pairings of piecewise flows. The first type of component
consists of an interval whose two boundary points correspond to piecewise gradient
flows both containing a piecewise gradient flow along an incoming edge. The sign, or
orientation, given to the piecewise flow is the product of the signs, or orientations,
given to the two components of the piecewise flow. But this is the orientation induced
from the one-dimensional moduli space. Since the two boundary components of the
one-dimensional moduli are oriented oppositely - they are two ends of an oriented
interval - the two piecewise graph flows contribute a total of 1− 1 = 0 to q(∂a⃗).

The second type of component consists of an interval whose two boundary points
correspond to two piecewise gradient flows both containing a piecewise gradient flow
along an incoming edge. It behaves like the first type of component and the two
piecewise graph flows contribute 1− 1 = 0 to ∂q(⃗a).

The third type of component consists of an interval whose two boundary points
correspond to two piecewise gradient flows containing, respectively, a piecewise gra-
dient flow along an incoming edge and a piecewise gradient flow along an outgoing
edge. The one-dimensional moduli space gives an oriented cobordism between the
two piecewise graph flows, so they contribute, respectively, q(∂a⃗) and to ∂q(⃗a) with
the same sign.

We pair piecewise flows arising from the third type of component and cancel pairs
of piecewise flows arising from the other two types of components to get q(∂a⃗) = ∂q(⃗a)
and the lemma is proven.

We shall therefore view qNΓ as an element of the associated homology,

qNΓ ∈ H∗(M)⊗n1 ⊗H∗(M)⊗n2 .

In fact qNΓ is independent of the choice of N ⊂ SΓ and only depends on the homology
class of N . We prove this in the following proposition.

Proposition 41. If N1 and N2 are homologous, then qN1

Γ = qN2

Γ .

Proof. A cobordism between N1 and N2 produces a non-compact 1-dimensional
moduli space with boundary. Its compactification has boundary components consist-
ing of the moduli spaces associated toN1 andN2 and to broken flows which correspond
to compositions with the boundary operator. Thus the compactified 1-dimensional
moduli space defines a chain homotopy equivalence between the invariants so on the
level of homology qN1

Γ (M) = qN2

Γ (M).
It is easy to see that qNΓ coincides with the algebraic topology version of the

invariant defined in section 2. This is because of the standard relationship between
umkehr maps and intersection theory of chains.

We end this section by giving an analytic version of the gluing construction in
Section 4.

Let Γ1 and Γ2 be oriented graphs. Let Γi#j1,2 be the oriented graph obtained by
gluing incoming edge i of Γ1 to outgoing edge j of Γ2.

Proposition 42.

q(Γi#j1,2 ,M) = q(Γ1,M)3i,jq(Γ2,M),
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where 3i,j denotes tensorial contraction of cohomology in the ith coordinate with
homology in the jth coordinate.

Proof. This uses Theorem 37 repeatedly to glue together any number of edges
between Γ1 and Γ2. As in the proof of Proposition 41, the compactified 1-dimensional
moduli spaces have boundary components consisting of components of the zero-
dimensional moduli spaces and broken flows so this gives a chain homotopy equivalence
between the invariants.

Corollary 43. Changing the orientation of a non-compact edge induces the
Poincare duality isomorphism on the relevent tensor coordinate of the invariant
qΓ(M).

Proof. Let Γ be a given graph with outgoing edge E. Recall the graph with two
incoming univalent vertices discussed in section 5 above. It is pictured in Figure 10.
Glue this graph to Γ at E to get a graph we’ll call Γ′. By Proposition 42 qΓ′ is the
composition of qΓ with the Poincare duality isomorphism. Contract the internal glued
edge to a point. By Proposition 41 this does not change the invariant.

One can use the contractible graph with one incoming vertex and one outgoing
vertex to get a chain homotopy between the Morse complexes of different Morse
functions. By gluing this graph onto the external edges of any other graph using
Proposition 42, one sees that the cohomology operations do not depend on the choice
of external Morse function. This also follows from the definition of the invariants in
Section 3.

10. Appendix: Proof of theorem 14. In this section we give a proof of
theorem 14. Let M be a closed n-dimensional manifold with a fixed Riemannian
metric. We begin by describing an extension of the bundle

⊕
b TM → M to an

Aut(Γ)-equivariant bundle over M̃tree(Γ,M) ∼= SΓ(M)×M .
Let (σ, γ) ∈ M̃tree(Γ,M). Let T ⊂ Γ be a fixed maximal subtree, and let T1 ⊂ Γk

be the inverse image of T under the composite morphism ϕk : Γk → Γk−1 → · · · →
Γ0 → Γ determined by the structure σ. Write pT1(σ, γ) = ((x1, y1), · · · (xb, yb)) ∈
(M2)b as in (10). Recall that xi = γT1(s

T
i (Γk)) ∈M. We define a vector bundle.

ζ → M̃tree(G,M)

to have as its fiber over (σ, γ) the sum of the tangent spaces,

ζ(σ,γ) =
b⊕
i=1

TxiM

It is clear that the bundle ζ is Aut(Γ)-equivariant. This is because if g ∈ Aut(Γ),
the action of g on the element (σ, γ) ∈ M̃tree(Γ,M), is given by (gσ, γ), where the
structure gσ is determined by the morphism gϕk : Γk → Γ given by the composition
of the morphism ϕk with the automorphism g. gϕ−1(T ) is the inverse image under
ϕk of the tree gT ⊂ Γ.

Now let ϵ > 0 be chosen so that for every point x, if Bϵ(TxM) is the ball centered
at the origin of radius ϵ, then the exponential map,

exp : Bϵ(TxM)→M
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is a diffeomorphism onto its image. Let Uϵ(x) be this image. Consider a point
(σ, γ) ∈ ηϵ. Notice that each yi ∈ Uϵ(xi). Thus there is a unique ui ∈ Bϵ(TxiM) with
exp(ui) = yi. The assignment (σ, γ) → (u1, · · · , uk) defines an Aut(Γ)-equivariant
section

θ : ηϵ → ζ

of the restriction ζ|ηϵ → ηϵ. For each i, the curve t → exp(tui) in M is a path from
xi at t = 0, to yi at t = 1. This is a gradient flow line of the distance function
dxi :M → R, defined to be the distance from xi,

dxi(x) = d(xi, x).

This allows us to construct a morphism ψk : Γk+1 → Γk in CΓ, as follows. Let Γk+1

be the graph obtained from Γk by replacing each vertex sTi (Γk) with an edge of length
1. The morphism ψk collapses each of these edges to a point. If we label these new
edges by the functions dx1 , · · · , dxk

, we have now defined a new structure σ′. Notice
that the element (σ′, p(σ, γ)) ∈ SΓ × M ∼= M̃tree(Aut(Γ),M) lies in the image of
M̃Γ(M) ↪→ M̃tree(Aut(Γ),M). This is because the coordinate yi assigned to the pair
(σ′, p(σ, γ)) is the same as the yi coordinate for the pair (σ, γ). But the xi coordinate
assigned to the pair (σ′, p(σ, γ)) is equal to exp(ui) = yi. Thus the projection

pT (σ
′, p(σ, γ)) ∈ (M2)b

lies in the image of ∆b : M b ⊂ (M2)b. By the pullback square (11), the pair
(σ′, p(σ, γ)) lies in the image of M̃Γ(M). Sending (σ, γ) to (σ′, p(σ, γ)) defines an
map

π : ηϵ → M̃Γ(M).

We now show that the section θ : ηϵ → ζ defines an equivariant lifting Θ : ηϵ → ν(ι)
making the following diagram commute:

(36)

ηϵ
Θ−−−−→ ν(ι)

=

y y
ηϵ −−−−→

π
M̃Γ(M)

The lifting Θ is defined as follows:
Consider the unique geodesic path in the tree T1 from sTi (Γk) to the fixed vertex

v ∈ T1. Then its image under the tree flow γT1 is a parameterized curve from xi to
γT1(v) = p(σ, γ) in M . (Recall that p : M̃Γ(M)→M maps (σ, γ) to γ(v).) Using the
Levi-Civita connection, we define wi ∈ Tp(σ,γ)M to be the image of ui ∈ TxiM under
the parallel transport operator along this path:

τγT1
: TxiM)

∼=−→ Tp(σ,γ)M.

This construction defines an Aut(Γ)-equivariant map

Θ : ηϵ → p∗(
⊕
b

TM) = ν(ρ)(37)

(σ, γ)→ (w1, · · · , wb) ∈
⊕
b

Tp(σ,γ)M
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making the diagram (36) commute.

We claim that Θ is a homeomorphism. One can see this be directly constructing
an inverse map

Θ−1 : ν(ρ)→ ηϵ.

This is constructed as follows. Given (u1, · · · , ub) ∈
⊕

b Tp(σ,γ)M where (σ, γ) ∈
M̃Γ(M), one can parallel translate along geodesic paths in T1(Γ)k) to obtain the
vector (w1, · · · , wb) ∈ Bϵ(Tx1M ⊕ · · · ⊕ Txb

M . By scaling these vectors, if necessary,
one can consider the curves t → exp(−tui) to define a new structure σ

′′
so that the

point (σ
′′
, p(σ, γ)) lives in ηϵ ⊂ S(Γ)×M ∼= M̃tree(Γ,M). Notice that the coordinates

{(xi, yi)} associated to (σ
′′
, p(σ, γ)) are the points (exp(−ui), xi) where (x1, · · · , xb) ∈

M b is pT (σ, γ) as in diagram (11). The assignment (u1, · · · , ub)→ (σ
′′
, p(σ, γ) defines

a map ν(ρ)→ ηϵ which is easily checked to be inverse to Θ.
Thus Θ : ηϵ → ν(ρ) is an equivariant homeomorphism, and so induces a homeo-

morphism on orbit spaces. This completes the proof of theorem (14).

11. Appendix: Regularity.

Lemma 44. On the interior of any edge E ⊂ Γk, an element r ∈ coker DΓk
is

smooth and satisfies

(38) ṙE − (∇∇fE)T · rE = 0.

Proof. Take an open interval I = (t1, t2) ⊂ E and choose ϕ ∈ C∞
0 (I). Trivialise

V = γ∗TM over I and put ∇∇fE = A(t) with respect to this trivialisation. Then

⟨r, ϕ̇+Aϕ⟩2 = 0. Now ϕ(t) =
∫ t
t0
ϕ̇(τ)dτ so∫

I

⟨r(t), ϕ̇(t)⟩dt+
∫
I

⟨AT (t)r(t),
∫ t

t0

ϕ̇(τ)dτ⟩dt = 0

and by Fubini’s theorem∫
I

⟨r(τ), ϕ̇(τ)⟩dτ +
∫
I

∫ t1

τ

⟨AT (t)r(t), ϕ̇(τ)⟩dtdτ = 0.

Thus ∫
I

⟨r(τ)−
∫ τ

t1

AT (t)r(t)dt, ϕ̇(τ)⟩dτ = 0 for all ϕ ∈ C∞
0 (I) .

Since ϕ̇ has mean zero and the set of such functions is dense in L2(I) we have

r(τ)−
∫ τ

t1

AT (t)r(t)dt = constant .

This integral equation supplies us with information about the behaviour of r in I. For
a start it says that r is absolutely continuous with derivative equal to the integrand
almost everywhere. At points of continuity of A the derivative of r is equal to the
integrand. Furthermore, regularity of A gives regularity of r. This can be seen as
follows. At a point τ0 of continuity of A∣∣∣∣∣ 12δ

∫ τ0+δ

τ0−δ
AT (t)r(t)dt−AT (τ0)r(τ0)

∣∣∣∣∣ ≤ ϵM
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where ϵ = sup(τ0−δ,τ0+δ){|A(t)|, |r(t)|} tends to zero as δ tends to zero since A(t) and
r(t) are continuous at τ0. This shows that the derivative of r exists there and

(39) ṙ(τ0) = AT (τ0)r(τ0)

If A is differentiable in a neighbourhood of τ0 then by (39)

r̈(τ) = (ȦT (τ) +AT (τ)2)r(τ)

in that neighbourhood, and so on. Thus rE satisfies (38).

12. Appendix: The Fredholm operator. Let DΓk
be the linearisation of the

graph flow equation along the graph flow γ : Γk → M of the compact metric graph
Γk so DΓk

s = ṡE +∇∇fE · sE for s a section of V = γ∗TM .

Proposition 45. DΓk
:W 1,2(Γk,V)→ L2(Γk,V) is Fredholm.

Proof. Put DΓk
s = ṡE +∇∇fE · sE = ṡE(t) +A(t)sE(t).∫

Γk

|ṡ+As|2dt =
∫
Γk

(
1

2
|ṡ+ 2As|2 + 1

2
|ṡ|2 − |As|2

)
dt ≥

∫
Γk

(
1

2
|ṡ|2 − |As|2

)
dt .

Thus using |A(t) · s(t)| ≤ ∥A(t)∥ · |s(t)| and setting cA = maxΓk
∥A(t)∥, we have∫

Γk

|ṡ+As|2dt ≥ 1

2

∫
Γ

|ṡ|2 − cA
∫
Γk

|s|2dt .

Hence there is a c > 0 satisfying∫
Γk

(|s|2 + |ṡ|2)dt ≤ c
∫
Γk

(|s|2 + |ṡ+As|2)dt .

In other words,

(40) ∥s∥W 1,2(Γk) ≤ c(∥s∥L2(Γk) + ∥DΓk
s∥L2(Γk)).

It is a rather standard consequence of (41) that DΓk
is semi-Fredholm, meaning that

it has finite-dimensional kernel and closed range (see [17] for example). This can be
seen as follows.

The operator

K :W 1,2(Γk)
cpt.
↪→ L2(Γk)

is compact by Rellich’s lemma. Thus the image under K of any bounded sequence
in the kernel of DΓk

has a convergent subsequence which is necessarily Cauchy. The
inequality (41) then implies that the subsequence is Cauchy in W 1,2(Γk). Thus the
unit ball in the kernel of DΓk

is compact, showing that the kernel is finite-dimensional.
To show that the image is closed, consider a bounded sequence {si} ⊂ W 1,2(Γk)

such that {DΓk
si} is Cauchy in L2(Γk). Choose a subsequence {sij} such that {Ksij}

is Cauchy in L2(Γk). It follows from (41) that {sij} is Cauchy thus converging to s,
say. Since DΓk

is continuous, {DΓk
si} converges to DΓk

s. In fact, the sequence {si}
can be arranged to be bounded as follows. By the Hahn-Banach theorem there exists
a closed subspace U ⊂W 1,2(Γk) satisfying

kerDΓk
⊕ U =W 1,2(Γk) .
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Project {si} onto {s̃i} ⊂ U . This has to be bounded since otherwise a subsequence
of {s̃i/∥s̃i∥} converges to s ∈ U with ∥s∥ = 1 and DΓk

s = 0 in contradiction to the
construction of U . Thus DΓk

has closed range.
To complete the proof of the proposition we must show that coker DΓk

is finite-
dimensional. In Lemma 25 it was shown that elements r of the cokernel satisfy the
differential equation D∗

Γk
r = 0 which is much like the equation DΓk

s = 0, the only

difference being that r need not be continuous at the vertices of Γ̃k. Nevertheless,
as for kerDΓk

the unit ball in the kernel of D∗
Γk

is compact and the dimension of
coker DΓk

is finite. Hence DΓk
is Fredholm.

Remark. Since elements of the kernel and cokernel are smooth an alterna-
tive proof of finite-dimensionality follows from uniqueness of solutions to ODEs.
Still, to prove Fredholmness one must show that the image of DΓk

is closed
and there is no smoothness here to work with. This is why we used standard Ba-
nach space arguments rather than the more intuitive uniqueness of solutions to ODEs.

To prove that DΓ̃k
is Fredholm for non-compact Γ̃k requires a further argument.

Proposition 46. DΓ̃k
:W 1,2(Γ̃k,V)→ L2(Γ̃k,V) is Fredholm.

Proof. For any T > 0, construct the compact graph ΓTk lying between Γk ⊂ ΓTk ⊂
Γ̃k by cutting Γ̃k off at the parameter T on outgoing edges and −T on incoming edges.
The proof uses the following lemma.

Lemma 47. For large enough T , there exists c = c(T ) such that

(41) ∥s∥W 1,2(Γ̃k)
≤ c(∥s∥L2(ΓT

k ) + ∥DΓ̃k
s∥L2(Γ̃k)

).

Proof. Put

DΓ̃k
=

d

dt
+∇∇fE =

d

dt
+A(t)

with respect to a trivialisation of V over Γ̃k with transition functions ±1. Since f is
Morse, limt→∞A(t) is invertible.

The estimate of ∥s∥W 1,2(Γ̃k)
breaks into one part near infinity and a compact

part. Near infinity, the graph flow equation is just the usual gradient flow equation
so we can use a result whose proof can be found in [17]. Given A(t) with limt→∞A(t)
invertible, there are constants T > 0, c1(T ) > 0 such that

∥s∥W 1,2(Γ̃k)
≤ c1(T )∥ṡ+A(t)s∥2 for all s ∈W 1,2(Γ̃k), s|Γ

T
k = 0.

For the compact part use the previous proposition applied to ΓTk .
To put together the part near infinity and the compact part, define a cut-off

function β ∈ C∞(Γ̃k, [0, 1]) with the properties

β|ΓT
k
= 1, β(t) = 0 for |t| ≥ T + 1, and β̇(t) ̸= 0 for |t| ∈ (T, T + 1).

In the following, put ∥ · ∥L2(Γ̃k)
= ∥ · ∥2 and ∥ · ∥W 1,2(Γ̃k)

= ∥ · ∥1,2 and only specify the
compact graph in the norm. Also choose c4 and c large enough.

∥s∥1,2 = ∥βs+ (1− β)s∥1,2 ≤ ∥βs∥1,2 + ∥(1− β)s∥1,2
≤ c4(∥βs∥L2(ΓT

k ) + ∥DΓ̃k
(βs)∥2 + ∥DΓ̃k

((1− β)s)∥2)

≤ c4(∥βs∥L2(ΓT
k ) + 2∥β̇s∥2 + ∥DΓ̃k

s∥2)
≤ c(∥s∥L2(ΓT

k ) + ∥DΓ̃k
s∥2) .
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and the proof goes through as in the compact case.
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