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ON VIRTUAL 3-GENERATION OF S-ARITHMETIC

SUBGROUPS OF SL2
∗

RITUMONI SARMA
†

Abstract. For a number field K, we show that any S-arithmetic subgroup of SL2(K) contains

a subgroup of finite index generated by three elements if card(S) ≥ 2.
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1. Introduction and Notation. Let K be a number field and let S∞ be the

set of all nonconjugate embeddings of K into C. We refer to these embeddings as

infinite primes of K. If r1 (resp. r2) is the number of distinct real (resp. nonconjugate

complex) embeddings, then the cardinality of S∞ is r1 + r2 and r1 + 2r2 = [K : Q],

the extension degree of K. The ring of integers in K is denoted by OK . The nonzero

prime ideals of OK are called finite primes of K. Let S be a finite set of primes in

K containing S∞. For a nonzero prime ideal p of OK , denote by vp the valuation

defined by p. The ring OS := {x ∈ K : vp(x) ≥ 0 for every prime p /∈ S} is called

the ring of S-integers of K. Then OS∞
= OK . If F is a subfield of K, then set

S(F ) := {p ∩OF : p ∈ S − S∞} ⊔ S∞(F ) (1)

where S∞(F ) denotes the infinite primes of F . We write

OS(F )
:= {x ∈ F : vp(x) ≥ 0 ∀ p /∈ S(F )} (2)

the ring of S(F )-integers in F .

For two subgroups H1 and H2 in a group, if H1 ∩H2 is a subgroup of finite index

both in H1 and H2, then we say that H1 and H2 are commensurable and we write

H1 ≍ H2. In particular, a group is commensurable with its subgroups of finite index.

Let G be a linear algebraic group defined over K. A subgroup Γ of G is called an

S-arithmetic subgroup of G if Γ ≍ G(OS). The algebraic groups which we would like

to deal with are SL2(K) where K is a number field.

A subset X of a group G is called a set of virtual generators of G if the group

generated by X is a subgroup of finite index in G and the group G is said to be

generated virtually by X .

Let the cardinality of any set X be denoted by card(X).

A number field is called a totally real field if all its embeddings are real. A number

field is called a CM field if it is an imaginary quadratic extension of a totally real field.

If a number field is not CM then we refer to it as a non-CM field.

For any commutative ring A, denote by

(

1 A
0 1

)

( resp.

(

1 0

A 1

)

) (3)
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the subgroup of SL2(A) consisting of matrices of the form

(

1 x
0 1

)

( resp.

(

1 0

x 1

)

) for x ∈ A.

Let G be any group and let a, b ∈ G. Denote by ab the element aba−1 in G.

We use, without proof, a few well known results from number theory (for details,

see [2],[3]): The ring OK of integers in K is a Dedekind domain. An ideal of

OK has a unique factorization into prime ideals of OK . For a finitely generated

abelian group H , let rank(H) denote the rank of H as a Z-module. Dirichlet’s unit

theorem asserts that

rank(O∗
K) = r1 + r2 − 1 (4)

where r1 and r2 are defined as above. Also (cf. Lemma 5)

rank(O∗
S) = card(S) − 1. (5)

The group of units of a ring A is denoted by A∗. For an ideal a of OK , let the

order of the class of a in the ideal class group of K be denoted by ordK(a). It is

well known that the class group of a number field is finite. Thus ordK(a) is always a

finite number.

Now we state the main result of the paper.

Theorem 1. Let K be a number field and let S be a finite set of primes in K
containing the infinite ones such that card(S) ≥ 2. Any S-arithmetic subgroup of

SL2(K) is virtually generated by three elements.

We postpone the proof of this theorem to section 3. It follows immediately from [6]

that an S-arithmetic subgroup of SL2(K) is virtually generated by d (≥ 3) elements

where d depends up on K and S. Theorem 1 shows that d requires to be at most 3;

in particular, it is independent of K and S. It is still an open question whether an

S-arithmetic subgroup of SL2(K) can virtually be generated by just two elements.

In [4], it is shown that the higher rank arithmetic groups are virtually gen-

erated by three elements. The tools used to prove this do not seem to work for the

case of S-arithmetic groups. For instance, if U is a unipotent group, and if Γ is a

Zariski dense subgroup of an arithmetic subgroup of U , then Γ is also arithmetic.

This fact plays a crucial role in the case of higher rank arithmetic groups. The anal-

ogous statement does not hold in the case of S-arithmetic subgroups. So it needs a

separate treatment. The case of SL2 is the first case that one would like to deal with

because this is the simplest possible case. The techniques here may indicate how to

proceed for other S-arithmetic groups. However, the most of the techniques here are

extentions of those applied in the case of arithmetic subgroups of SL2.

In the next section we prove a number theoretic result which asserts that OS is

almost generated by a suitably chosen unit (in fact, by any positive power of that

unit) in OS . Then our main result follows from a theorem due to Vaserstein. The

condition that card(S) ≥ 2 is equivalent to saying that the group O∗
S is infinite.

2. Existence of a unit generator of OS.

Theorem 2. Let K be a non-CM field and let S be a finite set of primes including

the infinite ones with card(S) ≥ 2. Then there exists α ∈ O∗
S such that the ring Z[αn]

is a subgroup of finite index in the ring OS of S-integers for every positive integer n.
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Proof. The proof of Theorem 2 is divided into a few lemmata.

Lemma 3 ([4], Lemma 3). If K is a non-CM field and if F is a proper subfield

of K, then O∗
F is a subgroup of infinite index in O∗

K .

Lemma 4. Let K = Q(α) and let α be integral. Then Z[α−1] is of finite index in

OK [α−1].

Proof. Since α is an integral element, we have Z[α] ⊂ Z[α−1]. Let n be the index

of αOK in OK . We claim that for 0 ≤ i ≤ (n−1), the cosets αOK + i are the distinct

cosets. Indeed, if αOK + i = αOK + j for 0 ≤ i < j ≤ (n− 1) then j− i ∈ αOK . This

implies that n divides j − i which is a contradiction. Thus, OK is the union of these

n cosets. In particular,

Z[α] + αOK = OK . (6)

On the other hand, Z[α] is of finite index in OK . Let the index be m. By (6), we

may assume that the distinct cosets (as an additive subgroup) of Z[α] in OK are

Z[α] + αxi for xi ∈ OK , 0 ≤ i ≤ (m − 1). We claim that the representatives of

OK [α−1]/Z[α−1] in OK [α−1] are αxi (not necessarily distinct). Let y ∈ OK . Then,

by (6), y = y1 + αxi1 for y1 ∈ Z[α] and 0 ≤ i1 ≤ (m− 1). Thus α−1y = α−1y1 + xi1 .
Again, using (6), we have xi1 = z1 + αxi2 for z1 ∈ Z[α] and 0 ≤ i2 ≤ (m − 1) so

that α−1y = (α−1y1 + z1) + αxi2 . Therefore, Z[α−1] + α−1y = Z[α−1] + αxi2 . Thus

inductively one can show that Z[α−1]+α−ry = Z[α−1]+αxi for some 0 ≤ i ≤ (m−1).

Lemma 5. Let K be a number field and let S be a finite set of primes in K
containing S∞. Assume that S − S∞ = {q1, . . . , qr}, ordK(qi) = ai and that qai

i is

generated by βi ∈ OK ∀ i. Then OS = OK [β−1

1
, . . . , β−1

r ].

Proof. Obviously, OS ⊃ OK [β−1

1
, . . . , β−1

r ]. To see the other containment, let

x ∈ OS . Then x = yz−1 for y, z ∈ OK and vp(z) = 0 for p /∈ S so that, by prime

factorization, zOK =
r
∏

i=1

qni

i with ni ≥ 0. Let m =
r
∏

i=1

ai. Since qai

i is generated

by βi, we have z−m = u
r
∏

i=1

β
−n′

i

i for some u ∈ O∗
K and n′

i ≥ 0 so that z−m ∈

OK [β−1

1
, . . . , β−1

r ]. Further, z−1 = zm−1z−m and zm−1 ∈ OK . Therefore, z−1 ∈
OK [β−1

1
, . . . , β−1

r ] and hence x = yz−1 ∈ OK [β−1

1
, . . . , β−1

r ].

Now by Lemma 4 and Lemma 5, we have the following lemma.

Lemma 6. Suppose that R is a subring of finite index in OK . Then with the

notation as in Lemma 5, the ring R[β−1

1
, . . . , β−1

r ] is of finite index in OS.

Let {Si : 1 ≤ i ≤ s} be the set of all the proper subsets of S and let {Kj : 1 ≤ j ≤ t}
be the set of all the proper subfields of K. Define

Vi := O∗
Si

⊗
Z

Q (7)

Wj := (O∗
S(Kj)

∩ O∗
S) ⊗

Z
Q (8)

V := O∗
S ⊗

Z
Q. (9)

Then Vi (resp. Wj) is a vector subspace of V and its dimension is rank(O∗
Si

) (resp.

rank(O∗
S(Kj)

)) over Q. By Lemma 5, we have O∗
S
∼= O∗

K × Z
r where r = card(S) −

card(S∞). Let this identification be θ. Denote again by O∗
S , the image of O∗

S in V .
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Two elements a, b ∈ O∗
S are identified in V if and only if a = ub for a root of unity

u ∈ O∗
S .

Lemma 7. With the above notation, if K is a non-CM field, there exists α ∈

O∗
S − (

s
∪
i=1

Vi) ∪ (
t
∪
j=1

Wj) such that vp(α) < 0 for all p ∈ S − S∞.

Proof. For each 1 ≤ j ≤ s, we have

rank(O∗
S(Kj)

) = card(S(Kj)) − 1

= {card(S∞(Kj)) − 1} + card(S(Kj) − S∞(Kj))

= rank(O∗
Kj

) + card(S(Kj) − S∞(Kj)). (10)

Since K is a non-CM field, by Lemma 3, rank(O∗
Kj

) < rank(O∗
K). Moreover,

card(S(Kj) − S∞(Kj)) ≤ card(S − S∞). Therefore, we get

rank(O∗
S(Kj)

∩ O∗
S) < rank(O∗

S). (11)

Further, rank(O∗
Si

) = card(Si)− 1 < rank(O∗
S). Hence by comparing the dimensions,

we have Vi $ V and Wj $ V (cf. (7),(8), (9)). Since a finite union of proper subspaces

of a vector space over an infinite field is a proper subset of the vector space, we have

V − (
s
∪
i=1

Vi) ∪ (
t
∪
j=1

Wj) is nonempty. Let

X := {x ∈ O∗
S : vp(x) < 0 ∀p ∈ S − S∞}. (12)

Under the identification θ we have X ∼= O∗
K × Z

r
<o ⊂ O∗

K × Z
r where Z<0 denotes

the set of negative integers. Hence the image of X is Zariski dense in V . Thus, if we

denote the image of X in V again by X , the set

Y := X − (
s
∪
i=1

Vi) ∪ (
t
∪
j=1

Wj)

is also nonempty. If α ∈ Y , then αn ∈ Y . Thus, α ∈ O∗
S can be chosen with the

desired property.

Lemma 8. Assume that K is a non-CM field. With the notations as above, let

α be chosen as in Lemma 7. Then the ring Z[αn] is a subgroup of finite index in OS

for every positive integer n.

Proof. We claim Q(α) = K. If not, then let Q(α) = L such that L $ K.

Assume for p /∈ S and x ∈ OL that vp∩OL
(x) 6= 0 so that xOL ⊂ p ∩ OL. Then,

xOK ⊂ (p ∩ OL)OK ⊂ p. Hence vp(x) 6= 0. Equivalently, for x ∈ OL, if vp(x) = 0

for every p /∈ S, we have vp(x) = 0 for every p /∈ S(L). Therefore, in particular,

vp(α
−1) = 0 ∀p /∈ S(L) so that α ∈ O∗

S(L)
∩ O∗

S . This contradicts the choice of α.

Hence Q(α) = K.

Since K = Q(α), we also have K = Q(α−1) and since α−1 is integral in K, the

ring Z[α−1] is a subgroup of finite index in OK . Let S − S∞ = {pi : 1 ≤ i ≤ l}.
Consider the prime factorization

α−1OK =

l
∏

i=1

pni

i (13)
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where ni > 0 because of our choice of α. Let ordK(pi) = ri and let pri

i = βiOK for

βi ∈ OK . Then, we have

αm = u

l
∏

i=1

β−bi

i (14)

for some integers m > 0, bi > 0 and u ∈ O∗
K . Since βi ∈ OK , it follows by (14) that

β−1

i ∈ OK [α]. Now by Lemma 5, the ring OK [α] = OS . Thus, by Lemma 4, the ring

Z[α] is of finite index in OS .

This completes the proof of Theorem 2.

In fact, we have proved more.

Corollary 1. Let K be any finite extension of Q and let S be as before. If

rank(O∗
S(L)

∩O∗
S) < rank(O∗

S) for every proper subfield L of K, then there exists

α ∈ O∗
S such that the ring Z[αn] is a subgroup of finite index in OS for every n ≥ 1.

The hypothesis of Corollary 1 may hold sometimes even for a CM field. Here

we see two examples:

Example. (i) The field K = Q(
√
−1) is a CM field and OK = Z[

√
−1]. The

prime ideal 2Z of Q is totally ramified in K. In fact, 2OK = p2 where p =
〈

1+
√
−1

〉

.

Let S−S∞ = {p}. For K, the set S∞ of infinite primes is singleton. Thus card(S) = 2

and hence rank(O∗
S) = 1. Also, OS(Q)

= Z[ 1
2
] and so rank(O∗

S(Q)
∩ O∗

S) = 1 (observe

that OS = Z[
√
−1][ 1

1+

√
−1

] includes OS(Q)
). This is an example which does not satisfy

the hypothesis of corollary 1.

(ii) Let K be as in (i). Consider the ideal 5Z of Q which splits completely in K:

5OK = p1p2 where p1 =
〈

5, 2+
√
−1

〉

and p2 =
〈

5, 2−
√
−1

〉

. Let S−S∞ = {p1, p2}.
Then card(S) = 3 and hence rank(O∗

S) = 2. The contraction of the primes of S−S∞

to Q are 5Z each. Therefore, OS(Q)
= Z[ 1

5
] and hence rank(O∗

S(Q)
) = 1. This is an

example of a set of primes of the CM-field K which satisfies the hypothesis.

We need Corollary 1 to prove the main theorem of the paper.

3. Proof of the Main Theorem. We imitate the proof for the case of arith-

metic subgroups of SL2(K) (cf. [4]). Here, we state a result due to Vaserstein which

we use in the proof of Theorem 1.

Theorem 9 ([1],[6]). Let K be a number field and let S be a finite set of primes

in K including S∞ such that card(S) ≥ 2. Let a be a nonzero ideal of OS. The group

generated by

(

1 a

0 1

)

and

(

1 0

a 1

)

is a subgroup of finite index in SL2(OS).

To prove Theorem 1, it suffices to show that any subgroup of finite index in SL2(OS)

is virtually generated by three elements. Let Γ be a subgroup of finite index in

SL2(OS). Without loss of generality we assume that Γ is a normal subgroup. Let its

index in SL2(OS) be h.

Proof of Theorem 1.

Case 1: The pair (K,S) is such that for every proper subfield L of K, we have

rank(O∗
S(L)

∩ O∗
S) < rank(O∗

S). (15)
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Choose α ∈ O∗
S as in Corollary 1. Obviously,

(

αh 0

0 α−h

)

∈ Γ. Since Z[αh] is a

subring of finite index in OS , we replace αh by α and assume that γ :=

(

α 0

0 α−1

)

∈ Γ.

Define, ψ1 :=

(

1 0

h 1

)

∈ Γ and ψ2 :=

(

1 h
0 1

)

∈ Γ. Let Γ0 =
〈

γ, ψ1, ψ2

〉

. We claim

that Γ0 is a subgroup of finite index in SL2(OS).

Indeed, γ−rψs
1
γr =

(

1 0

sα2rh 1

)

∈ Γ0 and γrψs
2
γ−r =

(

1 sα2rh
0 1

)

∈ Γ0. One

concludes from this that Γ contains

(

1 x
0 1

)

and

(

1 0

y 1

)

for x, y ∈ hZ[α2]. By

Corollary 1, the additive subgroup hZ[α2] is of finite index in OS . If m is the index

then the ideal a := mOS is contained in hZ[α2]. Now it follows from Theorem 9 that

the group Γ0 is a subgroup of finite index in SL2(OS).

Case 2: The pair (K,S) is such that the inequality (15) does not hold for some

proper subfield F of K. That is, we have

rank(O∗
S(F )

∩ O∗
S) = rank(O∗

S). (16)

Now, (16) implies that rank(O∗
F ) = rank(O∗

K). Thus, by Lemma 3, K is a CM

field and in fact K = F (
√
−d) so that F is a totally real field and d a totally positive

integer in F . Thus, we have

O∗
S(F )

≍ O∗
S , (17)

O∗
F ≍ O∗

K . (18)

We prove a number theoretic lemma here.

Lemma 10. With the above notation, let (16) hold for a CM filed K = F [
√
−d].

There exists α ∈ O∗
S(F )

∩ O∗
S such that the ring Z[αn][

√
−d] is of finite index in OS

for any integer n.

Proof. In the case of a quadratic extension, a prime ideal of the base field is

either inert or totally ramified or split completely (into two distinct primes). We

claim that the set S(F ) (cf. definition (1)), does not contain any finite prime which

splits completely in K. To the contrary, if S(F ) contains a split prime q so that

qOK = q1q2, then we have two possibilities, namely, q1, q2 ∈ S or q1 ∈ S and q2 /∈ S.

If q1, q2 ∈ S, then card(S(F )) < card(S) (since q1 and q2 are contracted to the same

prime q in F ) and thus (16) does not hold and we get a contradiction. Next, assume

that q1 ∈ S and q2 /∈ S. Let β (resp. γ1) be the generator of qordF (q) (resp. q
ordK(q1)

1
).

By (17), we have OS ⊃ OS(F )
so that β ∈ OS . Again (17) and (18) together imply

that γm
1

∈ OS(F )
for some m > 0 so that γm

1
= uβbx for some b > 0 and u ∈ O∗

K ∩O∗
F

and x ∈ O∗
S(F )

∩ O∗
S with vp(x) = 0 for p /∈ S(F ). Then vq2

(γ1) = 0 whereas

vq2
(uβbx) > 0 and we again get a contradiction. Therefore, we have

(q ∩OF )OK = q or q2. (19)

Let ordF (q∩OF ) = a. Then, by (19), we see that (q∩OF )aOK = ((q∩OF )OK)a = qa

or q2a is a principal ideal. Thus, (q ∩OF )a and qb (for b = a or 2a) are generated by

the same element β ∈ OF .



ON VIRTUAL 3-GENERATION OF S-ARITHMETIC SUBGROUPS OF SL2 755

Let S − S∞ = {p1, . . . , ps}. Choose βi ∈ OF such that (pi ∩ OF )ordF (pi∩OF ) =

βiOF . Then, by Lemma 5, OS(F )
= OF [β−1

1
, . . . , β−1

m ]. Moreover, by the conclu-

sion of the above paragraph and by Lemma 5, we have OS = OK [β−1

1
, . . . , β−1

m ].

Now, since OF [
√
−d] is of finite index in OK , by Lemma 6, we have OS(F )

[
√
−d] =

OF [
√
−d][β−1

1
, . . . , β−1

m ] is of finite index in OS . Since F is a non-CM field, by Theo-

rem 2, one can choose α ∈ O∗
S(F )

∩O∗
S such that Z[αn] is of finite index in OS(F )

for

every n ≥ 1. Hence Z[αn][
√
−d] is of finite index in OS .

Choose α as in Lemma 10 and define γ and ψ1 as in case 1. We define ψ2 by

ψ2 :=

(

1 h
√
−d

0 1

)

∈ Γ. Let Γ0 :=
〈

γ, ψ1, ψ2

〉

. We show that Γ0 is a subgroup of

finite index in SL2(OS).

Since F is a non-CM field, by an argument similar to case 1, one shows that there

is an ideal a of OS(F )
such that

(

1 0

a 1

)

⊂ Γ0 and

(

1
√
−da

0 1

)

⊂ Γ0. (20)

Then for x ∈ a, using Bruhat decomposition (see [5, 8.3]) of ψ2, we have

(

ψ2 1 0

x 1

)

=

(

u 1 h2dx
0 1

)

∈ Γ0 where u =

(

1 0
1

h
√
−d

1

)

. (21)

Let b = h2da. Then we have
(

u 1 b

0 1

)

⊂ Γ0 and

(

u 1 0

b 1

)

=

(

1 0

b 1

)

⊂ Γ0. (22)

Let Γ1 be the subgroup of SL2(OF ) generated by

(

1 b

0 1

)

and

(

1 0

b 1

)

. Then, by

(22), we have uΓ1 ⊂ Γ0. By Theorem 9, the index of Γ1 in SL2(OF ) is finite. Thus it

follows that there exists an integer N such that

γN ∈ Γ1 ∩ Γ0. (23)

Since uΓ1 ⊂ Γ0, we have uγN ∈ Γ0.

Therefore, uγ−NγN =

(

1 0

(α2N − 1)
√
−d
hd 1

)

∈ Γ0. Now by conjugating this ele-

ment and its powers by negative powers of γ, one shows that

Γ0 ⊃

(

1 0√
−dc 1

)

(24)

where c := (α2N − 1)Z[α2] ∩ a. Now c +
√
−dc is a subgroup of finite index in

OS(F )
[
√
−d] and hence in OS . Therefore, the group c +

√
−dc contains a nonzero

ideal q of OS . Since c ⊂ a, by (20) and (24), we have

(

1 0

q 1

)

⊂ Γ0. (25)

Again, for y ∈ a, using the Bruhat decomposition of ψ1, we have

(

ψ1 1 y
√
−d

0 1

)

=

(

vϕ 1 0

h2yd 1

)

∈ Γ0 (26)
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where v =

(

1 1

h
0 1

)

and ϕ =

(

1 0

0 1√
−d

)

. Thus we have

(

vϕ 1 b

0 1

)

⊂ Γ0, and

(

vϕ 1 0

b 1

)

⊂ Γ0. (27)

Therefore, vϕΓ1 ⊂ Γ0 and hence vϕγN ∈ Γ1 ∩ Γ0. Thus, using (23) we have

vϕγNγ−N =

(

1 (1 − α2N ) 1

h
0 1

)

∈ Γ0. (28)

Again by conjugating this element and its powers by nonnegative powers of γ, one

shows that
(

1 c

0 1

)

⊂ Γ0. (29)

Since c ⊂ a, by (20) and (29), we have

(

1 q

0 1

)

⊂ Γ0. (30)

It follows from (25) and (30), and by Theorem 9, that the group Γ0 is a subgroup

of finite index in SL2(OS). This completes the proof of Theorem 1.
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