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INTEGRAL BASES FOR AN INFINITE FAMILY OF
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Abstract. An explicit integral basis is given for infinitely many cyclic quintic fields.

Key words. Integral basis, family of quintic fields.

AMS subject classifications. 11R04, 11R20, 11R29.

1. Introduction. We denote the set of integers by Z and the set of positive

integers by N. Let n ∈ Z. The Lehmer quintic fn(x) ∈ Z[x] is defined by

fn(x) = x5 + n2x4 − (2n3 + 6n2 + 10n + 10)x3

+(n4 + 5n3 + 11n2 + 15n + 5)x2 + (n3 + 4n2 + 10n + 10)x + 1,

see [5, p. 539]. Schoof and Washington [6, p. 548] have shown that fn(x) is irrre-

ducible for all n ∈ Z. Let θ ∈ C be a root of fn(x) = 0. Set K = Q(θ) so that

[K : Q] = 5. It is known that K is a cyclic field [6, p. 548]. We denote the ring of

integers of K by OK . The discriminant d(K) of K has been determined by Jeannin

[4, p. 76], see also Spearman and Williams [7, p. 215], namely d(K) = f(K)4, where

the conductor f(K) of K is given by

(1.1) f(K) = 5b
∏

p ≡ 1(mod 5)

vp(n4
+ 5n3

+ 15n2
+ 25n + 25) 6≡ 0 (mod5)

p,

where vp(k) denotes the exponent of the largest power of the prime p dividing the

nonzero integer k and

(1.2) b =

{

0, if 5 ∤ n,
2, if 5 | n.

Set

(1.3) m = n4 + 5n3 + 15n2 + 25n + 25 ∈ Z,

(1.4) d = n3 + 5n2 + 10n + 7 ∈ Z,

(1.5) a = m3 − 10m2 + 5m ∈ Z.

From (1.3) we have

m = (n + 2)(n + 1)
(

(n + 1)2 + 6
)

+ 11
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and, as (n + 2)(n + 1) ≥ 0 for all n ∈ Z, we deduce that m ≥ 11 so that

(1.6) m ∈ N.

Then, from (1.5), we obtain a = m2(m − 10) + 5m ≥ 176 so that

(1.7) a ∈ N.

As x3 + 5x2 + 10x + 7 is irreducible in Z[x], we deduce from (1.4) that

(1.8) d 6= 0.

A MAPLE calculation gives

(1.9)
a = (n3 + 5n2 + 10n + 7)(n9 + 10n8 + 60n7 + 243n6 + 730n5

+1650n4 + 2824n3 + 3520n2 + 2990n + 1357) + 1.

From (1.2) and (1.3) we observe that

(1.10) 5b ‖ m.

From (1.4) and (1.9) we see that

(1.11) a = 1 + dk,

where

(1.12)
k = n9 + 10n8 + 60n7 + 243n6 + 730n5 + 1650n4

+2824n3 + 3520n2 + 2990n + 1357 ∈ Z \ {0}.

Gaál and Pohst [2, p. 1690] have shown that under the condition

(1.13) p2

∤ m for any prime p 6= 5

an integral basis for K is given by

(1.14) {1, θ, θ2, θ3, ω5},

where

(1.15) ω5 =
1

d

(

(n + 2) + (2n2 + 9n + 9)θ + (2n2 + 4n− 1)θ2 + (−3n − 4)θ3 + θ4
)

.

Although it is very likely that there are infinitely many n ∈ Z such that (1.13) holds

this has not yet been proved. Gaál and Pohst used their integral basis in a search

for cyclic quintic fields with a power basis. They proved under the condition that m
is squarefree that the field K admits a power basis if and only if n = −1 or n = −2

[2, Theorem, p. 1695], and noted that these values of n give the same field K [2, p.

1689]. They also observed [2, Remark, p. 1695] that their result is a special case of

a theorem of Gras [3], which asserts that there is only one cyclic quintic field with a

power basis, namely, the maximal real subfield of the cyclotomic field of 11-th roots

of unity.

In this work we give an integral basis for K under the weaker condition

(1.16) m is cubefree.
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From now on we assume that (1.16) holds except in Lemma 2.2. In view of (1.6),

(1.10) and (1.16), we have

(1.17) m = 5bPQ2,

where b is given by (1.2) and P, Q ∈ N are such that

(1.18) 5 ∤ P, 5 ∤ Q, (P, Q) = 1, P, Q squarefree.

By [4, Lemme 2.1.1] every prime factor (6= 5) of m is ≡ 1 (mod 5). Hence, by (1.1),

we have

(1.19) f(K) = 5bPQ

and

(1.20) p (prime) | PQ =⇒ p ≡ 1 (mod 5).

By (1.17) we have Q | m. By (1.5) we have m | a. Hence Q | a. Then, by (1.11), we

have Q | 1 + dk from which we deduce

(1.21) (d, Q) = 1.

We define

(1.22) υ4 =
1

Q

(

θ −
n2

5
(Q − 1)

)3

∈ K

and

(1.23) υ5 =
adω5 + (1 − a)Qυ4θ

dQ
∈ K.

We note that (1.8) ensures that υ5 is well-defined. We prove

Theorem. Under the assumption (1.16)

{1, θ, θ2, υ4, υ5}

is an integral basis for K.

We note that if (1.13) holds then

Q = 1, υ4 = θ3, υ5 =
adω5 + (1 − a)θ4

d
.

Appealing to (1.11) we deduce

υ5 = ω5 + k(dω5 − θ4).

As dω5 − θ4 is a cubic polynomial in θ with coefficients in Z, we deduce from the

theorem that {1, θ, θ2, θ3, ω5} is an integral basis for K showing that our theorem

includes that of Gaál and Pohst [2, p. 1690].

By a theorem of Erdös [1] there exists an infinite set S of integers n such that

m = n4 + 5n3 + 15n2 + 25n + 25 is cubefree. For n ∈ S the integer m has the form

(1.17). Clearly S contains an infinite subset S1 such that the values of 5bPQ are

distinct for n ∈ S1. Thus, by (1.19), the conductors f(K) are distinct for n ∈ S1 thus

ensuring that the cyclic quintic fields K are distinct for n ∈ S1. Thus our theorem

gives an integral basis for infinitely many cyclic quintic fields.
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2. Proof of Theorem. We require a number of lemmas.

Lemma 2.1. Under the assumption (1.16), we have υ4 ∈ OK .

Proof. The asserted result is immediate if Q = 1. Hence we may assume that

Q > 1. By (1.19) we see that Q | f(K). Hence all the prime divisors q of Q ramify

in OK . Moreover, as K is a cyclic quintic field, each prime factor q ramifies totally.

Hence there is a prime ideal ℘ of OK such that < q >= ℘5 and N(℘) = q. Let

gn(x) ∈ Z[x] be the minimal polynomial of 5θ + n2. Using MAPLE we find

(2.1) gn(0) = m(4n6 + 30n5 + 65n4 − 200n2 − 125n + 125).

From (1.17) and (2.1) we deduce that

(2.2) Q2 | gn(0) = ±N(5θ + n2).

Let

(2.3) < 5θ + n2 >= P a1

1
· · ·P ar

r

be the prime ideal decomposition of < 5θ + n2 > into distinct prime ideals of OK so

(2.4)
∣

∣N(5θ + n2)
∣

∣ = N(< 5θ + n2 >) = N(P1)
a1 · · ·N(Pr)

ar .

From (2.2) and (2.4) we see that

(2.5) q2 | N(P1)
a1 · · ·N(Pr)

ar .

Thus Pi = ℘ and ai ≥ 2 for some i ∈ {1, 2, . . . , r}. Hence by (2.3) we have

(2.6) ℘2 |< 5θ + n2 > .

Since ℘5 | Q we deduce from (2.6) that

(2.7) ℘2 |< 5θ + n2 − n2Q > .

As 5 ∤ Q we have ℘ ∤< 5 >. Also by (1.20) we have Q ≡ 1 (mod 5). Thus

℘2 |< θ − n2

(

Q − 1

5

)

> .

Hence

(2.8) ℘5 |< θ − n2

(

Q − 1

5

)

>3 .

As (2.8) is true for each prime divisor q of Q we have

Q |< θ − n2

(

Q − 1

5

)

>3 .

This proves that

υ4 =
1

Q

(

θ −
n2

5
(Q − 1)

)3

∈ OK
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as asserted.

Lemma 2.2. For all n ∈ Z we have ω5 ∈ OK .

Proof. The proof is given in [2, pp. 1690-1691], where the case n = −2 should

be dealt with separately.

Lemma 2.3. Under the assumption (1.16), we have υ5 ∈ OK .

Proof. Let

(2.9) α = adω5 + (1 − a)Qυ4θ.

By Lemmas 2.1 and 2.2 we have υ4 ∈ OK and ω5 ∈ OK so

α ∈ OK .

From (1.5) and (1.17) we have Q | a. Hence

α ≡ 0 (mod Q)

in OK . From (1.11) we have d | 1 − a. Hence

α ≡ 0 (modd)

in OK . Then, by (1.21), we deduce that

α ≡ 0 (moddQ)

in OK so that by (1.23) and (2.9)

υ5 =
α

dQ
∈ OK

as claimed.

Proof of Theorem. We have

α = dQυ5 = adω5 + (1 − a)Qυ4θ

= a
(

θ4 + c(θ)
)

+ (1 − a)θ

(

θ −
n2

5
(Q − 1)

)3

,

where

c(θ) ∈ Z[θ], deg c(θ) = 3.

Thus

α = θ4 + d(θ),

where

d(θ) ∈ Z[θ], deg d(θ) ≤ 3.
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Similarly

Qυ4 = θ3 + e(θ),

where

e(θ) ∈ Z[θ], deg e(θ) ≤ 2.

Thus

disc(1, θ, θ2, Qυ4, α) = disc(1, θ, θ2, θ3, α) = disc(1, θ, θ2, θ3, θ4) = m4d2,

by [2, p. 1691]. Therefore

disc(1, θ, θ2, υ4, υ5) =
disc(1, θ, θ2, Qυ4, α)

Q2(dQ)2
=

m4

Q4
= 54bP 4Q4 = f(K)4 = d(K).

As υ4 ∈ OK and υ5 ∈ OK by Lemmas 2.1 and 2.3 respectively, we deduce that

{1, θ, θ2, υ4, υ5} is an integral basis for K.

We conclude with an example.

Example. Let n = 14 so that

K = Q(θ), θ5 + 196θ4 − 6814θ3 + 54507θ2 + 3678θ + 1 = 0.

We use the theorem to determine an integral basis for K. Here

m = 11 × 712, b = 0, P = 11, Q = 71,
d = 72 × 79,
a = 24 × 11 × 712 × 192141181,
k = 5 × 8807580989,

υ4 =
1

71
(θ − 2744)3, υ4 ≡

5 + 29θ + 4θ2 + θ3

71
(mod 1),

ω5 =
16 + 527θ + 447θ2 − 46θ3 + θ4

3871
,

and

υ5 =
r + sθ − tθ2 + uθ3 + θ4

274841

with

r = 2727531680673536, s = 3522103818540433816557072,

t = 3850620295978378636848, u = 1395473396124589624,

so that

υ5 ≡
50339 + 27624θ + 112706θ2 + 220601θ3 + θ4

274841
(mod 1).

Thus by the theorem

{

1, θ, θ2,
5 + 29θ + 4θ2 + θ3

71
,
50339 + 27624θ + 112706θ2 + 220601θ3 + θ4

274841

}
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is an integral basis for K. As

65823 + 62463θ + 70125θ2 + 3825θ3 + θ4

274841

=
50339 + 27624θ + 112706θ2 + 220601θ3 + θ4

274841

−56

(

5 + 29θ + 4θ2 + θ3

71

)

+
(

4 + 23θ + 3θ2

)

,

we see that

{

1, θ, θ2,
5 + 29θ + 4θ2 + θ3

71
,
65823 + 62463θ + 70125θ2 + 3825θ3 + θ4

274841

}

is also an integral basis for K in agreement with MAPLE.

We close by remarking that when m is not cubefree the cyclic quintic field K may

not have an integral basis of the type given in our theorem. To see this take n = 44

so that m = 413 × 61. In this case (18 + 20θ + θ2)/41 is an integer of K and so θ2 is

not a minimal integer of degree 2. Hence K cannot have an integral basis of the type

{1, θ, θ2, ∗, ∗}.
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family of cyclic quintics, J. Théor. Nombres Bordeaux, 16 (2004), pp. 215–220.



772 D. ELOFF, B. K. SPEARMAN AND K. S. WILLIAMS




